智能控制技术复习题课后答案
智能控制答案(最终版3题全做)
智能控制作业1.已知某一炉温控制系统,要求温度保持着600℃恒定。
针对该控制系统有以下控制经验。
(1)若炉温低于600℃,则升压;低得越多升压越高。
(2)若炉温高于600℃,则降压;高得越多降压越低。
(3)若炉温等于600℃,则保持电压不变。
设模糊控制器为一维控制器,输入语言变量为误差,输出为控制电压。
输入、输出变量的量化等级为7级,取5个模糊集。
试设计隶属度函数误差变化划分表,控制电压变化划分表和模糊控制规则表。
解:(1) 确定变量定义理想温度为600℃,实际炉温为T,则温度差为:e=600-T将温度差e作为输入变量。
(2)输入量和输出量的模糊化将偏差e分成5个模糊集:负大(NB),负小(NS),零(ZO),正小(PS),正大(PB)。
将偏差e的变化分成7个等级:-3,-2,-1,0,+1,+2,+3,从而得到温度变化模糊表如表1所示:控制电压u也分成5个模糊集:负大(NB),负小(NS),零(ZO),正小(PS),正大(PB)。
将偏差u的变化分成7个等级:-3,-2,-1,0,+1,+2,+3,而得到电压变化模糊表如表2示:MATLAB仿真程序如下:%Fuzzy Control for water tankclear all;close all;a=newfis('fuzz_tank');a=addvar(a,'input','e',[-3,3]); %Parameter ea=addmf(a,'input',1,'NB','zmf',[-3,-1]);a=addmf(a,'input',1,'NS','trimf',[-3,-1,1]);a=addmf(a,'input',1,'Z','trimf',[-2,0,2]);a=addmf(a,'input',1,'PS','trimf',[-1,1,3]);a=addmf(a,'input',1,'PB','smf',[1,3]);a=addvar(a,'output','u',[-4,4]); %Parameter ua=addmf(a,'output',1,'NB','zmf',[-4,-1]);a=addmf(a,'output',1,'NS','trimf',[-4,-2,1]);a=addmf(a,'output',1,'Z','trimf',[-2,0,2]);a=addmf(a,'output',1,'PS','trimf',[-1,2,4]);a=addmf(a,'output',1,'PB','smf',[1,4]);rulelist=[1 1 1 1; %Edit rule base2 2 1 1;3 3 1 1;4 4 1 1;5 5 1 1];a=addrule(a,rulelist);a1=setfis(a,'DefuzzMethod','mom'); %Defuzzywritefis(a1,'tank'); %Save to fuzzy file "tank.fis" a2=readfis('tank');figure(1);plotfis(a2);figure(2);plotmf(a,'input',1);figure(3);plotmf(a,'output',1);flag=1;if flag==1showrule(a) %Show fuzzy rule baseruleview('tank'); %Dynamic Simulationenddisp('-------------------------------------------------------');disp(' fuzzy controller table:e=[-3,+3],u=[-4,+4] ');disp('-------------------------------------------------------');for i=1:1:7 e(i)=i-4;Ulist(i)=evalfis([e(i)],a2); endUlist=round(Ulist)e=-3; % Erroru=evalfis([e],a2) %Using fuzzy inference2.用高级语言(C 、VC++、MATLAB 等)编程实现用BP 神经网络实现下列函数的非线性映射:101()log ,110f x x x x=≤≤ 分析误差曲线及网络的泛化能力。
智能控制试卷及答案
智能控制试卷及答案一、试卷一、选择题(每题2分,共20分)1. 下列哪项不是智能控制的主要类型?A. 人工智能控制B. 模糊控制C. 神经网络控制D. 逻辑控制2. 以下哪种控制方法适用于处理具有不确定性、非线性和时变性等特点的复杂系统?A. PID控制B. 模糊控制C. 串级控制D. 比例控制3. 神经网络控制的核心思想是利用神经网络实现控制规律的映射,以下哪种神经网络模型适用于动态系统的控制?A. BP神经网络B. RBF神经网络C. 感知器D. Hopfield神经网络4. 模糊控制中,模糊逻辑推理的核心部分是?A. 模糊集合B. 模糊规则C. 模糊推理D. 解模糊5. 以下哪种方法不属于智能控制系统的建模方法?A. 基于模型的建模B. 基于数据的建模C. 基于知识的建模D. 基于经验的建模二、填空题(每题2分,共20分)6. 智能控制的理论基础包括________、________和________。
7. 模糊控制的基本环节包括________、________、________和________。
8. 神经网络控制的主要特点有________、________、________和________。
9. 智能控制系统的主要性能指标包括________、________、________和________。
10. 智能控制技术在工业生产、________、________和________等领域有广泛应用。
三、判断题(每题2分,共10分)11. 模糊控制适用于处理具有确定性、线性和时不变性等特点的复杂系统。
()12. 神经网络控制具有较强的自学习和自适应能力。
()13. 智能控制系统不需要考虑系统的稳定性和鲁棒性。
()14. 智能控制技术在无人驾驶、智能家居等领域具有广泛应用前景。
