函数概念及三要素
专题1.1 函数概念及三要素(教师版)
第一讲函数的概念及三要素1.函数与映射2.函数的有关概念(1)函数的定义域、值域在函数y=f(x),x∈A中,x叫做自变量,所有的输入值x组成的集合A叫做函数y=f(x)的定义域;对于A 中的每一个x,都有一个输出值y与之对应.我们将所有输出值y组成的集合称为函数的值域.(2)函数的三要素:定义域、对应法则和值域.(3)函数的表示法表示函数的常用方法有解析法、图象法和列表法.3.分段函数若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.考向一函数、映射的判断【例1】(1)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )(2)集合A={x|0≤x≤4},B={y|0≤y≤2},下列不表示从A到B的函数的是( )A.f:x→y=12x B.f:x→y=13xC.f:x→y=23x D.f:x→y=x【举一反三】1.下列从集合M到集合N的对应关系中,其中y是x的函数的是A.M={x|x∈Z},N={y|y∈Z},对应关系f:x→y,其中y=x2B.M={x|x>0,x∈R},N={y|y∈R},对应关系f:x→y,其中y=±2x C.M={x|x∈R},N={y|y∈R},对应关系f:x→y,其中y=x2D.M={x|x∈R},N={y|y∈R},对应关系f:x→y,其中y=2x2.下图中,能表示函数y=f(x)的图象的是( )A.B.C.D.考向二函数定义域求法类型一:已知解析式求定义域的定义域是。
【例2-1】(1)函数y=√3−xlgx(x−1)0的定义域是。
(2)函数y=√12+x−x2【举一反三】1.函数()f x =的定义域为 。
2.函数f (x )=√2−x +log 2x 的定义域是 。
第8讲函数的三要素
第8讲函数的三要素函数的三要素是指函数的定义、函数的参数和函数的返回值。
这三个要素是函数的基本组成部分,决定了函数的行为和功能。
1.函数的定义:函数是一段封装了特定功能的代码块,用于实现特定的任务。
函数的定义包括函数名、参数列表、返回类型和函数体。
函数名是用来唯一标识函数的名称,可以根据函数的功能来命名函数名,通常使用驼峰命名法。
参数列表是函数用来接收外部传入数据的部分。
参数可以是0个或多个,每个参数都有自己的类型和名称。
返回类型是函数执行完任务后返回的数据类型。
返回类型可以是任意有效数据类型,可以是基本数据类型、数组、结构体等。
函数体是函数的具体实现逻辑。
函数体中包含了一组语句,用来实现函数的功能。
函数的定义示例:```int add(int a, int b)int sum = a + b;return sum;```上述示例定义了一个函数名为add的函数,该函数有两个参数a和b,返回类型为int。
函数的功能是计算a和b的和,并将结果返回。
2.函数的参数:函数的参数是函数定义中的一部分,用来接收外部传入的数据。
函数的参数可以是0个或多个,每个参数都有自己的类型和名称。
函数可以通过参数来获取外部传入的数据,并在函数体中使用这些数据进行计算或逻辑操作。
函数的参数可以分为两种类型:值传递和引用传递。
值传递是指将参数的值复制给函数内部的局部变量,函数内部对参数的修改不会影响外部变量的值。
引用传递是指将参数的地址传递给函数内部的指针变量,函数内部可以通过指针修改外部变量的值。
函数的参数示例:```int add(int a, int b)int sum = a + b;return sum;```上述示例中的add函数有两个参数a和b,都是int类型的。
在函数体内,使用a和b进行计算,并将结果返回。
3.函数的返回值:函数的返回值是函数执行完任务后返回的数据。
函数可以根据实际需要选择是否返回值,以及返回的数据类型。
第一讲 函数概念及三要素(教师)
第一讲 函数概念及三要素一、知识梳理1、映射的定义:设A 、B 是两个非空集合,如果按照某种对应法则f ,对A 中的任何一个元素,在B 中有且仅有一个元素y 与x 对应,则称f 是集合A 到集合B 的映射。
记作:映射B A f →:。
集合A 中的元素a 对应集合B 中的元素b 叫a 的象,记作)(a f b =,a 叫b 的原象。
若A 中元素m 个,B 中元素n 个,则:A 到B 的映射有m n 个;B 到A 的映射有n m 个. 2、函数的概念:设B A ,是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数(function ),记作A x x f y ∈=),(。
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain ),与x 的值相对应的y 值叫做函数值,函数值的集合 }|)({A x x f ∈叫做函数的值域(range)。
3、函数的定义域:函数)(x f y =中,自变量x 的取值范围A 叫做函数)(x f y =的定义域。
由表达式决定的定义域,常见情况有: ①1()f x 要求()0f x ≠; ②n x f 2)(要求0)(≥x f ; ③0)(x f 要求0)(≠x f ; ④log ()a f x 要求0)(>x f 且01a <<; ⑤)(tan x f 要求(),2f x k k ππ≠+∈Z4、函数的值域:函数)(x f y =中,y 的值叫做函数值,函数值的集合叫做函数)(x f y =的值域。
求值域的常用方法:单调性法、常数分离法、配方法、 换元法、判别式法、数形结合法、不等式法、有界法、均值不等式等。
5、函数的表达式:表示函数的方法,常用的有解析法、列表法和图象法三种。
求函数解析式的常用方法:换元法;配凑法;待定系数法;消元法6、分段函数:在定义域中,对于自变量x 的不同取值范围,对应法则不同的函数称为分段函数。
专题4 函数的概念与三要素
专题4 函数的概念与三要素知识点一 函数的概念解析获取vx :lingzi980一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(1)x ,在非空数集B 中都有(存在性)唯一(唯一性)的数y 与之对应.这三性只要有一个不满足,便不能构成函数. (2)y =f (x )仅仅是函数符号,不是表示“y 等于f 与x 的乘积”,f (x )也不一定就是解析式. (3)除f (x )外,有时还用g (x ),u (x ),F (x ),G (x )等符号来表示函数.知识点二 函数定义域 1.基本的函数定义域限制 (1)分式中的分母不为0;(2)偶次方根下的数(或式)大于或等于0; (3)零指数幂的底数不为0; (4)指数式的底数大于0且不等于1;(5)对数式的底数大于0且不等于1,真数大于0; (6)正切函数x y tan =R x ∈(且)2Z k k x ∈+≠,ππ.【例1】若函数)(x f y =的定义域为22{|}M xx =≤≤-,值域为02{|}N y y =≤≤,则函数)(x f y =的图象可能是( )A .B .C .D .【例2】下列函数()f x 与()g x 表示同一函数的是() A .()f x()g x = B .()f x x =与32()1x g x x x +=+C .y x =与2y =D .()f x ()g x 【例3】(2022•北京)函数1()f x x=.【例4】(2022•上海)下列函数定义域为R 的是( ) A .12yx -= B .1y x -= C .13y x =D .12y x =2.可转化为二次函数定义域问题xx xx【例5】若函数()f x =R ,则实数a 的取值范围为 . 【例6】已知函数27()43kx f x kx kx +=++的定义域是R ,求实数k 的取值范围. 归纳总结:在关于二次函数定义域为一切实数的时候,除了分析判别式以外,还要考虑二次项系数. 3.抽象函数的定义域求法此类型题目最关键的就是法则下的定义域不变,若()f x 的定义域为()a b ,,求[()]f g x 中()a g x b <<的解x 的范围,即为[()]f g x 的定义域.①.已知)(x f 的定义域,求复合函数()[]f g x 的定义域【例7】已知函数()f x 的定义域为[15]-,,求(35)f x -的定义域. ②.已知复合函数[()]f g x 的定义域,求)(x f 的定义域若[()]f g x 的定义域为x a b ∈(,),则由a x b <<确定()g x 的范围即为()f x 的定义域. 【例8】已知函数2(22)f x x -+的定义域为[03],,求函数()f x 的定义域. ③.已知复合函数()[]f g x 的定义域,求()[]f h x 的定义域先由()[]f g x 定义域求得()f x 的定义域,再由()f x 的定义域求得()[]f h x 的定义域.【例9】已知函数(23)f x -的定义域是(13)-,,求函数1(6)2f x +的定义域.④.已知()f x 的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集.【例10】若()f x 的定义域为[]35-,,求()()(25)g x f x f x =-++的定义域.1.函数()01(4)2||f x x x =+--的定义域为 .2.(2019•江苏)函数y =的定义域是 .3.(2021•全国)函数()f x = .4.(2020•北京)函数f 1()1x lnx x =++的定义域是 . 5.(2022•新兴区期末)若函数()y f x =的定义域是[1,3],则函数(21)()f x h x lnx-=的定义域是( ) A .[1,3]B .(1,3]C .(1,2]D .[1,2]6,(2022•香坊区期末)已知函数2(1)f x +的定义域为[1,2],则函数()()(2)f xg x lg x =-的定义域为( )A .[2,5]B .(2,3)(3⋃,5]C .(2,5]D .[2,3)(3⋃,5]7,(2022•兴庆区期末)若函数y =R ,则实数a 的取值范围是( )A .1(0,]2B .1(0,)2C .1[0,)2D .1[0,]28.(2022•盘龙区月考)下列每组函数不是同一函数的是( )A .2()1,()f x x g x =-=B .()1,()f x x g x =-C .24(),()22x f x g x x x -==+-D .()||,()f x x g x ==知识点三 函数的解析式 1.待定系数法求函数解析式已知函数解析式的类型时,可用待定系数法求其函数解析式. 【例11】求下列函数的解析式.