信号与系统题库综合

合集下载

(完整版)信号与系统复习题

(完整版)信号与系统复习题

信号与系统试题库一、填空题绪论:1。

离散系统的激励与响应都是____离散信号 __。

2.请写出“LTI ”的英文全称___线性非时变系统 ____。

3.单位冲激函数是__阶跃函数_____的导数. 4.题3图所示波形可用单位阶跃函数表示为()(1)(2)3(3)t t t t εεεε+-+---。

5.如果一线性时不变系统的输入为f(t ),零状态响应为y f (t )=2f (t —t 0),则该系统的单位冲激响应h (t )为____02()t t δ-_________。

6。

线性性质包含两个内容:__齐次性和叠加性___。

7。

积分⎰∞∞-ω--δ-δdt )]t t ()t ([e 0t j =___01j t e ω--_______。

8。

已知一线性时不变系统,当激励信号为f (t)时,其完全响应为(3sint-2cost )ε(t );当激励信号为2f (t )时,其完全响应为(5sint+cost )ε(t),则当激励信号为3f(t )时,其完全响应为___7sint+4cost _____。

9。

根据线性时不变系统的微分特性,若:f (t)−−→−系统y f (t)则有:f ′(t)−−→−系统_____ y ′f (t )_______。

10。

信号f (n )=ε(n )·(δ(n)+δ(n-2))可_____δ(n)+δ(n —2)_______信号。

11、图1所示信号的时域表达式()f t =()(1)(1)tu t t u t --- 。

12、图2所示信号的时域表达式()f t =()(5)[(2)(5)]u t t u t u t +----。

13、已知()()()2f t t t t εε=--⎡⎤⎣⎦,则()f t '=()(2)2(2)u t u t t δ----.14、[]2cos32t d ττδτ-∞⎛⎫+ ⎪⎝⎭⎰=8()u t 。

信号与系统复习试题(含答案)

信号与系统复习试题(含答案)
D。激励与H(s)的极点
76.某二阶LTI系统的频率响应H (j)
A.y2y3y
B。y3y2yf2
D。y3y2yf
H(s)的共轭极点在虚轴上,则它的
2,-1,H ()1,则系统函数H(s)为(
C。(s1)(s2)
(t)的傅氏变换是(
B。j(
D。j(2
A.系统在(t)作用下的全响应
C.系统单位阶跃响应的导数
6。对于一个三阶常系数线性微分方程描述的连续时间系统进行系统的时域模拟时,所需积
分器数目最少是__3个_____个。
7。一线性时不变连续因果系统是稳定系统的充分且必要条件是系统函数的极点位于S平面
的___左半平面_______。
8.如果一线性时不变系统的单位冲激响应为h(t),则该系统的阶跃响应g(t)为
其中x(0)是初始状态,
f(t)为激励,y(t)为全响应,试回答该系统是否是线性的?[答案:非线性]
2.y'(t)sinty(t)f(t)试判断该微分方程表示的系统是线性的还是非线性的,
是时变的还是非时变的?[答案:线性时变的]
3.已知有限频带信号f(t)的最高频率为100Hz,若对f(2t)*f(3t)进行时域取样,
B。f(t)f(t8)
12
C.f(t)f(t8)
D。f(t3)f(t1)
69.已知一连续系统在输入f(t)的作用下的零状态响应为yzs(t)f(4t),则该系统为()
70.已知f(t)是周期为T的函数,f(t)-f (t
T)的傅里叶级数中,只可能有(
71.一个线性时不变的连续时间系统,其在某激励信号作用下的自由响应为(e
h(t)=(1et)(t),则其系统函数
15.已知一信号f(t)的频谱F(j)的带宽为,则f(2t)的频谱的带宽为

