计量经济学-案例分析-第二章

合集下载

计量经济学 第二章

计量经济学 第二章
本章还有三方面的内容不容忽视。其一,若干基本假设。样本回归函数参数的估计以 及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。 其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性 与一致性构成了对样本估计量优劣的最主要的衡量准则。Goss-markov 定理表明 OLS 估计量 是最佳线性无偏估计量。其三,运用样本回归函数进行预测,包括被解释变量条件均值与个 值的预测,以及预测置信区间的计算及其变化特征。
二、典型例题分析
例 1、令 kids 表示一名妇女生育孩子的数目,educ 表示该妇女接受过教育的年数。生 育率对教育年数的简单回归模型为
kids = β0 + β1educ + μ
1
(1)随机扰动项 μ 包含什么样的因素?它们可能与教育水平相关吗?
(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。
关于 βˆ1 求偏导得
∑ ∂RSS = 2
∂βˆ1
(Yt − βˆ1 X t )(− X t ) = 0

∑ X t (Yt − βˆ1 X t ) = 0
βˆ1
=
(∑ X iYi )
(∑
) X
2 i
4
可见 βˆ1 是 OLS 估计量。
例 5.假设模型为 Yt = α + βX t + μt 。给定 n 个观察值 ( X1,Y1 ) , ( X 2 ,Y2 ) ,…,
5
例 6.对于人均存款与人均收入之间的关系式 St = α + βYt + μt 使用美国 36 年的年度数
据得如下估计模型,括号内为标准差:
Sˆt = 384.105 + 0.067Yt (151.105) (0.011)

计量经济学第二章经典线性回归模型

计量经济学第二章经典线性回归模型

Yt = α + βXt + ut 中 α 和 β 的估计值 和
,
使得拟合的直线为“最佳”。
直观上看,也就是要求在X和Y的散点图上
Y
* * Yˆ ˆ ˆX
Yt
* **
Yˆt
et * *
*
*
**
*
**
**
*
Xt
X
图 2.2
残差
拟合的直线 Yˆ ˆ ˆX 称为拟合的回归线.
对于任何数据点 (Xt, Yt), 此直线将Yt 的总值 分成两部分。
β
K
βK
β1 β1
...
βK
βK
Var(β 0 )
Cov(β1 ,β
0
)
Cov(β 0 ,β1 )
Var(β1 )
...
Cov(β
0

K
)
...
Cov(β1

K
)
...
...
...
...
Cov(β
K

0
)
Cov(β K ,β1 )
...
Var(β K )
不难看出,这是 β 的方差-协方差矩阵,它是一 个(K+1)×(K+1)矩阵,其主对角线上元素为各 系数估计量的方差,非主对角线上元素为各系 数估计量的协方差。
ut ~ N (0, 2 ) ,t=1,2,…n
二、最小二乘估计
1. 最小二乘原理
为了便于理解最小二乘法的原理,我们用双
变量线性回归模型作出说明。
对于双变量线性回归模型Y = α+βX + u, 我 们
的任务是,在给定X和Y的一组观测值 (X1 ,

计量经济学案例分析报告

计量经济学案例分析报告

《计量经济学》实验报告实验课题:各章节案列分析姓名:茆汉成班级:会计学12-2班学号: 2012213572指导老师:蒋翠侠报告日期: 2015.06.18目录第二章简单线性回归模型案例 (1)1 问题引入 (1)2 模型设定 (1)3 估计参数 (3)4 模型检验 (3)第三章多元线性回归模型案例 (5)1 问题引入 (5)2 模型设定 (5)3 估计参数 (6)4 模型检验 (6)第四章多重线性案例 (8)1 问题引入 (8)2 模型设定 (8)3 参数估计 (8)4 对多重共线性的处理 (9)第五章异方差性案例 (11)1 问题引入 (11)2 模型设定 (11)3 参数估计 (11)4 异方差检验 (12)5 异方差性的修正 (14)第六章自相关案例 (15)1 问题引入 (15)2 模型设定 (15)3 用OLS估计 (15)4 自相关其他检验 (16)5 消除自相关 (17)第七章分布滞后模型与自回归模型案例 (19)7.2案例1 (19)1 问题引入 (19)2 模型设定 (19)3 参数估计 (19)7.3案例2 (21)1 问题引入 (21)2 模型设定 (21)3、回归分析 (21)4模型检验 (23)第八章虚拟变量回归案例 (24)1 问题引入 (24)2 模型设定 (24)3 参数估计 (26)4 模型检验 (27)第二章简单线性回归模型案例1、问题引入居民消费在社会经济的持续发展中有着重要的作用。

