第七章 主成分分析

合集下载

主成分分析 ppt课件

主成分分析  ppt课件

ppt课件
19
Fl,F2除了可以对包含在Xl,X2中的信息起着浓缩 作用之外,还具有不相关的性质,这就使得在研
究复杂的问题时避免了信息重叠所带来的虚假性。
二维平面上的个点的方差大部分都归结在Fl轴上, 而F2轴上的方差很小。Fl和F2称为原始变量x1和x2 的综合变量。F简化了系统结构,抓住了主要矛盾。
ppt课件
16
如果我们将xl 轴和x2轴先平移,再同时按逆时针方向旋转角度,得到 新坐标轴Fl和F2。Fl和F2是两个新变量。
ppt课件
17
根据旋转变换的公式:

y1 y1

x1 cos x2 sin x1 sin x2 cos
y1 cos sin x1 Ux y2 sin cos x2
• •
x1
解 释
•••
ppt课件
13
平移、旋转坐标轴
x2
F1
主 成 分 分 析 的 几 何 解 释
F2 •
•••
••••• ••
••••••••••
•••••••
••••••

x1
ppt课件
14
平移、旋转坐标轴 x2
F1
主 成 分 分 析 的 几 何 解
F2

• •• •
• •
•••
•••
• •• •••••••••••••••• ••••
ppt课件
11
平移、旋转坐标轴
x2
F1
主 成
F2
•• • • •
分 分 析 的 几 何
•• • •
•• •

• •
•••

主成分分析

主成分分析

引言:主成分分析也称主分量分析,是由霍特林于1933 年首先提出的。

主成分分析是利用降维的思想,在损失很少信息的前提下,把多个指标转化为几个综合指标的多元统计方法。

通常把转化生成的综合指标称为主成分,其中每个主成分都是原始变量的线性组合,且各个主成分之间互不相关,使得主成分比原始变量具有某些更优越的性能。

这样在研究复杂问题时就可以只考虑少数几个主成分而不至于损失太多信息,从而更容易抓住主要矛盾,揭示事物内部变量之间的规律性,同时使得问题得到简化,提高分析效率。

本文用主成分分析的方法对某市14 家企业的经济效益进行分析。

[1] 在处理涉及多个指标问题的时候,为了提高分析的效率可以不直接对p 个指标构成的P维随机向量X=(X1, X2, X3, , Xp)进行分析,而是先对向量x进行线性变换,形成少数几个新的综合变量,使得个综合变量之间相互独立且能解释原始变量尽可能多的信息,这样在意损失很少部分信息为代价的前提下,达到简化数据结构,提高分析效率的目的。

主成分的基本思想就是在保留原始变量尽可能多的前提下达到降维的目的,从而简化问题的复杂性并抓住问题的主要矛盾。

而这里对于随机变量X1,X2,X3,……,Xp而言,其协方差矩阵或相关矩阵正是对各变量离散程度与变量之间的相关程度的信息的反映,而相关矩阵不过是将原始变量标准化后的协方差矩阵我们所说的保留原始变量尽可能多的信息,也就是指生成的较少的综合变量 (主成分)的方差和尽可能接近原始变量方差的总和。

因此在实际求解主成分的时候,总是从原始变量的协方差矩阵或相关矩阵的结构分析入手。

一般来说从原始变量的协方差矩阵出发求得的主成分与从原始变量的相关矩阵出发求得的主成分是不同的本文我们用从原始变量的相关矩阵出发求得的主成分进行分析。

[5]一、材料与方法1.1数据材料表1 14 家企业的利润指标的统计数据1.2分析方法本文采用多元统计学方法,选取14家企业作为样本收集每家企业的8个不同的利润指标,利用spss统计软件做主成分分析,给出载荷阵,并通过载荷阵给出主成分系数表,写出主成分表达式以此给出14个企业的得分值,最后根据主成分构造一个综合性评价指标,对14个企业进行综合排名。