信号与系统考试试题及答案

信号与系统考试试题及答案

长沙理工大学拟题纸课程编号1 拟题教研室〔或老师〕签名 教研室主任签名符号说明:sgn 〔f 〕为符号函数,仇,〕为单位冲击信号,/幻为单位脉冲序列,仪,〕为单位阶跃信号,式k 〕为 单位阶跃序列.一、填空〔共30分,每题3分〕1,f ⑴=〔尸+4〕4f 〕,求/"〔,〕=.*0〕 + 45⑺2,/'〔%〕 = {12-2,1},〃〔攵〕={3,424},求/〔攵〕*/#〕 = /〔攵〕*/?〔%〕 = {3,10,4,38-6,4} 3 .信号通过系统不失真的条件为系统函数""&〕= ------------ ° HljcoH't江 4江「/、/〔-〕Oax= ------- =—— 4 .假设/⑺最高角频率为那么对 4取样的最大间隔是 -------------- . 练ax /5 .信号/〔,〕= 4cos20加+ 2COS 30R 的平均功率为6 .一系统的输入输出关系为〕C 〕= /'〔3/〕,试判断该系统是否为线性时不变系统 --------- O 故系统为线性时变系统.F 〔5〕=--——! --7 .信号的拉式变换为 .一+1〕〔5-1〕,求该信号的傅立叶变换/〔/8〕= ----------- .故傅立叶变换/O&〕不存在.H ⑵= -- ----- \ ----- r8 .一离散时间系统的系统函数 2 + z7-z--,判断该系统是否稳定 -------------- .故系统不稳定.「〔/+2f 〕6〔T + lk 〃 =9 . J -x--------- 0 310 .一信号频谱可写为/〔jMnA^y 乂iQA^y 〕是一实偶函数,试问/⑺有何种对称性 ------------------- .关于仁3的偶对称的实信号.二、计算题〔共50分,每题10分〕1 .连续时间系统的单位冲激响应〃“〕与鼓励信号/«〕的波形如图A-1所示,试由时域求解该系 统的零状态响应〕'0〕,画出〕'〔/〕的波形.图A-12 .系统的零状态响应〕"〕= /«〕*〃0〕,其波形如图A-7所示.X P= Z|K 「= 22 +22 +l + l = 10 J?-w3.在图A-2所示的系统中,〕〔%〕 = 66-2〕,〃2〔幻=〔0・5〕匕〔%〕,求该系统的单位脉冲响应M2〕.图A-22 h(k)=6攵)+ 4(k) * h<k) = 5(k) + b(k - 2)* (0.5)匕网=3(k) + (0.5)k^2£(k - 2)4.周期信号/«〕的双边频谱如图A-3所示,写出/⑺的三阶函数表示式° 〕< 2 〔.M -1 »~ =2 |0 2 3 n图A-35.写出周期信号/⑷指数形式的傅立叶级数,利用欧拉公式即可求出其三阶函数表示式为8/«〕=2"."%=/2叩+2/3+2 + 2/卬 +/如=2 + 4cos/f +2cos24fK-006.信号f⑴=4/〕- - 1〕通过一线性时不变系统的响应〕«〕如图AK所示,试求单位阶跃信号£«〕通过该系统的响应并画出其波形.图A-4X0= /«〕+/〔1〕+…+/〔1〕+…=Z/〔i〕4.由于 5 故利用线性时不变特性可求出£«〕通过该7W〕} = W>〔D系统的响应为・. 波形如图A-8所示.进行拉斯反变换可得〃(,)=*+2_*)初*•J 1 4 完全响应为y(t) = y x (t) +e-2t -e-5\t>05.己知/⑺的频谱函数/C/3)= Sg 〃3+l )-Sg 〃3-l),试求/⑷,2, 同 < 1F(jco) = Sgn(co +1) - Sgn(a )-1) = < =2g 2(co)5.I 〞网>1 ,由于g2")0 2Sa (⑼,由对称性可得:254.)= 2咫2(-助=2甯2(助,因此,有2/(,) = — S 〃(f)丸三、综合计算题(共20分,每题10分)1. 一线性时不变因果连续时间系统的微分方程描述为),〞(/) + 7/(0 +1 Oy(t) = 2r ⑺ + 3/(r)")=f),y (吁1,y (°-)=1,由s 域求解:(1)零输入响应K"),零状态响应完全响应>'(');⑵系统函数"(S ),单位冲激响应并判断系统是否稳定: ⑶画出系统的直接型模拟框图.解:L (1)对微分方程两边做单边拉斯变换得S 2Y(S )-孙(.-)-y (0-) + 75/(5)_ 7y(0_) + 10Y(s) = (2s + 3)尸(s) 整理后可得y (s )=s ),(0-) + y (0-) + 7),(0-) + 2s+ 3 F"s 2 +75 + 10 s 2+ls + \O 零输入响应的s 域表达式为Z (s )=5 + 82-1— ---------------- - =------------ H ---------:s 〜+ 7s + 10 5 + 2 5 + 5进行拉斯反变换可得 y4)= 2c-2—零状态响应的S 域表达式为,(s) =25 + 3 1+7s + 10 /.)=25 + 3 (1 + 7s + 10)(s+ 1)1/4 1/3 12/7---- + ------- - -------- 5+1 5+2 S+5图A-8(2)根据系统函数的定义,可得“、乙⑸ 2s+ 3-1/3 7/3H(s)=-——=- ------------------ = ------- + ------F (5) S 2+7S + \0 S + 2 S + 5进行拉斯反变换即得i 7由于系统函数的极点为-2、-5,在左半s 平而,故系统稳定.2J +3s-2 l + 7s-10s-2由此可画出系统的直接型模拟框图,如图A-9所示y(k) + 3y(k -1) + 2y(k -2) = f(k)k>0f (k) = £(Z),y(—l) = -2, M —2) = 3,由 z 域求解:(1)零输入响应汽(幻,零状态响应力(幻,完全响应〉'伏); (2)系统函数“(Z ),单位脉冲响应做攵). (3)假设/(") = £(4)-£(攵-5),重求 ⑴、(2).2. (1)对差分方程两边进行z 变换得y (z) + 3{z-'y (z) + y(-l)} + 2{z-2y(Z) + r'y(-l) + y(-2)}=尸(z) 整理后可得 y (7} = -3y(-1)-2d)-2y(-2) =4z- = 44 ,' 1 + 3z-i + 2z"1 + 3Z "+2Z -2 \ + z7 1 + 2—进行z 变换可得系统零输入响应为工也)=[4(—/一4(一2)〞—(幻零状态响应的Z 域表示式为v/、 /⑵1 1 1/6 -1/2 4/3Y ( 7)= ____________ = __________________ _ _______ p _______ I ------------ fl + 3z~l +3z~2 \ + 3z'l +3z'2 1-Z -' (1-Z -1) (1 + Z-1) (l + 2z-1) 进行z 反变换可得系统零状态响应为1 ।3,伙】=[厂7(-1)〜:(一2力£(公6 2 4系统的完全响应为7 X 1y(k) = y x + y f (k) = [-(-1)A --(-2)k +&上(k)(2)根据系统函数的定义,可得"(s) =⑶将系统函数改写为2. 一线性时不变因果离散时间系统的差分方程描述为y f(z)i"l + 3^+2^2一1 2T+7r+T+27r进行z反变换即得万(攵)=[—(—iy+2(—2 门£(幻(3)假设八外二以幻一式卜-5),那么系统的零输入响应外(幻、单位脉冲响应Mk)和系统函数〞(乃均不变, 根据时不变特性,可得系统零状态响应为T{£(幻一£(攵- 5)}=力(幻一y f (k - 5)1 1 Q 1 1 Q6 2 4 6 2 4完全响应为y(k) = y x(k) + T[£(k)-£(k-5)}] 7 8 1 1 3o 2 3 o 2 4长沙理工大学拟题纸课程编号 2 拟题教研室(或老师)签名教研室主任签名符号说明:sgn(f)为符号函数,5(E)为单位冲击信号,演幻为单位脉冲序列,£«)为单位阶跃信号,£(*)为单位阶跃序列.一、填空(共30分,每题3分)y(t) = !-4-2X(0)1.某系统的输入输出关系为力(其中X(0)为系统初始状态,/⑺为外部激励),试判断该系统是(线性、非线性) -------------- (时变、非时变) ------------ 系统.线性时变广(2r2+3r)J(lr-2)Jr = _______________2. J 2 0 04 j:s(2t - 2)5(4 - 2t}dt =J:s(2t- 2)e(4 - 2f)力=J:dt = 1K-04.Z(k) = 2k{s(k)~ 式k -3)) J; (k) = {2, S ,3},计算于仆)*f式k) =力(%)*力(幻={21,21,26,12}5.假设信号/⑷通过某线性时不变系统的零状态响应为力⑴=监.—0),(<,0为常数)那么该系统的频率特性〞(13)= ------------- 单位冲激响应〃(/)= ------------ J 系统的频率特性"(W) = K .*,单位冲激响应/") = K /一°).6 .假设/“)的最高角频率为九(%),那么对信号y(,)= /«)/(2f)进行时域取样,其频谱不混迭的最大取样T丁 心=钙一= TT (s )间隔,max- -------------- ,maK 为 max inF'(s)=—;——! ----7 .信号的拉式变换为("+1).-1),求该信号的傅立叶变换尸(/.)= --------------- ,不存在8 .一离散时间系统的系统函数 2 + Z-I-Z--,判断该系统是否稳定 ------------ o 不稳定「(/+21)6(-/ + 1卜〃=9 . J-K10.一信号频谱可写为尸(,⑼二人侬州一衣)(⑼是一实偶函数,试问/«)有何种对称性 ,因此信号是关于1=3的偶对称的实信号.二、计算题(共50分,每题10分)1 .一连续时间系统的单位冲激响应乃 ,愉入信号/(')= 3 +.32人一8〈'〈8时,试求该系统的稳态响应.二、解:1 .系统的频响特性为 H .&) = FT[h(t)] = ; ge (°)=利用余弦信号作用在系统上,其零状态响应的特点,即T {cos^r + 0)] = \H(ja^ )| cosQj + 认例)+ 6)可以求出信号/(0 = 3+cos2r,-eo<r < 8 ,作用在系统上的稳态响应为} = 1 + —cos2z,—O0< z V82 .信号/(2f + 2)如图A -1所示,试画出/(4-2,)波形.i/(2r + 2)图A-l2 . /(2/-2) -/(4-2/),根据信号变换前后的端点函数值不变的原理,有 /3+2) = /(4-2%) /(2r 2+2) = /(4-2G 2)'1/3,罔<3 0, \co\> 3-2-1变换前信号的端点坐标为4 =2,〃 =-2,利用上式可以计算出变换后信号的端点坐标为Zu = (4 — 2/1 — 2)/2 = —1J22 = (4 —-2)/2 = 3由此可画出/(4-2,)波形,如图A-8所示.3.信号/⑴如图A-2所示,计算其频谱密度函数/"⑼.4.信号/⑺可以分解为图A-10所示的两个信号与八")之和,其中&(f)=超(助 + -!-/i (r) = 2s{-t + 2) = 2s[-(t - 2)] e由于jco根据时域倒置定理:/(-Do〞一/⑼和时移性质,有再(/⑼=F71£(T + 2)1 = 2 昉(3)— -—F2(汝)=FT[f2(t)] = 6s-3) 故利用傅立叶变换的线性特性可得4.某离散系统的单位脉冲响应〃(幻=KT)'5+(一°・5)1]夕心,求描述该系统的差分方程.4.对单位脉冲响应进行z变换可得到系统函数为“-1 — 2 _ - 3-2,5z 1‘-1 + z-1 + 1+0.5Z-1 " l + 1.5z-| +0.5z-2 由系统函数的定义可以得到差分方程的z 域表示式为(1 +1"1+ O&T)y f⑵=(-3 - 2.5/ )F(z) 进行z反变换即得差分方程为y(k) + \.5y(k - 1) + 0.5y(k -2) = -3/'(2)一25f* - 1)5.一离散时间系统的模拟框图如图A-3所示,写出该系统状态方程和输出方程.X](k + 1) = 一ax[(攵)+ f(k \ x 2(k + 1) = -bx?(k) + f(k) 国绕输出端的加法器可以列出输出方程为X (左)=为⑹ + x 2(k\y 2(k) = x l (幻 + 々⑹写成矩阵形式为三、综合计算题(共20分,每题10分)1.描述某线性时不变因果离散时间系统的差分方程为31y ⑹一力…+邛.2) = 2浜)+ 3〃1)人.f(k) = £(⑥,><-1) = 2, y(-2) = -l在Z 域求解:(I)系统的单位脉冲响应力(幻及系统函数〞(Z ): (2)系统的零输入响应以(公; (3)系统的零状态响应力"(外;(4)系统的完全响应)'("),暂态响应,稳态响应; (5)该系统是否稳定?.对差分方程两边进行z 变换得31丫 ⑵一⑵+>-1)}+7{4丫&) + %-.(-1)+义-2)} = (2+32-1)尸⑵48整理后可得3 1 1 4''(T )_ Q M-l) _ 77 y (-2)2 + 37T y (Z) = ------------ ——1——十; \ F(z) 1-1 —、+-尸 4 848(1)根据系统函数的定义,可得5.根据图A-5中标出的状态变量,围绕输入端的加法器可以列出状态方程为玉(左+ 1)x^(k +1)一.玉(女)-b x4k)—J — 11 + 1 f(k)升⑹=1 丁2(幻 1 1 _内(幻 1 々(幻h*) = F-i [H(z)] = [16(1/-14(;了阳.r 1 x ✓ 1 \k 14 1^ 40q . »(^) = [-16(-) + —(-) +—]^) 乙 J J (4)系统完全响应/,、〃、「55」、氏 97」、氏 40 小y(k) = y x (k} + y f (k) = [-—(-) + —(-) + —^)「55/、氏 97/ g 小40 〃、 [——(一)+ — (一) ]£(攵)£(k)从完全响应中可以看出, 4 2 24 4 随着k 的增加而趋于零,故为暂态响应,3 不随 着k 的增加而趋于零,故为稳态响应.(5)由于系统的极点为号=1/2,与=1/4均在单位圆内,故系统稳定.2.试分析图A-4所示系统中B 、C 、D 、E 和F 各点频谱并画出频谱图./⑷的频谱尸"&)如图A-6,&.(/)=&(,_"),丁 = 0・.2K--<»B 、C 、D 、E 和F 各点频谱分别为品(/助=4 £#3-〃线),4 =:=100乃 //---X * 11 00xF&S = — F(y<y)*F^(j6?) = -g) = 50 2/3-"100冗)F D (J3) = Fc (J 2 Hi(ja ))F E (jTy) = —[F D (CO +\ 00^-) + F D (d )-l 00^)]2进行z 反变换即得"⑵= 〃⑵= 2 + 3尸 = _____________ + ________尸⑵ 1 3 T 1 -2 1 1-1 1 1-1 4 8 2 416 -14 (2)零输入响应的z 域表达式为 3 1 17 y(_ 1)--^1 >(_ 1)- 3 y (-2) 工口)=^——H« D T 1 一,4 取z 反变换可得系统零输入响应为13 1 T豆一/ _ 9/4 T -5/8< 3 _[ 1 _*) . 1 _1 . 1 -1 1——Z 、-z - 1 —— Z 1--Z 4 8 24(3)零状态响应的z 域表达式为'⑵=-v~~~\ -------------- /⑵= 48取z 反变换可得系统零状态响应为2 + 3z 〞-16 14/3 40/3(4*z-2)(T )一干+ 干+中-20r2(»,r0.1F「(〃>) = Y (〃)) = F E (ja))H2( jco)长沙理工大学拟题纸课程编号 3 拟题教研室(或老师)签名教研室主任签名符号说明:sgn(f)为符号函数,须,)为单位冲击信号,演幻为单位脉冲序列,£«)为单位阶跃信号,式卜)为单位阶跃序列.一、填空(共30分,每题3分)1.假设信号/⑴通过某线性时不变系统的零状态响应为»⑴=灯Q T.), (K /为常数)那么该系统的频率特性---------------- ,单位冲激响应〃")= ------------- .系统的频率特性"(W)= Ke〞.,单位冲激响应力⑺=K"I.).2.假设/⑺的最高角频率为/£法),那么对信号>.)