适度的居民消费规模和合理的消费模型是人民生活水平的具体体现,有利于经济持续健康的增长。

随着社会信息化程度和居民的收入水平的提高,计算机的运用越来越普及,作为居民耐用消费品重要代表的计算机已经为众多的城镇居民家庭所拥有。

研究中国各地区城镇居民计算机拥有量与居民收入水平的数量关系。

影响居民计算机拥有量的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入水平。

从理论上说居民收入水平越高,居民计算机拥有量越多。

计量经济学第二章

计量经济学第二章
3039 3396
5500 6000 6500 2924 3515 3521 3338 3721 3954 3650 3865 4108 3802 4026 4345 4087 4165 4812 4298 4380 4312 4580 4413
3853 4036 4148
计量
11 11
消费支出的条件期望与收入关系的图形
i 1
i 1
n
n
xi x yi y ˆ1 xi x 2
i 1
i 1
计量
23
易得:
n
xi x y i y ˆ1 i 1 n x i x 2
i 1
在假设前提
n
x i
x 2
0下
i 1
ˆ0 y ˆ1x
计量
24
2.3 OLS的操作技巧
•拟合值与残差 •OLSE的代数性质 •拟合优度
• 样本回归线只是样本条件均值的轨迹,还不 是总体回归线,它至多只是未知的总体回归 线的近似表现
样本回归函数与总体回归函数的关系
y
PRF
• SRF1
• • *• * SRF2
• *•
• **
••
• •*
x
样本回归函数的函数形式应与设定的总体 回归函数的函数形式一致
对样本回归的理解
对比:
总体回归函数 样本回归函数
ˆ0yˆ1x
•由此估计出的 ˆ 0
(OLSE)
和ˆ1
称为参数的最小二乘估计量
•除了OLS以外,参数估计的方法还有最大似然估计
(ML)方法、矩估计方法(MM)等
基于条件期望为0的普通最小二乘法的推导
• 由E(u)=0 得E(y – 0 – 1x) = 0

庞浩计量经济学第二章简单线性回归模型

庞浩计量经济学第二章简单线性回归模型

最小二乘法的应用
在统计学和计量经济学中,最 小二乘法广泛应用于估计线性 回归模型,以探索解释变量与 被解释变量之间的关系。
通过最小二乘法,可以估计出 解释变量的系数,从而了解各 解释变量对被解释变量的影响 程度。
最小二乘法还可以用于时间序 列分析、预测和数据拟合等场 景。
最小二乘法的局限性
最小二乘法假设误差项是独立同分布 的,且服从正态分布,这在实际应用 中可能不成立。
最小二乘法无法处理多重共线性问题, 当解释变量之间存在高度相关关系时, 最小二乘法的估计结果可能不准确。
最小二乘法对异常值比较敏感,异常 值的存在可能导致参数估计的不稳定。
04
模型的评估与选择
R-squared
总结词
衡量模型拟合优度的指标
详细描述
R-squared,也称为确定系数,用于衡量模型对数据的拟合程度。它的值在0到1之间,越接近1表示模型拟合越 好。R-squared的计算公式为(SSreg/SStot)=(y-ybar)2 / (y-ybar)2 + (y-ybar)2,其中SSreg是回归平方和, SStot是总平方和,y是因变量,ybar是因变量的均值。
数据来源
本案例的数据来源于某大型电商 平台的销售数据,包括商品的销 售量、价格、评价等。
数据处理
对原始数据进行清洗和预处理, 包括处理缺失值、异常值和重复 值,对分类变量进行编码,对连 续变量进行必要的缩放和转换。
模型建立与评估
模型建立
基于处理后的数据,使用简单线性回 归模型进行建模,以商品销售量作为 因变量,价格和评价作为自变量。
线性回归模型是一种数学模型, 用于描述因变量与一个或多个 自变量之间的线性关系。它通 常表示为:Y = β0 + β1X1 + β2X2 + ... + ε