()15. 模糊控制的核心思想是利用模糊逻辑进行推理和决策。
()四、简答题(每题10分,共30分)16. 简述模糊控制的基本原理。
智能控制技术复习题课后答案-图文
智能控制技术复习题课后答案-图文一、填空题1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制2.传统控制包括和2、经典反馈控制现代理论控制3.一个理想的智能控制系统应具备的基本功能是、、和3、学习功能适应功能自组织功能优化能力4.智能控制中的三元论指的是:、和4、运筹学,人工智能,自动控制5.近年来,进化论、、和等各门学科的发展给智能控制注入了巨大的活力,并由此产生了各种智能控制方法。
5、神经网络模糊数学专家系统6.智能控制方法比传统的控制方法更能适应对象的、和6、时变性非线性不确定性7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1);(2)10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为和16、直接型专家控制器、间接型专家控制器17.普通集合可用函数表示,模糊集合可用函数表示。
(完整版)智能控制题目及解答
智能控制题目及解答第一章绪论作业作业内容1.什么是智能、智能系统、智能控制?2.智能控制系统有哪几种类型,各自的特点是什么?3.比较智能控制与传统控制的特点.4.把智能控制看作是AI(人工智能)、OR(运筹学)、AC(自动控制)和IT(信息论)的交集,其根据和内涵是什么?5.智能控制有哪些应用领域?试举出一个应用实例,并说明其工作原理和控制性能.1 答:智能:能够自主的或者交互的执行通常与人类智能有关的智能行为,如判断、推理、证明、识别、感知、理解、通信、设计、思考、规划、学习等一系列活动的能力,即像人类那样工作和思维。
智能系统:是指具有一定智能行为的系统,对于一定的输入,它能产生合适的问题求解相应。
智能控制:智能控制是控制理论、计算机科学、心理学、生物学和运筹学等多方面综合而成的交叉学科,它具有模仿人进行诸如规划、学习、逻辑推理和自适应的能力。
是将传统的控制理论与神经网络、模糊逻辑、人工智能和遗传算法等实现手段融合而成的一种新的控制方法。
2 答:(1)人作为控制器的控制系统:人作为控制器的控制系统具有自学习、自适应和自组织的功能。
(2)人—机结合作为作为控制器的控制系统:机器完成需要连续进行的并需快速计算的常规控制任务,人则完成任务分配、决策、监控等任务。
(3)无人参与的自组控制系统:为多层的智能控制系统,需要完成问题求解和规划、环境建模、传感器信息分析和低层的反馈控制任务.3 答:在应用领域方面,传统控制着重解决不太复杂的过程控制和大系统的控制问题;而智能控制主要解决高度非线性、不确定性和复杂系统控制问题。
在理论方法上,传统控制理论通常采用定量方法进行处理,而智能控制系统大多采用符号加工的方法;传统控制通常捕获精确知识来满足控制指标,而智能控制通常是学习积累非精确知识;传统控制通常是用数学模型来描述系统,而智能控制系统则是通过经验、规则用符号来描述系统。
在性能指标方面,传统控制有着严格的性能指标要求,智能控制没有统一的性能指标,而主要关注其目的和行为是否达到。
智能控制考试题及答案
智能控制技术考试题及答案《智能控制技术》考试试题A《智能控制》课程考试试题A参考答案一、填空题(1) OPEN (2) 最有希望 (3) 置换 (4) 互补文字 (5) 知识库(6) 推理机 (7) 硬件 (8) 软件 (9) 智能 (10) 傅京孙(11) 萨里迪斯 (12) 蔡自兴 (13) 组织级 (14) 协调级(15) 执行级 (16) 递阶控制系统 (17) 专家控制系统(18) 模糊控制系统 (19) 神经控制系统 (20) 学习控制系统二、选择题1、D2、A3、C4、B5、D6、B7、A8、D9、A 10、D三、问答题1、答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不完全性等,一般无法获得精确的数学模型。
(2) 研究这类系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。
(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。
(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。
传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开发与应用计算机科学与工程的最新成果。
人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。
人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平──智能控制发展。
智能控制具有下列特点:(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不完全性、模糊性或不确定性以及不存在已知算法的过程,并以知识进行推理,以启发式策略和智能算法来引导求解过程。
(2) 智能控制的核心在高层控制,即组织级。
高层控制的任务在于对实际环境或过程进行组织,即决策和规划,实现广义问题求解。
智能控制考试题及答案
智能控制技术考试题及答案《智能控制技术》考试试题 A《智能控制》课程考试试题 A 参考答案(1) OPEN (2) 最有希翼(3) 置换(4) 互补文字(5) 知识库(6) 推理机(7) 硬件(8) 软件(9) 智能(10) 傅京孙(11) 萨里迪斯(12) 蔡自兴(13) 组织级(14) 协调级(15) 执行级(16) 递阶控制系统(17) 专家控制系统(18) 含糊控制系统(19) 神经控制系统(20) 学习控制系统1 、D2 、A3 、C4 、B5 、D6、B7、A8、D9、A 10、D1、答:传统控制理论在应用中面临的难题包括:(1) 传统控制系统的设计与分析是建立在精确的系统数学模型基础上的,而实际系统由于存在复杂性、非线性、时变性、不确定性和不彻底性等,普通无法获得精确的数学模型。
