高频通道基本知识概述

合集下载

高频保护基本原理和试验方法,高频通道、允许式高频保护和闭锁式高频保护

高频保护基本原理和试验方法,高频通道、允许式高频保护和闭锁式高频保护
原理与试验
2011-4-20
开场白 与本次培训有关的话题,需要占
用各位几分钟的宝贵时间,请大 家多多包、西数、日立
“责任感”
一、高频保护基本概念
高频保护(电力线载波纵联保护):利用输电线路本身作 为保护信号的传输通道,在输送50Hz工频电能的同时叠 加传送50~300kHz的高频讯号(保护测量信号),以进 行线路两端电气量的比较而构成的保护。 由于高频通道干扰大,不能准确传送线路两端电量的全 信息,因此一般只传送两端的状态信息(如:方向,相 位)。
2、闭锁式普通方向高频保护
(1) 构成
灵敏元件1LJ:启动发讯机(整定值小)
不灵敏元件2LJ:启动跳闸回路(整定值大,
=(1.6~2.0)Idz.1LJ )
Idz.2LJ
方向元件GJ:正方向(母线→线路):动作于停

反方向(线路→母线):不动作
闭锁式普通方向高频保护结构示意图
(2) 采用两个启动元件的作用
• 在这两种工作方式中,以其传送的信号性 质为准,又可以分为传送闭锁信号、允许 信号和跳闸信号三种类型。
• 闭锁信号
• 所谓闭锁信号就是指:“收不到这种信号 是高频保护动作跳闸的必要条件”。
• 允许信号
• 所谓允许信号就是指:“收到这种信号是高频保 护动作跳闸的必要条件”
• 跳闸信号
• 所谓跳闸信号就是指:“收到这种信号是保护动 作于跳闸的充分而必要条件”。
2、结合电容器:其电抗Xc=1/(ωC);通高频,阻工频。 (同时起到隔离高压线路与高频收发讯机的作用)
3、连接滤波器(由可调空心变和高频电缆侧电容组成) * 结合电容器+连接滤波器 →带通滤波器 (提取所需高频信号,滤除其余高频干扰)

电子行业高频电子线路

电子行业高频电子线路

电子行业高频电子线路简介高频电子线路在电子行业中扮演着重要的角色。

它们被广泛应用于无线通信、雷达、卫星通信、医疗诊断设备等领域。

在本文中,将介绍高频电子线路的基础知识、设计原理以及常见应用。

基础知识1.高频信号高频信号是指频率高于1MHz的信号。

在高频电子线路中,频率通常在几十MHz到几百GHz 之间。

高频信号的特点是波长短、频率高、传输能力强。

2.电子线路元件高频电子线路中使用的元件与低频电子线路略有不同。

常见的高频元件包括电感、电容、晶体管、集成电路等。

这些元件在高频电子线路中起到重要的作用,具体将在后文中详细介绍。

设计原理1.传输线理论传输线理论是高频电子线路设计的基础。

传输线是一种将信号从一个点传输到另一个点的导线。

常见的传输线包括微带线、同轴电缆等。

了解传输线理论可以帮助设计师正确地选择传输线的特性阻抗、长度和宽度,以确保信号传输的质量。

2.匹配网络高频信号在传输过程中容易发生反射和衰减。

匹配网络的作用是使信号在传输过程中能够得到最大的功率传输,并尽量避免信号的反射。

匹配网络常用的类型包括L型匹配网络、T型匹配网络等。

3.滤波器滤波器用于过滤高频信号中的噪声和干扰,使得信号在特定频段上得到放大或衰减。

常见的滤波器类型包括低通滤波器、带通滤波器和带阻滤波器。

4.放大器放大器是高频电子线路中常见的元件之一。

放大器的作用是放大输入信号的幅度。

常见的放大器类型包括晶体管放大器、集成电路放大器等。

常见应用1.无线通信高频电子线路在无线通信领域中被广泛应用。

无线通信系统包括手机、无线电和卫星通信系统等。

高频电子线路在这些系统中起到信号调制、放大和解调等重要作用。

2.雷达雷达系统也是高频电子线路的典型应用之一。

雷达系统通过发送和接收无线信号来检测和跟踪目标。

高频电子线路在雷达系统中的作用是发射和接收高频信号,并进行信号处理。

3.医疗诊断设备高频电子线路在医疗诊断设备中也有重要的应用。

例如,X射线机、核磁共振仪等设备使用高频电子线路进行信号放大和处理,以实现准确的诊断结果。

高频保护通道

高频保护通道

5.结合滤波器

它由一个可调节的 空心变压器和电容 器组成,可改变电 容C或变压器的抽 头,即可达到两侧 的阻抗匹配,使在 载波工作频率下, 传输的功率最大。
6.高频电缆

它将位于控制室内的收发讯机与位于高压配 电装置的结合滤波器连接起来。因为工作频 率很高,如果用普通电缆将引起很大的衰减, 因此一般采用单心同轴电缆。
高频保护通道
贾少荣 2011.09
1.什么是高频保护通道

就是高频电流流通的路径,是用来传输高频 信号的
2.相-地制高频通道构成

如图
A B C
2
3
Ck
1 4
L2
8 7
L1
C
5
S F
6
图 1-5-1 相--地制高频载波通道的原理接线图 1-高压输电线路;2-高频阻波器;3-耦合电容器;4-结合滤波器; 5-高频电缆;6-高频收发信机;7-放电间隙;8-接地开关