计量经济学第二章

计量经济学第二章

第二章主要介绍了计量经济学 的基本概念、原理和方法,包 括经济变量、经济模型、数据 收集与处理、参数估计与假设 检验等。
第二章主要介绍了计量经济学 的基本概念、原理和方法,包 括经济变量、经济模型、数据 收集与处理、参数估计与假设 检验等。
第二章主要介绍了计量经济学 的基本概念、原理和方法,包 括经济变量、经济模型、数据 收集与处理、参数估计与假设 检验等。
异方差性概念及产生原因
异方差性概念
异方差性是指误差项的方差随自变量的变化 而变化,即不满足同方差性的假设。
产生原因
异方差性的产生原因可能包括模型设定偏误、 遗漏重要变量、数据测量误差、异常值影响 等。
异方差性检验方法
图形检验法
通过绘制残差图或残差与解释变量的散点图,观察是否存在异方差性。
等级相关系数法
最小二乘法原理及应用
最小二乘法原理
最小二乘法是一种数学优化技术,它通过最小化预测值与实际观测值之间的残差平方和来估计线性回归模型的参 数。这种方法可以使得模型的预测结果更加接近实际观测值。
最小二乘法应用
在实际应用中,最小二乘法被广泛应用于各个领域,如经济学、金融学、社会学等。它可以用于预测未来趋势、 评估政策效果、分析市场需求等。
03
多元线性回归模型
多元线性回归模型构建
02
01
03
模型设定
确定因变量和自变量,建立多元线性回归方程。
数据收集
收集样本数据,包括因变量和自变量的观测值。
参数估计
采用最小二乘法等方法,估计模型参数。
偏回归系数解释与检验
偏回归系数解释
偏回归系数表示在其他自变量不变的情 况下,某一自变量对因变量的影响程度 。
05

计量经济学第二章(第二部分)

计量经济学第二章(第二部分)

其中,有k个解释变量;k+1个回归参数
3
计量经济学 第二章B
同 上
(2)矩阵形式: Y XB N Y1 Y2 Y ... Y n 1 1 X ... 1 0 u1 1 u2 , B , N ... ... u n 1 k (k 1) 1 n n 1 X 11 X 12 ... X 1n X 21 X 22 ... X 2n ... ... ... ... X k1 X k2 ... X kn n (k 1)
2
(2)当 R
2

k n -1
时,
R
2
<0 ,此时, 使
2
用 R 将失去意义。因此, R 只适
2
用于Y与解释变量整体相关程度较的
情况。
34
计量经济学 第二章B
四、回归方程的显著性检验
(1) 提出原假设 (2) 构造统计量 H 0 : 1 2 ... k 0 F ESS/k RSS/n (3) 对于给定的显著性水平 (4)判定方程的显著性, 若 F F , 则拒绝原假设 若 F F ,则接受原假设 H 0,即模型的线性关系 F 检验; - k -1 ~ F(k, n - k - 1) ( 在 H 0 成立时) F
不管其质量的好坏,而所要求的样本容量
的下限。
20
计量经济学 第二章B
同 上
ˆ 由 B ( X X)
-1
ˆ X Y 中看到,要使 B
存在,
必须保证(XˊX)-1存在,因此,必须满
足|XˊX|≠0 ,即XˊX为满秩矩阵,而