(1)若一次函数()f x 满足[()]91f f x x =+,求()f x 的函数解析式;(2)已知()f x 是二次函数,且(0)2(1)()1f f x f x x =+-=-,,求()f x 的讲解析式.注意 解析式类型已知的,一般用待定系数法,对于二次函数问题要注意对一般式2y ax bx c =++,顶点式2()y a x h k =-+和两点式12()()y a x x x x =--的选择. 2.换元法求函数解析式已知复合函数[()]f g x 的表达式时,可用换元法,此时要注意“元”的取值范围. 【例12】(1)若函数()f x 满足221()f x x -=,求函数()f x 的解析式; (2)已知函数()f x 满足22112x f x x--()=,求函数f x ()的解析式.3.配凑法求函数解析式当出现大基团换元转换繁琐时,可考虑配凑法求解.【例13】已知函数()f x 满足2211()x x x f x x +++=,求()f x 的函数解析式. 4.方程组法求函数解析式若已知成对出现()f x ,1()f x或()f x ,()f x -,类型的抽象函数表达式,则常用解方程组法构造另一个方程,消元的方法求出()f x .【例14】(1)已知函数()f x 满足3()2()3f x f x x +-=+,求()f x 的解析式;(2)已知函数()f x 满足95)1(2)(+=+x xf x f ,求)(x f 的解析式;(3)已知()f x 是奇函数,()g x 是偶函数,并且1()()1f xg x x +=-,求()f x 和()g x 的函数解析式. 注意 函数方程的问题,需建立关于()f x 的方程组,如本例4,若函数方程中同时出现()f x 、1()f x,则一般x 用1x代之,构造另一个方程.5.迭代法求函数解析式当出现类似“数列”类型的抽象函数表达式时,可采用递推迭代的方法求出()f x .【例15】已知函数()f x 的定义域是正整数集*N ,(1)1f =,且(1)()5f x f x +=+,求()f x 的函数解析式.6.分段函数的解析式分段函数问题往往需要进行分类讨论,根据分段函数在其定义域内每段的解析式不同,然后分别解决,即分段函数问题,分段解决.【例16】设函数=)(x f 22220x x x x x ⎧++≤⎪⎨->⎪⎩,,,若2))((=a f f ,则a = .【例17】已知函数2(5)232f x x x =--,5(2)g x x =-.求:(1))2(f ,)2(g ; (2)))2((g f ,))2((f g ;(3)(())f g x ,(())g f x .总结 求函数值时,遇到本例题中(2)(3)这种类型的函数称为复合函数,一般有里层函数与外层函数之分,如(())f g x ,里层函数就是()g x ,外层函数就是()f x ,其对应关系可以理解为()(())g fx g x f g x −−→−−→,类似的(())g f x 为()(())f gx f x g f x −−→−−→,类似的函数,需要先求出最里层的函数值,再求出倒数第二层,直到最后求出最终结果.9.(2022•湖南月考)已知函数2(23)f x x +=,则函数()f x 的表达式为( ) A .2139424x x -+ B .2119424x x ++C .24129x x ++D .24129x x -+10.(2022•保定二模)若函数2112()1x f x x x-=-+,则函数()()4g x f x x =-的最小值为( ) A .1-B .2-C .3-D .4-11.若一次函数()f x 满足[()]12f f x x =+,则函数()f x = .12.已知()2f x x a =+,21()(3)4g x x =+,若2[()]1g f x x x =++,则a = .13.(2022•盐田期中)已知2(1)lg f x x+=,则()f x = .14.求下列函数的解析式.(1)已知2()2f x x x =+,求(21)f x +; (2)已知1)f x =+()f x ; (3)已知1()2()32f x f x x -=+,求()f x .15.已知函数210()1()20x x f x x g x x x ->⎧=-=⎨-<⎩,,,.(1)求((2))f g ,((2))g f ,(((2)))g g g -的值; (2)求(())f g x ,(())g f x 的解析式.16.已知函数满足3(1)2(1)2f x f x x -+-=,求()f x 的解析式.知识点四 函数的值域由函数的定义知,自变量x 在对应法则f 下取值的集合叫做函数的值域. 1.函数值域的常规求法(1)与二次函数有关的函数,可用配方法(注意定义域);(2)形如y ax b =+可用换元法.即设t =转化成二次函数再求值域(注意0t ≥);(3)形如(0)ax by c cx d+=≠+的函数可借助反比例函数求其值域,若用变量分离法求值域,这种函数的值域为|a y y c ⎧⎫≠⎨⎬⎩⎭; (4)形如22ax bx cy mx nx p++=++(a m 、中至少有一个不为零)的函数求值域,可用判别式求值域,也可以分离常数后换元.【例18】求下列函数的值域:(1)1y =;(2)213x y x +=-;(3)2211x y x -=+;(4)y = 【例19】(1)已知函数y =的最大值为M ,最小值为m ,则mM的值为( ) A .14B .12C.2 D(2)设2 ||1() ||1x x f x x x ⎧≥=⎨<⎩,,,()g x 是二次函数,若[()]f g x 的值域是)0[∞+,,则()g x 的值域是( )A .)1[]1(∞+--∞,,B .)0[]1(∞+--∞,,C .)0[∞,D .)1[∞+,总结 函数的值域问题是每年高考必考内容,而且既有常规题型,也有创新题.解答这类问题,既要熟练掌握求函数值域的基本方法,更要根据具体问题情景,灵活地处理.如本例(3)中,其背景函数属常规函数(分段函数、二次函数、复合函数),但给出[()]f g x 的值域,要求()g x 的值域,就在常规题型基础上有所创新,解答这类问题,应利用基本方法、基本知识来分析解决问题.【例20】求函数的值域22221x x y x x -+=++.2. 函数值域的单调性求法适用类型:一般能用于求复合函数的值域或最值.(原理:同增异减) 【例21】求函数212log (4)y x x =-的值域.【例22】求函数)102(1log 235≤≤-+=-x x y x 的值域.【例23】(2022•浙江)已知函数22,1,()11,1,x x f x x x x ⎧-+⎪=⎨+->⎪⎩则1(())2f f = ;若当[x a ∈,]b 时,1()3f x ,则b a -的最大值是 . 3. 函数值域的换元求法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型.换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用. 适用类型:无理函数、三角函数(用三角代换)等. 【例24】求函数y x =+1-x 的值域.(注:此题可利用函数单调性直接求函数的值域)4. 函数值域的数形结合求法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目. 适用类型:函数本身可和其几何意义相联系的函数类型.【例25】(2022•北京)设函数21,,()(2),ax x a f x x x a -+<⎧=⎨-⋅⎩若()f x 存在最小值,则a 的一个取值为 ;a 的最大值为 .【例26】求函数22)8()2(++-=x x y 的值域. 【例27】求函数5413622++++-=x x x x y 的值域.5. 复合函数值域不变性(保值性)形如(或化为)[()]f g x 的函数的值域,抓住最关键一点就是“内值外定”就是内函数看值域是否满足外函数定义域,如果内函数值域完全填满外函数定义域,那么外函数的值域即为整个函数的值域,我们将这个原理叫做复合函数“保值性”,这个问题我们在《秒2》中关于同构式性质中已经阐述. 【例28】已知定义在R 上的函数)(x f 的值域为]32[,-,则函数(2)f x -的值域为( ) A .]14[,-B .]50[,C .]51[]04[,, -D .]32[,-【例29】已知函数)(x f 的定义域为[01],,值域为]21[,,则函数)2(+x f 的定义域和值域分别是 . 【例30】(2014·重庆)函数2()log )f x x =的最小值为 . 6.值域最值逆用【例31】已知函数y =[0+∞,),则k 的取值范围是 . 【例32】已知函数212()log (23)f x x ax =-+.(1)若函数)(x f 的定义域为R ,求实数a 的取值范围; (2)若函数)(x f 的值域为R ,求实数a 的取值范围. 7.值域与双变量函数不等式问题(包裹性定理)定理一 若()y f x =满足12x x D ∀∈,,12()()f x f x m -<恒成立,则在区间D 上max min ()()f x f x m -< 如图3-3-4所示,令AB m =,则12()()f x f x m -<恒成立.图3-3-4 图3-3-5xB定理二 若()()y f x y g x ==,满足1122x D x D ∀∈∈,,12()()f x g x >恒成立,则在各自区间上min max ()()f x g x >;如图3-3-5所示,()f x 的区域始终在()g x 区域上方才满足条件.图3-3-6 图3-3-7定理三(包裹性定理) 若()()y f x y g x ==,满足若1x D ∀∈,总0x D ∃∈,使得01()()f x g x =成立, 则在区间D 上min min max max ()()()()f x g x f x g x <⎧⎨>⎩;如图3-3-6,()y f x =所在区域能包含()y g x =所在区域时,满足条件.定理四 若()()y f x y g x ==,满足11x D ∀∈,总22x D ∃∈使得12()()f x g x >能成立,则在区间D 上min min ()()f x g x >;如图3-3-7,()y f x =所在区域最小值大于()y g x =所在区域最小值时,满足条件.注意 包裹性定理的关键在于区别符号∀与∃,还要看是否有两个区间与1122x D x D ∈∈,. 【例33】已知函数1()x f x e =-,2(4)3g x x x =--+,若有()()f a g b =,则b 的取值范围为( ) A .]2222[+-,B .)2222(+-,C .]31[,D .)31(,【例34】已知()21()lg(31)()2x f x x x g x m =++=-,,若对任意1[03]x ∈,,存在2[12]x ∈,,使12()()f x g x >,则实数m 的取值范围是 . 