4.耦合电容器

是把高频电流耦合到高压输电线路上去的连 接设备。由于它的电容量很小,所以对工频 呈现很大的阻抗,可防止工频高压对高频收 发讯机的侵袭;但对高频呈现的阻抗很小, 不妨碍高频电流的传送。另外,耦合电容器 还与结合滤波器组成带通滤波器(串联谐 振)。
4.1耦合电容器型号举例


1节:OWF-110/1.7320.01H O:耦合电容器; W:浸渍剂为十二烷基 笨;F:膜纸复合介质; 110/1.732:额定电压为 110/1.732kV;0.01: 额定电容量为0.01uF; H:防污型。 2节串联:OWF220/1.732-0.005H 电压 增加1倍,电容量串联 减半。
7.高频收发讯机

纵联保护的高频通道构成及其检验方法

纵联保护的高频通道构成及其检验方法
16
3.1.2.绝缘检查: a. 用2500V摇表测调谐元件(电容)的绝缘电阻, 要求:大于100MΩ。 摇测1分钟,代替耐压试验。绝缘电阻应无大的变化。 b. 避雷器绝缘及放电电压检查 c. 用2500伏摇表测试绝缘电阻,绝缘电阻应大于100 MΩ。 d.带有串联间隙的金属氧化物避雷器,工频放电应试验五次; 每次间隔不少于30秒,五次放电电压平均值应不超过避雷器 合格证的上下限值;第一次放电电压与后四次的试验结果相差较大 ,则该次数据无效,应补做一次.
(Ω)
2)传输衰耗bt:
① 电平表置于高阻档,p1采用不平衡档测量;p2采用平 衡档测量。
3)介损试验。 13
3、结合滤波器: Δ1)外部检查; Δ2)绝缘检查; Δ3)避雷器检查; Δ4)工作衰减特性bp=f(f )检验和输入阻抗特性Zr=f(f ); Δ5)回波损耗特性brt=f(f) 检验。 4、高频电缆: Δ1)外观检查; Δ2)绝缘检查; Δ3)输入阻抗测量; 4)特性阻抗测量; Δ5)工作衰减测量。 3、检验方法:
bp=p1-p4+10lgR2/4R0 (dB)
要求:单频: 不大于1.3 dB; 宽频:不大于2.0 dB。
26
Zr10210(p3p2)R0
(Ω)
要求:单频: 误差不大于20%;
宽频:误差不大于25%。
5)回波损耗特性brt=f(f) 检验:
27
测量: ①E=10dB,输出阻抗置于OΩ;f:工作频带内。 ②K断开时,电平值为p1;K合上时,电平值为p2。
6
2、线路阻波器
L-C组成并联谐振回路(单频、宽频等) • 高频信号呈很大的阻抗,使高频信号被限
制在所保护的输电线路之内传输。 • 尤其是当母线或其他线路出口发生故障时,

继电保护高频通道原理

继电保护高频通道原理

继电保护高频通道原理、调试与故障处理郭爱军【摘要】本文主要介绍了线路高频保护的高频通道构成及其原理,对高频通道的调试方法、典型故障的处理方法进行了探讨。

本文为高频保护的维护及运行人员提供参考。

【关键词】高频通道原理调试故障处理1 概述线路高频保护的高频通道由保护高频收发信机、高频电缆、阻波器、结合滤波器、耦合电容、输电线路构成。

本文将结合我厂实际,对高频通道原理、调试、故障的处理等有关内容进行介绍。

2 继电保护高频通道(相地制)的组成继电保护高频通道主要由高频收发信机、高频加工设备、高频结合设备、输电线路四个部分构成,如图1:图1:继电保护高频通道(相地制)的组成图1中:1—输电线路;2—高频阻波器;3—耦合电容器;4—结合滤波器;5—高频电缆;6—放电间隙;7—接地刀闸;8—高频收发信机;9—保护装置。

这里有几个专业术语,需要解释一下:(1)高频加工设备,是指阻波器,因为它串联在输电线路中,其含义是对输电线路进行再加工。

(2)高频结合设备,是指高频电缆、结合滤波器、耦合电容器,其含义是将高频收发信机与输电线路结合再一起。

(3)关于高频信号的“高频”:所谓高频是相对于工频50HZ而言的,高频纵联保护信号频率范围一般为几十~几百千HZ;(4)输电线路的“高频纵联保护”:线路纵联保护是当线路发生故障时,使两侧开关同时快速跳闸的一种保护装置,是线路的主保护。

线路两侧保护将判别量借助通信通道传送到对侧,然后,两侧分别按照对侧与本侧判别量之间的关系来判别区内故障或区外故障。

判别量和通道是纵联保护装置的主要组成部分。

线路纵联保护的信号通道可以是微波通道、光纤通道,或电缆线通道,而利用电力载波通信通道构成的线路纵联保护则称为电力线载波纵联保护,即高频纵联保护。

3 高频纵联保护的高频收发信机原理、调试,及故障处理高频收发信机的作用是发送和接收高频信号。

高频发信机部分是由继电保护来控制。

高频收信机接收由本侧和对侧所发送的高频信号,经过比较判断之后,再动作于跳闸或将保护闭锁。

高频电子线路知识点

高频电子线路知识点

1-4接收设备的结构通常采用超外差形式 2超外差结构的接收设备在接收过程中,将射频输入信号与本地振荡器产生的信号混频或差拍,由混频器后的中频滤波器选出射频信号与本振信号频率两者的和频或差频。