=/(,)/(2,)进行时域取样,其频谱不混迭的最大取样丁 1 1 ,、J = ----------- = ------ (S)T ___ T max o, 久 '间隔ma、- ...... , max 为max ./〃73J:£(2t - 2)5(4 - 2t}dt =J:s(2t- 2)e(4 - 2t)dt = j dt = 14,工⑹=2"{仪外一£伙一3)}/伙)={2,5,3},计算工(幻*/2的=0/(攵)*/式外={2621,26,12}),«)= /"⑺+ 2X(0) 乙,、5.某系统的输入输出关系为“dt(其中X(0)为系统初始状态,/«)为外部激励),试判断该系统是(线性、非线性) -------------- (时变、非时变) -------------- 系统.线性时变,3 , 1I ⑵2+3/2(—— 2)4 = _____________6. J 2 o 0+3相-2/⑶=一,(Re(s) >.),7.某连续信号的单边拉式变换为5(厂+9) 求其反变换/«)=------------ cf (/) = (2cos3f+ 6“ sin 3r)ty(f)8,a二口e ' 〞"'>-2'计算其傅立叶变换Y(j°)= ----------------------------------------- .r(»=.—!—=——----------------------------------jco+2 jco+5 (汝尸+7/G+lOE(z)=?「二幽 >3) 9.某离散信号的单边z 变换为(z — 2)(z + 3),求其反变换/(&)= -------------/(幻=z*F(s)]=⑵ + (-3)、伏)h(t) = —「H(jco)e J6X dt =—「e-w ./晨〃 =—「/*年力=冬2乃 Lx 2 4 2 万 L%n二、计算题(共50分,每题10分)1./⑴的频谱函数尸(j3)= Sg 〃3+l)-Sg 〃3-l),试求/⑺.[2,同<1 F("D ) = Sgn(a )+1) - Sg 〃3-1) = S=2g 2(a ))1.m 网,由于g2")= 2Sa ⑼,由对称性可得:254(/) = 2咫2(-助=2砥3),因此,有 22.h(t) = . (/) + J(/)]* [% ⑴ + — = [£(f -1) + 6(f)] *_2) + e -2^(f)]=-1) *- 2) +-1) *+ J(O* 2) + J(r)* e^2,£(t)-6 ]=—(1 - e-3"3))£« - 3)+ 一(1 - e-2"-D )£(f _ 1)+e^£(t - 2) + e^s(t) 3 23.信号/")和g")如图A-2所示,画出了⑺和g«)的卷积的波形.3 . /«)和g«)的卷积的波形如图A-9所示."(1&) =、10.某理想低通滤波器的频率特性为“3 间 < 纵° 其他 ,计算其时域特性的)=0)]2.某系统如图A-1所示,求系统的各单位冲激响应.其中九⑴=e[t -1), h 2 (r) = e-3,s(t - 2), h 3 (r) = e-2,S (t)图A-l4.某连续时间系统的系统函数〞⑸悬,画出其直接型系统模拟框图,并写出该系统状态方程的输出方程.H〔5〕= ------ : -----5.将系统函数改写为l + 5sy+3s-由此可画出系统的直接型模拟框图,如图A-11所示.选择枳分器的输出作为状态变量,围绕模拟框图输入端的加法器可得到状态方程为图A-11£⑴=%2.〕, ±2 ⑴=f〔0 - 5%2 ⑴ + f ⑴围绕模拟框图输出端的加法器可得到输出方程为刈=7王«〕 + 2勺〔,〕6.试证实:用周期信号力"〕对连续时间带限信号/«〕〔最高角频率为〕取样,如图A-3所示,只要取样间隔咻,仍可以从取样信号人"〕中恢复原信号图A-35.利用周期信号频谱和非周期信号频谱的关系可以求出心"〕的傅立叶系数为厂1 r n T 0 2产绮、 24F,t = T2Sa =2T Sa〕.°=于由此可以写出周期信号fr⑺的傅立叶级数展开式M )= »产=E 等)*知n--oox // 一 对其进行傅立叶变换即得fr (0的频谱密度F T .&)片(/⑼=2乃 £-〃%)X 乙1今取样信号工⑴=/(/)力,(/),利用傅立叶变换的乘积特性可得j ①)=;F (J ⑼*耳(J ⑼=£ 2S/(竺产)F3-〃g) 2乃 n —0C 2/ 4从以(/助可以看出,当为之24r 时,工(/⑼频谱不混迭,即◎〞仍可从取样信号方⑺中恢复原信号f"三、综合计算题(共20分,每题10分)1.描述某线性时不变因果连续时间系统的微分方程为y"(O + 7y «) +10y (0 = 2/〞 ⑺ + f[t}f ⑴=/£«),)=4, y (o -)=-3,在 s 域求解:(1)系统的单位脉冲响应/?〞)及系统函数H(s). (2)系统的零输入响应/〞) (3)系统的零状态响应‘7")(4)假设/«) = /"-"£«-1),重求(1)、⑵、⑶.解:1.对微分方程两边做单边拉斯变换得S 2Y(S )-町(.一)一 y (0") + 75/(5)- 7),(0-) + 10X(5)= (2s + 1)F (5) 整理后可得(1)根据系统函数的定义,可得进行拉斯反变换即得/z(O = (-^2/+3^5r )f(r)(2)零输入响应的s 域表达式为U/、 45 + 25 -5/3 17/3Y(s) = - ..................... = -------- + ------+75 + 10 5 + 2 5 + 5取拉斯反变换即得yx (')= _ge-2' +y-^5/,r >0(3)零状态响应的s 域表达式为取拉斯反变换即得匕 «)=(-0.25eT +^2/ -0.75e-5z )^(r)请浏览后下载,资料供参考,期待您的好评与关注!y (s )=) 一/(O-) + 7y(0-) 25 + 1s 2 +75 + 10s 2 +75 + 10 JJH(s) =Yf (s) 2s + 1 -1 3尸⑸— ----------- = --------- F ----- s-+7s + 10 s + 2 s + 5 25 + 1 /(S )= T(s- +75 + 10)(5 + 1)-0.25 1-0.75 + --------5 + 56. /(0 = [£(t +1) - £{t - l)]cos(100r) 的 频 谱 F*o) =FT{ [s(t +1) - £(t — l)]cos(l OOf)} = Sa(co - 100) + Sa(co +100)g _ /?(k) = g ⑹ 一 g(A — 1) = (ft ⑹ - (g)h*(攵-1)8,假设 /(0 = 2 + 4cosCOr) + 3cos(20r),(-o < r < oo) 3)= 10为基频),那么 f(t)的平均功率P=f 方「= 2? +22 + 2? + (32 + (1)2 = 16.54t \ m,'〔/〕= /〔:〕/〔7〕9,假设/⑷最高角频率为那么对 4 2取样,其频谱不混迭的最大间隔是 -------------- ,©max 3%10.假设离散系统的单位脉冲响应力〔幻=[〔-1〕1+〔-°5〕11£〔口,那么描述该系统的差分方程为 y 〔k 〕 + 1.5y 〔k -1〕 + 0.5y 〔k -2〕 = -3/〔幻一 2.5/〔攵-1〕二、计算题〔共50分,每题10分〕1 ./⑴的波形如图A-1所示,令. A/‘⑺图A-1试计算输入为-*〕 = 23〔%〕 + £代〕时,系统的零状态响应〕膜〕,“、sin 4/5.连续信号 t 的频谱 -------------------------------- /(〃?) =咫8(&)= < 4,囱<40,网>47. 己知一离散时间LTI 系统的单位阶跃响应计算该系统单位脉冲响应⑴用仪/〕和k 〕表示/⑷:〔2〕画出了〔一2,-4〕的波形.⑵将〃一2,-4〕改成/[-2« + 2〕],先压缩,再翻转,最后左移2,即得/〔一2,-4〕,如图A-8所示.八〔一〕“£〔4NL \\( 一)£(& —1)2.某线性时不变(LTD离散时间系统,当输入为演“一1)时,系统地零状态响应为2 试计算输入为/(%)= W) +仪外时,系统的零状态响应,3.信号/«)的频谱如图A-2所示,求该信号的时域表示式.-----------7}- ................. co 0F -5, 4 5 6图A-2由于系统函数为H(jco) = [g2(a)+5)+ g2(co-5)]e~j2a由于g2(')= 2Sa(.),由傅立叶变换的对称性可得:254“)= 2咫2(-助=2处23) 即— Sa(t)<^>g2(co)由调制性质,有2— Sa(t}cos5t <=> g)(3 + 5) + g)(少一5)71由时移性质,有2—Sa(t - 2)cos5(r - 2) o [g, 3 + 5) + g, (.- 5)k“"7T -因此2h(t) = — Sa(t - 2)cos5(r- 2)4.一连续时间系统的频响特性如图A-3所示,输入信号/⑷= 5 + 3cos2f+cos4/,—8</vs,试求该系统的稳态响应)'")▲〞(为)图A-34.利用余弦信号作用在系统的零状态响应的特点,即T{ cos^jZ +.)} = )| cos(卬 + 或4) +.)在此题中,火G)=0,因此由上式可以求出信号/⑺作用在系统上的稳态响应为T[f(t)] = 5H(jO) + 3H(J2)cos2r + //(J4)cos4r = 5 + 2cos2r -oo vs5.信号f⑴=£“)- - 1)通过一LTI系统的零状态响应为)*)=演/ +1) - -1),试求图A-4所示信号g(f)通过该系统的响应人〞)并画出其波形.. g0)—乙--- «--------- ►/T| i图A-45.由于以""[如'")’",所以,利用线性时不变系统的积分特性,可得y R (0 = L y(r)dr = £x[J(r + 1) +J(r-l)Jr] = s[t + 1) + s{t-\) 其波形如图A-9所示.JLfe i图A-9三、综合计算题(共20分,每题10分)1.描述一线性时不变因果连续时间系统的微分方程为y〞⑺ + 5/(0 + 6y(r) = 2/f) + f(t)f⑴=e-■),y(°-)=i,y's=1由s域求解:(1)零输入响应)'X⑺零状态响应力"),完全响应)*):(2)系统函数“(S),单位冲激响应〃“),并判断系统是否稳定:(3)画出系统的直接模拟框图(1)由于H,(jco) = --[g2(co-3)-g2(co+3)] + [3(c()-2)-3(co+2)],Sa(r) = g)(0)又由于江-,由调制定理,可得—Sa(t) sin(30 =上[g?(口—3) —取(切 + 3)]7t 2j即一/‘Sa(f)sin(3f) =-!火2(口一3)-心(3 + 3)]乃2由于sin(2r) = —2) —5(3+2)],即■/ sin(2f) o 6(3 - 2)- 6(少 + 2)7t由频域微分性质,可知:-所以有■—jth(t) = [5i/(/)sin(3r) - sin ⑵)]万,整理得1 3 2h(t) = —[Sa(t)sin(3t) -sin(20] = —Sa(t)Sa(3t) --Sa(2t)70 71 71(2)由于“行⑼是一个带通滤波器,下限角频率为2rad/s,上限角频率为4rad/s,因此,只有角频率为3rad/s 请浏览后下载,资料供参考,期待您的好评与关注!的信号分量可以通过该滤波器.由cos (卬)->\H (凡)|cos[^r +旗例)]可知O.4cos0/) . 0.4|H(j3)|cosPr + 旗 3)]由于口(万)|=.5,奴3) = 0,所以有:0.4cos@)f 0.2cos@),即 /'(,) = 1 + 0.6cosr + 0.4cos3r + 0.2cos5r —> y(f) =0.2cos(3r)2.在图A-5所示的系统中,周期信号P (')是一个宽度为7)的周期矩形脉冲串,信号/⑺的频谱为 F(js) , (1)计算周期信号p«)的频谱工;⑵计算〃⑺的频谱率密度〃03): ⑶求出信号/p ⑺的频谱表达式心口⑸(4)假设信号/⑺的最高频率°%为了使乙频谱不混迭,T 最大可取多大?图A-51)利用傅立叶级数的计算公式可得到周期信号PQ )的频谱/为⑵周期信号〃“)的指数函数形式的傅立叶级数展开式为〃⑺=z 产、〃=7C 1 \ ^ /对其进行Fourier 变换即得〃⑴的频谱密度尸㈠⑼为P(/3) = 1Sag 算卜0_〃4)⑶由于/p") = /(')〃"),利用傅立叶变换的乘积特性,可得I8 讯5(/3) = 丁/(1&)*= Z 〒Sa(4)从信号(⑺的频谱表达式G 〞5可以看出,当4之29〃时,0".)频谱不混迭,即P")1 T/2 [ r/2 1-7721 -r/2AT(-jna )^e2万一初%r=r/2 r="r/2Cz Mo =7tA sin(〃g"2) _ M | T 〃g"2 T ’一9)长沙理工大学拟题纸课程编号 5拟题教研室(或老师)签名 教研室主任签名符号说明:sgn(f)为符号函数,仇,)为单位冲击信号,/幻为单位脉冲序列,仪,)为单位阶跃信号,式k)为 单位阶跃序列.一、填空(共30分,每题3分)1.[4/)一£«-2)15(2/ -2) =./.—4/ - 2)卜 6(2/ - 2) = [£(/)-^(r-2)]-l J(r-l) = l一 1)222 .假设某离散时间EH 系统的单位脉冲响应出6={2』,3},鼓励信号/(幻={1,-2],2},那么该系统的零状态响应/(")*〃/)= ----------- c 利用排表法可得 /(%)*〃(2) = {2,-33-1,5,6}3 .连续时间信号/«)= sin«)的周期丁.= ------------- .假设对/⑺以人=1%进行抽样,所得离散序列八幻二 ------- ,该离散序列是否是周期序列 ---------- o7(A )= /“)|07=sink .不是4 .对连续时间信号延迟%的延迟器的单位冲激响应为6"一,.), ---------------- 积分器的单位冲激响应为£“) -------,微分器的单位冲激响应为 ---------- o £«)“(j ⑼=1 + W5 .一连续时间LTI 系统的频响特性I% 该系统的幅频特性= ---------------------- 相频特性 ---------------- 是否是无失真的传输系统 ----------- .不是〞(/0) = /arctan 助= 1 .(⑼=2OTCtan ⑻f (―)2^ =6 .根据Parseval 能量守恒定律,计算人.0 t ------------------------ 0力=5 ji 咫 2(助|"刃=;!/43=乃7.一连续时间LTI 系统得单位冲激响应为〃“),该系统为BIBO (有界输入有界输出)稳定系统的充要]>(琲〃条件是 ------- .-8,信号/⑺的最高频率为e (m‘〃s ),信号/2«)的最高频率是 -------------------- ©)%(女) 9 .某连续时不变(LTI)离散时间系统,假设该系统的单位阶跃响应为4h(k) = g(k)-g(k-\) = [^\ 响应为141V4;10--------------------------------------------------------------------------------------------- .连续时间信号/(')= sin42(f) + w(f_//2)],其微分/'«)= ------------------------_ 2a )m (rad/s) 0 .,那么该系统的单位脉冲£(1)H(Z )= ——————r、(1)将系统函数改写为 l + 3z"+2z-+Z 、,由此可画出系统的直接型模拟框图,如图A-10所示.4 .连续时间LTI 因果系统工程微分方程为y 〞⑺- 5),⑺ + 6y(t) = /(r) + 4/f >.输入 /⑴=,初始状态 N°-)= L y'(O-)= 3.(1)利用单边拉式变换的微分特性将微分方程转换为S 域代数方程.(2)由s 域代数方程求系统的零输入响应入⑴和零状态响应>'/⑴o 4、(1)对微分方程两边做单边拉斯变换即得s 域代数方程为 S 2Y(S ) - sy(O-) - y'(0~)- 5sY(s)-5y(O-) + 67(5)= (4s + 1)F(J ) (2)整理上述方程可得系统完全响应得s 域表达式为其中零输入响应的s 域表达式为v/、 s —21匕⑸二7^7r 三取拉斯反变换可得取拉斯反变换可得4«) = ( —卜一+一3/一%斗⑺5 .