(2) 研究这种系统时,必须提出并遵循一些比较苛刻的假设,而这些假设在应用中往往与实际不相吻合。
(3) 对于某些复杂的和包含不确定性的对象,根本无法以传统数学模型来表示,即无法解决建模问题。
(4) 为了提高性能,传统控制系统可能变得很复杂,从而增加了设备的初投资和维修费用,降低系统的可靠性。
传统控制理论在应用中面临的难题的解决,不仅需要发展控制理论与方法,而且需要开辟与应用计算机科学与工程的最新成果。
人工智能的产生和发展正在为自动控制系统的智能化提供有力支持。
人工智能影响了许多具有不同背景的学科,它的发展已促进自动控制向着更高的水平——智能控制发展。
智能控制具有下列特点:(1) 同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不彻底性、含糊性或者不确定性以及不存在已知算法的过程,并以知识进行推理, 以启示式策略和智能算法来引导求解过程。
(2) 智能控制的核心在高层控制, 即组织级。
高层控制的任务在于对实际环境或者过程进行组织, 即决策和规划,实现广义问题求解。
智能控制理论课后习题及复习
二、课后习题
������������������ (������������ ) ������ 根据������ ( ������⁄������������ ) = max(������ (������ ),������ (������ ))可计算得相及矩阵 G 的各项: ������ ������ ������ ������
1
2 ������ − 25 ������������ (x) = ������������(������) ={ {[1 + ( ) ] }2 25 < ������ ≪ 200 5
2 −1
0 ≪ ������ ≪ 25
(2)求“不年老也不年轻 V”的隶属度函数 ̅ ∩ ������ ̅ 不年老也不年轻,即V = ������ ̅: ������ 1 ������ − 50 ������������ ̅ (x) = 1 − ������������ (x) = { 1 − [1 + ( ) ] 5 ̅: ������ 0 ������������ ̅ (x) = 1 − ������������ (x) = { 所以: ������������ (x) = ������������ ̅ ∧ ������������ ̅ (x),������������ ̅ = min{������������ ̅ (x)} 1 − [1 + ( ������ − 25 ) ] 5
一、重点内容
1.隶属度函数的定义。 (教材 P16) 2.模糊集合的定义及表示法。 (教材 P17) 3.模糊集合的运算与基本性质。 (教材 P18,P19) 4.隶属度函数的重叠指数。 (教材 P22) 5.隶属度函数的选择方法。 (教材 P23) 6.隶属度函数的二元对比排序法。 (教材 P24) 7. 各种函数图形类型的隶属度函数适用于什么情况。 (教材 P25,P26) 8.模糊关系定义及表示法。 (教材 P27,P28) 9.模糊关系之直积、代数积。 (教材 P29,P30) 10.模糊关系的合成。 (教材 P31,P32) 11.模糊控制器的设计步骤(教材 P67)
智能控制技术参考答案
智能控制技术参考答案智能控制技术参考答案智能控制技术是指通过计算机、传感器、执行器等设备,对目标系统进行感知、分析和决策,从而实现对系统的智能化控制。
随着科技的不断发展,智能控制技术在各个领域得到了广泛的应用,如工业自动化、智能家居、无人驾驶等。
智能控制技术的核心是人工智能算法。
人工智能算法是一种模拟人类智能行为的计算机算法,能够通过学习和优化来实现智能决策。
常见的人工智能算法有神经网络、遗传算法、模糊逻辑等。
这些算法能够根据输入的数据和规则,自动调整参数和权重,从而实现对目标系统的智能控制。
在工业自动化领域,智能控制技术能够提高生产效率和产品质量。
例如,智能机器人可以代替人工完成繁重、危险的工作,如焊接、搬运等。
智能控制技术还可以实现生产线的自动调度和优化,提高生产线的运行效率。
此外,智能控制技术还可以实现对工业设备的远程监控和故障诊断,及时发现并修复设备故障,提高设备的可靠性和稳定性。
在智能家居领域,智能控制技术能够提高居住环境的舒适度和安全性。
通过智能传感器和执行器,智能控制系统能够实时感知和调节室内温度、湿度、光线等环境参数,使居住环境更加舒适。
智能控制系统还可以实现对家电设备的远程控制和管理,如远程开关灯、调节空调温度等。
此外,智能控制系统还可以实现对家庭安防系统的监控和报警,保护家庭成员的安全。
在无人驾驶领域,智能控制技术是实现无人驾驶的关键。
通过激光雷达、摄像头等传感器,智能控制系统能够实时感知道路、车辆和行人等信息,从而实现自动驾驶。
智能控制系统还可以根据交通规则和驾驶习惯,自动决策和调整行驶速度、转向角度等参数,保证行驶的安全和顺畅。
此外,智能控制系统还可以通过云端数据分析和学习,不断优化驾驶策略,提高驾驶的效率和安全性。
智能控制技术的发展还面临一些挑战。
首先,智能控制技术需要大量的数据进行训练和学习,而获取和处理大量的数据是一项复杂而耗时的任务。
其次,智能控制技术需要高性能的计算设备来支持算法的运行和优化,而高性能计算设备的成本和能耗较高。
智能控制试卷及答案4套
四、计算题: (每题 10 分,共 20 分)
分数
评卷人
1. 一个模糊系统的输入和输出的隶属函数如图
1 所示。试计算以下 条件 和 规则 的隶属函数:
( a)规则 1:If error is zero and chang-in-error is zero Then force is zero。 均使用最小化操作
2
2
( c)随着 e(t)从 向左移动,我们很快失去信心,而随着 4
信心。
e(t)从 向右移动,我们较慢失去 4
2. 画出以下两种情况的隶属函数:
( a)精确集合 A { x 8 x
} 2
的隶属函数;
( b)写出单一模糊( singleton fuzzification )隶属函数的数学表达形式,并画出隶属函数图。
分数
评卷人
8. 智能控制系统有哪些类型,各自的特点是什么?