【例35】已知2(2)23x f x x =-+. (1)求()f x 的解析式;(2)函数2(2)5()1x a x ag x x +-+-=-,若对任意1[24]x ∈,,总存在2[24]x ∈,,使12()()g x f x =成立,求a 的取值范围.17.(2022•兴庆区期末)函数()f x x =( ) A .[2,)+∞B .7[,)4+∞C .[0,)+∞D .(2,)+∞18.(2022•道里区期末)下列说法中正确的是( ) A .函数2123y x x =-+的值域为1(,]2-∞ B.函数2y =[2,)+∞C.函数y =[2,x )maxx )minminD .若函数22log (2)y ax x a =++的值域为R ,则实数a 的取值范围是[0,1]19.(2022•松原月考)设x R ∈,[]x 表示不超过x 的最大整数,例如:[3.5]4-=-,[2.1]2=,已知函数1()12x x e f x e =-+,则下列叙述中正确的是( ) A .[()]f x 是偶函数 B .()f x 是奇函数C .()f x 在R 上是增函数D .[()]f x 的值域是{1-,0,1}20.(2022•秀英区期中)设函数2log (1),2()23,2x x x f x x ->⎧=⎨-⎩,则以下结论正确的为( )A .()f x 为R 上的增函数B .()f x 有唯一零点0x ,且012x <<C .若()5f m =,则33m =D .()f x 的值域为R 21.(2022•漳州模拟)已知函数22()9xf x x =+,则( ) A .()f x 的定义域为RB .()f x 是偶函数C .函数(2022)y f x =+的零点为0D .当0x >时,()f x 的最大值为1322.(2017•浙江)已知a R ∈,函数4()||f x x a a x=+-+在区间[1,4]上的最大值是5,则a 的取值范围是 . 23.若函数()y f x =的值域是[1,3],则函数()1(3)F x f x =-+的值域是( )A .]38[--,B .]15[--,C .]02[,-D .]31[,24.函数()f x x =-( ) A .1(0)2,B .1(0]2,C .]21(,-∞D .1()2-∞,25.(2022•香坊区期末)已知()f x 是R 上的单调函数,若[()2f f x -=,则()2()()f xg x f x -=的值域为( )A .[1-,0)B .[1-,1)C .(1,1)-D .[1-,)+∞26.(2022•阜阳期末)若函数()f x 在区间[a ,]()b a b <上的值域是[a ,]b ,则称区间[a ,]b 是函数()f x 的一个“等域区间”.下列函数存在“等域区间”的是( ) A .21y x x =-+B .21x y =-C .2y lgx =+D .sin y x =27.(2022•遵义期末)设函数21,()21,ax x a f x x ax x a -<⎧=⎨-+⎩,()f x 存在最小值时,实数a 的值可能是( )A .2-B .1-C .0D .128.(2022•高州市期末)已知函数()log (1)log (3)(0a a f x x x a =-++>且1)a ≠在定义域内存在最大值,且最大值为2,21()2x xm g x ⋅-=,若对任意1[1x ∈-,1]2,存在2[1x ∈-,1],使得12()()f x g x ,则实数m 的取值可以是( ) A .1-B .0C .2log 7D .329.函数()f x =( )A .1+B .3C .4D .530.设函数()2f x =()1g x ax a =+-,若对任意1[0)x ∈+∞,都有2(1]x ∈-∞,使得12()()f x g x =,则实数a 的取值范围为 .31. 已知函数()f x x =,2()252()g x x mx m m R =-+-∈,对于任意的1[22]x ∈-,,总存在2[22]x ∈-,,使得12()()f x g x =成立,则实数m 的取值范围是 .。
高中数学必修一-第三章-3.1 函数的概念及其表示
第三章函数3.1 函数的概念及其表示知识点一:函数的概念1.函数的有关概念2.函数的三要素一个函数的构成要素:定义域、对应关系和值域.因为值域是由定义域和对应关系决定的,所以两个函数的定义域和对应关系相同时,它们是同一个函数.3.区间的概念:设a,b∈R,a<b.实数集R可以用区间表示为(-∞,+∞).知识点二:函数的表示法1.函数的三种表示法2.分段函数已知函数y=f(x),x∈A,如果自变量x在不同的取值范围内,函数有着不同的对应关系,那么我们称这样的函数为分段函数.【思考】1.函数的定义域和值域是否一定是无限集?2.区间是数集的另一种表示方法,是否任何数集都能用区间表示?3.根据函数的定义,任何一个自变量x是否都有唯一的函数值y与之对应?任何一个函数值y 是否都有唯一的自变量x与之对应?4.如何确定分段函数的定义域和值域?【解析】1.不一定.函数的定义域和值域也可能是有限集,如f(x)=1,x∈{1,2,3}.2.不是.如集合{0,1}就不能用区间表示.3.任何一个自变量x都有唯一的函数值y与之对应,但是函数值y不一定有唯一的自变量x 与之对应。
如f(x)=x2中,函数值4有两个自变量2、-2与之对应。
函数中x,y的对应关系是“一对一”或“多对一”,不能“一对多”.4.分段函数的定义域是每一段自变量取值范围的并集,值域也是每一段函数值取值范围的并集.3.1.1 函数的概念基础练一函数的概念1.(多选题)下面选项中,变量y是变量x的函数的是()A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP(国内生产总值)C.x表示某地区学生的某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税2.下列四组函数中,表示同一个函数的是()3A.y=|x|与y=√x3B.y=√x2与s=(√t)2C.y=2t+1与y=2u+1D.y=1与y=x03.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示以集合M为定义域,集合N为值域的函数关系的有()A.①②③④B.①②③C.②③D.②④二函数的定义域4.函数f(x)=√x−1的定义域为() x−2A.[1,+∞)B.[1,2)C.[1,2)∪(2,+∞)D.(1,2)∪(2,+∞)5.已知某矩形的周长为定值a,若该矩形的面积S是这个矩形的一边长x的函数,则这个函数的定义域是.6.已知函数y=f(x)的定义域为[-2,3],则函数y=f(2x+1)的定义域为.x+1三函数值及函数的值域7.已知集合P={x|y=√x−1},集合Q={y|y=√x−1},则()A.P=QB.P⫋QC.Q⫋PD.P∩Q=⌀8.函数y=√x2−2x+3的值域为.,则f(x)的值域为.9.已知函数f(x)=1x2−2x10.已知函数f(x)的定义域是[0,1],值域是[1,2],则这样的函数可以是f(x)=.11.已知函数f(x)=x2+x-1.);(1)求f(2), f(1x(2)若f(x)=5,求x的值.3.1.2 函数的表示法基础练一 函数的表示法及其应用 1.函数y =x x+1的图象大致是 ( )A B C D2.某同学从家里到学校,为了不迟到,先匀速跑一段时间,跑累了再匀速走余下的路,设在途中花费的时间为t ,离开家的距离为d ,则下面图象中,能正确表示d 与t 的关系的是( )A B C D3.已知函数y =f (x )的对应关系如表,函数y =g (x )的图象为如图所示的曲线ABC ,则g (f (3))的值为 .二 函数解析式的求法5.已知函数f (x +2)=x 2+6x +8,则函数f (x )的解析式为( ) A.f (x )=x 2+2x B.f (x )=x 2+6x +8 C.f (x )=x 2+4x D.f (x )=x 2+8x +66.函数f (x )满足f (1-2x )=-1x ,则f (2)=( )A.2B.-2C.12 D.-12 7.已知函数f (2x -1)=3x -5,若f (x 0)=4,则x 0= .8.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )= .9.(1)已知函数g (√x +1)=2x +1,求g (x )的解析式;(2)已知f (x )为二次函数,且f (0)=2, f (2)=f (-1)=0,求f (x )的解析式.三 分段函数问题10.已知函数f (x )={√x,x >0,|x +1|,x ≤0,则f (f (-3))=( )A.√3B.1C.2D.√2 11.已知f (x )={x +2,x ≤−1,x 2,−1<x <2,2x,x ≥2,若f (x )=3,则x 的值是( )A.1B.1或32C.1,32或±√3 D.√312.函数f (x )=x +|x |x 的图象是( )A B C D13.(2022山西大同期中)已知函数f (x )={x 2,x ≤0,4−2x,x >0.(1)画出函数f (x )的图象;(2)当f (x )≥2时,求实数x 的取值范围.。
函数概念定义域
函数定义及定义域一:1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 2.函数的三要素:定义域,对应关系,值域。
3.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。
求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零;(2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.4.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)二.值域 :函数值的取值构成的集合( 先考虑其定义域)。
(1)观察法 (2)配方法 (3)代换法三. 函数图象知识归纳1.定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的x 为横坐标,函数值y 为纵坐标的点P (x ,y)的集合C ,叫做函数 y=f(x),(x ∈A)的图象.C 上每一点的坐标(x ,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x 、y 为坐标的点(x ,y),均在C 上 .2. 画法: A.描点法: B.图象变换法3.常用变换方法有三种 (1)平移变换 (2)伸缩变换 (3)对称变换 4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间(3)区间的数轴表示. 5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。