计量经济学上机课第二章 案例阐明

计量经济学上机课第二章  案例阐明

12463.92 9337.56 6679.68 5234.35 6051.06 6524.52 6260.16 6100.56 13249.80 8177.64 11715.60 6032.40 9189.36 6334.64 7614.36 6245.40 6788.52 6958.56 11137.20 7315.32 6822.72 7238.04 6610.80 5944.08 7240.56 8079.12 6330.84 6151.44 6170.52
一、研究的目的要求
第二章 案例分析
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入
水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居
民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要
因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型
宁夏
新疆
6104.92
5636.40
作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的
散点图:
12000 10000
8000 6000 4000 2000
0 0
2000 4000 6000 8000 10000 12000 14000 收入X
从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可
X
北京 天津 河北 山西 内蒙古 辽宁 吉林 黑龙江 上海 江苏 浙江 安徽 福建 江西 山东 河南 湖北 湖南 广东 广西 海南 重庆 四川 贵州 云南 西藏 陕西 甘肃 青海
10284.60 7191.96 5069.28 4710.96 4859.88 5342.64 4973.88 4462.08 10464.00 6042.60 8713.08 4736.52 6631.68 4549.32 5596.32 4504.68 5608.92 5574.72 8988.48 5413.44 5459.64 6360.24 5413.08 4598.28 5827.92 6952.44 5278.04 5064.24 5042.52

计量经济学 第二章 简单线性回归模型案例分析 PPT

计量经济学 第二章 简单线性回归模型案例分析 PPT
t(ˆ 2 ) 1 1 .9 8 2 6 t0 .0 2 5 (2 9 ) 2 .0 4 5应拒绝 H0 :2 0
3. 用P值检验 α=0.05 >> p=0.0000
表明,城镇居民人均总收入对城镇居民每百户计算机拥有量确 有显著影响。
4. 经济意义检验:
所估计的参数
,说明城镇
居民家庭人均总收入每增加1元,平均说来城变量选择:被解释变量选择能代表城乡所有居民消费的 “城镇居民家庭平均每百户计算机拥有量”(单位:台) ; 解释变量选择表现城镇居民收入水平的“城镇居民平均每 人全年家庭总收入”(单位:元) 研究范围:全国各省市2011年底的城镇居民家庭平均每 百户计算机拥有量和城镇居民平均每人全年家庭总收入数 据。
3、总体回归函数(PRF)是将总体被解释变量Y的条件 均值表现为解释变量X的某种函数。 样本回归函数(SRF)是将被解释变量Y的样本条件 均值表示为解释变量X的某种函数。 总体回归函数与样本回归函数的区别与联系。
4、随机扰动项是被解释变量实际值与条件均值的偏差, 代表排除在模型以外的所有因素对Y的影响。
Yt 12Xt ut
估计参数
假定模型中随机扰动满足基本假定,可用OLS法。 具体操作:使用EViews 软件,估计结果是:
用规范的形式将参数估计和检验的结果写为: Y ˆt11.95800.002873X t
(5.6228) (0.00024) t= (2.1267) (11.9826) R2 0.8320 F=143.5836 n=31
即是说:当地区城镇居民人均总收入达到25000元时,城镇居 民每百户计算机拥有量 平均值置信度95%的预测区间为 (80.6219,86.9473)台。
12
个别值区间预测:

计量经济学(2012B)(第二章多元线性回归)详解

计量经济学(2012B)(第二章多元线性回归)详解

2 2i
n
n
2 i
i ( yi ˆ1x1i ˆ2 x2i )
i 1
i 1
n
i yi
n
(
y
ˆ x
ˆ x
) y
i1
i
1 1i
2 2i
i
i 1
n
y 2

n
x
y
ˆ
n
x
y )
i1
i
1 i1 1i i
2 i1 2 i i
TSS ESS
2.5 单个回归参数的置信区间 与显著性检验
一、置信区间
H (4)
的拒绝域为:
0
F F (2, n 3)
(5) 推断:若
F F (2, n 3)
,则拒绝 H , 0
认为回归参数整体显著;
H 若 F F (2, n 3)
,则接受

0
认为回归参数整体上不显著。
回归结果的综合表示
yˆi 0.0905 0.426x1i 0.0084x2i
Sˆj : 或 t:
模型的估计效果. (5) 拟合优度与F 检验中的 F 统计量的关系是什么?这两个
量在评价二元线性回归模型的估计效果上有何区别? (6) 试比较一元线性回归与二元线性回归的回归误差,哪
个拟合的效果更好?
应用:
(1)预测当累计饲料投入为 20磅时,鸡的平均
重量是多少? yˆ 5.2415 f
(磅)
(2)对于二元线性回归方程,求饲料投入的边际生产率?
(0.1527) (0.0439)
(0.5928) (9.6989)
(0.0027) (3.1550)
R2 0.9855, R2 0.9831 , F 408.9551