主成分分析原理

主成分分析原理

第七章主成分分析(一)教学目的通过本章的学习,对主成分分析从总体上有一个清晰地认识,理解主成分分析的基本思想和数学模型,掌握用主成分分析方法解决实际问题的能力。

(二)基本要求了解主成分分析的基本思想,几何解释,理解主成分分析的数学模型,掌握主成分分析方法的主要步骤。

(三)教学要点1、主成分分析基本思想,数学模型,几何解释2、主成分分析的计算步骤及应用(四)教学时数3课时(五)教学内容1、主成分分析的原理及模型2、主成分的导出及主成分分析步骤在实际问题中,我们经常会遇到研究多个变量的问题,而且在多数情况下,多个变量之间常常存在一定的相关性。

由于变量个数较多再加上变量之间的相关性,势必增加了分析问题的复杂性。

如何从多个变量中综合为少数几个代表性变量,既能够代表原始变量的绝大多数信息,又互不相关,并且在新的综合变量基础上,可以进一步的统计分析,这时就需要进行主成分分析。

第 - 213 - 页第一节 主成分分析的原理及模型一、主成分分析的基本思想及数学模型(一)主成分分析的基本思想主成分分析是采取一种数学降维的方法,找出几个综合变量来代替原来众多的变量,使这些综合变量能尽可能地代表原来变量的信息量,而且彼此之间互不相关。

这种将把多个变量化为少数几个互相无关的综合变量的统计分析方法就叫做主成分分析或主分量分析。

主成分分析所要做的就是设法将原来众多具有一定相关性的变量,重新组合为一组新的相互无关的综合变量来代替原来变量。

通常,数学上的处理方法就是将原来的变量做线性组合,作为新的综合变量,但是这种组合如果不加以限制,则可以有很多,应该如何选择呢?如果将选取的第一个线性组合即第一个综合变量记为1F ,自然希望它尽可能多地反映原来变量的信息,这里“信息”用方差来测量,即希望)(1F Var 越大,表示1F 包含的信息越多。

因此在所有的线性组合中所选取的1F 应该是方差最大的,故称1F 为第一主成分。

如果第一主成分不足以代表原来p 个变量的信息,再考虑选取2F 即第二个线性组合,为了有效地反映原来信息,1F 已有的信息就不需要再出现在2F 中,用数学语言表达就是要求0),(21 F F Cov ,称2F 为第二主成分,依此类推可以构造出第三、四……第p 个主成分。

主成分分析

主成分分析

但是这种线性组合,如果丌加限制,则可以有很多,应 该如何去选取呢?
对a加以限制
对组合系数ai' = (a1i,a2i,…,api)作如下要求:
a a ... a
2 1i 2 2i
2 pi
1,
i 1, 2 ,..., p
即:ai为单位向量。 此外,
对F限制
1) Fi不Fj(i≠j, i, j = 1, …, p)互丌相关,即 协方差:Cov(Fi,Fj) = 0
2) F1是X1,X2,…,Xp的一切线性组合(系数满足上述要 求)中方差最大的,即
Var ( F1 ) max Var ( c i X i )
c ' c 1 i 1 p
其中c = (c1,c2,…,cp)' 3)F2是不F1丌相关的X1,X2,…,Xp一切线性组合中方差最 大的,…,Fp是不F1,F2,…,Fp-1都丌相关的X1,X2,… ,Xp的一切线性组合中方差最大的。 满足上述要求的综合指标向量F1,F2,…,Fp就是主成分。
i 1 k 1
达到足够大(一般在85%以上)为原则。
3.5 计算主成分得分
计算n个样品在m个主成分上的得分:
Fi a1i X 1 a 2 i X 2 ... a pi X p
i = 1,2,…,m
主成分分析程序代码
例 输出原始数据矩阵x x=[7.47,1.73,7.20,0.13,0.40,1.33,1.07,36.05;6.67,1.67,18.00,0.67,4.67,19. 00,5.50,26.00;3.32,2.48,36.43,2.17,7.15,22.99,11.95,60.95;3.00,2.29,19.0 2,1.62,6.90,3.57,18.50,49.14;1.67,3.08,48.98,3.69,29.66,31.50,65.53,272. 23;1.96,3.23,14.44,1.64,18.02,33.12,33.10,68.73;1.25,3.69,42.00,4.25,22. 22,19.94,53.50,70.00;1.47,9.87,49.15,3.48,4.11,22.37,19.92,67.10;2.02,0. 97,16.99,12.29,18.00,17.36,3.66,16.59;2.41,1.56,2.81,15.79,3.42,21.61,2. 44,24.26;1.00,2.15,40.16,14.27,5.74,53.90,9.24,27.90;1.70,0.77,3.13,5.00, 6.32,11.48,10.23,30.77;0.97,0.12,2.39,21.16,8.08,16.21,41.26,18.84;2.86, 3.29,29.70,1.91,17.04,41.90,12.05,31.90;1.41,5.58,44.18,6.51,10.88,31.98 ,12.92,31.69;1.02,0.86,13.08,1.59,11.15,21.91,26.67,22.28;0.84,0.24,2.16, 21.14,3.56,24.94,18.73,25.61;1.00,0.23,6.11,13.95,4.59,17.19,26.95,18.01 ;0.74,1.39,14.21,20.55,4.29,15.54,54.11,38.96;0.49,0.83,9.03,13.69,1.39,2 4.35,59.15,49.86;1.20,0.23,2.01,20.99,1.06,25.23,23.84,52.05;1.38,0.31,0. 71,5.27,0.98,3.97,68.88,33.79;1.79,0.63,8.00,4.67,4.58,6.92,65.92,61.50;1. 53,2.84,17.27,3.06,18.51,11.59,19.65,49.50;0.78,2.33,33.11,2.78,18.17,7. 28,75.46,51.56;3.83,1.00,53.83,3.53,3.50,0.17,52.67,111.67;2.50,2.67,49. 88,3.14,3.83,8.33,48.33,43.33;1.48,4.32,27.61,1.68,47.29,1.81,69.42,443. 10]