连续系统的系统函数"(S )的零极点如图A-3所示,且"(8)= 2.图A-3(1)写出〃(s )的表达式,计算该系统的单位冲激响应〃“); (2)计算该系统的单位阶跃响应g (').5、(1)由零极点分布图及“(8)的值可得出系统函数〞(s)为请浏览后下载,资料供参考,期待您的好评与关注!丫(S )= 盯(0-) + ),(.-)一53,(0-)4s+ 1 s 2+55 + 6+ 1—5S + 6 F(s) 零状态响应的s 域表达式为'($)= zT s — 5s + 6F(s) =45 + 1-1/4 -3 13/4 ------ + -------+ -------(S — 2)($ —3)(5— 1) 5 + 1 5-2 5-3“⑸〞—=3)=2 + 3 + 二^(5+ 1)(5+ 3) (5+ 1)(5+ 3)5 + 1 5 + 3取拉斯反变换可得h ⑴=26(,) + (31 -15/')£«)(2)单位阶跃响应的s 域表达式为取拉斯反变换可得g") = (- 3e-‘ +5e -"立⑺三、综合计算题(共20分,每题10分)1. 一离散时间LTI 因果系统的差分方程为y (外 + 3y(k -1) + 2y(k -2) = 2f(k)+f(k-l)系统的初始状态= 1/2M —2) = 1/4,愉入/(攵)=式k) o(1)由z 域求系统的零输入响应为(幻和零状态响应丁/公. (2)求该系统的系统函数"(Z ),并判断系统是否稳定. 1、(1)对差分方程两边进行z 变换得y (z) + 3[/y (z) + y(-D] + 2[z-2y(Z) + z\(—l) + y(-2)] = (2 + z 〞"⑵ 整理后可得二 ='—〉-2)+ _ 甲1 + 3Z "+2Z -21 + 3二+2「零输入响应的z 域表达式为_3y(-l)-2/y(-1)-2y(-2) __2_/ = ] -3 * '1 + 3]+2z"1 + 37+2Z -2 \ + zT 1 + 2/取z 反变换可得系统零输入响应为y x U)= 1(-1/-3(-2/kU)零状态响应的Z 域表达式为(2 + z"Q) 2 + ' —1/2 2 1/2/ (7) = --------------------------------- = ----------------------------------------------- = --------------- + ---------------- + -----------71 + 3/ +2z- (1 + 3] +2Z -2)(1 — Z T) 1 — Z T 1 + 2/ 「才取z 反变换可得系统零状态响应为V (幻=[一? 一1» + 2(-2) J f 仪幻〃⑵=四=,(2)根据系统函数的定义,可得 /口)l + 3z +2z-由于系统的极点为芍=-1,Z2 =-2,均不在单位圆内,故系统不稳定2.某高通的幅频特性和响频特性如图A-4所示,其中@=80万------ >3-.269一阳图A-4⑴计算该系统的单位冲激响应""):G(S ) = H(s)LT[e(t)] =25(5-2) 1 (5+ 1)(5 +3) S 一3 5--- + ----- 5+1 5+3CD(2)假设输入信号/«)= 1 + 0・58$60加+ 0.2.05120",求该系统的稳态响应丫02、(1)由于系统的频率特性为:"C/&)=U-g2&3)k-s.又由于co咐=1, r阚)""),所以,有h} (0 = J(/)-" Sa(a)c t) = d(t)一80S.80 加)乃由时移性质得/?(,) = h} (t — t()) = 3(,一八))一805380%(7-%)](2)由于高通系统的截频为80%,信号/(,)只有角频率大于80万的频率分量才能通过,故y(t) = 0.2cosl20^(r-r())长沙理工大学拟题纸课程编号6 拟题教研室(或老师)签名教研室主任签名符号说明:sgn(f)为符号函数,须,)为单位冲击信号,演幻为单位脉冲序列,£«)为单位阶跃信号,式卜)为单位阶跃序列.一、填空(共30分,每题3分)I J: « - 3)3(—2/ + 4卜〃 =(f — 3)6(/ — 2)力=万(f - 3)| 1=2= -0.5[;(1-3)6(-2/ + 4)力6/八EV , \ £>/ \ . -V/ \ 〉'(,)=-[/(,)+ J(T)12.实信号/«)的傅立叶变换/OM = H3)+ K3),信号, 2 的傅立叶变换3为---------------- .H(5)= —3.某连续时间系统的系统函数为s + 1,该系统属于------------- 类型.低通4.如以下图A-1所示周期信号/«),其直流分量= ------------- ,4图A-1X 上任+ 1, ^>0!>(〃)y^hi=L .八=伏+1)5(幻5.序列和= ---------------------由于I., .6. LTI离散系统稳定的充要条件是----------- .“(Z)的全部极点在单位圆内.7.信号/⑺的最高频率」.(及),对信号〃〃2)取样时,其频率不混迭的最大取样间隔T 1 11 = ----------- = ----»nr, max .1max= ------------- o 'max 为max ©8.一连续系统在输入/⑺作用下的零状态响应〉"〕=/'〔4,〕,那么该系统为 ---------------- 系统〔线性时变性〕.线性时变9.假设/⑺最高角频率为9",那么对〕"〕一、"了〕"5〕取样,其频谱不混迭的最大间隔是------------ .T 万44= ------------ =T—* 3绦/⑵= ---------- ----------10./〔*〕的Z变换屋+ ]〕屋+ 2〕,尸⑵得收敛域为H>max〔Z],Z2〕= 2时,/⑹是因果序列.二、计算题〔共50分,每题10分〕1.某线性时不变连续时间系统的单位冲激响应川,〕和输入/⑺如图A-2所示,从时域求解该系统的零状态响应〕*〕.1、系统的零状态响应y«〕=%〕*、〔>如图A-4所示, 刈xp1 2 3图A-42.系统y'«〕+2y⑴=/«〕的完全响应为M + 3应.2、对微分方程取拉斯变换得sy〔s〕-y〔0-〕 + 2y 〔s〕 = F 整理得r〔5〕=2122+_Lr〔5 5 + 2 5 + 2因此有匕"〕=吗匕⑸」s + 2 , s +取拉斯反变换,得零输入响应为工〔力='〔.-〕6-4£.〕由给定的系统全响应可知,鼓励信号应为:fdd〕,因此,求系统的零输入响应和零状态响⑸〕严s〕其拉斯变换为图A-2"S 户占,因而有y f (t) = (ke t -ke 2t )e(t)因此.系统的全响应为y(t) = [ke-1 + NO"-,- 2 ]£«)+ 3二小⑴比拟,可得:k = 2, ),(.一)= 5 y x (t) = y(0')e^£(t) = 5e^£(t)系统的零状态响应为>7 (0 =叱-心把⑺=2(e-l - e-2f )s(t)i N-1*]=—Z/k —川3.N=5点滑动平均系统的输入输出关系为N“.,求系统的单位脉冲响应,并判断系统是否因果、稳定.3.根据系统的单位脉冲响应的定义,当系统的输入信号/(外为单位脉冲序列演幻时,其输出y (幻就是系统 的单位脉冲响应力依),即1 N-l 1 1h*) = — >5(k — n) = 一[6(= + d(k -1) + 5(k - 2) + d(k -3) + 5[k -4)]= 一国Z)-式k - 5)]NM 5 5由于 〃(%)满足 h(k) = 0,k <.£|力冈1=41=1 j- J 氏一0所以系统是因果、稳定的.H ⑸=———— -----------4.连续时间系统的系统函数1 + 2s- + 3s +1 ,写出其状态方程和输出方程°4.根据系统函数画出系统的模拟框图,并选择积分器的输出作为状态变量,如图A-5所示,围绕模拟框图输入 端的加法器可得到状态方程为图A-5吊(1)=々«),左⑺二七⑷,£3.)= _3.)_2勺.)_3七") + /«)围绕模拟框图输出端的加法器可得到输出方程为〉'“)=$⑺+9〞)5.在图A-3所示的系统中,周期信号〃⑺是一个宽度为1'(TV T)的周期矩形脉冲串,信号/⑺的频谱为 F(js),乙(s) =取拉斯反变换,得零状态响应为—F (5)=——-—— ........................ — 5 + 2 (s + l)(s + 2) 5 + 1 5 + 2与给定的系统全响应武')=[2,… 因此,系统的零输入响应为(1)计算周期信号p(f)的频谱工;⑵计算〃⑷的频谱率密度〃()⑼: ⑶求出信号/.⑺的频谱表达式分〞⑸(4)假设信号/⑺的最高频率为了使勺.⑹频谱不混迭,T 最大可取多大?TK 二(4)从信号(⑺的频谱表达式/"⑨可以看出,当多々2%时,色〞句频谱不混迭,即以三、综合计算题(共20分,每题10分)1.描述一线性时不变因果离散时间系统的差分方程为6y (女)一5y(k - 1) + y(k -2) = f(k)k >0/‘(%)=式k), >'(-1) =-2, y(—2) = 3,由 % 域求解:(1)零输入响应工(外零状态响应力(外,完全响应,'("): (2)系统函数“(Z ),单位冲激响应〃伏): (3)假设f*) = 2式k-D,重求⑴、(2) 1.(1)对差分方程两边进行z 变换得6y(z) — 5{/y (z) + >'(—l)} + {z-2y (z) + /N —l) + y(-2)} = F(z) 整理后可得*、5),(一1)一[-.(一1) 一),(一2), 尸⑵丫 (z) = --------------- ; --- S ------ + --------- ; ----- r6-5z +Z- 6-5z +z-请浏览后下载,资料供参考,期待您的好评与关注!〃⑺图A-35、(1)利用傅立叶级数的计算公式可得到周期信号〃⑺的频谱心为[7721 r/2F"=1J A U =1-7721 -r/2A T(—jS )C2万一初eyyr=r/2 r="r/2⑵周期信号P«)的指数函数形式的傅立叶级数展开式为XT AP3=£ 亏 Sa对其进行Fourier 变换即得〃⑴的频谱密度,(/助为X T AP(js) = 2笈Z —Sa〃=Y T⑶由于Jp ⑺= /("〃"),利用傅立叶变换的乘积特性,可得18 rA工,(加)=丁产(M*P (W )=c4 sin("g"2) _ tA T T3 — 〃%)一.)零输入响应的Z 域表示式为零状态响应的z 域表示式为取z 反变换可得系统零状态响应为系统的完全响应y ⑹=外〔幻+力*〕 = [-5〔夕+1〔乎+蛔.〔2〕根据系统函数的定义,可得取z 反变换即得系统单位冲激响应为〃〔攵〕=[;〔〕"一!〔9国外乙 乙 J J〔3〕假设/〔幻=2仪〞-1〕,那么系统的零输入响应以〔攵〕、单位冲激响应力〔口和系统函数"〔Z 〕均不变,根据线 性时不变特性,可得系统零状态响应为力伙〕=[一〔;〕1 + +1]£〔々 T 〕乙 J J系统全响应为y ⑹=X ⑹+力〔攵〕=[-沼〕氏+ R 〕>⑹+[-〔;产+杲严+ i]£d 〕 乙 乙 J J 乙 J J 2.连续时间线性时不变〔LTI 〕系统的微分器的系统函数为:Z (s) = s假设设:那么用〔2〕式代替〔1〕式中的s 来设计离散时间ED 系统的方法称之为双线性变换法.是在设计过程中须确定 的一个大于零的数.〔1〕试画出离散系统的框图.〔2〕确定离散时间系统的频率响应画出它的幅度及相位响应.2,解:〔1〕令"d 〔Z 〕为离散系统的系统函数,那么由题中给出的公式〔1〕和〔2〕得:(―T)工⑵=5y(-1) 一 zN-l) -),(-2)-13+2/ -9/2 7/36 — 5Z "+Z -26-5z" +z"取z 反变换可得系统零输入响应为o 1 7 1n 〔外=【一3〔3〕' +]〔7〕人上〔发〕丫售〕=尸⑵-1/2 1/6 1/26-5/+Z-2(6-527+1)(1-1)H(z) =1/2一 1/3F ⑺6-5Z "+Z -2। 1, 1 一六〃d (z) =因此可知该系统可由两个子系统级联构成,如图A-6 (a)所示:图A-7长沙理工大学拟题纸(7)一、填空(共30分,每题3分)1、某连续系统的零状态响应为,'(/)= 2/«)-1 ,试判断该系统特性(线性、时不变、稳定 性)-非线性、时不变、稳定系统-5(f)cos (2f)= J(r)cos(2r) = J(r)3、假设离散时间系统的单位脉冲响应为力(口={1,-1,2},那么系统在/(幻={1,2,-2,1}鼓励下的零状态响应r -/⑹*/?⑹= {1,1,27-5,2 •为.可简化为图A-6 (b):(b) 图A-6(2)由系统函数可得该系统的频率响应凡®%⑵L 出为%(*)=Ts 1 + 产 Tsq .n c. /.、 J 弓),2$皿(5)2 Q 虐—n 一n『=J- 5- = — tan(5)e -.-,彳、 J s CCS 厂外 2e - (e 2 +e -) cos (—)7 O 凡(*)= j — tan —注意Owl :时,有:Ts 2幅频特性和相频特性如图A-7 (a)、(b)所示.,Q(a)(b)4、一周期信号/⑷的周期"=2乃,其频谱为尸° =1,6 =05et=0.5e-,\ 尼=—0.2j,%=S2/ ,写出/(/)的时域表达式f(t)= £ F n e jn%, = 1 + 0.5/'*')+ 0.5V-G + 0,2je-j3^ - 0.2je j^'1 n-oo=1 + cos(gf + TT)+ 0.4cos(3gr - zr / 2)(由于 g = 24/" = 1)=1 + cos(f + 4)+ OAcosQt - /z7 2) = 1 -cos(Z) + 0.4siii(3r)nv .、2+〃y. F〔JCD〕= ------- ----------5、信号/«〕= e cos〔100f〕£〔f〕的频谱2/&〕=o100?+4-b6、连续系统与离散系统的重要区别特点是,离散系统的频谱具有周期性:7、设连续时间信号/⑺的傅立叶变换为产".〕,那么尸〔"〕的傅立叶变换为.2叭-⑼.8、单位门信号gf«〕的频谱宽度一般与其门信号的宽度T有关,T越大,那么频谱宽度越窄 .9、拉普拉斯变换域傅立叶变换的根本差异是J言号满足绝对可积条件时才存在傅立叶变换:它们的关系是—而信号不满足绝对可积条件时也可能存在拉普拉斯变换:产sin co , d coJ co10、二、计算题〔共50分,每题10分〕F〔5〕=——1、s〔Je "〕,收敛域Re〔s〕>°,试求其拉氏反变换了⑴,并画出了⑺的波形.1 1 1 00।L 由于自四一 "〕= h, 〔Re⑸>.〕x 12"〕 0 r令7 = 2,得〃・. 1-6 O由傅立叶变换的时域卷积性质,有X00f ⑴=s〔t〕 * Z 5〔1 - 2"〕 =>" 2〃〕〃-. 〃i〕,其波形如图A-6所示.⑴系统的单位冲激响应力〞);(2)输入 fS = 1 + 0・6cosf + 04cos3f + 0.2cos5fLs <t <s ,系统的输出 y(f). 2.解(1)由于H ,(ja )) = ~[g 2(co-3)-g 2(co+3)]+[3(cD-2)-3(co+2)]乙又由于江 -,由调制定理,可得-Sa«) sin(3r) =,■;[w (公 一 3) — 心(刃 + 3)1乃 2)一/’Sa(f)sin(3f)o -2[g2(G-3)-g2(G + 3)]2由于sin(2f) = -M33-2)-53+2)],即—sin(2r) = 6(3—2)-6(—+2) 7t由频域微分性质,可知:一"〃")0所以有一 jth(t) = -—[ Sa(t) s in(3r) - s in(2r)]万 ,整理得1 3 2h(t) = —[Sa(0 sin(3f) - sin(2z)] = — Sa(t)Sa(3t)--Sa(2t)(2)由于""⑼是一个带通滤波器,下限角频率为 的信号分量可以通过该滤波器.由 COS3J) T 〃(J4)|cos 画/ + 收.)]可知O.4cos0r) —>0.4|H(j3)|cos|3r+ ^?(3)]2、某连续LTI 时间系统得频率响应〞(/⑼如图A-1所示,试求:7t2rad/s,上限角频率为4rad/s,因此,只有角频率为3rad/s。