计量经济学第二章(第三部分)

计量经济学第二章(第三部分)

为WLS估计量。
32
计量经济学 第二章C
(2)利用加权最小二乘法处理异方差 假设已知 varui 2 f(X i ) ,
5451.91
6797.71 7869.16 5483.73 5382.91 5853.72
同 上
海南
重庆 四川
349.44
442.50 381.47
5838.84
6721.09 6360.47
宁夏
新疆
437.72
406.72
5544.17
6395.04
22
计量经济学 第二章C
实例7
同 上
可支配收入按升序排序之后,去掉中间的5 个值,将剩余的26个值均分。
判断模型可能存在 复杂型异方差
14
计量经济学 第二章C
同 上
(2)以残差平方 e 2 为纵轴,某个解释变 量X为横轴,画出残差序列分布图。
15
计量经济学 第二章C
分布图
e
(1)
2
e2
(2) x x
同 上
判断模型基本不 存在异方差
e2
(3) x (4)
e2
x
(2)—(4)可能存在 异方差
16
计量经济学 第二章C
第三部分 违背基本假定 的诸问题
1
计量经济学 第二章C
同 上
异方差性 序列相关性 多重共线性 随机解释变量
2
计量经济学 第二章C
Ⅰ、异方差性
一、异方差性
若出现 var ui
2 i
, i=1,2,…,n 时,
即对不同的样本点,误差项的方差不再
是一个常数,而是随i的不同而不同,则 认为产生了异方差。 此时, ui ~ N (0, i2 )

计量经济学 第二章课后答案与分析

计量经济学 第二章课后答案与分析

练习题2.1(1)如上图:从散点图我们可以看出亚洲各国人均寿命(Y)与人均GDP(X1) 近似于线性关系,故建立以下模型:β+μβY0X=11+(2)根据回归结果图分析:我们可将参数估计和检验的结果写成如下:1Y+=56X1284.06479.(1.9608) (0.0272)t=(28.8899)(4.7118)R^2=0.5261 n=22a、根据所估计参数β0=56.6479,β1=0.1284,说明亚洲人均GDP 每增加100美元,人均寿命(Y)将增加0.1284年。

与预期的经济意义相符。

b、R^2=0.5261,说明数据拟合程度较好。

C、取α=0.05,查t表自由度为n-2=22-2=20的临界值t (20)=2.086.因为 4.7118>2.086,28.8899>2.086,故拒绝原假设H :β0=0,β1=0.对斜率系数的显著性检验表明,亚洲各国人均寿命(Y)与人均GDP(X1)有显著影响。

(1)如上图:从散点图我们可以看出亚洲各国人均寿命(Y)与成人识字率(X2)近似于线性关系,故建立以下模型: μββ++=210X Y(2)根据回归结果图分析:我们可将参数估计和检验的结果写成如下: 23320.07942.38X Y += (3.5321) (0.0467) t=(10.9834)(7.1153) R^2=0.7168 n=22a 、根据所估计参数β0=38.7942,β1=0.3320,说明亚洲各国成人识字率每增加1个百分比,人均寿命将增加0.3320年,与预期的经济意义相符。

b 、R^2=0.7168,说明数据拟合程度较好。

C 、取α=0.05,查t 表自由度为n-2=22-2=20的临界值t (20)=2.086.因为10.9834>2.086,7.1153>2.086,故拒绝原假设H :β0=0,β1=0.对斜率系数的显著性检验表明,亚洲各国人均寿命(Y)与成人识字率(X2)有显著影响。

计量经济学 第二章 一元线性回归模型

计量经济学 第二章 一元线性回归模型

计量经济学第二章一元线性回归模型第二章一元线性回归模型第一节一元线性回归模型及其古典假定第二节参数估计第三节最小二乘估计量的统计特性第四节统计显著性检验第五节预测与控制第一节回归模型的一般描述(1)确定性关系或函数关系:变量之间有唯一确定性的函数关系。