3在现代高性能宽带超外差接收机中,通常采用向上变频方式,并至少需要两次频率变换。

4在超外差接收机中,中频频率是固定的,当信号频率改变时,只要相应地改变本地振荡信号频率即可。

5高频电路的基本内容(高频前端)包括:5个 (1)高频振荡器(信号源、载波信号或本地振荡信号) (2)放大器(高频小信号放大器及高频功率放大器) (3)混频或变频(高频信号变换或处理) (4)调制与解调(高频信号变换或处理) (5)自动相位控制(APC)电路(也称锁相环PLL) 6调制特性:3个 (1)便于发射 (2)频分复用 (3)改善信噪比(SNR) 7表面贴装(SMD)电阻比引线电阻的高频特性要好。

SMD 表面贴装器件 8品质因数Q 定义为高频电感器的感抗与其串联损耗电阻之比。

Q 值越高,表明该电感器的储能作用越强,损耗越小。

9晶体谐振器与一般振荡回路比较,有几个明显的特点:4个 (1)晶体的谐振频率fq 和f0(下标)非常稳定。

这是因为Lq 、Cq 、C0(下标)由晶体尺寸决定,由于晶体的物理特性,它们受外界因素(如温度、震动等)影响小。

(2)晶体谐振器有非常高的品质因数。

一般很容易得到数值上万的Q 值,而普通的线圈和回路Q 值只能到一二百。

(3)晶体谐振器的接入系数非常小,一般为10^-3数量级,甚至更小。

(4)晶体在工作频率附近阻抗变化率大,有很高的并联谐振阻抗。

所有这些特点决定了晶体谐振器的频率稳定度比一般振荡回路要高。

10阻抗变换的目标是实现阻抗匹配,阻抗匹配时负载可以得到最大传输功率,滤波器达到最佳性能,接收机的灵敏度得以改善,发射机的效率得以提高。

11S 串R 并,电阻R ,电抗X )11(X )1(R 222222Q X X X R Q R R X R S S S S p S SS S p +=+=+=+=12电阻R 两端噪声电压的均方值kTBR dt e T E T n T N 41022lim ==⎰∞→ 17随着n 的增加,总带宽将减小,矩形系数有所改善。

继电保护高频通道基本知识及调试方法

继电保护高频通道基本知识及调试方法

继电保护高频通道基本知识及调试方法高频通道基本知识及调试方法高频通道基本知识及调试方法第一节用途在超高压电力系统,系统的稳定问题比较突出。

随着电网的日益发展和强大,对系统的稳定要求也越来越高。

如果系统稳定被破坏,将造成事故的扩大而影响电力系统的安全运行。

因此,目前220KV以上的超高压输电线路都配置了双套主保护,作为提高系统稳定的重要措施。

在超高压电力系统,简单的距离保护和零序保护是不能作为线路主保护的。

因为它们在原理上只反应一侧电气量的变化,因而无法区分本线路末端和相邻线路首端的故障,不能保证选择性。

而为了要保证选择性,瞬动段的保护范围就要缩小。

这样一来,就不能做到全线速动。

所以,这种类型的保护不能作为主保护。

为了使保护能够做到全线速动,有效的办法是让线路两端的保护都能够测量到对端保护的动作信号,再与本侧带方向的保护动作信号比较、判定,以确定是否为区内故障,若为区内故障,则瞬时跳闸。