信号与系统练习题——第1-3章

信号与系统练习题——第1-3章

信号与系统练习题——第1-3章信号与系统练习题(第1-3章)一、选择题1、下列信号的分类方法不正确的是(A )A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、连续信号和离散信号2、下列离散序列中,哪个不是周期序列? (D )A 、165()3cos()512f k k ππ=+ B 、2211()5cos()712f k k ππ=+ C 、33()9sin()5f k k π= D 、433()7sin()45f k k π=+ 3、下列哪一个信号是周期性的?(C )。

A 、()3cos 2sin f t t t π=+;B 、()cos()()f t t t πε=;C 、()sin()76f k k ππ=+; D 、1()cos()53f k k π=+。

4、周期信号()sin6cos9f t t t =+的周期为(D )A 、πB 、2πC 、12π D 、23π5、周期信号()sin3cos f t t t π=+的周期为(C )。

A 、πB 、2πC 、无周期D 、13π 6、以下序列中,周期为5的是(D ) A. 3()cos()58f k k π=+ B. 3()sin()58f k k π=+ C. 2()58()j k f k eπ+= D. 2()58()j k f k e ππ+=7、下列说法正确的是(D )A 、两个周期信号()x t ,()y t 的和信号()()x t y t +一定是周期信号B 、两个周期信号()x t ,()y t 的周期分别为2()()x t y t +是周期信号C 、两个周期信号()x t ,()y t 的周期分别为2和π,则信号()()x t y t +是周期信号D 、两个周期信号()x t ,()y t 的周期分别为2和3,则信号()()x t y t +是周期信号8、下列说法不正确的是(A )A 、两个连续周期信号的和一定是连续周期信号B 、两个离散周期信号的和一定是离散周期信号C 、连续信号()sin(),(,)f t t t ω=∈-∞+∞一定是周期信号D 、两个连续周期信号()x t ,()y t 的周期分别为2和3,则信号()()x t y t +是周期信号9、(52)f t -是如下运算的结果(C )A 、(2)f t -右移5B 、(2)f t -左移5C 、(2)f t -右移25 D 、(2)f t -左移25 10、将信号()f t 变换为(A )称为对信号()f t 的平移。

信号与系统复习题(含答案)

信号与系统复习题(含答案)

.试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。

A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。

A.因果时不变B.因果时变C.非因果时不变D.非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 。

A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。

A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇 5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。

A. t t 22sinB. tt π2sin C. t t 44sin D.t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。

A. ∑∞-∞=-k k )52(52πωδπ B. ∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。

A.)}(Re{ωj e X j B. )}(Re{ωj e XC. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。