其一般表现形式为:一、回归模型的一般形式变量间的关系经济变量之间的关系,大体可分为两类:(2.1)(2)统计关系或相关关系:变量之间为非确定性依赖关系。

其一般表现形式为:(2.2)例如:函数关系:圆面积S =统计依赖关系/统计相关关系:若x和y之间确有因果关系,则称(2.2)为总体回归模型,x(一个或几个)为自变量(或解释变量或外生变量),y为因变量(或被解释变量或内生变量),u为随机项,是没有包含在模型中的自变量和其他一些随机因素对y的总影响。

一般说来,随机项来自以下几个方面:1、变量的省略。

由于人们认识的局限不能穷尽所有的影响因素或由于受时间、费用、数据质量等制约而没有引入模型之中的对被解释变量有一定影响的自变量。

2、统计误差。

数据搜集中由于计量、计算、记录等导致的登记误差;或由样本信息推断总体信息时产生的代表性误差。

3、模型的设定误差。

如在模型构造时,非线性关系用线性模型描述了;复杂关系用简单模型描述了;此非线性关系用彼非线性模型描述了等等。

4、随机误差。

被解释变量还受一些不可控制的众多的、细小的偶然因素的影响。

若相互依赖的变量间没有因果关系,则称其有相关关系。

对变量间统计关系的分析主要是通过相关分析、方差分析或回归分析(regression analysis)来完成的。

他们各有特点、职责和分析范围。

相关分析和方差分析本身虽然可以独立的进行某些方面的数量分析,但在大多数情况下,则是和回归分析结合在一起,进行综合分析,作为回归分析方法的补充。

回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。

计量经济学 第二章 经典单方程计量模型简化内容

计量经济学 第二章 经典单方程计量模型简化内容
2 2 i i i
• 3.拟合优度(拟合度) • ①R2指标是判断回归模型优劣的一个最基 本的指标,但比较笼统,不精细。 • ②在Eviews中就是回归结果中的第一个R2, 判断时要注意,其越接近1,说明模型总体 拟合效果越好。 • ③R2的正式名称是“决定系数”,但通常 称其为拟合度。
• 具体的,拟合优度的计算公式如下:
• 3.计量模型的设定 • (1)基本形式: • y x (2.3) • 这里是一个随机变量,称作随机扰动项, 它的数学期望为0,即 注意:上式中条件数学期望的含义是,在给 定x时,ε的平均值为0。试举现实中的例子 予以说明。 回归直线、回归模型概念说明
• 二.一个完美计量经济模型的假设 • 1.对模型提出一些假设(限制)的原因 • 保证模型设定具有较高的合理性,从而可用其进 行经济分析并有利于统计分析的进行。 • 2.基本假定 • (1)在x给定的条件下,ε的数学期望为0 • (2)在x给定的条件下, x与ε不相关 • (3)在x给定的条件下, ε的方差是一个常数 • (4)在x给定的条件下, ε的样本之间不存在序 列相关 • (5) N (0, 2 )
R
2
2 (Yi Y )
n
(Y Y )
i 1 i
i 1 n
1.它的直观的含义是:估计 出来的被解释变量的每个 值跟平均值的偏差之和与 真实的被解释变量样本值 跟平均值的偏差之和的比 例。 2.现实当中的理解:如果我们在做模型时 希望最有效的解释被解释变量的波动,那 么比较好的一个指标就是让R2最大。 但一定要注意,在实际应用当中,大部分 情况下,我们并不是关注整个模型,而只 是关注一个解释变量对被解释变量的影响。
12 1 L , , exp 2 2 2 2 2 2