这样无论在线路的任何一处发生故障,线路两侧的保护都能瞬时动作跳闸。

快速性、选择性都得到了保证。

为了将线路一端的保护动作信号传送到对端,一般采用电力线载波的方式,将线路一端的工频电气量或保护动作信号与高频信号经过调制,利用电力线本身进行传送。

我们都知道,电力线本身是传送工频电力的,而且属于高电压和大电流。

然而,通过对输电线路进行加工和改造,就可以使它能够同时传送工频电力和高频信号。

经过调制后的高频信号送到线路对端后经过解调,将其变成具有工频特征的电气量或脉冲形式的保护动作信号,送至保护装置。

这就是电力线载波的传输方式。

采用高频信号的原因是便于与工频信号区分开。

采用电力线复用的方式,主要是经济可靠,节省人力和投资。

而且电力线路杆塔坚固,绝缘程度高。

不利的因素是危险的高电压及强大的杂音干扰。

但若采取适当的措施是可以解决这些问题的。

综上所述,可以看出,高频保护是利用被保护线路作为高频信号传输通道的。

因此,继电保护高频通道的基本用途就是用来加工和传输含有保护动作信号特征的高频信号,以构成快速的继电保护装置。

(高频电子线路)第二章高频电路基础

(高频电子线路)第二章高频电路基础
和适用场景。
低通滤波器的应用包括信号处理、 电源滤波等,可以有效地抑制高
频噪声,提高信号的信的电路。其特点是通带范围较 窄,阻带范围较宽。
高通滤波器的电路结构也有多种形式,如RC、LC等。不同结构的高通滤波器具有不 同的性能指标和适用场景。
对信号进行放大,提高信号的 幅度和功率。
振荡器
产生高频振荡,为电路提供所 需频率的信号。
信号源
产生高频信号,提供电路所需 输入信号。
滤波器
对信号进行滤波,提取所需频 率成分,抑制无用频率成分。
调制解调器
对信号进行调制和解调,实现 信号的传输和处理。
02
高频电子器件
电感器
01
02
03
04
电感器定义
差。
调相振荡器的应用
调相振荡器广泛应用于信号处理、 电子对抗和通信等领域。
锁相环路
锁相环路的定义
锁相环路是一种自动控制系统,它通过比较输入信号和输出信号的 相位差,自动调节输出信号的频率和相位。
锁相环路的工作原理
当输入信号和输出信号的相位差在一定范围内时,锁相环路会自动 调节其内部参数,使输出信号的频率和相位与输入信号保持一致。
标和适用场景。
带通滤波器的应用包括信号选频、 消除干扰等,可以有效地提取特 定频段的信号,提高信号的准确
度。
带阻滤波器
带阻滤波器是一种阻止某一频段内的信 号通过而允许其他频段信号的电路。其 特点是阻带范围较窄,通带范围较宽。
带阻滤波器的应用包括消除特定频段干 扰、抑制噪声等,可以有效地抑制特定 频段的噪声,提高信号的清晰度。
高频电路的应用领域
通信领域
高频电路广泛应用于通信 领域,如无线通信、卫星

高频基本概念

高频基本概念

高頻基礎目錄1.几個基本概念 (2)1.1 時域和頻域 (2)1.2 信號上升時間和帶寬 (2)1.3 互容和互感 (2)1.4 阻抗和特性阻抗 (3)1.5 分貝 (3)2.反射參數 (4)2.1 反射系數 (4)2.2 回波損耗 (4)2.3 駐波和電壓駐波比 (4)2.4 阻抗匹配 (4)3.傳輸參數 (5)3.1 傳輸系數 (5)3.2 插入損耗 (5)3.3 衰減 (5)3.4 增益和損耗 (5)4. S參數 (6)5.時延和時延扭曲 (7)5.1時延 (7)5.2時延扭曲 (7)6.群延遲 (7)7.串音 (8)7.1 串音 (8)7.2 近端串音和遠端串音 (8)8.眼圖 (9)1.几個基本概念1.1 時域和頻域時域﹕用來觀察信號隨時間軸變化的情況觀測手段﹕示波器(Oscilloscope)﹐時域反射儀(Time DomainReflectometry)頻域﹕用來顯示信號在不同頻點上的能量分布情況觀測手段﹕頻譜分析儀(Spectrum Analyzer)﹐網絡分析儀(NetworkAnalyzer)時域和頻域可通過傅利葉變換(Foruier Transform)來轉換1.2 信號上升時間(Rise time) 和頻寬(Bandwidth)信號上升時間﹕信號經過傳輸器件或通路的最快上升沿所對應的時間。

頻寬﹕信號內所含的最高有效頻率分量, 一般指3dB頻寬t r = 0.35 / BW (BW為3dB頻寬)信號頻寬越寬﹐含諧波分量越多﹐合成的波形就越陡峭﹐即t r越短。

頻寬大的傳輸線可承載更高頻率的信號﹐因而有更高的資料傳送量。

檢測儀器的頻寬必須大于2倍信號頻寬﹐才能較准確地測量信號。

1.3 互容(Mutual Capacitance)和互感(Mutual Inductance)互容﹕兩相鄰通路間若存在電位差就會產生互容互感﹕兩相鄰通路間磁場的互相作用產生互感互容和互感都會造成雜訊。

1.4 阻抗(Impedance) 和特性阻抗(Characteristic Impedance)阻抗﹕當通路上流經有高頻信號時﹐所呈現的電壓/電流值。

High Speed Cable 高频基本知识简介

High Speed Cable 高频基本知识简介

High Speed Cable 高频基础知识简介January 17, 2014Jet Shen前言随着科技的进步,人类对信息通讯产品愈加倚赖,信息电子产品之指令周期传输信息量皆大幅提升,电子零组件之高频特性愈发重要。

例如,PCB、线缆、连接器等过去被视为单纯桥接作用之组件,现有规格都增加了衰减(Insertion Loss)、回损(Return Loss)、特性阻抗(Impedance)、串音(Cross talk)、传输延迟(Propagation delay)、Propagation delay skew、隔离效果(Shielding effectiveness)、等高频特性要求。

内容目录高频的概念高频的参数高频的测试高频与制程的联系高频的概念多快才算高频?一般而言,当待测物长度>( 或=) 信号波长1/10. (有些数据定为波长1/20)我们经常见到的高频传输cable有USB3.0, SATA, SAS, Infiniband, PCIe, Mini-SAS, QSFP, SFP+….等.高频的概念----时域和频域时域和频域的关系•对同一对象的不同观察角度“时域”用来观察信号随着时间轴变化的情形“频域”用来显示信号在不同频率点上的能量分布状况•频域和时域的信息可以藉由傅利叶变换(Foruier Transform)来转换•用于时域的仪器:示波器和TDR(Time Domain Reflectometry)•用于频域的仪器频谱分析仪和网络分析仪(Network Analyzer)高频的概念----时域和频域时域和频域的关系振幅(能量)时域测试方法频域测试方法高频的概念----dBdB值的观念与定义均由能量(Energy) 或功率(Power)的观点出发( Power等于Energy对时间的微分, 或单位时间输出的能量),dB值重要处在于:1. 对数值显示可以看更广的范围。