A. 500B. 1000C. 0.05D. 0.001 9、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t =,其傅立叶变换)(ωj G 收敛,则x(t)是 。

A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。

信号与系统习题

信号与系统习题

1,某系统7,4码)()(01201230123456c c c m m m m c c c c c c c ==c 其三位校验位与信息位的关系为:1求对应的生成矩阵和校验矩阵; 2计算该码的最小距离;3列出可纠差错图案和对应的伴随式;4若接收码字R =1110011,求发码;解:1 1000110010001100101110001101G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦101110011100100111001H ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦2 d min =3 34. RH T=001 接收出错E =0000001 R+E=C = 1110010 发码2.已知(),X Y 的联合概率(),p x y 为: 求()H X ,()H Y ,(),H X Y ,();I X Y 解:(0)2/3p x == (1)1/3p x ==()()(1/3,2/3)H X H Y H === bit/symbol (),(1/3,1/3,1/3)H X Y H == bit/symbol ();()()(,)I X Y H X H Y H X Y =+-= bit/symbol3.一阶齐次马尔可夫信源消息集},,{321a a a X ∈,状态集},,{321S S S S∈,且令3,2,1,==i a S i i ,条件转移概率为01X Y011/31/301/3[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=03121313121141)/(i j S a P ,1画出该马氏链的状态转移图;2计算信源的极限熵; 解:12⎪⎪⎩⎪⎪⎨⎧=++=+=++=++1321323112123312311411332231141w w w w w w w w w w w w w w →⎪⎩⎪⎨⎧===3.03.04.0321w w wHX|S 1 =H 1/4,1/4,1/2=比特/符号HX|S 2=H 1/3,1/3,1/3=比特/符号HX|S 3=H 2/3,1/3= 比特/符号()3|0.4 1.50.3 1.5850.30.918 1.3511Hw H X S i ii ==⨯+⨯+⨯=∑∞=比特/符号 4.若有一信源⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡2.08.021x x P X ,每秒钟发出个信源符号;将此信源的输出符号送入某一个二元信道中进行传输 假设信道是无噪无损的,容量为1bit/二元符号, 而信道每秒钟只传递2个二元符号;(1) 试问信源不通过编码即x 10,x 21在信道中传输 (2) 能否直接与信道连接(3) 若通过适当编码能否在此信道中进行无失真传输 (4) 试构造一种哈夫曼编码两个符号一起编码, (5) 使该信源可以在此信道中无失真传输;解:1不能,此时信源符号通过0,1在信道中传输,二元符号/s>2二元符号/s 2从信息率进行比较, (0.8,0.2)H = < 12可以进行无失真传输 3410.640.16*20.2*3i i i Kp K ===++=∑ 二元符号/2个信源符号此时 2=二元符号/s < 2二元符号/s 5.两个BSC 信道的级联如右图所示:1写出信道转移矩阵; 2求这个信道的信道容量; 解: 16.设随机变量,{21=x x X }1,0{21=Y的联合概率空间为 x 1x 1x 1x 2x 2x 1x 2x 20.64011100101 0.64定义一个新的随机变量Y X Z ⨯=普通乘积(1) 计算熵HX,HY,HZ,HXZ,HYZ,以及HXYZ ;(2) 计算条件熵 HX|Y,HY|X,HX|Z,HZ|X,HY|Z,HZ|Y,HX|YZ,HY|XZ 以及HZ|XY ; (3) 计算平均互信息量IX ;Y,IX :Z,IY :Z,IX ;Y|Z,IY ;Z|X 以及IX :,Z|Y; 解:1 2 37.设二元对称信道的输入概率分布分别为]4/14/3[][=X P ,转移矩阵为[]⎥⎦⎤⎢⎣⎡=3/23/13/13/2|XY P ,(1) 求信道的输入熵,输出熵,平均互信息量; (2) 求信道容量和最佳输入分布; (3) 求信道剩余度; 解:1信道的输入熵4log 4/1)3/4(log 4/3)(22+=X H ;2最佳输入分布为]2/12/1[][=X P ,此时信道的容量为)3/1,3/2(1H C -=3信道的剩余度:);(Y X I C -8.[][]25.025.05.0=X P ,试确定最佳译码规则和极大似然译码规则,并计算出相应的平均差错率;解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8/124/112/112/18/124/112/16/14/1][XY P 最佳译码规则:⎪⎩⎪⎨⎧===331211)()()(ab F a b F a b F ,平均差错率为1-1/4-1/6-1/8=11/24;极大似然规则:⎪⎩⎪⎨⎧===332211)()()(ab F a b F a b F ,平均差错率为1-1/4-1/8-1/8=1/2;9.设有一批电阻,按阻值分70%是2k Ω,30%是5k Ω;按功耗分64%是1/8W,36%是1/4W;现已知2k Ω电阻中80%是1/8W,假如得知5k Ω电阻的功耗为1/4W,问获得多少信息量; 解:根据题意有⎥⎦⎤⎢⎣⎡===3.07.05221k r k r R ,⎥⎦⎤⎢⎣⎡===36.064.04/128/11w w W ,8.0)1/1(=r w p 由15/4)2/1()2/1()2()1/1()1()1(=⇒+=r w p r w p r p r w p r p w p 所以15/11)2/1(1)2/2(=-=r w p r w p得知5k Ω电阻的功耗为1/4W,获得的自信息量为=-))2/2((r w p lb10.已知6符号离散信源的出现概率为⎥⎥⎦⎤⎢⎢⎣⎡321321161814121654321a a a a a a ,试计算它的熵、Huffman 编码和费诺编码的码字、平均码长及编码效率; 解:该离散信源的熵为323213232116161881441221)()(61lb lb lb lb lb lb p lb p x H i i i +++++=-=∑== bit/符号11.在图片传输中,每帧约有2106个像素,为了能很好地重现图像,每像素能分256个亮度电平,并假设亮度电平等概分布;试计算每分钟传送两帧图片所需信道的带宽信噪功率比为30dB; 解:每个像素点对应的熵8256log log 22===n H bit/点 2帧图片的信息量bit H N I 7610*2.38*10*2*2**2===单位时间需要的信道容量s bit t I C t /10*3.56010*2.357===由香农信道容量公式Hz SNR C W SNR W C t t 4252210*35.5)10001(log 10*3.5)1(log )1(log ≈+=+=⇒+=12.求右图所示的信道的容量及达到信道容量时的输入分布; 解:由右图可知,该信道的转移概率矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=102/12/101P 可以看到,当该信道的输入分布取⎥⎦⎤⎢⎣⎡=2/102/1)(321a a a X P 时,⎥⎦⎤⎢⎣⎡=2/12/1)(21b bY P 此时2);(2)()/(log)/();(311211lb Y a X I lb b p a b p a bp Y a X I j j jj =====∑=同理可得, 而0);(2==Y a X I ,此分布满足⎩⎨⎧==≠=0);(02);(i i i i p Y x I p lb Y x I ;因此这个信道的容量为X Y b 1b 2a 1a 2a 3C=lb2=1bit/符号,而达到信道容量的输入分布可取⎥⎦⎤⎢⎣⎡=2/102/1)(321a a aX P ; D max =∑==414,3,2,1min i ijij dp ,由于ij i d p 和具有对称性,每个和式结果都为1/2,因此 Dmax= 1/2,13.设离散信源⎥⎥⎦⎤⎢⎢⎣⎡--=⎥⎦⎤⎢⎣⎡p p p p U U U U u p U 21)1(21)1(2121)(4321其中21≤p 和接收变量V={v1,v2,v3,v4},失真矩阵为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=05.05.015.0015.05.0105.015.05.00D ,求D min,D max 、RD min 、RD max 、达到D min 和D max 时的编码器转移概率矩阵P; 解:由于失真矩阵每行每列都只有一个最小值“0”,所以可以达到D min =0,此时对应的信道转移概率矩阵应使得信源的每个输出经过信道转移后失真为0,即选择⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1000010000100001P ; RD min = R0= HU = 1-plog p –1-plog1-p = 1+Hp;对应的转移概率矩阵可取任意1列为全1,如⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001000100010001P ,此时 RD max= R1/2= 0;14.设有一个二进制一阶马尔可夫信源,其信源符号为X ∈0,1,条件概率为p 0/0= p 1/0= p1/1= p 0/1=画出状态图并求出各符号稳态概率;15分15.设输入符号与输出符号为X =Y ∈{0,1,2,3},且输入符号等概率分布;设失真函数为汉明失真;求D max 和D min 及RD max 和RD min 20分解:()()()()012314p x p x p x p x ====失真矩阵的每一行都有0,因此D min =016.设随机变量}1,0{},{21==x x X和}1,0{},{21==y y Y 的联合概率空间为定义一个新的随机变量Y X Z ⨯=普通乘积计算熵HX,HY,HZ,HXZ,HYZ,以及HXYZ ;计算条件熵 HX|Y,HY|X,HX|Z,HZ|X,HY|Z,HZ|Y,HX|YZ,HY|XZ 以及HZ|XY ; 计算平均互信息量IX ;Y,IX :Z,IY :Z,IX ;Y|Z,IY ;Z|X 以及IX :,Z|Y; 解:12))3/4(log 4/34log 4/1(2/1))3/4(log 4/34log 4/1(2/1)|(2222+++=Y XH3 )|()();(Y X H X H Y X I -=)|()();(Z X H X H Z X I -=分别为]4/14/3[][=XP ,转移17.设二元对称信道的输入概率分布矩阵为[]⎥⎦⎤⎢⎣⎡=3/23/13/13/2|XY P , 求信道的输入熵,输出熵,平均互信息量;求信道容量和最佳输入分布; 求信道剩余度; 解:1信道的输入熵4log 4/1)3/4(log 4/3)(22+=X H ;2最佳输入分布为]2/12/1[][=X P ,此时信道的容量为)3/1,3/2(1H C -=3信道的剩余度:);(Y X I C-设有DMC,其转移矩阵为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2/16/13/13/12/16/16/13/12/1|X Y P ,若信道输入概率为[][]25.025.05.0=X P ,试确定最佳译码规则和极大似然译码规则,并计算出相应的平均差错率;解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8/124/112/112/18/124/112/16/14/1][XY P 最佳译码规则:⎪⎩⎪⎨⎧===331211)()()(a b F a b F a b F ,平均差错率为1-1/4-1/6-1/8=11/24;极大似然规则:⎪⎩⎪⎨⎧===332211)()()(ab F a b F a b F ,平均差错率为1-1/4-1/8-1/8=1/2;一、概念简答题1.什么是平均自信息量与平均互信息,比较一下这两个概念的异同2.简述最大离散熵定理;对于一个有m 个符号的离散信源,其最大熵是多少3.解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的概率分布、信道的传递概率间分别是什么关系4.对于一个一般的通信系统,试给出其系统模型框图,并结合此图,解释数据处理定理;5.写出香农公式,并说明其物理意义;当信道带宽为5000Hz,信噪比为30dB 时求信道容量;6.解释无失真变长信源编码定理;7.解释有噪信道编码定理;8.什么是保真度准则 对二元信源,其失真矩阵,求a>0时率失真函数的和9.简述离散信源和连续信源的最大熵定理;10.解释等长信源编码定理和无失真变长信源编码定理,说明对于等长码和变长码,最佳码的每符号平均码长最小为多少编码效率最高可达多少11.解释最小错误概率译码准则,最大似然译码准则和最小距离译码准则,说明三者的关系; 12.设某二元码字C={111000,001011,010110,101110}, ①假设码字等概率分布,计算此码的编码效率②采用最小距离译码准则,当接收序列为110110时,应译成什么码字13.一平稳二元信源,它在任意时间,不论以前发出过什么符号,都按发出符号,求和平均符号熵14.分别说明信源的概率分布和信道转移概率对平均互信息的影响,说明平均互信息与信道容量的关系;15.二元无记忆信源,有求:1某一信源序列由100个二元符号组成,其中有m个“1”,求其自信息量2求100个符号构成的信源序列的熵;16.求以下三个信道的信道容量:,,17.已知一3,1,3卷积码编码器,输入输出关系为:试给出其编码原理框图;18. 简述信源的符号之间的依赖与信源冗余度的关系;19. 简述香农第一编码定理的物理意义20. 什么是最小码距, 以及它和检错纠错能力之间的关系;21. 简述信息的特征22. 简单介绍哈夫曼编码的步骤一、概念简答题每题5分,共40分1.答:平均自信息为表示信源的平均不确定度,也表示平均每个信源消息所提供的信息量;平均互信息表示从Y获得的关于每个X的平均信息量,也表示发X前后Y的平均不确定性减少的量,还表示通信前后整个系统不确定性减少的量;2.答:最大离散熵定理为:离散无记忆信源,等概率分布时熵最大;最大熵值为;3.答:信息传输率R指信道中平均每个符号所能传送的信息量;信道容量是一个信道所能达到的最大信息传输率;信息传输率达到信道容量时所对应的输入概率分布称为最佳输入概率分布;平均互信息是信源概率分布的∩型凸函数,是信道传递概率的U型凸函数;4.答:通信系统模型如下:数据处理定理为:串联信道的输入输出X、Y、Z组成一个马尔可夫链,且有,;说明经数据处理后,一般只会增加信息的损失;5.答:香农公式为,它是高斯加性白噪声信道在单位时间内的信道容量,其值取决于信噪比和带宽;由得,则6.答:只要,当N足够长时,一定存在一种无失真编码;7.答:当R<C时,只要码长足够长,一定能找到一种编码方法和译码规则,使译码错误概率无穷小;8.答:1保真度准则为:平均失真度不大于允许的失真度;2因为失真矩阵中每行都有一个0,所以有,而;9.答:离散无记忆信源,等概率分布时熵最大;连续信源,峰值功率受限时,均匀分布的熵最大;平均功率受限时,高斯分布的熵最大;均值受限时,指数分布的熵最大;10.答:等长信源编码定理:对于任意,只要,则当L足够长时必可使译码差错;变长信源编码定理:只要,一定存在一种无失真编码;等长码和变长码的最小平均码长均为,编码效率最高可达100%;11.答:最小错误概率译码准则下,将接收序列译为后验概率最大时所对应的码字;最大似然译码准则下,将接收序列译为信道传递概率最大时所对应的码字;最小距离译码准则下,将接收序列译为与其距离最小的码字;三者关系为:输入为等概率分布时,最大似然译码准则等效于最小错误概率译码准则;在二元对称无记忆信道中,最小距离译码准则等效于最大似然译码准则;12.答:12令接收序列为,则有,,,,故接收序列应译为010110;13.答:14.答:平均互信息相对于信源概率分布为上凸函数,相对于信道传递概率分布为下凹函数;平均互信息的最大值为信道容量;15.答:1216.答:P1为一一对应确定信道,因此有;P2为具有归并性能的信道,因此有;P3为具有发散性能的信道,因此有;17.答:18.当信源的符号之间有依赖时,信源输出消息的不确定性减弱;而信源冗余度正是反映信源符号依赖关系的强弱,冗余度越大,依赖关系就越大;19.答:无失真信源编码,编码后尽可能等概率分布, 使每个码元平均信息量最大;从而使信道信息传输率R达到信道容量C, 实现信源与信道理想的统计匹配;20.某一码书C中, 任意两个码字之间汉明距离的最小值称为该码的最小码距Dmin.当已知某线性分组码的最小汉明距离为Dmin,那么这组码最多能检测出e =Dmin-1个码元错误,最多能纠正t =Dmin-1 /2个码元错误;21.答:信息的基本概念在于它的不确定性,任何已确定的事物都不含信息;接收者在收到信息之前,对它的内容是不知道的,所以信息是新知识、新内容;信息是能使认识主体对某一事物的未知性或不确定性减少的有用知识;信息可以产生,也可以消失,同时信息可以被携带、贮存及处理;信息是可以量度的,信息量有多少的差别;22.①将信源消息符号按其出现的概率大小依次排列px1≥px2≥…≥px n②取两个概率最小的符号分别配以0和1,并将这两个概率相加作为一个新符号的概率,与未分配码元的符号重新排队;③对重排后的两个概率最小符号重复步骤2的过程;④继续上述过程,直到最后两个符号配以0和1为止;⑤从最后一级开始,向前返回得到各个信源符号所对应的码元序列,即相应的码字;二、综合题每题10分,共60分1.黑白气象传真图的消息只有黑色和白色两种,求:1 黑色出现的概率为,白色出现的概率为;给出这个只有两个符号的信源X的数学模型;假设图上黑白消息出现前后没有关联,求熵;2 假设黑白消息出现前后有关联,其依赖关系为:,,,,求其熵;3分别求上述两种信源的冗余度,比较它们的大小并说明其物理意义;2.二元对称信道如图; ;1若,,求和; 2求该信道的信道容量和最佳输入分布;3.信源空间为,试分别构造二元和三元霍夫曼码,计算其平均码长和编码效率;4.设有一离散信道,其信道传递矩阵为,并设,试分别按最小错误概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率;5.已知一8,5线性分组码的生成矩阵为;求:1输入为全00011和10100时该码的码字;2最小码距;6.设某一信号的信息传输率为s,在带宽为4kHz的高斯信道中传输,噪声功率谱NO=5×10-6mw/Hz;试求:1无差错传输需要的最小输入功率是多少2此时输入信号的最大连续熵是多少写出对应的输入概率密度函数的形式;7.二元平稳马氏链,已知P0/0=,P1/1=,求:1求该马氏信源的符号熵;2每三个符号合成一个来编二进制Huffman码,试建立新信源的模型,给出编码结果;3求每符号对应的平均码长和编码效率;8.设有一离散信道,其信道矩阵为,求:1最佳概率分布2当,时,求平均互信息 信道疑义度3输入为等概率分布时,试写出一译码规则,使平均译码错误率最小,并求此设线性分组码的生成矩阵为,求:1此n,k 码的n= k=,写出此n,k 码的所有码字;2求其对应的一致校验矩阵H;3确定最小码距,问此码能纠几位错列出其能纠错的所有错误图样和对应的伴随式;4若接收码字为000110,用伴随式法求译码结果;设一线性分组码具有一致监督矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110101100110111000H 1求此分组码n=,k=共有多少码字2求此分组码的生成矩阵G; 3写出此分组码的所有码字;4若接收到码字101001,求出伴随式并给出翻译结果;10.二元对称信道的信道矩阵为,信道传输速度为1500二元符号/秒,设信源为等概率分布,信源消息序列共有13000个二元符号,问:1试计算能否在10秒内将信源消息序列无失真传送完2若信源概率分布为,求无失真传送以上信源消息序列至少需要多长时间11.已知7,4循环码的生成多项式,求:1求该码的编码效率2求其对应的一致校验多项式3写出该码的生成矩阵,校验矩阵;4若消息码式为,求其码字;12.证明:平均互信息量同信息熵之间满足IX;Y=HX+HY-HXY13. 居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高米以上的,而女孩中身高米以上的占总数的一半;假如我们得知“身高米以上的某女孩是大学生”的消息,问获得多少信息量14. 有两个二元随机变量X 和Y ,它们的联合概率为Y Xx 1=0 x 2=1 y 1=0 1/8 3/8 y 2=13/81/8定义另一随机变量Z = XY 一般乘积,试计算HZ=15. 求以下二个信道的信道容量:, ,16. 已知一个高斯信道,输入信噪比比率为3;频带为3kHz,求最大可能传 送的信息率;若信噪比提高到15,理论上传送同样的信息率所需的频带为 多少17. 设信源为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡4/34/121x x P X X ,试求1信源的熵、信息含量效率以及冗余度;2求二次扩展信源的概率空间和熵;18. 什么是损失熵、噪声熵什么是无损信道和确定信道如输入输出为s r ⨯,则它们的分别信道容量为多少19. 信源编码的和信道编码的目的是什么20. 什么是香农容量公式为保证足够大的信道容量,可采用哪两种方法21. 什么是限失真信源编码二、综合题1.答:1信源模型为2由得则3119.02log )(121=-=X H γ 1分447.02log )(122=-=∞X H γ 1分12γγ>;说明:当信源的符号之间有依赖时,信源输出消息的不确定性减弱;而信源冗余度正是反映信源符号依赖关系的强弱,冗余度越大,依赖关系就越大;2分2.答:12,最佳输入概率分布为等概率分布;3.答:1二元码的码字依序为:10,11,010,011,1010,1011,1000,1001;平均码长,编码效率2三元码的码字依序为:1,00,02,20,21,22,010,011;平均码长,编码效率4.答:1最小似然译码准则下,有,2最大错误概率准则下,有,26.答:1无错传输时,有即则2在时,最大熵7.答:1由得极限概率:则符号熵为2新信源共8个序列,各序列的概率为信源模型为一种编码结果依信源模型中的序列次序为0,11,1001,1010,1011,10000,100010,10001138.答:1是准对称信道,因此其最佳输入概率分布为;2当,时,有则3此时可用最大似然译码准则,译码规则为且有答:1n=6,k=3,由C=mG可得所有码字为:000000,001011,010110,011101,100101,101110,110011,1110002此码是系统码,由G知,,则3由H可知,其任意2列线性无关,而有3列线性相关,故有,能纠一位错;错误图样E 伴随式100000 101010000 110001000 011000100 100000010 010000001 0014由知E=010000,则解:1n=6,k=3,共有8个码字;3分2设码字()12345CCCCCCC=由TTHC0=得⎪⎩⎪⎨⎧=⊕⊕⊕=⊕⊕=⊕⊕1353412CCCCCCCCCC3分令监督位为()12CCC,则有⎪⎩⎪⎨⎧⊕=⊕=⊕=34451352CCCCCCCCC3分生成矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1111111112分3所有码字为000000,001101,010011,011110,100110,101011,110101,111000;4分4由TT HRS=得()101=S,2分该码字在第5位发生错误,101001纠正为101011,即译码为1010011分10.答:1信道容量为信源序列信息量为而10秒内信道能传递的信息量为故不能无失真地传送完;2此时信源序列信息量为信息传输率为则11.答:123,而412. 证明:()()()()()()()()()()Y X H X H y x p y x p x p y x p x p y x p y x p Y X I X X Y j i j i Y i j i XYi j i j i -=⎥⎦⎤⎢⎣⎡---==∑∑∑∑∑∑log log log; 2分同理 ()()()X Y H Y H Y X I-=; 1分则 ()()()Y X I Y H X Y H;-=因为 ()()()X Y H X H XY H+= 1分故()()()()Y X I Y H X H XY H;-+=即()()()()XY H Y H X H Y X I-+=; 1分13. 解:设A 表示“大学生”这一事件,B 表示“身高以上”这一事件,则 PA= pB= pB|A= 2分 故 pA|B=pAB/pB=pApB|A/pB== 2分 IA|B== 1分14. 解:Z = XY 的概率分布如下: 15. 答:P 1为一一对应确定信道,因此有; P2为具有归并性能的信道,因此有;16. 答:1 最大可能传送的信息率是Ct = w log 1+ Px/Pn = 3×1000 × log 1+ 3 = 6×1000比特/秒2 17. 解:12二次扩展信源的概率空间为:18. 答:将HX|Y 称为信道},,{|Y P X X Y 的疑义度或损失熵,损失熵为零的信道就是无损信道,信道容量为logr;将HY|X 称为信道},,{|Y P X X Y 的噪声熵,噪声熵为零的信道就是确定信道,信道容量为logs;19. 答:信源编码的作用:1符号变换:使信源的输出符号与信道的输入符号相匹配;2冗余度压缩:是编码之后的新信源概率均匀化,信息含量效率等于或接近于100%; 信道编码的作用:降低平均差错率; 20.答:香农信道容量公式:)1(log )(02BN P B P C SS +=,B 为白噪声的频带限制,0N 为常数,输入Xt 的平均功率受限于S P ;由此,为保证足够大的信道容量,可采用1用频带换信噪比;2用信噪比换频带;21. 答:有失真信源编码的中心任务:在允许的失真范围内把编码的信息率压缩到最小;。