计量经济学第二章:单方程多元线性计量经济模型

计量经济学第二章:单方程多元线性计量经济模型

由 cu i , o u j 于 ) E v { u i E ( [ ( u i ) u j ] E ( u [ j ) ] E [ u i u } j ]
E(11) Co(U v)E( 21)
E(12) E(22)
E(1n) E(2n)
E(n1) E(n2) E(nn)
11 Co(U v)E 21
nk8
一般认为30个以上样本能够满足要求。
◆估计值的性质包括如下几方面:线性性、无偏性、 最小方差性。
线性性:估计值与被解释变量呈现线性关系 B ˆ(XX)1XYAY
无偏性:估计值的期望等于待估参数
E(Bˆ) B 最小方差性:各种估计方法中方差最小
Co (B ˆ)v 2(XX)1
第四节 统计检验与置信区间
一、拟合优度检验
模型是否能比较好地解释因果关系
总离差平方和: TSS (yiy)2 回归平方和: ESS (yˆiy)2 残差平方和: RSS(yiyˆi)2
◆ TSS RSE S SS
TSS = RSS + ESS ?
TSS(yiy)2 [y (iy ˆi)(y ˆiy)2] TSR SS E SS 2S(yiy ˆi)y ˆ(iy)
若使Q达到最小,分别对参数求偏导数,即:
Q
ˆ0
0;
n
得: 2 (yi (ˆ0 ˆ1xi )) 0 i1
n
2 xi (yi (ˆ0 ˆ1xi )) 0 i1
Q
ˆ 1
0
解得一元线性模型参数估计式为:
ˆ0
xi2 n
yi xi2 (
xi xiyi xi)2
yˆ1x
ˆ1
Bˆ(X'X)1X'Y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章案例分析一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。

居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。

改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。

但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。

例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。

为了研究全国居民消费水平及其变动的原因,需要作具体的分析。

影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。

为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。

二、模型设定我们研究的对象是各地区居民消费的差异。

居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。

而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。

所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。

因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。

因此建立的是2002年截面数据模型。

影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。

因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。

为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。

从2002年《中国统计年鉴》中得到表2.5的数据:表2.52002年中国各地区城市居民人均年消费支出和可支配收入如图2.12:图2.12从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:12i i i Y X u ββ=++ 三、估计参数假定所建模型及随机扰动项i u 满足古典假定,可以用OLS 法估计其参数。

运用计算机软件EViews 作计量经济分析十分方便。

利用EViews 作简单线性回归分析的步骤如下: 1、建立工作文件首先,双击EViews 图标,进入EViews 主页。

在菜单一次点击File\New\Workfile ,出现对话框“Workfile Range ”。

在“Workfile frequency ”中选择数据频率:Annual (年度) Weekly ( 周数据 )Quartrly (季度) Daily (5 day week ) ( 每周5天日数据 ) Semi Annual (半年) Daily (7 day week ) ( 每周7天日数据 ) Monthly (月度) Undated or irreqular (未注明日期或不规则的) 在本例中是截面数据,选择“Undated or irreqular ”。

并在“Start date ”中输入开始时间或顺序号,如“1”在“end date ”中输入最后时间或顺序号,如“31”点击“ok ”出现“Workfile UNTITLED ”工作框。

其中已有变量:“c ”—截距项 “resid ”—剩余项。

在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。

若要将工作文件存盘,点击窗口上方“Save ”,在“SaveAs ”对话框中给定路径和文件名,再点击“ok ”,文件即被保存。

4000600080001000012000400060008000100001200014000XY2、输入数据在数据编辑窗口中,首先按上行键“↑”,这时对应的“obs”字样的空格会自动上跳,在对应列的第二个“obs”有边框的空格键入变量名,如“Y ”,再按下行键“↓”,对因变量名下的列出现“NA ”字样,即可依顺序输入响应的数据。

其他变量的数据也可用类似方法输入。

也可以在EViews 命令框直接键入“data X Y ”(一元时) 或 “data Y 1X 2X … ”(多元时),回车出现“Group”窗口数据编辑框,在对应的Y 、X 下输入数据。

若要对数据存盘,点击 “fire/Save As”,出现“Save As ”对话框,在“Drives ”点所要存的盘,在“Directories ”点存入的路径(文件名),在“Fire Name ”对所存文件命名,或点已存的文件名,再点“ok ”。

若要读取已存盘数据,点击“fire/Open”,在对话框的“Drives”点所存的磁盘名,在“Directories”点文件路径,在“Fire Name”点文件名,点击“ok”即可。

3、估计参数方法一:在EViews 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation specification ”对话框,选OLS 估计,即选击“Least Squares”,键入“Y C X ”,点“ok ”或按回车,即出现如表2.6那样的回归结果。