3.1.1 函数的概念(解析版)
3.1.1 函数的概念考点讲解考点1:函数的概念1.定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数2.函数三要素:【例1】(1)判断下列对应是不是从集合A到集合B的函数.∈ A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;∈ A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;∈ A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;∈ A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(2)下列各组函数是同一函数的是()∈ f(x)=-2x3与g(x)=x-2x;∈ f(x)=x与g(x)=x2;∈ f(x)=x0与g(x)=1x0;∈ f (x)=x2-2x-1与g(t)=t2-2t-1. A.∈∈B.∈∈C.∈∈ D.∈∈[解](1)∈对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B中没有元素与之对应,所以不是函数.∈对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.∈对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.∈集合A不是数集,故不是函数.(2)C[∈f(x)=-2x3=|x|-2x与y=x-2x的对应法则和值域不同,故不是同一函数.∈g(x)=x2=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.∈f(x)=x0与g(x)=1x0都可化为y=1且定义域是{x|x≠0},故是同一函数.∈f(x)=x2-2x-1与g(t)=t2-2t-1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.由上可知是同一函数的是∈∈.故选C.]【方法技巧】1.判断对应关系是否为函数的2个条件(1)A,B必须是非空数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.【针对训练】1.下列四个图象中,不是函数图象的是()A B C DB [根据函数的定义知:y 是x 的函数中,x 确定一个值,y 就随之确定一个值,体现在图象上,图象与平行于y 轴的直线最多只能有一个交点,对照选项,可知只有B 不符合此条件.故选B.]2.下列各组函数中是相等函数的是( )A .y =x +1与y =x 2-1x -1 B .y =x 2+1与s =t 2+1C .y =2x 与y =2x (x ≥0)D .y =(x +1)2与y =x 2B [A 、C 选项中两函数的定义域不同,D 选项中两函数的对应关系不同,故A 、C 、D 错误,选B.] 考点2:求函数值【例2】 设f (x )=2x 2+2,g (x )=1x +2, (1)求f (2),f (a +3),g (a )+g (0)(a ≠-2),g (f (2)). (2)求g (f (x )).思路点拨:(1)直接把变量的取值代入相应函数解析式,求值即可; (2)把f (x )直接代入g (x )中便可得到g (f (x )). [解] (1)因为f (x )=2x 2+2, 所以f (2)=2×22+2=10,f (a +3)=2(a +3)2+2=2a 2+12a +20.因为g (x )=1x +2,所以g (a )+g (0)=1a +2+10+2=1a +2+12(a ≠-2).g (f (2))=g (10)=110+2=112.(2)g (f (x ))=1f (x )+2=12x 2+2+2=12x 2+4.【方法技巧】 函数求值的方法(1)已知f (x )的表达式时,只需用a 替换表达式中的x 即得f (a )的值. (2)求f (g (a ))的值应遵循由里往外的原则. 【针对训练】3.已知f (x )=x 3+2x +3,求f (1),f (t ),f (2a -1)和f (f (-1))的值. [解] f (1)=13+2×1+3=6; f (t )=t 3+2t +3;f (2a -1)=(2a -1)3+2(2a -1)+3=8a 3-12a 2+10a ; f (f (-1))=f ((-1)3+2×(-1)+3)=f (0)=3. 考点3:求函数的定义域[探究问题]1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域?提示:不可以.如f (x )=x +1x 2-1.倘若先化简,则f (x )=1x -1,从而定义域与原函数不等价.2.若函数y =f (x +1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y =f (x )的定义域是什么?提示:[1,2]是自变量x 的取值范围. 函数y =f (x )的定义域是x +1的范围[2,3]. 【例3】 求下列函数的定义域: (1)f (x )=2+3x -2;(2)f (x )=(x -1)0+2x +1; (3)f (x )=3-x ·x -1;(4)f (x )=(x +1)2x +1-1-x .思路点拨:要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可. [解] (1)当且仅当x -2≠0,即x ≠2时, 函数y =2+3x -2有意义,所以这个函数的定义域为{x |x ≠2}.(2)函数有意义,当且仅当⎩⎪⎨⎪⎧x -1≠0,2x +1≥0,x +1≠0,解得x >-1且x ≠1,所以这个函数的定义域为{x |x >-1且x ≠1}.(3)函数有意义,当且仅当⎩⎪⎨⎪⎧3-x ≥0,x -1≥0,解得1≤x ≤3,所以这个函数的定义域为{x |1≤x ≤3}.(4)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0,解得x ≤1且x ≠-1,即函数定义域为{x |x ≤1且x ≠-1}.【方法技巧】求函数定义域的常用方法(1)若f (x )是分式,则应考虑使分母不为零. (2)若f (x )是偶次根式,则被开方数大于或等于零.(3)若f (x )是指数幂,则函数的定义域是使幂运算有意义的实数集合. (4)若f (x )是由几个式子构成的,则函数的定义域是几个部分定义域的交集. (5)若f (x )是实际问题的解析式,则应符合实际问题,使实际问题有意义.考点过关一、选择题1.已知函数f (x )=3x ,则⎪⎭⎫⎝⎛af 1=( )A .1aB.3a C .aD .3aD [⎪⎭⎫ ⎝⎛a f 1=3a ,故选D.]2.下列表示y 关于x 的函数的是( ) A .y =x 2 B .y 2=x C .|y |=xD .|y |=|x |A [结合函数的定义可知A 正确,选A.]3.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}A [当x =0时,y =0;当x =1时,y =1-2=-1;当x =2时,y =4-2×2=0;当x =3时,y =9-2×3=3,∈函数y =x 2-2x 的值域为{-1,0,3}.]4.下列函数中,与函数y =x 相等的是( ) A .y =(x )2B .y =x 2C .y =|x |D .y =3x 3D [函数y =x 的定义域为R ;y =(x )2的定义域为[0,+∞);y =x 2=|x |,对应关系不同;y =|x |对应关系不同;y =3x 3=x ,且定义域为R .故选D.]5.函数y =x +1x -1的定义域是( ) A .(-1,+∞) B .[-1,+∞) C .(-1,1)∈(1,+∞)D .[-1,1)∈(1,+∞)D [由题意可得⎩⎪⎨⎪⎧x +1≥0,x -1≠0,所以x ≥-1且x ≠1,故函数y =x +1x -1的定义域为{x |x ≥-1且x ≠1}.故选D.] 6.下列四组函数中表示同一函数的是( )A .f (x )=x ,g (x )=(x )2B .f (x )=x 2,g (x )=(x +1)2C .f (x )=x 2,g (x )=|x |D .f (x )=0,g (x )=x -1+1-xC [∈f (x )=x (x ∈R )与g (x )=(x )2(x ≥0)两个函数的定义域不一致,∈A 中两个函数不表示同一函数;∈f (x )=x 2,g (x )=(x +1)2两个函数的对应法则不一致,∈B 中两个函数不表示同一函数;∈f (x )=x 2=|x |与g (x )=|x |,两个函数的定义域均为R ,∈C 中两个函数表示同一函数;f (x )=0,g (x )=x -1+1-x =0(x =1)两个函数的定义域不一致,∈D 中两个函数不表示同一函数,故选C.]7.若集合A ={x |0≤x ≤2},B ={y |0≤y ≤3},则下列图形给出的对应中能构成从A 到B 的函数f :A →B 的是( )A B C DD [A 中的对应不满足函数的存在性,即存在x ∈A ,但B 中无与之对应的y ;B 、C 均不满足函数的唯一性,只有D 正确.]8.下列函数中,对于定义域内的任意x ,f (x +1)=f (x )+1恒成立的为( ) A .f (x )=x +1 B .f (x )=-x 2 C .f (x )=1xD .y =|x |A [对于A 选项,f (x +1)=(x +1)+1=f (x )+1,成立. 对于B 选项,f (x +1)=-(x +1)2≠f (x )+1,不成立. 对于C 选项,f (x +1)=1x +1,f (x )+1=1x +1,不成立.对于D 选项,f (x +1)=|x +1|,f (x )+1=|x |+1,不成立.] 二、填空题9.若[a ,3a -1]为一确定区间,则a 的取值范围是________. ⎪⎭⎫⎝⎛+∞,21 [由题意知3a -1>a ,则a >12.] 10.将函数y =31-1-x的定义域用区间表示为________.