信号与系统考试题及答案(共8套)

信号与系统考试题及答案(共8套)

信号与系统考试题及答案(一)1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。

(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。

3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。

4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。

5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。

6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。

7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。

8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。

9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。

10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。

二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。

(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。

( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。

( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。

( √ )5.所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。

( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。

信号与系统试卷题库完整

信号与系统试卷题库完整

信号与系统题库一.填空题1. 的周期为: 10 。

4.==7. LTI系统在零状态条件下,由引起的响应称为单位冲激响应,简称冲激响应。

8. LTI系统在零状态条件下,由引起的响应称为单位阶跃响应,简称阶跃响应。

13. 当周期信足狄里赫利条件时,则可以用傅里叶级数表示:,由级数理论可知:= ,,。

14. 周期信号用复指数级数形式表示为:,则。

15. 对于周期信号的重复周期T当保持周期T,相邻谱线的间隔不变,频谱包络线过零点的频率,频率分量增多,频谱幅度的收敛速度相应变慢。

16. 对于周期信号的重复周期T当T增大时,则频谱的幅度随之,相邻谱线的间隔变小,谱线变密,但其频谱包络线过零点的坐标。

17.= 。

反变换18.19.的傅里叶变换为:的频谱是。

的频谱是。

22. 的频谱是。

23. 在时-的频谱是。

24.是。

25. 的频谱是。

26. 的频谱是。

27.。

28. z变换为。

29. z变换为。

二、作图题:12. 画出如下信号的波形。

a) f(-2t) b) f(t-2)3. (本题94. 求下列周期信号的频谱,并画出其频谱图。

5.6.7.三、计算题:1. 判断下列系统是否为线性系统。

(本题6)2.已知某连续时间LTI求:1.2. 3. 4.3. 给定系统微分方程初始条件s域分析法求其全响应。

4.5. 如图所示系统,已知输入信号()t f 的频谱为()ωF ,试画出信号()t y 的频谱。

6. 连续线性LTI 因果系统的微分方程描述为:)(3)('2)(10)('7)("t x t x t y t y t y +=++(1)系统函数H (s ),单位冲激响应h (t ),判断系统是否稳定。

(2)画出系统的直接型模拟框图。

7. 设有二阶系统方程 0)(4)('4)("=++t y t y t y ,在某起始状态下的初始值为:1)0(=+y , 2)0('=+y , 试求零输入响应。

信号与系统复习题(答案全)

信号与系统复习题(答案全)

1、 若系统的输入f (t )、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的).2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。

3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10—5 s 。

4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。

5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。

6、 连续信号f(t )=sint 的周期T 0= 2π ,若对f (t )以fs=1Hz 进行取样,所得离散序列f(k)=sin(k ) ,该离散序列是周期序列? 否 。

7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。

8、 f (t) 的周期为0。

1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。

试写出此信号的时域表达式f (t ) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) . 9、 f (k ) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k ) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。

[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统试题库

信号与系统试题库

1.下列信号的分类方法不正确的是( A ):A 、数字信号和离散信号B 、确定信号和随机信号C 、周期信号和非周期信号D 、因果信号与反因果信号2.下列说法正确的是( D ):A 、两个周期信号x (t ),y (t )的和x (t )+y(t )一定是周期信号。

B 、两个周期信号x (t ),y (t )的周期分别为2和2,则其和信号x (t )+y(t ) 是周期信号。

C 、两个周期信号x (t ),y (t )的周期分别为2和π,其和信号x (t )+y(t )是周期信号。

D 、两个周期信号x (t ),y (t )的周期分别为2和3,其和信号x (t )+y(t )是周期信号。

3.下列说法不正确的是( D )。

A 、一般周期信号为功率信号。

B 、 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。

C 、ε(t )是功率信号;D 、e t 为能量信号;4.将信号f (t )变换为( A )称为对信号f (t )的平移或移位。

A 、f (t –t 0) B 、f (k–k 0) C 、f (at ) D 、f (-t )5.将信号f (t )变换为( A )称为对信号f (t )的尺度变换。

A 、f (at ) B 、f (t –k 0) C 、f (t –t 0) D 、f (-t )6.下列关于冲激函数性质的表达式不正确的是( B )。

A 、)()0()()(t f t t f δδ=B 、()t aat δδ1)(=C 、)(d )(t tεττδ=⎰∞- D 、)()-(t t δδ=7.下列关于冲激函数性质的表达式不正确的是( D )。

A 、⎰∞∞-='0d )(t t δ B 、)0(d )()(f t t t f =⎰+∞∞-δC 、)(d )(t tεττδ=⎰∞- D 、⎰∞∞-=')(d )(t t t δδ8.下列关于冲激函数性质的表达式不正确的是( B )。

信号与系统试题库史上最全(内含答案)

信号与系统试题库史上最全(内含答案)

信号与系统考试方式:闭卷 考试题型:1、简答题〔5个小题〕,占30分;计算题〔7个大题〕,占70分。

一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试答复该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.有限频带信号)(t f 的最高频率为100Hz ,假设对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。

[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。

[答案:3]6.)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。

[答案:521(25)()22j f t e F j ωω--↔]7.)(t f 的波形图如下图,画出)2()2(t t f --ε的波形。

[答案: ]8.线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。

[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。

[答案:)0(+f =2,0)(=∞f ]10.假设LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。

其中:)()21()(k k g k ε=。

[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。

信号与系统考试试题库

信号与系统考试试题库

信号与系统试题库一、填空题:1. 计算=---)3()()2(t t u e t δ 。

2. 已知1131)(+++=s s s X 的收敛域为3}R e {-<s ,)(s X 的逆变换为 。

3. 信号)()()()(0t t u t u t t x ---=δ的拉普拉斯变换为 。

4. 单位阶跃响应)(t g 是指系统对输入为 的零状态响应。

5. 系统函数为)3)(2(1)(++=s s s H 的LTI 系统是稳定的,则)(s H 的收敛域为 。

6. 理想滤波器的频率响应为⎪⎩⎪⎨⎧<≥=πωπωω100,0100,2)(j H , 如果输入信号为)120cos(5)80cos(10)(t t t x ππ+=, 则输出响应y(t) = 。

7. 因果LTI 系统的系统函数为342)(2+++=s s s s H , 则描述系统的输入输出关系的微分方程为 。

8. 一因果LTI 连续时间系统满足:)(2)(3)()(6)(5)(2222t x dt t dx dtt x d t y dt t dy dt t y d ++=++,则系统的单位冲激响应)(t h 为 。

9.对连续时间信号)600cos(5)400sin(2)(t t t x a ππ+=进行抽样,则其奈奎斯特频率为 。

10. 给定两个连续时间信号)(t x 和)(t h , 而)(t x 与)(t h 的卷积表示为)(t y ,则)1(-t x 与)1(+t h 的卷积为 。

11. 卷积积分=+-)(*)(21t t t t x δ 。

12. 单位冲激响应)(t h 是指系统对输入为 的零状态响应。

13. )(2t u e t -的拉普拉斯变换为 。

14. 已知3121)(+++=s s s X 的收敛域为2}R e {3-<<-s , )(s X 的逆变换为 。

15. 连续LTI 系统的单位冲激响应)(t h 满足 ,则系统稳定。

信号与系统练习题-第4章

信号与系统练习题-第4章

信号与系统练习题 第4章一、选择题1、周期信号的频谱具有的特点是〔D 〕A 、离散性B 、收敛性C 、谐波性D 、以上都对 2、以下表达正确的选项是〔D 〕。

A 、)(t f 为周期偶函数,其傅立叶级数只有偶次谐波;B 、)(t f 为周期偶函数,其傅立叶级数只有余弦偶次谐波分量;C 、)(t f 为周期奇函数,其傅立叶级数只有奇次谐波;D 、)(t f 为周期奇函数,其傅立叶级数只有正弦分量。

3、某连续系统的系统函数ωωj j H -=)(,那么输入为t j e t f 2)(=时,系统的零状态响应()zs y t =〔B 〕A 、)j(2t e B 、)2-j(2t e2πC 、 )j(2t e2 D 、 )2-j(2t eπ4、频谱函数11)(+=ωωj j F 的傅里叶反变换=)(t f 〔A 〕A 、 )(t e t ε-B 、 )(t te t ε-C 、 )(t e t εD 、 )(t te t ε 5、假设矩形脉冲信号的宽度加宽,那么它的频谱带宽(B)。

A 、 不变 ;B 、变窄 ;C 、 变宽;D 、与脉冲宽度无关 6、假设()f t 是实偶信号,以下说法正确的选项是〔A 〕 A 、该信号的频谱是实偶函数;B 、该信号的频谱是虚奇函数C 、该信号的频谱是奇函数;D 、该信号的频谱的实部实偶函数,虚部是奇函数7、某一周期函数,在其频谱分量中,仅含有正弦基波分量和正弦奇次谐波分量,该函数属于〔D 〕。

A 、奇函数 B 、偶函数 C 、既是偶函数又是奇谐函数 D 、既是奇函数又是奇谐函数 8、关于抽样信号sin ()tSa t t=,以下说法错误的选项是〔A 〕。

A 、()Sa t 信号是奇函数 B 、 ()Sa t 信号在t=0时取最大值1 C 、()0Sa t =时,t n π=±〔n 为自然数〕 D 、()()Sa t Sa t =-9、带限信号)(t f 的最高角频率为m ω,现对)(t f 进行理想冲激取样,得到取样信号()s f t ,为了能从()s f t 中恢复出原信号,那么取样角频率s ω需满足〔B 〕A 、s m ωω≥B 、2s m ωω≥C 、m s ωω≥D 、2m s ωω≥10、频谱函数1()2F j j ωω=+的傅里叶反变换=)(t f 〔A 〕。

(完整版)信号与系统专题练习题及答案

(完整版)信号与系统专题练习题及答案

信号与系统专题练习题一、选择题1.设当t<3时,x(t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。

A t>-2或t>-1 B t=1和t=2 C t>-1 D t>-22.设当t<3时,x(t)=0,则使)2()1(t x t x -⋅-=0的t 值为 D 。

A t>2或t>-1 B t=1和t=2 C t>-1 D t>-23.设当t<3时,x(t)=0,则使x(t/3)=0的t 值为 C 。

A t>3 B t=0 C t<9 D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C 。

A π2 B π C 2/π D π/25.下列各表达式中正确的是 B A. )()2(t t δδ= B.)(21)2(t t δδ= C. )(2)2(t t δδ= D. )2(21)(2t t δδ=6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。

A 线性时不变系统 B 线性时变系统 C 非线性时不变系统 D 非线性时变系统7. 已知 系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。

A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统 8. ⎰∞-=td ττττδ2sin )( A 。

A 2u(t) B )(4t δ C 4 D 4u(t)10.dt t t )2(2cos 33+⋅⎰-δπ等于 B 。

A 0 B -1 C 2 D -211.线性时不变系统输出中的自由响应的形式由 A 决定A 系统函数极点的位置;B 激励信号的形式;C 系统起始状态;D 以上均不对。

12.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D 。

A 强迫响应;B 稳态响应;C 暂态响应;D 零状态响应。

《信号与系统》题集

《信号与系统》题集

第1套一、填空题(每空3分,共36分)1. 系统的线性是指____________________________;2.δ( t ) * f(t)= _________,⎰∞∞--t(δ= _________,δ( t ) f(t)= _________;t d)1t3.系统的零输入响应是指________________________;零状态响应是指_______________________;4.对带宽为∆f=20kHz的信号f (t)进行取样,其奈奎斯特频率f s =______μs;信号f (2t)的带宽为_______kHz,其奈奎斯特频率 f s = ______kHz。

5.复指数信号f( t )=es0tε(t)的拉普拉斯变换为_________;6.单位直流信号1的傅里叶变换为_________,δ( t )的傅里叶变换为_________;二、判断题(每小题3分,共18分)1.系统瞬态响应的幅度会随着时间的增长而维持不变();2.满足狄里赫利条件的信号可以分解为无数多个频率不同的正弦信号();3.若f(t)的傅里叶变换是F(ω),则f(t-2)的傅里叶变换是F(ω)e j2ω();4. 只要将信号f(t)的拉普拉斯变换F(s)的变量“s”换成“jω”就可以得到该信号的频谱F(ω)();5.拉普拉斯变换时傅里叶变换的推广();6. 描述线性时不变连续系统的数学模型可用常系数的微分方程()。

三、简答题(每小题8分,共32分)1.设有如下函数f( t ),试求f’( t );2.设有一阶系统方程)()()(3)(t f t f t y t y +'=+',试求其冲激响应h ( t )。

3.设信号f(t)如图所示,试求其频带宽度(带宽)∆f ;4. 已知某信号f(t)频谱F(ω)如图所示,0cos t ω为高频载波,则调幅信号x(t)可表示为:0()()cos x t f t t ω=,试求x(t)的频谱,并大致画出其图形。

信号与系统试题库

信号与系统试题库

信号与系统综合复习资料一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。

200 rad /s C 。

100 rad /s D 。

50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是()15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( )19。