2. 仪器制造商以dB值来表示产品性能。

高频保护基本知识

高频保护基本知识

线路纵联(高频)保护基本知识1、什么是输电线路的纵联差动保护?其特点是什么?输电线路的纵联差动保护是指用某种通信通道(简称通道)将输电线两端的保护装置纵向联结起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是范围之外,从而决定是否切断被保护线路。

2、纵联保护的通道可分为几种类型?纵联保护的通道类型有:(1)电力线载波纵联保护(简称高频保护)。

(2)微波纵联保护(简称微波保护)。

(3)光纤纵联保护(简称光纤保护)。

(4)导引线纵联保护(简称导引线保护)。

3、什么是信号?需要传送的信息就是信号。

继电保护装置信号的作用就是信号与保护之间的逻辑关系。

例如:在故障启动发信方式中,高频电流的出现为信号;在长期发信方式中,高频电流的无成为信号;高频保护的信号有以下三种:4、通道的工作方式故障时发信、长期发信;5、高频信号的分类及作用(1)闭锁信号:他是阻止保护动作于跳闸的信号。

换言之,无闭锁信号时保护作用于跳闸的必要条件。

同时满足本端保护元件动作和无闭锁信号两个条件时,保护才作用于跳闸。

其逻辑框图如图3-4(a)所示。

(2)允许信号:它是允许保护动作于跳闸的信号。

换言之,有允许信号是保护动作于跳闸的必要条件。

只有同时满足本端保护元件动作和有允许信号两个条件时,保护才动作于跳闸,其逻辑框图如图3-4(b)所示。

(3)跳闸信号。

它是直接引起跳闸的信号。

此时与保护元件是否动作无关,只要收到跳闸信号,保护就作用于跳闸,如图3-4(c)所示。

远方跳闸式高频保护就是利用跳闸信号。

6、纵联保护出现的理由:(1)电流、距离保护存在问题:不能瞬时切除全线故障(切除线路末端故障时有一定的延时);(2)电压等级提高,要求全线瞬时切除故障,电流、距离保护无法做到,纵联保护能瞬时切除全线故障7、高频通道的构成原理8、纵联保护的分类:(1)按通道分有:A、电力线载波纵联保护(简称高频保护);B、微波纵联保护(简称微波保护);C、光纤纵联保护(简称光纤保护);D、导引线纵联保护(简称导引线保护);(2)按判定故障是在区内还是在区外的方式分有:方向高频(比较电流或功率方向)和相差高频(比较电流相位);(3)按信号方式分有:允许式高频和闭锁式高频;(4)启动方式分:距离、9、各类高频保护的特点:(1)导引线纵联保护(也称输电线路纵差动保护):A、构成原理:通过比较被保护线路两端电气量(电流、功率)大小和方向原理构成;B、纵差动保护存在问题:⏹可瞬时动作切除全线范围内故障⏹需要敷设与输电线路等长的导引线,经济上不划算⏹导引线故障的监视问题如何解决?C、纵差动保护原理接线:采用环流法接线;(2)相差高频保护:比较被保护线路两端电流的相位,内部短路时线路两端电流方向均为母线流向线路,而外部短路时靠近故障点侧电流方向由线路流向母线,如图:通过鉴别高频信号的连续性可以判别是内部还是外部短路工作原理:起动元件:I2、I4低灵敏度,I1、I3高灵敏度,用于起动收发信机操作元件:控制收发信机发信比相元件:比较电流相位(3)方向高频保护:比较被保护线路两端的功率方向,以判别输电线路内部或外部故障;其工作基本原理是:若约定由母线送至线路的方向为正,则在外部故障时,两侧功率方向相反,保护不动作;内部故障时,两侧功率近似同相,保护应动作,因此只要得知线路两侧功率同时为正,就发出跳闸脉冲。

高频通道讲座

高频通道讲座

3、结合滤波器 • 结合滤波器与耦合电容器和线路阻波器一道完成 通过高频电缆和高压输电线发送或接收电力线载 波信号,实现传输通道与电力线载波设备之间的 阻抗匹配,实现高压设备与电力线载波设备之间 的隔离,为电力线载波信号传输提供很小的插入 衰减。电缆侧有一高压电容用于阻止工频电压进 入高频电缆,防止高频保护区外故障造成继电保 护误动。每年必须对结合滤波器的回波损耗、工 作衰减及避雷器等部件进行认真的检查。如发现 内部元件损坏,一定要及时更换。