表2.6在本例中,参数估计的结果为:^282.24340.758511i i Y X =+ (287.2649) (0.036928) t=(0.982520) (20.54026)20.935685r = F=421.9023 df=29方法二:在EViews 命令框中直接键入“LS Y C X ”,按回车,即出现回归结果。

若要显示回归结果的图形,在“Equation ”框中,点击“Resids ”,即出现剩余项(Residual )、实际值(Actual )、拟合值(Fitted )的图形,如图2.13所示。

图2.13四、模型检验1、经济意义检验所估计的参数^20.758511β=,说明城市居民人均年可支配收入每相差1元,可导致居民消费支出相差0.758511元。

这与经济学中边际消费倾向的意义相符。

2、拟合优度和统计检验用EViews 得出回归模型参数估计结果的同时,已经给出了用于模型检验的相关数据。

拟合优度的度量:由表2.6中可以看出,本例中可决系数为0.935685,说明所建模型整体上对样本数据拟合较好,即解释变量“城市居民人均年可支配收入”对被解释变量“城市居民人均年消费支出”的绝大部分差异作出了解释。

对回归系数的t 检验:针对01:0H β=和02:0H β=,由表2.6中还可以看出,估计的回归系数^1β的标准误差和t 值分别为:^1()287.2649SE β=,^1()0.982520t β=;^2β的标准误差和t 值分别为:^2()0.036928SE β=,^2()20.54026t β=。

取0.05α=,查t 分布表得自由度为231229n -=-=的临界值0.025(29) 2.045t =。

因为^10.025()0.982520(29) 2.045t t β=<=,所以不能拒绝01:0H β=;因为^20.025()20.54026(29) 2.045t t β=>=,所以应拒绝02:0H β=。

这表明,城市人均年可支配收入对人均年消费支出有显著影响。

五、回归预测由表2.5中可看出,2002年中国西部地区城市居民人均年可支配收入除了西藏外均在8000以下,人均消费支出也都在7000元以下。

在西部大开发的推动下,如果西部地区的城市居民人均年可支配收入第一步争取达到1000美元(按现有汇率即人民币8270元),第二步再争取达到1500美元(即人民币12405元),利用所估计的模型可预测这时城市居民可能达到的人均年消费支出水平。

可以注意到,这里的预测是利用截面数据模型对被解释变量在不同空间状况的空间预测。

用EViews 作回归预测,首先在“Workfile ”窗口点击“Range ”,出现“Change Workfile Range ”窗口,将“End data”由“31”改为“33”,点“OK ”,将“Workfile ”中的“Range ”扩展为1—33。

在“Workfile ”窗口点击“sampl”,将“sampl”窗口中的“1 31”改为“1 33”,点“OK ”,将样本区也改为1—33。

为了输入18270f X =,212405f X =在EViews 命令框键入data x /回车, 在X 数据表中的“32”位置输入“8270”,在“33”的位置输入“12405”,将数据表最小化。

然后在“E quation ”框中,点击“Forecast ”,得对话框。

在对话框中的“Forecast name ”(预测值序列名)键入“fY ”, 回车即得到模型估计值及标准误差的图形。

双击“Workfile ”窗口中出现的“Yf ”,在“Yf ”数据表中的“32”位置出现预测值16555.132f Y =,在“33”位置出现29691.577f Y =。

这是当18270f X =和212405f X =时人均消费支出的点预测值。

为了作区间预测,在X 和Y 的数据表中,点击“View”选“Descriptive Stats\Cmmon Sample”,则得到X 和Y 的描述统计结果,见表2.7: 表2.7根据表2.7的数据可计算:222(1)2042.682(311)125176492.59i xx n σ=-=⨯-=∑221()(82707515.026)569985.74f X X -=-=222()(124057515.026)23911845.72f X X -=-= 取0.05α=,f Y平均值置信度95%的预测区间为:^^2f Y t ασm 18270f X =时6555.13 2.045413.1593⨯m 6555.13162.10=m212405f X =时9691.58 2.045413.1593⨯m 9691.58499.25=m 即是说,当18270f X =元时,1f Y 平均值置信度95%的预测区间为(6393.03,6717.23)元。

相关文档
最新文档