主成分分析

主成分分析

一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。

从数学角度来看,这是一种降维处理技术。

思路:一个研究对象,往往是多要素的复杂系统。

变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。

原理:假定有 n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,x11x12 x1px21 x22 x2p Xxn 1xn2xnp记原变量指标为x1,x2,,,xp ,设它们降维处理后的综合指标,即新变量为 z1,z2,z3,,,zm(m ≤p),则z 1l11x 1 l 12x 2l1p xpz 2 l 21x1 l22x2l2p xp ............ z mlm1x 1 l m2x 2lmp xp系数lij 的确定原则:①zi 与zj (i ≠j ;i ,j=1,2,,,m )相互无关;②z 是x 1 ,x ,,,x 的一切线性组合中方差最大者,z 是与z 不相关的x ,x ,,,1 2P2 1 1 2 xP 的所有线性组合中方差最大者;zm 是与z1,z2,,,, zm -1都不相关的x1,x ,,x P ,的所有线性组合中方差最大者。

2新变量指标z1,z2,,,zm 分别称为原变量指标x1,x2,,,xP 的第1,第2,,,第m 主成分。

从以上的分析可以看出,主成分分析的实质就是确定原来变量xj (j=1,2 ,,,p )在诸主成分zi (i=1,2,,,m )上的荷载lij (i=1,2,,,m ;j=1,2,,,p )。

从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。

二、主成分分析的计算步骤1、计算相关系数矩阵r11 r12 r1 pr21 r22 r2 pRrp1 rp2 rpprij(i,j=1,2,,,p)为原变量xi与xj的相关系数,rij=rji,其计算公式为n(x ki x i)(x kj x j)r ijk1n n(x ki2(x kj x j)2 x i)k1k12、计算特征值与特征向量解特征方程I R0,常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列1 2 p0;p 分别求出对应于特征值i的特征向量e i(i1,2,L,p),要求ei=1,即e ij21j1其中e ij表示向量e i的第j 个分量。

sas主成分分析

sas主成分分析

sas主成分分析sas主成分分析第七章主成分分析实验目的:熟悉并掌握主成分分析和因子分析的原理和在变量分类、综合评价、主成分回归等几个方面的应用,以及相应的SAS程序实现。

实验内容:对我国钢铁行业上市公司的财务绩效状况进行主成分分析,选择的财务指标共有以下几个:流动比率,速动比率,存货周转率,总资产周转率,净资产收益率,经营净利率,每股收益,净资产收益率增长率,股东权益增长率。