三、高频通道整组试验 高频通道整组试验包括: 线路 阻波器、耦合电容、结合滤波 器和高频电缆。对通道设备的 分析和判断可以及时处理通道 通道设备的故障,确保高频通 道的畅通。
1、线路阻波器
• 高频阻波器是防止高频信号向母线方向分流的设备。电感 与电容构成并联谐振回路,调谐的频率决定了它的工作频 段,对工频电流呈现的阻抗很小,不影响工频电力的传输, 对高频电流呈现的阻抗很大。 • 在高频通道设计阻波器F0的上、下频带中,各有一个并联 谐振的峰值阻抗,其频率F1和F2,由于强流线圈的Q值不 高,两个峰值略有差异。线路阻波器由主线圈,调谐元件 和避雷器组成。
结合滤波器主要故障
• • • • • 电缆接线端子绝缘水平下降:一些结合滤波器的高频电缆接线端子与底板的 距离较小,当内部受潮后,绝缘电阻随着气候变化下降,通道的传输衰减增 加。 结合滤波器内部结水:结合滤波器经过长期运行,由于四季温度变化等各种 原因,密封的橡胶圈会老化龟裂,雨水渗透到结合滤波器内部,并积存在底 部,造成高频电缆头和接线端子排绝缘下降。 蜂巢故障: 变量器击穿: 避雷器:结合滤波器中的避雷器一般选用Y5CB型氧化锌避雷器,其额定电压 为1kv,工频放电龟压(有效值)为不小于1.8kv,不大于2.5kv。用1kv摇表测量 时,无放电现象,用2.5kv摇表测量时,有放电现象,可以判断避雷器属正常 状态。。 结合滤波器特性变坏:运行中的结合滤波器还可能由于其它元件损坏,致使 其特性变坏。例如.运行中发现全通道衰减突然增大20dB左右,此后又能恢 复正常。经检查结合滤波器的C1内部开路。还有如电感线圈的Q值下降,匝 间短路,多股导线中的少数断股等。 安全:在结合滤波器线路侧并接选频表时要注意,必须在有经验的人监护下 由2~3人共同完成,在确保安全的前提下,才能把选频表跨接在结合滤波器 的线路侧进行测量。

高频通道基本概念(第三版)

高频通道基本概念(第三版)
UU2 2
RR UU3 3 AA四 网端 络 BB
SS
图9
特性阻抗测试图见图 当 S 打开时,测得四端网络 A 侧的输入阻抗为 ZK 当 S 闭合时,测得四端网络 A 侧的输入阻抗为 Z0
则该四端网络 A 侧的特性阻抗为:
ZT ZK Z 0
四、衰耗的基本概念
1. 衰耗 衰耗是表征不同测试点之间或同一测试点不同状态下功率电平变化的指标。因此,衰耗
IiInin A1A1
IoIuotut B1B1
UUii
UUOO
A2A2
B2B2
图2
3. 特性阻抗 特性阻抗是一个仅与四端网络的结构元件参数有关的物理量,与它的输出端所接负载阻
抗无关。一个对称四端网络,从两侧看进去时它们的特性阻抗是相等的。一个不对称的四端 网络,从两侧看进去它们的特性阻抗是不相等的。经计算表明,假定在输出端接入一个与本 端特性相等的负载阻抗,则输入端的负载阻抗与本端的特性阻抗相等。这时负载可以得到最 大功率,称为阻抗匹配连接。当接入一个与输出端的特性阻抗不相等的负载时,则输入端口 的输入阻抗要随负载阻抗的变化而变化。
的测试必须使用功率电平为基准,如实测为电压电平就必须转换为功率电平。 1) 工作衰耗 bw 工作衰耗 bw 为当负载阻抗 RL 与电源阻抗 Rs 相等并直接相连时,负载 RL 所得的最大接收 功率(Pmax)与经过四端网络后负载 R’所得功率(P2),取 Pmax 与 P2 之比的常用对数的十倍 称为工作衰耗。
z(Ω) U(V) P(W) LU(dBV) LP(dBm) L(dB)
20
27.4 37.5
31.0 45.7 14.7
40
27.4 18.8
31.0 42.7 11.7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

继电保护用高频通道知识简介继电保护用高频通道是闭锁式纵联保护重要的组成部分,事关纵联保护能否正常运行及正确动作。

在现实工作中高频通道异常是造成纵联保护被迫退出的主要原因。

本文将较全面的对高频通道及其异常情况进行分析,供大家在工作中参考。

一、高频通道的构成情况:1.输电线路尽管我们平时并不注意,其实输电线路是高频信号传输的必由通道。

我们常见的情况是线路检修时,如果线路上挂有地线,则高频信号的传输就会产生极大的衰耗,基本上不能在两侧间传输。

闭锁式高频保护的通道一般采用相-地制,也就是说高频信号被调制设备耦合在输电线路和大地之间。

正常情况下高频信号除了在输电线路上传播外还会在大地中进行传播,其中由于地阻抗很大所以高频信号在输电线路上传播占主体。

输电线路除了耦合电容器连接的相别是高频通道外,另外两相输电线路由于和被耦合相线路之间存在电容等耦合途径也会成为高频信号传输的通道。

考虑到中间相(一般为B相)与另外两相耦合关系最紧密、相应的阻抗最小,所以一般认为高频通道采用中间相最佳。

而我们实际工作中,中间相往往被通讯专业使用,继电保护一般使用A、C相。

另外输电线路作为高频信号传输通道其输入阻抗这一参数我们必须给予重视,常见的220kV输电线路不分裂的导线输入阻抗为400欧姆,双分裂的导线输入阻抗为300欧姆。

请大家参照实际情况正确整定结合滤波器相应的线路侧阻抗情况。

2.高频阻波器它是一个高频谐振回路,对高频信号呈高阻抗,可以有效的将高频信号限制在两侧阻波器之间,一来防止高频信号流到其它线路造成对其它设备的干扰,二来可以减少高频信号的分流衰耗。