9. 比较智能控制与传统控制的特点。
4.根据外部环境所提供的知识信息与学习模块之间的相互作用方式,机器学习可以划分为 哪几种方式?
精彩文档
实用标准文案
5.建造专家控制系统大体需要哪五个步骤?
6.为了把专家系统技术应用于直接专家控制系统,在专家系统设计上必须遵循的原则是什 么?
种:
、
和
。
6. 专家系统具有三个重要的特征是:
、
和
。
二、简答题: (每题 5 分,共 30 分) 1. 智能控制有哪些应用领域?试举例说明其工作原理。 2. 试说明智能控制的三元结构,并画出展示它们之间关系的示意图。 3. 模糊逻辑与随机事件的联系与区别。
分数
评卷人
精彩文档
4. 给出典型的神经元模型。
智能控制复习题-参考答案
(书本 P 13)上海第二工业大学《智能控制系统》练习卷一、填空题1、机器智能是把信息进行组织 、并 把它转换成知识 的过程。
2、智能控制方法比传统的控制方法更能适应对象的 时变性 、 非线性 和 不确定性 。
3、智能控制中的三元论指的是: 人工智能 、 自动控制 和 运筹学 。
4、从 工程控制角度看,智能控制三个基本要素是: 归纳 、 集注 、 组合操作 。
(这道题有点疑问,大家找找资料)5、生物神经元经抽象化后,得到的人工神经元模型,它有三个基本要素 连接权值 、 求和函数 和 激发函数 。
6、神 经网络的结构按照神经元连接方式可分成 层状 和 网状 。
7、定义一个语言变量需要定义 4 个方面的内容: 定义变量名称 、 定义变量的论域 、 定义变量的语言 、 定义每个模糊集合的隶属函数 。
8、� = 0.2 + 0.3 + 0.4 + 0.9,则 A0.2={x1, x2, x3, x4},A0.4={ x3, x4} ,A0.9={ x4 }�1�2�3 �49、假设论域为 5 个人的体重分别为 110kg 、95kg 、85kg 、78kg 、65kg ,他们 的体重对于“肥胖”的模糊概念的隶属度分别为 0.95、0.88、0.8、0.72、0. 5。
试用:(1) Zadeh 表示法表示模糊集“肥胖” 答:肥胖=0. 95 +0. 88 +0. 8 +0. 72 +0. 5 11095857865(2)序偶表示法表示模糊集“ 肥胖”答:肥胖={(110,0.95), (95,0.88)(85,0.8)(78,0.72)(65,0.5)} (或 肥胖={0.95, ,0.88,0.8,0.72,0.5})10、专家系统的核心部分是: 知识库子系统 、 推理子系统 。
11、在专家系统中,解释器是专家系统与用户间的人-机接口。
12、人工神经网络常见的激发函数或作用函数有:阈值型函数、饱和型函数、和双曲函数(此外还有S 型函数,高斯函数等)。
(完整版)智能控制习题参考答案
1.递阶智能控制系统的主要结构特点有哪些。
答:递阶智能控制是在研究早期学习控制系统的基础上,从工程控制论角度总结人工智能与自适应控制、自学习控制和自组织控制的关系后逐渐形成的。
递阶智能控制系统是由三个基本控制级(组织级、协调级、执行级)构成的。
如下所示:1. 组织级组织级代表控制系统的主导思想,并由人工智能起控制作用。
根据贮存在长期存储交换单元内的本原数据集合,组织器能够组织绝对动作、一般任务和规则的序列。
其结构如下:2.协调级协调级是组织级和执行级间的接口,承上启下,并由人工智能和运筹学共同作用。
协调级借助于产生一个适当的子任务序列来执行原指令,处理实时信息。
它是由不同的协调器组成,每个协调器由计算机来实现。
下图是一个协调级结构的候选框图。
该结构在横向上能够通过分配器实现各协调器之间的数据共享。
3. 执行级执行级是递阶智能控制的最底层,要求具有较高的精度但较低的智能;它按控制论进行控制,对相关过程执行适当的控制作用。
其结构模型如下:2.信息特征,获取方式,分层方式有哪些?答:一、信息的特征1,空间性:空间星系的主要特征是确定和不确定的(模糊)、全空间和子空间、同步和非同步、同类型和不同类型、数字的和非数字的信息,比传统系统更为复杂的多源多维信息。
2,复杂性:复杂生产制造过程的信息往往是一类具有大滞后、多模态、时变性、强干扰性等特性的复杂被控对象,要求系统具有下层的实时性和上层的多因素综合判断决策能力,以保证现场设备局部的稳定运行和在复杂多变的各种不确定因素存在的动态环境下,获得整个系统的综合指标最优。
3,污染性:复杂生产制造过程的信息都会受到污染,但在不同层次的信息受干扰程度不同,层次较低的信号受污染程度较大。
二、获取方式信息主要是通过传感器获得,但经过传感器后要经过一定的处理来得到有效的信息,具体处理方法如下:1,选取特征变量可分为选择特征变量和抽取特征变量。
选择特征变量直接从采集样本的全体原始工艺参数中选择一部分作为特征变量。
智能控制技术课后答案全攻略