数据如下:完成以下工作:(1)选取累积贡献率>85%的前几个主成分,分别计算得分;并对选取的主成分进行解释;(2)对各上市公司的财务绩效进行综合评价;(3)利用选取的主成分得分,借助聚类分析过程对钢铁行业上市公司进行分类。

datazcf;inputname$x1-x9;cards;邯郸钢铁1.5510.9717.1650.88910.7689.2680.451-16.0246.122武钢股份2.1921.828.0880.97515.05411.1140.336-3.0392.588钢联股份1.2860.9418.0441.1247.3894.5990.205-59.988122.041宝钢股份0.9790.5718.130.6019.7428.780.205-17.6853.989莱钢股份1.3640.4975.0780.9314.1039.1370.523-24.26114.16西宁特钢1.4330.6721.4620.4716.4297.2680.1559.3493.027杭钢股份2.1081.4988.3731.41816.7567.9370.531-18.72513.662邢台轧辊2.11.5951.8830.3966.4848.9810.1325.275-1.061宁夏恒力1.3641.0641.8680.2787.46919.8420.201-35.19455.428凌钢股份1.7721.0617.8411.11912.8838.8040.5285.34310.107南钢股份1.8181.3928.8661.54612.8855.1530.409-7.0286.131酒钢宏兴1.4410.88410.1681.07112.8317.8250.36744.0376.686抚顺特钢0.9550.6523.4160.5097.1476.8510.193-8.0741.93安阳钢铁1.8931.3335.1070.9810.9497.9150.3500上海科技1.3131.1824.6430.5689.5499.4230.19935.6353.582沪昌特钢10.8139.536.5850.5671.1031.6560.01915.031-7.171山川股份1.2520.5851.4850.45110.34414.6930.209-1.6159.799浦东不锈6.1865.1212.3630.2650.7542.5130.013-45.439-1.176新华股份1.8171.3143.2910.7469.9249.0280.137-3.5771.985工益股份1.8091.2674.0460.8280.6950.450.011104.419-4.714马钢股份1.5841.0694.3180.5692.0032.1830.03235.279-12.487宝信软件3.5943.2015.0140.82114.669.7210.147126.91123.243北特钢1.3851.0922.6910.467-11.21-7.917-0.14853.839-11.058广钢股份0.8590.513.8840.7224.2472.6850.096-32.409-4.004;procprincompn=9out=prin;varX1-x9;run;procprintdata=prin;varprin1-prin9;run;主要输出结果:相关阵的特征值和特征向量EigenvalueDifferenceProportionCumulative13.626730451.710877240.40300.403021.915853210.519337180.21290.615831.396516020.349008540.15520.771041.047507480.371047740.11640.887450.676459740.478913290.07520.962660.197546440.106501190.02190.984570.091045260.044878480.01010.994680.046166770.043992140.00510.999890.002174630.00021.0000EigenvectorsPrin1Prin2Prin3Prin4Prin5Prin6Prin7Prin8Prin9x1-.2632570.5528190.3251720.0999320.0123340.1292890.077190-.0215500.697189x2-.2696730.5512290.3176490.0909930.0600930.065411-.0196680.049407-.709595x30.3207430.454750-.227474-.1958410.013020-.7729000.0382700.0086860.033825x40.3790330.331485-.342911-.1840840.0144020.490904-.3231210.4986720.026498x50.4608530.1052280.1235360.3670920.0903870.094185-.486791-.610331-.003691x60.308953-.1918380.4762280.4505290.202663-.228562-.0285870.5848690.042126x70.4802260.1255120.0219100.155827-.2454280.2558630.762567-.122168-.082054x8-.1693840.077314-.5106640.4440140.6759650.0353110.220767-.0214310.005659x90.210440-.0652010.347445-.5918860.6553280.1132300.140544-.1355950.001607由输出特征值可知,第一主成分的贡献率为40.30%,第二个主成分的.贡献率为61.58%,第三个主成分的贡献率为77.10%,前四个主成分累计贡献率为88.74%。