阻波器损坏,常见现象就是高频对试时收讯电平的降低。

阻波器对工频信号呈低阻性,可以保证电能传输不受阻碍。

3.耦合电容器和结合滤波器两者共同组成滤波器,允许高频信号流过,阻止工频信号侵入收发讯机。

同时还实现高频电缆和输电线路的阻抗匹配,保证高频信号的可靠高效传输。

这里我们需要注意耦合电容器电容量和结合滤波器相匹配的问题,实际工作中存在两者阻抗不匹配的情况会影响信号的传输。

另外,在进行结合滤波器的调整时我们还要注意输电线和高频电缆的阻抗匹配情况,减少传输衰耗。

4.高频电缆高频电缆将收发讯机和结合滤波器结合起来。

现在常用的高频电缆的特性阻抗为75欧。

5.保护间隙保护间隙位于结合滤波器和耦合电容器之间。

防止过电压造成收发讯机和高频电缆的损坏。

新型的结合滤波器中放电器(避雷器)替代了保护间隙,但由于无法从外观确定放电器的状态,因此也存在其击穿造成高频信号无法传递的隐患。

6.接地刀闸在高频通道上工作时,应将其合入以保证人身安全。

但一定要注意的是高频保护运行中不能合入,否则高频信号会被直接导入地,无法在保护间传送,从而在系统发生故障时造成保护不正确动作。

7.高频收发讯机高频收发讯机用来发出和接收高频信号,与保护装置进行逻辑上的配合。

收发讯机的简化原理图如图一所示,图中虚线框内部分为收发讯机。

图一收发讯机简化原理图其中晶振电路利用晶振芯片提供工作频率的信号f0给发讯回路,提供另一频率为fl=f0+12KHZ的信号给解调回路用于进行信号解调最后形成12KHZ中频信号供收发讯机用来进行解调、放大、输出。

前置放大和功率放大元件共同构成信号的发大回路;滤波元件的作用主要是保证滤除非工作频率的信号,保证收发讯机的正常运行。

这里需要注意的是滤波元件的工作频率与收发讯机工作频率必须保持一致且一般无法整定,因此一旦该元件损坏我们无法简单随意的更换其它备件来解决问题,即使有些型号的收发讯机的滤波插件的频率能够现场整定,考虑到现场工作条件以及元件品质、特性等问题我们也不主张现场变更滤波元件的工作频率。

控制电路是整个收发讯机的控制单元,它最主要的功能是从保护装置接到发讯的命令后将晶振电路提供的工作频率信号提供给放大回路从而实现发信。

它还控制信号切换回路保证一旦本机发讯时,高频信号从前置放大回路单独提供给收信解调回路且断开对侧信号进入的通道,而在只有对侧发讯时收到的对侧的高频信号单独进入收讯解调回路,这种功能可以保证在两侧均发讯时不会出现因为两侧信号混叠可能造成的差排现象。

解调输出元件主要是类似触发器的功能,一旦收到信号即动作并提供开关量输出告知保护装置。

二、高频通道检查闭锁式纵联保护对高频通道的依赖性非常高,如果通道不正常就会造成保护的不正确动作。

而由于闭锁式纵联保护的通道在正常时没有监视信号传递,我们无法察觉通道中存在的不正常状态。

因此闭锁式纵联保护中专门设立了通道对试逻辑,通过运行人员进行的通道对试试验可以检查包括两侧保护装置、收发讯机及高频通道在内的与闭锁式纵联保护正确动作有关的各个环节,如图二所示。

图二通道对试试验可以检查的各个环节示意图高频通道对试的过程一般为:启动对试侧按下试验按钮后启动发讯200毫秒(一般不能被我们注意到,可以不考虑)然后停讯,对侧收到信号后连续发讯10秒,本侧在连续收到对侧信号5秒后开始再次发讯10秒。

因此一个高频通道对试过程约为15秒。

通道中的信号与时间的对应关系如表一所示:表一通道对试信号分时情况表对试过程中应注意上述对试过程是否完整以及信号裕度指示与正常值是否一致,特别是有无通道告警信号。

整个过程中我们应注意前5秒(对侧信号)以及后5秒(本测信号)的信号情况,而对于中间阶段的信号因为其是两侧信号的叠加因此没有实际意义。

另外,收发讯机提供的信号指示表(灯)的指针指示的功率或裕度情况只有参考意义,用来定性的确定信号传输情况是否正常,其具体读数不能用作定量分析。

整个对试过程的逻辑部分由继电保护装置控制,因此我们通过对试试验也可以检查纵联保护装置与收发讯机之间联系的正确性。

三、通道异常检查示范方案1. 高频通道异常现象中最常见的是通道对试试验不能完成,处理这种情况可遵循如下原则:1.1外观检查:两侧的收发讯机、保护装置是否正常,有无异常及电源损坏的情况。

1.2按通道试验按钮,检查收发讯机有无发讯指示:判断收发讯机是否发讯可以观察收发讯机发讯指示灯是否点亮及信号指示表(灯)的指示情况。

发讯指示灯通常接在收发讯机的控制回路,当收到继电保护装置的发讯命令时点亮并启动发讯,此灯一般为自保持。

信号指示表一般接在收发讯机与高频电缆的连接处,反应通道口的信号情况。

因为通道试验时本侧最初只发讯200毫秒,因此对信号指示表的观察应该仔细。

通道试验的检查两侧均应进行,以大致的确定问题所在。

✧如果按下试验按钮后收发讯机无任何反应应检查:●收发讯机各电源是否良好;有无异常信号;●试验按钮接触是否良好;●按下试验按钮后,检查继电保护装置是否有通道试验的开关量输入;●继电保护装置的发讯接点是否导通;●在未发讯状态时,继电保护发讯接点两端是否有电位,即收发讯机开关量公共正电和发讯输入端间的电位,一般为直流24V。