(-∞,0)∈(0,1] [由⎩⎨⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0,用区间表示为(-∞,0)∈(0,1].] 11.已知函数f (x )=11+x,又知f (t )=6,则t =________. -56 [由f (t )=6,得11+t=6,即t =-56.] 12.已知函数f (x )的定义域为(-1,1),则函数g (x )=⎪⎭⎫⎝⎛2x f +f (x -1)的定义域是________.(0,2) [由题意知⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,即⎩⎪⎨⎪⎧-2<x <2,0<x <2.解得0<x <2,于是函数g (x )的定义域为(0,2).] 13.函数f (x ),g (x )分别由下表给出.则f [g (1)]的值为________;满足f [g (x )]>g [f (x )]的x 的值是________. 1 2 [∈g (1)=3,f (3)=1,∈f [g (1)]=1. 当x =1时,f [g (1)]=f (3)=1,g [f (1)]=g (1)=3, f [g (x ]<g [f (x )],不合题意;当x =2时,f [g (2)]=f (2)=3,g [f (2)]=g (3)=1, f [g (x )]>g [f (x )],符合题意;当x =3时,f [g (3)]=f (1)=1,g [f (3)]=g (1)=3, f [g (x )]<g [f (x )],不合题意.]14.已知一个函数的解析式为y =x 2,它的值域为{1,4},这样的函数有________个. 9 [因为一个函数的解析式为y =x 2,它的值域为{1,4},所以函数的定义域可以为{1,2},{-1,2},{1,-2},{-1,-2},{1,-1,2},{-1,1,-2},{1,2,-2},{-1,2,-2},{1,-1,-2,2},共9种可能,故这样的函数共9个.]三、解答题15.求下列函数的定义域: (1)f (x )=3x -1+1-2x +4; (2)f (x )=(x +3)0|x |-x.[解] (1)要使函数式有意义,必须满足⎩⎪⎨⎪⎧3x -1≥0,1-2x ≥0,即⎩⎨⎧x ≥13,x ≤12.所以13≤x ≤12,即函数的定义域为⎥⎦⎤⎢⎣⎡2131,(2)要使函数式有意义,必须满足⎩⎪⎨⎪⎧x +3≠0,|x |-x >0,即⎩⎪⎨⎪⎧x ≠-3,|x |>x ,解得⎩⎪⎨⎪⎧x ≠-3,x <0.所以函数的定义域为(-∞,-3)∈(-3,0).16.已知函数f (x )=x +3+1x +2.(1)求函数的定义域;(2)求f (-3),⎪⎭⎫ ⎝⎛32f 的值;(3)当a >0时,求f (a ),f (a -1)的值.[解] (1)由⎩⎪⎨⎪⎧x +3≥0,x +2≠0,得函数的定义域为[-3,-2)∈(-2,+∞).(2)f (-3)=-1,⎪⎭⎫ ⎝⎛32f =38+333.(3)当a >0时,f (a )=a +3+1a +2,a -1∈(-1,+∞),f (a -1)=a +2+1a +1. 17.已知函数f (x )=x 21+x 2.(1)求f (2)+⎪⎭⎫⎝⎛21f ,f (3)+⎪⎭⎫ ⎝⎛31f 的值; (2)求证:f (x )+⎪⎭⎫⎝⎛x f 1是定值. [解] ∈f (x )=x 21+x 2,∈f (2)+⎪⎭⎫ ⎝⎛21f =221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1. f (3)+⎪⎭⎫ ⎝⎛31f =321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+⎪⎭⎫ ⎝⎛x f 1=x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1.。
函数的概念,三要素的求法(整理版)
函数的概念:A.a叫做A中元素的象集是B的子集.f映射三要素:集合A、B以及对应法则,缺一不可;映射观点下的函数概念如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(C B)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x).例以下给出的对应是不是从集合A到B的映射?(1)集合A = {P | P是数轴上的点},集合B = R,对应关系f:数轴上的点与它所代表的实数对应;(2)集合A = {P | P是平面直角坐标系中的点,集合B = {(x | y) | x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A = {x | x是三角形},集合B = {x | x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A = {x | x是新华中学的班级},集合B = {x | x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.(1)按照建立数轴的方法可知,数轴上的任意一个点,都有惟一的实数与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意一个点,都有惟一的一个实数对与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f:A→B不是从集合A到B的一上映射.1.图1-2-2-21(1),(2),(3),(4)用箭头所标明的A中元素与B中元素的对应法则,是不是映射?图1-2-2-21“一对一”或“多对一”的对应,即集合A中的任意一个元素,在集合B中都有唯一确定的元素与之对应.例1,已知下列集合A到B的对应,请判断哪些是A到B的映射?并说明理由:;)函数定义的理解.定的,所以,如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.表示;表示;表示;相等?;;.)y、已知的定义域,求的定义域,其解法是:若的定义域为,则中,从中解得的取值范围即为的定义域。
函数的定义与三要素
一、函数定义及其定义域研究函数必须树立定义域优先考虑.......的原则!(很重要,但又很容易忽视)1.函数的定义:设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.①函数f(x)的图象与动直线x=m至多只有一个公共点!这是判断一个图象是不是函数图象的方法.②点(a,b)在函数y=f(x)的图象上⇔f(a)=b.③函数表示法——解析法、列表法、图象法.④两个函数为同一函数的充要条件是定义域与对应关系相同【即在定义域相同的条件下解析式可化为相同】.⑤设函数y=f(x)的定义域为集合P,若f(x)在集合Q上有意义,则Q⊆P.⑥区间表示法:设a<b,则{x|a≤x≤b}=[a,b],{x|a<x<b}=(a,b),R=(−∞,+∞),….2.映射的定义:设A,B是两个非空的集合,如果按照某种确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y和它对应,那么就称f:A→B为从集合A到集合B的一个映射.【函数与映射都是:一对一,或多对一.】3.若A中含有m个元素,B中含有n个元素,从A到B能建立多少个映射?4.给出函数的解析式,求函数的定义域所遵循的原则是:①f(x)g(x)中要求g(x)≠0;②√f(x)2n中要求f(x)≥0;③[f(x)]0中要求f(x)≠0;④y=a x(a>0,且a≠1),x∈R;⑤y=log a x(a>0,且a≠1),x>0;⑥y=tanx,x∈R,x≠kπ+π2,k∈Z;⑦通过加、减、乘、除四则运算及有限次复合构造出新函数,则新函数的定义域是每个函数定义域的交集.⑧应用问题的定义域,除了要考虑解析式本身的定义域,还要考虑使应用问题有意义.⑨求定义域时最好不要对解析式先变形,否则容易出错.5.不给出f(x)的解析式,函数f(x),f(g(x)),f(ℎ(x))三者之间定义域的关系:【定义域都是指x的取值范围.】①已知f(x)的定义域是(a,b),求f(g(x))的定义域:解不等式a<g(x)<b,其解集就是f(g(x))的定义域.②已知f(g(x))的定义域是(a,b),求f(x)的定义域:利用a<x<b求g(x)的值域,该值域就是f(x)的定义域.③已知f(g(x))的定义域是(a,b),求f(ℎ(x))的定义域:利用x∈(a,b)先求出g(x)的值域(c,d),然后解不等式c<ℎ(x)<d,此不等式的解集就是f(ℎ(x))的定义域.【总之,求抽象函数的定义域,关键是抓住被同一个 f 作用的对象取值范围相同.】6.①|a|={a, a≥0,−a, a<0.②|a−b|=|b−a|(数轴上a,b两点间的距离);③|−a|=|a|,④(a−b)2=(b−a)2.C n1∙C n1∙⋯∙C n1⏟m个=n m(个).1.定义域必须用集合或区间的形式表示!2.集合{x|y=f(x)}的含义:即函数y=f(x)的定义域.3.要养成这样一个习惯:一研究函数问题,就指出该函数的定义域!二、 函数解析式的求法【函数变量是个筐,代数式都可以装(变量替换).例:对于f (x )=ax 2+bx +c ,f()=a 2+b +c .】 1.函数解析式的求法:【函数与方程的思想;恒等式的变量替换,如:3x +4=(x +3)+(2x +1).】(1)代入法【直接法,适用于①由f(x)求复合函数f[g (x )],②由f(x +a)、f(x −a)、f(ax)、f(xa )等求f(x); 注意:由分段函数f(x)求复合函数f[g (x )]时,首先需要根据f(x)中对x 的分段,替换为对g(x)的分段.】(2)凑配法【整体替换法,适用于f (√x +1)、f (1+1x )、f(x +1x )、f(x −1x )等类型.】 (3)换元法【如f (3x +1)=2x 2−3x +1.换元法与凑配法可以交替使用,如f (√x +1),f (1+1x )等类型.】 (4)待定系数法【告知函数类型,就要设出该函数表达式,如f(x)是一次函数,则可设f (x )=kx +b ;然后,①利用条件得恒等式,由对应项的系数相等完成;②或利用条件得方程(组),然后解方程(组)即可.】(5)解方程组法【给出的方程同时含:①f(x)与f(−x),或f(x)与f(a −x); 【前者x →−x ,后者x →a −x 】②一奇一偶函数f(x)与g(x); 【x →−x 】③f(x)与f(1x ),或f(x)与f(a x ); 【前者x →1x ,后者x →ax 】 方法:将原方程中的变量进行变量替换得新方程,联立原方程解方程组!】