3
3-1 模糊逻辑控制器由哪几部分组成?各完成什么功能? 答:模糊控制系统的主要部件是模糊化过程、知识库(数据库和规则库) 、推理决策和精确 化计算。 1、模糊化过程 模糊化过程主要完成: 测量输入变量的值, 并将数字表示形式的输入量转化为通常用语 言值表示的某一限定码的序数。 2、知识库 知识库包括数据库和规则库。 1) 、数据库 数据库提供必要的定义, 包含了语言控制规则论域的离散化、 量化和正规化以及输入空 间的分区、隶属度函数的定义等。 2) 、规则库 规则库根据控制目的和控制策略给出了一套由语言变量描述的并由专家或自学习产生 的控制规则的集合。它包括:过程状态输入变量和控制输出变量的选择,模糊控制系统的建 立。 3、推理决策逻辑 推理决策逻辑是利用知识库的信息模拟人类的推理决策过程,给出适合的控制量。 (它 是模糊控制的核心) 。 4、精确化过程 在推理得到的模糊集合中取一个能最佳代表这个模糊推理结果可能性的精确值的过程 称为精确化过程。 {模糊控制器采用数字计算机。它具有三个重要功能: 1) 把系统的偏差从数字量转化为模糊量(模糊化过程、数据库两块) ; 2) 对模糊量由给定的规则进行模糊推理(规则库、推理决策完成) ; 3) 把推理结果的模糊输出量转化为实际系统能够接受的精确数字量或模拟量 (精确化 接口) 。}
∑ v m (v )
k =1 m
∑ m (v )
k =1 v k
采用离散重心法:
v0 =
离散:
∑ v m (v )
k =1 m k v k
m
∑ m (v )
k =1 v k
0.3 × (-1) + 0.8 × (-2) + 1× (-3) + 0.5 × (-4) + 0.1× (-5) 0.3 + 0.8 + 1 + 0.5 + 0.1 0.3 × (-1) + 0.8 × (-2) + 1× (-3) + 0.5 × (-4) + 0.1× (-5) = 2.7 =-2.7407 =
智能控制课后答案
1、 神经元的种类有哪些?它们的函数关系如何?一、神经元模型神经元模型是生物神经元的抽象和模拟。
它是模拟生物神经元的结构和功能、并从数学角度抽象出来的一个基本单元。
它是神经网络的最基本的组成部分。
神经元一般是多输入-单输出的非线性器件。
模型可以描述为i ij j i i jNet w x s θ=+-∑()i i u f Net =()()i i i y g u h Net ==假设()i i g u u =,即()i i y f Net =i u 为神经元的内部状态;i θ为阀值;i x 为输入信号,1,...,j n =;ij w 为表示从j u 单元到i u 单元的连接权系数;i s 为外部输入信号。
常用的神经元非线性特性有以下四种(1) 阀值型10()00i i i Net f Net Net ⎧>⎪=⎨≤⎪⎩(2) 分段线性型00max 0()i i i i i i il i ilNet Net f Net kNet Net Net Net f Net Net ⎧≤⎪=≤≤⎨⎪≥⎩(3) Sigmoid 函数型1()1i i Net T f Net e -=+(4) Tan 函数型()i i i i Net Net T T i Net Net T T ee f Net ee ---=+2、 为什么由简单的神经元连接而成的神经网络具有非常强大的功能?神经系统是一个高度复杂的非线性动力学系统,虽然每一个神经元的结构和功能十分简单,但由大量神经元构成的网络系统的行为却是丰富多彩和十分复杂的。
从神经元模型角度来看,有线性处理单元和非线性处理单元。
从网络结构方面来看,有:前向网络、反馈网络和自组织网络。
3、神经网络按连接方式分有哪几类,按功能分有哪几类、按学习方式分又有哪几类? 神经网络按连接方式?神经网络按连接方式分神经网络是由通过神经元的互连而达到的。
根据神经元的连接方式的不同,神经网络可分为以下四种形式:(1) 前向网络 由输入层、隐含层和输出层组成。
(完整版)智能控制-考试题(附答案)
《智能控制》考试试题试题1:针对某工业过程被控对象:0.520()(101)(21)s G s e s s -=++,试分别设计常规PID 算法控制器、模糊控制器、模糊自适应PID 控制器,计算模糊控制的决策表,并进行如下仿真研究及分析:1. 比较当被控对象参数变化、结构变化时,四者的性能;2. 研究改善Fuzzy 控制器动、静态性能的方法。
解:常规PID 、模糊控制、Fuzzy 自适应PID 控制、混合型FuzzyPID 控制器设计 错误!未找到引用源。
. 常规PID 调节器PID 控制器也就是比例、积分、微分控制器,是一种最基本的控制方式。