信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++=A 、因果不稳定系统B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( )A )0(fB )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应D.全响应与强迫响应之差 2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。

信号与系统题库完整版

信号与系统题库完整版

信号与系统题库(完整版)信号与系统题目部分,(卷面共有200题,0.0分,各大题标有题量和总分)一、选择题(7小题,共0.0分)[1]题图中,若h '(0)=1,且该系统为稳定的因果系统,则该系统的冲激响应()h t 为。

A 、231()(3)()5tt h t ee t ε-=+-B 、32()()()t th t ee t ε--=+C 、3232()()55tte t e t εε--+D 、3232()()55ttet e t εε--+-[2]已知信号x[n]如下图所示,则x[n]的偶分量[]e x n 是。

[3]波形如图示,通过一截止角频率为50rad s π,通带内传输值为1,相移为零的理想低通滤波器,则输出的频率分量为() A 、012cos 20cos 40C C t C t ππ++B 、012sin 20sin 40CC t C t ππ++C 、01cos 20C C t π+ D 、01sin 20CC tπ+[4]已知周期性冲激序列()()Tk t t kT δδ+∞=-∞=-∑的傅里叶变换为()δωΩΩ,其中2TπΩ=;又知111()2(),()()2T T f t t f t f t f t δ⎛⎫==++ ⎪⎝⎭;则()f t 的傅里叶变换为________。

A 、2()δωΩΩ B 、24()δωΩΩ C 、2()δωΩΩD 、22()δωΩΩ[5]某线性时不变离散时间系统的单位函数响应为()3(1)2()kkh k k k εε-=--+,则该系统是________系统。

A 、因果稳定B 、因果不稳定C 、非因果稳定D 、非因果不稳定 [6]一线性系统的零输入响应为(23kk--+)u(k), 零状态响应为(1)2()kk u k -+,则该系统的阶数A 、肯定是二阶B 、肯定是三阶C 、至少是二阶D 、至少是三阶[7]已知某系统的冲激响应如图所示则当系统的阶跃响应为。

信号与系统试题库-整理(优选

信号与系统试题库-整理(优选

精品 word.最新文件---------------- 仅供参考-------------------- 已改成-----------word 文本 ------------ --------- 方便更改赠人玫瑰,手留余香。

1.下列信号的分类方法不正确的是(A ):A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号D、因果信号与反因果信号2.下列说法正确的是( D ):A、两个周期信号 x(t),y(t)的和 x(t)+y(t)一定是周期信号。

B、两个周期信号 x(t),y(t)的周期分别为 2 和 2 ,则其和信号 x(t)+y(t) 是周期信号。

C、两个周期信号 x(t),y(t)的周期分别为 2 和,其和信号 x(t)+y(t)是周期信号。

D、两个周期信号 x(t),y(t)的周期分别为 2 和 3 ,其和信号 x(t)+y(t)是周期信号。

3.下列说法不正确的是( D )。

A、一般周期信号为功率信号。

B、时限信号(仅在有限时间区间不为零的非周期信号 )为能量信号。

C、ε(t)是功率信号;精品 word.D、e t 为能量信号;4.将信号 f(t)变换为( A)称为对信号 f(t)的平移或移位。

A、f(t– t0) B 、f(k –k0) C、f(at) D 、f( )t 5.将信号 f(t)变换为(A)称为对信号 f(t)的尺度变换。

A、f(at)B、f(t–k0)C、f(t– t0) D 、f( )6.下列关于冲激函数性质的表达式不正确的是( B )。

A、f (t)6 (t) = f (0)6 (t)C、j t 6 (T )d T = e (t)一w 一w一w7.下列关于冲激函数性质的表达式不正确的是( D )。

A、j w 6 ,(t)d t = 0C、j t 6 (T )d T = e (t)tB 、 6 (at ) = 16(t )aD 、 6 (-t ) = 6 (t )B 、 j +w f (t )6 (t ) d t = f (0)D 、 j w 6 ,(t )d t = 6 (t )8.下列关于冲激函数性质的表达式不正确的是( B )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《信号与线性系统》考试题题库第一章1、写出所示图形的闭合表达式(B)。

A、2(1)(2)(4)3(5)t t t t εεεε-+-----B、2(1)2(2)(4)3(5)t t t t εεεε-+-----C、2(1)2(2)3(4)3(5)t t t t εεεε-+-----D、2(1)2(2)(4)(5)t t t t εεεε-+-----2、在连续LTI 的时域方框图中基本运算单元有三个,即(A )A、加法器,标乘器,延时器B、加法器,数乘器,积分器C、加法器,减法器,微分器D、延时器,标乘器,微分器3、已知信号()et j t x )4/2(π+=,则该信号为(B )A、能量信号B、功率信号C、既是功率信号,也是能量信号D、以上答案都不对4、已知x(t)的波形如图所示,试写出x(t)的函数表达式(B)A、(1)()(1)[()(1)]2(1)(1)()(1)2(1)t t t t t t t t t t t εεεεδεεεδ+-+---+-=+---+-B、(1)()(1)[()(1)]2(1)(1)()(1)(1)2(1)t t t t t t t t t t t t εεεεδεεεδ+-+---+-=+-+--+-C、(1)()(1)[()(1)]2(1)(1)()(1)(1)2(1)t t t t t t t t t t t εεεεδεεεδ+-+---+-=+-+--+-D、(1)()(1)[()(1)]2(1)(1)()(1)(1)t t t t t t t t t t t εεεεδεεε+-+---+-=+-+--5、计算)2()42(2)(+-=t t t xδε=C。

A、1B、-1C、0D、26、已知一连续时间系统的输入、输出关系式为y(t)=[cos(6t)]x(t),其中x(t)为输入,y(t)为输出,则该系统具有(时不变/时变)、(线性/非线性)、(因果/非因果)(稳定/非稳定)。

(D )A、时变,线性,非因果,非稳定B、时不变,非线性,因果,稳定C、时不变,非线性,因果,临界稳定D、时变,线性,因果,临界稳定7、、已知系统输入输出关系为)1()(2-=t x t t y ,则系统(线性或非线性);(时变或时不变)。

(C )A、非线性,时不变B、非线性,时变C、线性,时变D、线性,时不变8、一连续因果LTI 系统,输入为)()(3t e t x tε-=时,输出)(][)(2t e e t y tt f ε---=,则系统为(稳定系统或非稳定系统)。

(B )A、非稳定系统B、稳定系统C、临界稳定D、以上答案都不对9、已知一离散时间LTI 系统单位脉冲响应]3[)6.0(][+=n n h nε,则该系统为____(因果系统或非因果系统),_____(稳定系统或非稳定系统)。

(B )A、非因果,非稳定B、非因果,稳定C、因果,非稳定D、因果,稳定10、写出图示信号表达式:(A)tA、23[()()()()()]4444I T T Tt t t t t T εεεεε+-+-+-+-B、23[()2()()()()]4444I T T Tt t t t t T εεεεε+-+-+-+-C、23[()()2()()()]4444I T T Tt t t t t T εεεεε+-+-+-+-D、23[()()()()4()]4444I T T Tt t t t t T εεεεε+-+-+---11、写出下图的闭合表达式(D )。

A、(1)()(2)t t t t t εεε++--B、(1)(1)()(2)t t t t εεε++---C、(1)()(2)t t t t εεε+---D、(1)(1)()(2)t t t t t εεε++---12、τπτδπτd t6 6cos 2⎰∞-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+=(D )。

A、()t επ-B、(3t πε-C、(6t πδ-D、()6t πε-13、已知一连续时间系统,()t f 为其输入,()t y 为其输出,且()()()t t f t y ε=,试问该系统是否为:(1)线性系统;(2)因果系统;(3)非时变系统。

(C)A、线性,非因果,时不变B、非线性,非因果,时变C、线性,因果,时变D、非线性,因果,时不变14、已知)(t f 的波形如图(a)所示,则图形(b)的表达式为(A)A.)21(t f -B.)221(-t f C.)2(t f -D.)12(-t f12(a)(b)15、某系统为)1()(2-=t x t t y ,则该系统为(A )A.线性时变的B.线性时不变的C.非线性时变的D.非线性非时16、下列系统中为无记忆系统的是(B )A.()()ττd x c t y t⎰∞-= 1 B.[][][]k x k x n y 223-=C.[][]1-=k x k y D.[][]∑-∞==km m x k y 17、下列各式正确的是(B )A.()()t t 2212δδ=B.()()t t δδ212=C.()()t t δδ=2D.()()t t δδ22=18、已知()t x 的波形如图所示,则图中()t x 1表达式为(C)A.()52-t x B.⎪⎭⎫ ⎝⎛-25t x C.()t x 25-D.()52+t xt19、sin()()t t dt tπδ∞-∞⎰=(C )(A)2π(B)()t πδ(C)π(D)2π20、32'(221)(1)t t t t dt δ∞-∞+-+-⎰=(A)(A)—5(B)5(C)5(1)t δ-(D)5'(1)t δ--21、'(1)()tx x dx δ-∞-⎰=(B)(A)1(B)()()t t δε+(C)()t δ(D)()t ε22、()1()td te t dtδ-⎡⎤-⎣⎦=(C )(A)()t δ(B)(1)t δ+(C)'()()t t δδ+(D)(1)t ε+23、()()32'2211tt t t dt δ∞-∞+-+-=⎰(C)(A)-3(B)-4(C)-5(D)-624、0cos()()3t t dt πωδ-∞-⎰=(B)(A)1(B)0.5(C)1.5(D)225、dt t t t )()sin(δπ⎰∞∞-=(D )(A)1.5π(B)2π(C)0.5π(D)π26、已知)(t f 如图所示,则)(t f 表达式为(C )(A)2(2)()(2)(2)t t t t t εεε++--+(B)(2)()(2)(2)t t t t t εεε++--+(C))2()2()()2(2-+-++t t t t t εεε(D)(2)()(2)(2)t t t t t εεε++-+-27、已知)(t f 如图所示,则=')(t f 表达式为(A ).f(t)t24-22Of(t)t24-22O(A)2(2)()(2)4(2)t t t t δεεδ++----(B)(2)()(2)4(2)t t t t δεεδ++----(C)2(2)()(2)4(2)t t t t δεεδ++-+-+(D)(2)()(2)4(2)t t t t δεεδ++-+-+28、已知系统输入与输出的关系为()(1)(1)3()y k k y k f k +--=,则系统是(C)系统,(A)线性是不变(B)非线性时变(C)线性时变(D)非线性时不变29、已知系统输入与输出的关系为()2()3()'()y t y t f t f t '+=-,则系统是(A )系统,(A)线性时不变(B)非线性时变(C)线性时变(D)非线性时不变30、已知系统输入与输出的关系为2()()3()y t y t f t '+=,则系统是(D )。

(A)线性时不变(B)非线性时变(C)线性时变(D)非线性时不变31、已知系统输入与输出的关系为()(1)(2)()y k y k y k f k +-+-=,则系统是(A)系统。

(A)线性时不变(B)非线性时变(C)线性时变(D)非线性时不变32、⎰∞∞--+dt t et )2()3(δ=(C)。

A、5(2)e t δ+B、5(2)e t ε+C、5eD、5(2)e t δ'+33、计算:x(t)=dt t t )2()3(--⎰∞∞-δε=_____________。

(D )A、1B、-1C、-2D、034、()[]t t dtdcos ε=。

(C )A、()()t t δε-B、()t εC、()sin ()t t t δε-⨯D、()cos ()t t t δε-⨯35、计算:dt t t e t x t )]()([)('2δδ-=⎰∞∞=-=。

(A)A、1B、0C、-1D、236、已知()()32-=t t f δ,则积分()dt t f ⎰∞--0 25=。

(B )A、0B、1C、2D、337、信号()sin()76f k k ππ=+的周期(B)A、7B、14C、28D、2138、信号5()cos()612f k k π=+周期。

(A)A、12B、24C、6D、3639、设系统初始状态为X(0),激励为(.)f ,系统全响应(.)y 与激励和初始状态的关系为()(0)sin()()tt y t e x x f x dx -=+⎰则该系统是______(A)A、线性B 非线性40、设系统初始状态为X(0),激励为(.)f ,系统全响应(.)y 与激励和初始状态的关系为()()(0)()ty t f t x f x dx =+⎰则该系统是______(B )A、线性B 非线性41、设系统初始状态为X(0),激励为(.)f ,各系统全响应(.)y 与激励和初始状态的关系为()sin[(0)]()ty t x t f x dx =+⎰则该系统是______(B)A、线性B 非线性42、设系统初始状态为X(0),激励为(.)f ,各系统全响应(.)y 与激励和初始状态的关系为()(0.5)(0)()(2)k y k x f k k =+-则该系统是______(A)A、线性B 非线性第二章43、)(*)(21t t t t f --δ=(B)。

A、12()f t t -B、12()f t t t --C、12()f t t t -+D、12()f t t t ++44、()()52-*+k k εε=;(A)A、(2)(3)k k ε--B、(3)(3)k k ε--C、(2)(3)k k ε--D、()(3)k k ε--45、())(2t t etεε*-=。

相关文档
最新文档