(6)图象变换法【根据变换过程写解析式,或根据对称关系、相关关系等用代入法求曲线(或轨迹)方程.】(7)赋值法【给出可以求出解析式的恒等式时使用.】2.二次函数的解析式的三种形式(a ≠0):①一般式:y =ax 2+bx +c ; 对称轴是x =−b2a ; 顶点(−b2a ,4ac−b 24a ).②顶点式:y =a(x −ℎ)2+k ; 对称轴是x =ℎ; 顶点(ℎ,k).③两根式:y =a (x −x 1)(x −x 2); 对称轴是x =x 1+x 22; 顶点(x 1+x 22,−a (x 1−x 22)2). 【提醒1】用待定系数法求二次函数的解析式按照③、②、①的顺序考虑去设解析式较好.【提醒2】f (x )=ax 2+bx +c =a (x −x 1)(x −x 2):一般式与两根式的相互转化使用,常有利于解决问题.【已知一个零根x 1时,另一零根x 2可由韦达定理求出.】【提醒3】与二次函数有关的问题【值域,最值,单调性等】,要学会直接运用对称轴和图象解决!3.应用题中求函数解析式:关键是寻找等量关系,即同一个量用不同方式表达,由此就得到方程(或等式),从而就可得到函数解析式. 注意:①没有给出字母变量的,一定要先设出来.②要根据实际意义,准确求出函数定义域.③不能用一个式子表示的,则需要用分段函数表示.(几何背景的应用题常需要用分段函数表示!)4.缴纳个人所得税也可以画线段示意图分段处理(分段纳税).(还可建立分段函数模型)常见函数的平方表示:[f(x)]2=f 2(x),(log a x )2=log a 2x ,(sinx )2=sin 2x ,(cosx )2=cos 2x ,(tanx )2=tan 2x .基数免税 3% 10% 20% 3500元 1500元 3000元 4500元 26000元 25% 20000元 25000元 30% 35% 45%补充1.设f (x ),g(x)均为定义域相同的两段式的分段函数,①若分段标准一致,则y =f (x )±g(x),y =f (x )∙g(x),y =f(x)g(x)(g (x )≠0)等函数仍为两段式的分段函数. ②若分段标准不一致,则y =f (x )±g(x),y =f (x )∙g(x),y =f(x)g(x)(g (x )≠0)等函数均为三段式的分段函数. 2.给出分段函数f (x )={f 1(x ),x ≤a ,f 2(x ),x >a .如何解不等式(或方程):f(g (x ))≥f(ℎ(x)). 方法一:就g (x ),ℎ(x)与a 的大小关系分四种情形,将两边代出后求解;方法二:令g (x )=a ,ℎ(x )=a ,解出x 的值,得到(能分段代出两边的)标准后,分段求解.3.若f (x )=a n x n +a n−1x n−1+⋯+a 2x 2+a 1x +a 0,且f (t )=0,则f(x)必含有因式(x −t);必要时可以用竖式除法或待定系数法将f(x)因式分解;若x =x 0为f(x)的极值点,则x =x 0必为方程f (x )=f(x 0)的重根.4.y =ax 2+bx +c =a (x +b 2a )2+4ac−b 24a 在a 确定的情况下,抛物线的形状(即开口大小)也就随之确定!5.三次函数f (x )=ax 3+bx 2+cx +d 的解析式:【其图象(a >0)的各种情形你知道吗?】①若已知f (x )=0的三个根为x 1,x 2,x 3,则可设f (x )=a (x −x 1)(x −x 2)(x −x 3).②若已知f (x )=0的两个根为x 1,x 2,则可设f (x )=a (x −x 1)(x −x 2)(x −m).③若已知f (x )=0的一个根为x 1,则可设f (x )=a (x −x 1)(x 2+mx +n).6.三次函数f (x )=ax 3+bx 2+cx +d 有极值的充要条件是:f′(x )=3ax 2+2bx +c =0有两个不等实根.【由f′(x )=3ax 2+2bx +c =3a (x −x 1)(x −x 2)的图象可知.】三、 值域,最值1.观察法:主要针对一些简单函数,或作简单变形后观察,即可求出值域或最值.2.配方法(对称轴法):对于型如f (x )=ax 2+bx +c ,x ∈[m ,n]的形式的二次函数,利用配方法或直接利用对称轴x =−b2a 完成.可以结合图象完成求值域或最值.【配方其实也是为了找出对称轴!】3.换元法:代数换元法,三角换元法.运用换元法解题时要注意确定新元的取值范围和整体置换的策略.使用换元法时,一般来说,需求两次值域,一次在换元时求新元的取值范围,一次在换元后求新函数值域. ①y =ax +b +k √cx +d ,令t =√cx +d .(注意:该函数有时可直接快速判定单调性!)②y =a f (x ),令u =f(x),则y =a u ; ③y =log a f(x),令u =f(x),则y =log a u ;④y =f(a x ),令t =a x ,则y =f(t); ⑤y =f(log a x),令t =log a x ,则y =f(t);⑥令a x +a −x =t ,则a 2x +a −2x =t 2−2(t ≥2); ⑦令√1−x +√1+x =t ,则√1−x 2=t 2−22.无参函数先定性,定性之后再前行! 定性:是指先确定函数定义域,值域,单调性,奇偶性,周期性,图象等性质;然后再结合性质去解题.a a 1 a 2 函数符号的使用:p =kV ⇒p (V )=kV ,y =ax 2+bx +c ⇒y (x )=ax 2+bx +c ,但对于后者习惯用f(x). 在使用函数符号时,“y =⋯”,根据需要可改用“f (x )=⋯”.【y 即f(x),f(x)即y ,因为y =f(x).】 如:判断函数单调性和奇偶性及周期性等,就应该使用函数符号f(x).⑧y=ax+b±k√c2−x2,令x=csinα,α∈[−π2,π2](或令x=ccosα,α∈[0,π]).⑨x∈R时,令x=tanα,α∈(−π2,π2);⑩令sinx+cosx=t,则sinxcosx=t2−12.4.图象法(数形结合法):(直观实用!)■①一些简单函数及分段函数的求值域或最值常利用图象完成.②求f(x)=max{f1(x),f2(x),⋯,f n(x)}或f(x)=min{f1(x),f2(x),⋯,f n(x)}的值域,可先分别作出其中所含函数:f1(x),f2(x),⋯,f n(x)的图象,再利用它们的交点分段确定f(x)的图象,从而确定值域或最值.③根据函数表达式的几何意义【分式→斜率?平方和(的算术根)→距离?等】,作出图象,求出值域或最值.5.单调性法:若函数为单调函数,可根据函数的单调性求值域或最值. (优先考虑!)■6.有界性法:含x2,|x|,√x,x(x∈(m,n)),a x,sinx,cosx的函数,若可用y表示它们,则常利用其有界性来求值域或最值.7.基本(均值)不等式法:利用a+b2≥√ab或a+b+c3≥√abc3(一正二定三相等)等公式来求值域或最值,一定要看等号能否成立,否则用数形结合法、单调性法完成,如y=x+kx(k>0).【还要注意柯西不等式的应用.】8.判别式法:用于y=f(x)=a1x2+b1x+c1a2x2+b2x+c2.(a12+a22≠0,分子、分母无公因式,且x无人为限制.)先化成(a2y−a1)x2+(b2y−b1)x+(c2y−c1)=0,再运用∆≥0求值域(但要注意讨论二次项系数为0的情况).附:若含参数的函数f(x)=a1x 2+b1x+c1a2x2+b2x+c2的值域为[a,b],求所含参数的值.方法①:利用判别式法;方法②:利用a≤a1x 2+b1x+c1a2x2+b2x+c2≤b恒成立且等号也可成立.9.导数法:通过求导研究函数的单调性,确定极值与端点值,从而得出值域或最值.(万能方法!)■⒑分类讨论法:对于含参数的函数求值域或最值,最常用的方法是数形结合、分类讨论.通常先作出函数的一般图象(形状),再由函数图象左右移动悟出讨论标准!二次函数f(x)=ax2+bx+c,x∈[m,n]的最值问题(对称轴含参数问题、区间含参数问题)是最典型的.注意是否需要讨论开口方向,①对称轴x=−b2a与x轴上区间[m,n]的两端点m,n的三种位置关系;②对称轴x=−b2a 与x轴上区间[m,n]的中点m+n2的两种位置关系;同理:对于函数f(x)=k|x−a|+b,x∈[m,n]的最值问题(对称轴含参数问题),可参照上述思路解决.补充1.求函数值域问题,从方程角度讲,就是关于x的方程..在定义域内有解..,从而求参数y的取值范围问题!求函数值域问题,从图象角度讲,就是函数图象上每一点的纵坐标...组成的集合!2.求函数值域与求最值方法是相同(通)的,既可求出值域而确定最值,也可求出最值而确定值域.3.可学会使用的符号:①f(x)max=f(p),f(x)min=f(q);②f(x)max=max{f(p),f(q)}=⋯,f(x)min=min{f(p),f(q)}=⋯.【含参数时可根据f(p)−f(q)的符号分类确定。
3.1函数的定义及三要素
解:∵定义域是R,∴
∴
例6 若函数 的定义域为[1,1],求函数 的定义域
解:要使函数有意义,必须:
∴函数 的定义域为:
例7 已知 的定义域为[-1,1],求 的定义域。
分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x的取值范围就是复合函数的定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中的x位置相同,范围也应一样,∴-1≤2x-1≤1,解出x的取值范围就是复合函数的定义域。
另解:要使函数有意义,必须:
例4 求下列函数的定义域:
① ②
③ ④ ⑤
解:①要使函数有意义,必须: 即:
∴函数 的定义域为:[ ]
②要使函数有意义,必须:
∴定义域为:{ x| }
③要使函数有意义,必须:
∴函数的定义域为:
④要使函数有意义,必须:
∴定义域为:
⑤要使函数有意义,必须:
即x< 或x> ∴定义域为:
(4)对于集合A中任意一个实数x,按照对应关系f:x→y=0,在集合B中都有唯一一个确定的数0与它对应,故是集合A到集合B的函数.
点评:判断所给对应是否是函数,首先观察两个集合A,B是否是非空集合(数集),其次验证对应关系下,集合A中数x的任意性,集合B中数y的唯一性.
巩固 若集合A={x|0≤x≤2},B={y|0≤y≤3},则下列图形给出的对应中能构成从A到B的函数f:A→B的是()
当a=b时,{x|a≤x≤b}={a}是单元素集:当a>b时,{x|a≤x≤b}=∅,这两种情况均不能用区间[a,b]表示.