它是根据给定值()r t 与实际输出值()y t 构成控制偏差()e t ,从而针对控制偏差进行比例、积分、微分调节的一种方法,其连续形式为:01()()[()()]t p d i de t u t K e t e t dt T T dt=++⎰ (1.1) 式中,p K 为比例系数,i T 为积分时间常数,d T 为微分时间常数。
PID 控制器三个校正环节中p K ,i T 和d T 这三个参数直接影响控制效果的好坏,所以要取得较好的控制效果,就必须合理地选择控制器的参数。
Ziegler 和Nichols 提出的临界比例度法是一种非常著名的工程整定方法。
通过实验由经验公式得到控制器的近似最优整定参数,用来确定被控对象的动态特性的两个参数:临界增益u K 和临界振荡周期u T 。
用临界比例度法整定PID 参数如下:表1.1 临界比例度法参数整定公式51015202530354000.20.40.60.811.21.41.61.8Time(s)y (t )051015202530354000.511.5Time(s)y (t )PID 0.6u K 0.5u T 0.125u T据以上分析,通过多次整定,当 1.168p K =时系统出现等幅振荡,从而临界增益 1.168u K =,再从等幅振荡曲线中近似的测量出临界振荡周期 5.384u T =,最后再根据表1.1中的PID 参数整定公式求出:0.701, 2.692,0.673p i d K T T ===,从而求得:比例系数0.701p K =,积分系数/0.260i p i K K T ==,微分系数0.472d p d K K T ==。
《智能控制技术》第四章参考答案
《智能控制技术》第四章参考答案智能控制课后习题答案第4章神经网络作业1.答:设A 类为1;B 类为0026.015.00215.0021025.012-{≥-+≥-+-----+θωωθωωθωωθωω<<令:5.05.1-12,11≤==θωω<则取4.0=θ则有: 04.021=-+x x2.答:记B y y y A y y y 为状态,为状态011321110321==。
对于状态A,节点激励函数必须满足下列不等式:)(式<)(式>)(式>30201032313212112θωωθωθω++++对于状态B,节点激励函数必须满足下列不等式:)(式>)(式>)(式<60504032322311312θωθωθωω++++利用上面6个不等式可以求出6个未知量的允许取值范围。
假设取5.012=ω,则:由式1得,3.0,5.011-=-≥θθ取;由式4得,7.0,2.01313-=-≤ωω取;由式2得,3.0,5.022-=-≥θθ取;由式5得,4.0,3.02323=≥ωω取;由式3得,2.0,3.033=≤θθ取;由式6得,2.0,2.033=-≥θθ取;需要记忆稳态A 和B 的3点DHNN 网络的一组权系数值为 2.0,3.0,3.04.0,7.0,5.0321231312=-=-==-==θθθωωω设初始状态000321=y y y ,依次选择节点321,,V V V ,确定其节点兴奋的条件及状态的转移。
选择节点3V ,激励函数为()()02.0003133>=+∑==θωj N j j y Net 可见,节点3V 处于兴奋状态并且状态3y 由→10。
网络状态由→001000,转移概率为1/3。
同样其他2个节点也可以以等概率发生状态变化,他们的激励函数为()()03.0001111<-=+∑==θωj N j j y Net()()03.0002122<-=+∑==θωj N j j y Net 节点1V 2V 的状态→00保持不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题1.智能控制是一门新兴的学科,它具有非常广泛的应用领域,例如、、和。
1、交叉学科在机器人控制中的应用在过程控制中的应用飞行器控制2.传统控制包括和。
2、经典反馈控制现代理论控制3.一个理想的智能控制系统应具备的基本功能是、、和。
3 、学习功能适应功能自组织功能优化能力4.智能控制中的三元论指的是:、和。
4、运筹学,人工智能,自动控制5.近年来,进化论、、和等各门学科的发展给智能控制注入了巨大的活力,并由此产生了各种智能控制方法。
5、神经网络模糊数学专家系统6.智能控制方法比传统的控制方法更能适应对象的、和。
6、时变性非线性不确定性7.傅京逊首次提出智能控制的概念,并归纳出的3种类型智能控制系统是、和。
7、人作为控制器的控制系统、人机结合作为控制器的控制系统、无人参与的自主控制系统8、智能控制主要解决传统控制难以解决的复杂系统的控制问题,其研究的对象具备的3个特点为、和。
8、不确定性、高度的非线性、复杂的任务要求9.智能控制系统的主要类型有、、、、和。