此项检查宜在保护装置端子排和收发讯机端子排分别进行;●收发讯机切换把手的接点导通情况;●在收发讯机背板端子排上用开入量公共正电点启动发讯开入端,检查收发讯机是否发讯;✧如果按下收发讯机后发讯指示灯点亮,而信号(功率)指示灯无指示应检查:●令收发讯机发讯(通道试验或点启动发讯开入)用选频电平表测量通道口处信号情况,以确认信号指示表是否指示正确;●在收发讯机发讯状态下测量收发讯机载供(晶振)、前置放大、功率放大、线滤等插件处的电平情况,以确定问题所在;●如果载供(晶振)处信号正常,而在收发讯机发讯指示灯点亮的情况下无高频信号输出,可怀疑控制回路(接口插件)存在问题;1.3收发讯机有发讯指示收发讯机通道口有信号,检查本侧高频通道:✧如果结合滤波器电缆侧无信号的情况下应检查:●一般认为高频电缆存在问题,最常见的为高频电缆断线。

推荐检查方法为自收发讯机出口断开高频电缆与收发讯机的连接,将高频电缆的芯线和屏蔽线短接并接地。

在结合滤波器处分别测量芯线和屏蔽层以及分别对地的电阻情况即可确定高频电缆是否有断线。

当然如果高频电缆断线了是很难采用常规方法检查到的,一旦发生大多只能更换电缆。

因此我们在高频电缆的铺设过程中一定要防止出现挤压、严重弯曲等现象,也要采取必要的防冻措施避免高频电缆因冰冻受损。

●如果高频电缆没有断线情况,我们还要考虑是否存在高频电缆的长度接近高频信号波长的四分之一或四分之一的整数倍。

这时也会出现高频电缆类似开路的情况,从而使高频信号不能传输。

尽管这种情况很少见,我们也要给予重视。

●还有一种情况也很少见,就是高频电缆与结合滤波器以及收发讯不匹配。

目前高频保护的通道中收发讯以及高频电缆一般均采用75欧姆的阻抗,但在早期也曾经使用过100欧姆的高频电缆。

这时就会造成通道不匹配的情况出现,从而使的通道衰耗急剧变大,出现高频信号近似不能传递的情况。

●还需要检查高频电缆的芯线与屏蔽线或地线有无短路的情况。

因为高频电缆芯线裸露较长或屏蔽层处理不好以及芯线和屏蔽层之间绝缘损坏都会造成芯线与屏蔽层之间发生短路,从而造成高频信号被短路点屏蔽。

✧结合滤波器电缆侧有信号而耦合电容器侧无信号的情况下应检查:●检查耦合电容器内部有无断线、虚接,短路的情况;●检查结合滤波器处接地刀闸位置是否在合位,以及有无类似的接地短路情况;●还可能存在结合滤波器内部放电器(避雷器)击穿的情况;●注意在耦合电容器和结合滤波器之间串接的设备(比如电压抽取装置)是否存在异常。

●有时候在结合滤波器内部耦合电容器侧测量有信号而到结合滤波器外部与耦合电容器连接部分测量没有信号,这种情况一般为连接不好,或是外部接线锈蚀严重导致信号衰耗过大;1.4本侧发讯正常,在耦合电容器处(结合滤波器耦合电容器侧,推荐在外部接线处测量)测量信号正常的情况下,考虑对侧配合检查:✧如果发讯侧信号检查正常,而收讯侧收发讯机没有收讯指示则注意检查:●令本侧收发讯机长发讯(短接收发讯机起讯接点,但注意不要时间太长,否则会对发讯回路特别是功放元件造成损坏),收讯侧无收讯指示,在收发讯机通道口测量有无信号,如果信号正常而收发讯机无收讯指示则可以参考说明书分别在收发讯机滤波单元、收讯单元、解调单元等处的测点测量信号状态以确定问题所在。

这里还要考虑控制单元是否有问题,因为如果信号切换部分如果不能正常工作也会造成信号不能进入收发讯机解调单元。

●令本侧收发讯机长发讯(短接收发讯机起讯接点,但注意不要时间太长,否则会对发讯回路特别是功放元件造成损坏),如果在收发讯机通道口测量高频信号不正常,则应分别在结合滤波器耦合电容器侧、结合滤波器高频电缆侧处测量高频信号,检查有无异常,从而确定或排除异常点。

具体的检查方法可以参照上面描述的发讯侧发讯回路的检查方法。

1.5 对侧发讯及本侧收讯均正常,而本侧能在收到信号后不能发讯从而不能完成通道对试逻辑时应注意检查:●本侧收发讯机收讯输出单元是否有问题,测量在收讯时收讯输出的接点是否闭合;●在收讯输出接点闭合的情况下,检查保护装置是否有收讯开关量输入;●检查本侧按下通道试验按钮时本侧收发讯机是否能发讯;(具体方法见1.2)2. 通道衰耗过大为了保证高频保护的可靠运行,我们对高频信号的大小有着明确的要求。

相关文档
最新文档