题型一 函数概念的理解
函数知识点(详细)
第二章函数一.函数1、函数的概念:(1)定义:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作:y =)(x f ,x ∈A .其中,x 叫做自变量,x 的取值X 围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{)(x f | x ∈A }叫做函数的值域. (2)函数的三要素:定义域、值域、对应法则(3)相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2、定义域:(1)定义域定义:函数)(x f 的自变量x 的取值X 围。
(2)确定函数定义域的原则:使这个函数有意义的实数的全体构成的集合。
(3)确定函数定义域的常见方法:①若)(x f 是整式,则定义域为全体实数②若)(x f 是分式,则定义域为使分母不为零的全体实数 例:求函数xy 111+=的定义域。
③若)(x f 是偶次根式,则定义域为使被开方数不小于零的全体实数例1. 求函数()2143432-+--=x x xy 的定义域。
例2. 求函数()02112++-=x x y 的定义域。
④对数函数的真数必须大于零⑤指数、对数式的底必须大于零且不等于1⑥若)(x f 为复合函数,则定义域由其中各基本函数的定义域组成的不等式组来确定⑦指数为零底不可以等于零,如)0(10≠=x x⑧实际问题中的函数的定义域还要保证实际问题有意义. (4)求抽象函数(复合函数)的定义域已知函数)(x f 的定义域为[0,1]求)(2x f 的定义域已知函数)12(-x f 的定义域为[0,1)求)31(x f -的定义域3、值域 :(1)值域的定义:与x 相对应的y 值叫做函数值,函数值的集合叫做函数的值域。
(2)确定值域的原则:先求定义域 (3)常见基本初等函数值域:一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数(正余弦、正切)(4)确定函数值域的常见方法:①直接法:从自变量x 的X 围出发,推出()y f x =的取值X 围。
函数的概念及其三要素
函数的概念及其三要素
一、什么是函数
函数是指一种映射关系,它把一个或多个输入值映射成输出值,当用
相同的输入值时,可以产生相同的输出值,这种一一映射的关系就是函数。
数学上的函数可以分为普通函数和复合函数,普通函数主要用作表达其中
一种性质随变量而变化的定量关系,复合函数是通过一个函数定义另一个
函数,而满足其中一种定义域和值域的关系,是构成数学理论的基础。
二、函数的三要素
1、定义域
定义域也叫做函数的域,它表示函数的取值范围,即允许函数的输入
取值的范围,它可以是实数的整数、分数、有理数,也可以是复数。
一般
情况下,为了更好地研究函数的特性,会将定义域划分为有限多个区间,
即定义域可以表示为一个有限的集合。
2、值域
值域表示函数的输出取值可以取到的范围,也就是函数的输出值可以
取的范围。
值域可以是实数集、自然数集等,有时也会将值域分为有限多
个区间,以方便函数特性的研究。
3、解析式
解析式是一种表示函数关系的方式,它用数学符号把函数所表示的变
化关系表示出来,如一元函数的解析式一般可以写成y=f(x),其中f(x)
就是函数的解析式,这里的x表示函数的自变量,y表示函数的因变量,
f(x)称为函数式。
函数的概念
1.下图中,分别给出了变量x与y之间的对应关系,y不是x的函数的是( )
A、 B、 C、 D、
2、下列等式中,y是x的函数的有( )个.
(1)3x﹣2y=1;(2)x2+y2=1;(3)xy=1;(4)|y|=x.
A、1个B、2个C、3个D、4个
3、函数 的图象与直线 的公共点数目是()
A B C 或 D 或
注意:对于集合 与区间 ,前者 可以大于或等于 ,而后者必须 .
5、求函数的定义域时,一般遵循以下原则:
① 是分式函数时,定义域是使分母不为零的一切实数.
② 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
③若 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的x)=2x-3,x∈{1,2,3},则f(x)的值域为________.
例12、求函数 满足下列条件的值域:
(1)x [2,3](2)x [0,3](3)x
例13、函数 的值域是()
A. B. C. D.
例14、求函数(1) (2) 的值域
例15、求函数 的值域。
B.y=-1与y=x-1
C.y=(x-1)0(x≠1)与y=1(x≠1)
D.y=2x+1,x∈Z与y=2x-1,x∈Z
10、求函数 满足下列条件的值域:
(1)x [2,3]
(2)x [-3,3]
(3)x
11、求函数 的值域.
12、求下列函数的值域
(1) ( 2) (3)
例1、下列各曲线中,不能表示y是x的函数的是( )
A、 B、 C、 D、
例2、下列解析式中,y不是x的函数是( )
A、y+x=0B、|y|=2xC、y=|2x|D、y=2x2+4
函数的概念
f ( x)的最小值,则 a 的取值范围是_______;
2 ( x 1) , x 1 (变式)设函数 f ( x ) 4 x 1, x 1
则使得 f ( x ) 1 的自变量 x 的取值范围是 _______;
高斯函数: (高斯函数)[ x ] 表示不大于 x 的最大整数; {x} x [ x] 是一个值域为 [0,1) 的,周 期为1的函数;(图像画黑板上)
注意:
(1)A中的每一个数都要参与对应,不能 有剩余的数,B中的数则可以有剩余的; (2) A中的数与B中的数的对应关系只能 是“一对一”或“多对一”,不能是“一 对多”;
(3)函数的图像与直线 x a 至多有一 个交点;
题型一:符合条件的函数个数; 例1、集合 A {0,1, 2,3, 4} ,B {1,3, 4},则: (1)从A到B可组成 _______个不同的函数; (2)从B到A可组成 _______个不同的函数; (3)从A到B可组成 _______个以B为值域的 函数; (4)从A到B的函数中满足: f (0) f (1) f (2) f (3) f (4) 的有___个;
| sin x cos x | sin x cos x (变式)若函数 f ( x) 2 f ( x ) 则 的值域是_______;
2 sin( x ), 1 x 0, 例2、已知函数 f ( x) x1 e , x 0. 若 f (1) f (a) 2 ,则实数 a = _______;
2
总结:求复合函数的值域一般分两个步骤来 进行,先求内函数值域即外函数定义域;然 后求外函数值域即整个函数值域。
变式: 例2、设M a, b, c, N 1,0,1 ,从M到N的函数 满足f(a)+f(b)+f(c)=0,试确定这样的映射 f的个数;
函数的定义与三要素
函数的定义与三要素函数在数学和计算机科学中都是重要的概念。
在数学领域,函数是一种映射关系,它将一个集合的元素映射到另一个集合的元素上。
而在计算机科学领域,函数是一段可重复使用的代码,它接收输入参数并产生输出结果。
虽然函数在数学和计算机科学中的定义略有不同,但它们都具有一些共同的特征和要素。
一、函数的定义函数是一种关系,它将一个集合的元素映射到另一个集合的元素上。
在数学中,函数通常表示为f(x),其中x是输入变量,f(x)是输出变量。
函数可以用公式、图像或者表格等形式来表示。
在计算机科学中,函数通常被定义为一段代码,它接收输入参数并产生输出结果。
二、函数的三要素不论是数学中的函数还是计算机科学中的函数,它们都有三个共同的要素,即定义域、值域和关系。
1. 定义域(Domain)在数学中,函数的定义域是指输入变量的取值范围。
它是一个集合,包含所有可能的输入值。
例如,对于函数f(x) = x²,定义域可以是实数集R。
在计算机科学中,函数的定义域是指函数可以接受的输入参数的类型和取值范围。
例如,在Python编程语言中,可以定义一个接受整数类型作为参数的函数。
2. 值域(Range)在数学中,函数的值域是指输出变量的取值范围。
它也是一个集合,包含所有可能的输出值。
例如,对于函数f(x) = x²,在实数集R上的值域可以是非负实数集[0,∞)。
在计算机科学中,函数的值域是指函数可以产生的输出结果的类型和取值范围。
例如,在Python编程语言中,可以定义一个返回字符串类型的函数。
3. 关系(Relation)在数学中,函数的关系描述了定义域中的每个输入值与值域中的一个输出值之间的对应关系。
在计算机科学中,函数的关系则由函数体中的代码来定义。
它包含一系列的语句或算法,用于处理输入参数并生成输出结果。
三、函数的特点无论是数学中的函数还是计算机科学中的函数,它们都具有一些特点和性质。
1.唯一性函数必须满足每个输入值对应一个唯一的输出值的要求。
函数概念及其三要素
函数概念及其三要素函数是数学中的一个重要概念,用于描述两个数集之间的关系。
它是一种映射关系,将一个自变量的取值映射到一个因变量的取值。
函数常用于描述数量之间的对应关系,如时间和距离之间的关系、温度和压力之间的关系等。
函数的三要素包括定义域、值域和对应关系。
定义域是自变量的所有可能取值的集合,通常用符号表示为D。
值域是因变量的所有可能取值的集合,通常用符号表示为R。
对应关系指明了自变量和因变量之间的关系,一般用符号y或f(x)表示。
首先,我们来看函数的定义域。
定义域是指自变量的所有可能取值的集合。
函数的定义域是所有满足函数中自变量合法的取值范围。
例如,对于函数f(x)=x^2,由于平方根的定义域是非负实数,因此该函数的定义域是所有实数。
有时候,定义域可能受到其他限制条件的约束,如分母不能为零等。
因此,在定义函数时需要明确确定定义域。
其次,我们来看函数的值域。
值域是指函数所有可能取值的集合。
值域可以通过函数的定义来确定。
例如,对于函数f(x)=x^2,因为平方的结果始终为非负数,所以该函数的值域是非负实数。
有时候,值域可能受到定义域的限制,如分母不能为零等。
值域是确定函数取值范围的重要依据。
最后,我们来看函数的对应关系。
对应关系是函数描述自变量和因变量之间的关系。
函数的对应关系通常用符号y或f(x)表示。
函数的对应关系可以通过不同的数学表达式或方程来表示,如线性函数、二次函数、指数函数、对数函数等。
例如,函数f(x)=2x+1表示一个线性函数,它表示自变量x与因变量y之间的线性关系,即y等于2倍的x加1函数的三要素相互关联,定义域和值域是函数定义和取值范围的限制条件,而对应关系则描述了自变量和因变量之间的关系。
在实际问题中,我们常常需要通过函数来描述一些现象或规律,通过研究函数的三要素,可以更好地理解和应用函数。
除了了解函数的三要素,我们还需要了解函数的图像和性质。
函数的图像是描述函数对应关系的一种可视化方式,通常使用平面直角坐标系来绘制。
第四讲:函数的概念、函数关系的建立(教师)
第四讲:函数的概念、函数关系的建立【知识点】1、函数的概念及函数的三要素:强调:一个自变量x 只有一个函数值y 与之对应;函数的三要素:定义域,值域,对应法则(1)若两函数的定义域与对应法则相同,则它们的值域相同;(2)若两函数的值域与对应法则相同,则它们的定义域相同?否反例:函数2y x =的值域为[0,4],则它的定义域可为[0,2],[1,2]......-。
两个函数的定义域和对应法则相同,则这两个函数叫做同一函数。
辨析:221x y +=是不是函数?y =2、函数的表示方法(1)解析式法:用一个等式把函数值与自变量的关系表达出来(且把函数值“显性”地表达出来,如()y f x =),这个等式叫做函数的解析表达式,简称解析式。
(2)列表法:就是列出表格来表示两个变量的函数关系。
(3)图象法:就是用函数图象来表示两个变量的函数关系。
加深解析式法(对应法则)的理解:如22222()23,(2)2223,(21)(21)2(21)3,[()][()]2()3,[()][()]2()3f x x x f f x x x f g x g x g x f f x f x f x =-+=-⨯+-=--⨯-+=-⨯+=-⨯+则3、函数的图象是“有序实数对”集{(,)|(),}x y y f x x D =∈在直角坐标系内对应的点集(图形),其中x 为自变量,D 是定义域,y 是x 的函数值,且自变量在横轴上取值,函数值在纵轴上取值。
函数的图象有以下特征,经过函数定义域中任何一个点x 作垂直于x 轴的直线,它与函数的图象恰有一个交点。
(画几个图象,判断那些是函数的图象)4、分段函数:若函数在其定义域的不同子集上对应法则有所不同,可用几个式子来表示函数,这种形式的函数叫分段函数,它是一类重要函数。
如1,01,0|1|,0,01,01,0x x x y x y x x x x >⎧-≥⎧⎪=-===⎨⎨-+<⎩⎪-<⎩,图象要分段画出。
函数的概念(定义域,值域,解析式)
讲解新课:一.函数定义及函数三要素1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作:y=f(x),x∈A。
其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。
注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。
(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。
3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。
当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。
因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。
4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示5.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数概念及三要素
1.函数的概念:
设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的
任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ).