9、分级递阶控制系统,专家控制系统,神经控制系统,模糊控制系统,学习控制系统,集成或者(复合)混合控制系统10.智能控制的不确定性的模型包括两类:(1) ;(2) 。
10、(1)模型未知或知之甚少;(2)模型的结构和参数可能在很大范围内变化。
11.控制论的三要素是:信息、反馈和控制。
12.建立一个实用的专家系统的步骤包括三个方面的设计,它们分别是、和。
知识库的设计推理机的设计人机接口的设计13.专家系统的核心组成部分为和。
知识库、推理机14.专家系统中的知识库包括了3类知识,它们分别为、、和。
判断性规则控制性规则数据15.专家系统的推理机可采用的3种推理方式为推理、和推理。
15、正向推理、反向推理和双向推理16.根据专家控制器在控制系统中的功能,其可分为 和 。
16、直接型专家控制器、间接型专家控制器17.普通集合可用 函数表示,模糊集合可用 函数表示。
特征、隶属18.某省两所重点中学在(x 1~x 5)五年高考中,考生“正常发挥”的隶属函数分别为0.85、0.93、0.89、0.91、0.96和0.92、0.96、0.87、0.93、0.94。
则在研究该省重点中学高考考生水平发挥的状况时,论域应为X = ,若分别用A 、B 表示两个学校考试“正常发挥”的状况,则用序偶表示法分别表示为A = ,B = ;“未正常发挥”模糊子集(用行向量表示)分别为 和 ;而该省两所重点中学每年高考考生“正常发挥”的模糊子集应该是 (用Zadeh 法表示)。
{}12345,,,,X x x x x x =,{}12345(,0.85),(,0.93),(,0.89),(,0.91),(,0.96)A x x x x x ={}12345(,0.92),(,0.96),(,0.87),(,0.93),(,0.94)B x x x x x =[0.15,0.07,0.11,0.09,0.04]A =,[0.08,0.04,0.13,0.07,0.06]B =123450.850.930.870.910.94x x x x x ++++ 19.确定隶属函数的方法大致有 、 和 。
19、模糊统计法 主观经验法 神经网络法20.在模糊控制中应用较多的隶属函数有6种,它们分别为高斯型隶属函数、 、、 、 和 。
20、广义钟形隶属函数 S 形隶属函数 梯形隶属函数 三角形隶属函数 Z 形隶属函数21.在天气、学问、晴朗、表演和渊博中可作为语言变量值的有 和 。
21、晴朗、渊博23.模糊控制是以 、 、和 为基础的一种智能控制方法。
模糊集理论,模糊语言变量,模糊逻辑推理24.模糊控制的数学基础为 。
24、模糊集合25.模糊控制中,常用的语言变量值用PM ,PS ,NM ,NO 等表示,其中PM 代表, NO 代表 。
25、正中、负零26. 在模糊控制中,模糊推理的结果是 量。
26、模糊27. 在模糊控制中,解模糊的结果是 量。
确定量28. 基本模糊控制器的组成包括知识库以及 、 和 。
模糊化接口、推理机、解模糊接口29. 在模糊控制中,实时信号需要 才能作为模糊规则的输入,从而完成模糊推理。
29、 模糊化30.模糊控制是建立在基础之上的,它的发展可分为三个阶段,分别为、、和。
30、人工经验模糊数学发展和形成阶段产生了简单的模糊控制器高性能模糊控制阶段31.模糊集合逻辑运算的模糊算子为、和。
31、交运算算子并运算算子平衡算子32.在温度、成绩、暖和、口才和很好中可作为语言变量值的有和32.暖和、很好33.在水位、压力、暖和、表演、中年人和比较好中可作为语言变量值的有、和。
33、暖和、中年人和比较好34.在水位、寒冷、温度、表演和偏高中可作为语言变量值的有和。
34.寒冷、偏高35. 模糊控制的基本思想是把人类专家对特定的被控对象或过程的总结成一系列以“”形式表示的控制规则。
35、控制策略“IF条件THEN 作用”36.神经网络的发展历程经历了4个阶段,分别为、、和。
36、启蒙期、低潮期、复兴期、新连接机制期37.神经元由4部分构成,它们分别为、、和突触。
37、细胞体、树突、轴突38.根据神经网络的连接方式,神经网络的3种形式为:、和。
38、前向网络反馈网络自组织网络39.神经网络的3个要素为:、和。
39、神经元的特性拓扑结构学习规则41.目前神经网络的学习算法有多种,按有无导师分类,可分为、和。
41、有导师学习无导师学习再励学习42.神经网络的研究主要分为3个方面的内容,即、和。
42.神经元模型、神经网络结构、神经网络学习算法43.神经网络的学习过程主要由正向传播和反向传播两个阶段组成。
44.神经网络控制是将和相结合而发展起来的智能控制方法。
神经网络,控制理论45. 遗传算法的主要用途是。
45、寻优(优化计算)46.常用的遗传算法的染色体编码方法有二种,它们分别为实数编码和。
46、二进制编码47.遗传算法的3种基本遗传算子、和。
47、比例选择算子单点交叉算子变异算子48.遗传算法中,适配度大的个体有被复制到下一代。
更多机会49. 遗传算法中常用的3种遗传算子(基本操作)为、、和。
49、复制、交叉和变异1、什么是智能控制?试比较智能控制和经典控制、现代控制的异同。
答:(1)在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。
(2)不同点:经典控制理论以反馈理论为基础,是一种单回路线性控制理论。
主要研究单输入-单输出、线性定常系统的分析和设计。
在现代控制理论中,对控制系统的分析和设计主要是通过对系统的状态变量的描述来进行的,基本的方法是时间域方法。
现代控制理论比经典控制理论所能处理的控制问题要广泛得多,智能控制与传统的或常规的控制有密切的关系,不是相互排斥的. 常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题.2、智能控制系统具有哪些特点?答:(1)能对复杂系统进行有效全面的全局控制,并有较强的容错能力(2)具有以知识表示的非数学广义模型和以数学模型表示的混合控制过程;(3)能对获取的信息进行实时处理并给出控制决策;(4)具有自学习、自适应、自组织的能力。
3、智能控制主要研究那些内容?各自的特点是?答:主要集中在专家控制技术、模糊控制技术、神经网络控制技术和遗传算法等。
(1)专家控制系统(1分)专家系统主要指的是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验。
它具有启发性、透明性、灵活性、符号操作、不一确定性推理等特点。
(2)模糊控制系统(1分)在被控制对象的模糊模型的基础上,运用模糊控制器近似推理手段,实现系统控制的一种方法模糊模型是用模糊语言和规则描述的一个系统的动态特性及性能指标。
(3)神经控制系统(1分)神经网络具有某些智能和仿人控制功能。
学习算法是神经网络的主要特征。
(4)遗传算法(2分)遗传算法是基于自然选择和基因遗传学原理的搜索算法,是基于进化论在计算机上模拟生命进化论机制而发展起来的一门学科. 遗传算法可用于模糊控制规则的优化及神经网络参数及权值的学习,在智能控制领域有广泛的应用。
4、试说明智能控制研究的数学工具。
智能控制研究的数学工具为:(1)符号推理与数值计算的结合;(2)离散事件与连续时间系统得结合;(3)模糊集理论;(4)神经网络理论;(5)优化理论1、何谓专家系统?它有哪些基本特征?答:所谓专家系统就是利用存储在计算机内的某一特定领域内人类专家的知识,来解决过去需要人类专家才能解决的现实问题的计算机系统。
专家系统的基本特征•(1) 具有专家水平的专门知识;–专家系统中的知识按其在问题求解中的作用可分为三个层次,即数据级、知识库级和控制级。
•(2) 专家系统使用符号推理;•(3) 专家系统能够解决问题领域内的各种问题;•(4) 复杂度与难度,专家系统拥有很专门的领域知识;•(5) 具有解释功能,专家系统具有解释机制;•(6) 具有获取知识的能力;•(7) 知识与推理机构相互独立。
专家系统一般把推理机构与知识分开,使其独立,使系统具有良好的可扩充性和维护性。
2、简述专家系统设计的基本结构。
答:基本知识描述---系统体系结构---工具选择----知识表示方法----推理方式----对话模型.P20 4、什么是专家控制系统?专家控制系统分为哪几类?答:专家控制是指将人工智能领域的专家系统理论和技术与控制理论方法和技术相结合,仿效专家智能,实现对较为复杂问题的控制。
基于专家控制原理所设计的系统称为专家控制系统(ECS) 。
分类:1). 一般控制理论知识和经验知识相结合2). 模糊逻辑与专家控制相结合3). 神经网络与专家控制相结合5、专家控制系统的任务是什么?答:专家控制系统的任务是:(1). 能提供一个熟练工或专家对受控对象操作所能达到的性能指标;(2). 监督对象和控制器的运行情况;(3). 检测系统元件可能发生的故障或失误;(4).对特殊情况,要选择合适的控制算法以适应系统参数的变化。
6、比较专家系统和专家控制系统的区别和联系。
答:专家控制系统是将人工智能领域的专家系统理论和技术与控制理论方法和技术相结合,仿效专家智能,实现对较为复杂问题的控制。
专家系统是一种基于知识的、智能的计算机程序。
区别:专家控制系统必须把控制系统看作是一个基于知识的系统,而作为系统核心部件的控制器则要体现和知识推理的机制和结构。
与专家系统相似,整个控制问题领域的知识库和一个体现知识决策的推理机构构成了专家控制系统的主体。
7、什么是知识?知识具有哪些特征?答:1). 知识的基本概念知识反映了客观世界中事物某一方面的属性以及事物之间的相互联系,不同事物或相同事物之间的不同关系形成了不同的知识。