记作: y=f(x),x ∈A .
其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ).
2.分段函数:在定义域内不同的区间上有不同的 。
注:分段函数是 个函数,而不是多个函数。
3.复合函数:若(),(),(,)y f u u g x x m n ==∈,那么[]()y f g x =称为复合函数,u 称为中间变量,它的取值范围是()g x 的值域。
方法一:函数定义域的求法
关注:分母、根号、指对数底数对数真数、tan 、零次方的底数 例题:)35lg(lg x x y -+=
的定义域为_______
方法二:求函数解析式的常用方法
1、配凑法
2、待定系数法
3、换元法
4、解方程组法
例1、已知2(1)23f x x x -=--,则()f x = 。
例2、已知2
(31)965f x x x +=-+,则()f x = 。
例3、已知()f x 是一次函数,且(1)(1)23f x f x x +--=+,则()f x = 。
例4、已知()2()32f x f x x +-=-,则()f x = 。
例5、已知()f x 是奇函数,()g x 是偶函数,并且()()1f x g x x +=+,则()g x = 。
方法三:分段函数
分段函数在其定义域的不同子集上,因对应关系不同,而分别用几个不同的式子来表示,这种函数就称之为分段函数.分段函数虽然有几个部分组成,但它表示的是一个函数.近几年高考考察的频率较高. 1.函数
22, 0,()log , 0.x x f x x x ⎧=⎨>⎩≤则1()4f =____;方程1()2f x -=的解是____.
2. 已知函数11,02()ln ,2
x f x x x x ⎧+<≤⎪=⎨⎪>⎩,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取
值范围是( )
(A ) (1,)+∞ (B )3[,)2+∞ (C )
32[,)e +∞ (D )[ln 2,)+∞
3、设函数⎪⎩⎪⎨⎧≥--<+=1
141 )1()(2x x x x x f ,则使得1)(≥x f 的自变量x 的取值范围为 ( ) (A )]10,0[]2,( --∞ (B) ]1,0[]2,( --∞ (C )]10,1[]2,( --∞ (D )]10,1[)0,2[ -
练习:
1.函数()21x f x =-的定义域为( A )
A .[0,+∞)
B .[1,+∞)
C .(-∞,0]
D .(-∞,1]
2.函数f (x )=)1(log 2
1-x 的定义域是
( ) A .(1,+∞) B .(2,+∞) C .(-∞,2) D .]21(,
3.函数y=2122--+-+x x x x
的定义域是( )
(A )-21-≤≤x (B )-21≤≤x
(C )x>2 (D )x 1≠
4. 函数x x y +-+=2)2(0的定义域为( )
A.),2[+∞-
B. [2,0)(0,)-+∞
C. ),2(+∞-
D. )2,(-∞
5、若()23,(2)()f x x g x f x =++=,则()g x 的表达式为 (
) A 、21x + B 、21x - C 、23x - D 、27x +
6.下列函数中,值域为[0,1]的是( )
(A )2y x =(B )sin y x =(C )21
1y x =+(D )21y x -7、已知1)1(+=+x x f ,则函数)(x f 的解析式为 (
)
A 、2)(x x f =
B 、)1(1)(2≥+=x x x f
C 、)1(22)(2≥+-=x x x x f
D 、)1(2)(2≥-=x x x x f
8、下列各函数解析式中,满足)(21)1(x f x f =
+的是 ( ) A 、 2x B 、21+x C 、 x -2 D 、x 2
1log 9.如图,函数()f x 的图象为折线ACB ,则不等式()()2log 1f x x +≥的解集是( )
A .{}|10x x -<≤
B .{}|11x x -≤≤
C .{}|11x x -<≤
D .{}|12x x -<≤
10、设()1f x x x =--,则1()2
f f ⎡⎤=⎢⎥⎣⎦( ) A 、 -21 B 、0 C 、2
1 D 、 1 11. 已知函数()f x x x a =⋅-的图象与直线1y =-的公共点不少于两个,则实数a 的取值范围是
A .2a <- B.2a ≤- C.20a -≤< D.2a >-
12
.函数1y x
=_____________. 13、若一次函数()y f x =在区间[]1,2-上的最大值为3,最小值为1,则()y f x =的解析式为_____________.
14、若二次函数()y f x =过点(0,3),(1,4),(1,6)-,则()f x =_______________.
15、函数[]2
()23,2,0f x x x x =+-∈-的值域为 。
16、已知()f x 是奇函数,()g x 是偶函数,且1()()1
f x
g x x +=-,则()f x =___________________。
17、若函数)(x f 满足关系式x x
f x f 3)1
(2)(=+,则)(x f 的表达式为__________. 18. 已知函数24()(1)4x x f x f x x ⎧≥=⎨+<⎩
, 则2(2log 3)f +的值为( ) A. 24 B. 16 C. 12 D. 8
19.已知函数2log 0()30x x x f x x >⎧=⎨≤⎩
,,,,关于x 的方程()0f x x a +-=有且只有一个实根,则实数a 的取值范围是________.
20.已知函数2322,1()log (1).1
⎧+-≥⎪=⎨⎪+<⎩x x f x x
x x
则((f f =________;
的最小值为 .
课后练习
1、设函数f (x )=则满足f (x )≤2的x 的取值范围是
(A )[-1,2] (B )[0,2] (C )[1,+) (D )[0,+)
2、已知函数f(x)= 若f (f (0))=4a ,则实数a 等于( )
A. B. C.2 D.9
3、已知函数322+-=x x y 在区间[0,m]上有最大值3,最小值2,则m 的取值范围是 (
)
A 、[ 1,+∞)
B 、[0,2]
C 、(-∞,2]
D 、[1,2]
4、已知32)121
(+=-x x f ,且 6)(=m f ,则m 等于 ( )
A 、 41
- B 、41
C 、 23
D 、23
-
5、已知22
1111x x
x x f +-=⎪⎭⎫ ⎝⎛+-,则)(x f 的解析式可取为 ( )
A 、21x x
+ B 、212x x +- C 、212x x
+ D 、-21x x
+
6、函数的定义域是___________________________。
7
、函数()f x =的定义域为 。
8、(1)函数 )3(log 1
3x y -= 的定义域为
()f x ⎩⎨⎧≤,>,,
,1x x log -11x 22x -1∞∞2211
1x x x ax x ⎧+<⎪⎨+≥⎪⎩,,1245x x f )21
(1)(-=
9、函数)23(log )12(-=-x y x 的定义域为 .
10、 223x x y +-= 的值域是______________.
11、已知1()2()f x f x x
+=,则()f x = 。
12、已知2()21,()2f x x g x x =-=-,则[]()g f x = 。
13、若221)1(x x x x f +
=-,则函数)1(-x f =_____________.。