主成分分析【可编辑全文】

主成分分析【可编辑全文】
沿着xl轴方向或x2轴方向都具有较大的离散性,其离散 的程度可以分别用观测变量xl的方差和x2的方差定量地 表示。显然,如果只考虑xl和x2中的任何一个,那么包 含在原始数据中的经济信息将会有较大的损失。
• 如果我们将xl 轴和x2轴先平移,再同时 按逆时针方向旋转角度,得到新坐标轴Fl和 F2。Fl和F2是两个新变量。
• 如果变量分组较有规则,则从特征向量各 分量数值作出组内组间对比分析。
主成分分析的一般步骤
6. 解释各个主成分的含义 7. 进行其他分析
利用SPSS进行主成分分析的步骤
1. 指标数据的标准化。
可以利用“Descriptive statistics” 中的“Descriptives”进行标准化。
这种由讨论多个指标降为少数几个综合指 标的过程在数学上就叫做降维。主成分分析通 常的做法是,寻求原指标的线性组合Fi。其中, Xi 是经过标准化后的变量。
F1 u11X1 u21X 2 u p1X p F2 u12 X1 u22 X 2 u p2 X p
Fp u1p X1 u2 p X 2 u pp X p
4. 确 定 主 成 分 Fi 的 表 达 式 : 将 表 “Component Matrix”(初始因子载荷 阵)中的第i列向量除以第i个特征根的平方 根,得到第i个主成分Fi的变量系数向量。
5. 对主成分Fi进行解释。
• x1:数学 • x2:物理 • x3:化学 • x4:语文 • x5:历史 • x6:英语
满足如下的条件:
每个主成分的系数平方和为1。即
u2 1i
u2 2i
u
2 pi
1
主成分之间相互独立,即无重叠的信息。即
Cov(Fi,Fj) 0,i j,i,j 1, 2, ,p 主成分的方差依次递减,重要性依次递减,即

主成分分析

主成分分析

Extraction Method: Principal Component Analysis. Component Scores.
主成分系数矩阵,从而得出各主成分的表达式, 主成分系数矩阵,从而得出各主成分的表达式,注意在表达 式中各变量已经不是原始变量,而是标准化变量。 式中各变量已经不是原始变量,而是标准化 身高(X1,cm)、头围(X2,cm)、 体重(X3,g)的数据。
实验报告
写出X1, , 的相关矩阵 的相关矩阵。 写出 ,X2,X3的相关矩阵。 写出KMO与球形检验的结果(P值), 与球形检验的结果( 值 写出 与球形检验的结果 并做出判断, 并做出判断,该数据是否适合主成分分 析。 写出3个主成分的贡献率 个主成分的贡献率。 写出 个主成分的贡献率。 写出3个主成分关于 个主成分关于X1, , 的标准 写出 个主成分关于 ,X2,X3的标准 化的数值的线性组合。 化的数值的线性组合。
Rotation子对话框:用于因子分析。 子对话框:用于因子分析。 子对话框 Score子对话框 子对话框
选择是否将因子得分存入文件,以及具体的得分计算方法。 (1)Save as Variables:将计算出的因子得分作为新变量 加入数据文件,注意此处加入的是经过标准化的因子得分。 (2)Method单选框组:用于选择计算因子得分用的方法, 使用默认的回归法即可。 (3)Display factor score coefficient maxtrix:很重要。显 示因子得分系数阵,通过该系数阵就可以将所有公因子表示 为各个变量的线性组合,也就是我们所需要的主成分分析的 结果,系统同时会给出因子得分的协方差阵。
主 成 分 分 析
主成分分析
每个人都会遇到有很多变量的数据。 比如全国或各个地区的带有许多经济和社会变量 的数据;各个学校的研究、教学等各种变量的数 据等等。 这些数据的共同特点是变量很多,在如此多的变 量之中,有很多是相关的。人们希望能够找出它 们的少数“代表”来对它们进行描述。 主成分分析(principal component analysis) 就是把变量维数降低以便于描述、理解和分析的 方法。

多元统计分析第七章主成分分析习题答案

多元统计分析第七章主成分分析习题答案

7.1 设随机变量12X(X ,X )'=的协差阵为21,12⎡⎤∑=⎢⎥⎣⎦试求X的特征根和特征向量,并写出主成分。

解:先求X的特征根λ,λ满足方程:21012-λ=-λ,即2(2)10-λ-=,因此两个特征根分别为123, 1.λ=λ=设13λ=对应的单位特征向量为()1121a ,a ',则()1121a ,a '满足:1121a 110a 110-⎛⎫⎡⎤⎛⎫= ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取1121a a ⎛⎛⎫ = ⎪ ⎝⎭ ⎝,其对应主成分为:112F X X 22=+;设21λ=对应的单位特征向量为()1222a ,a ',则()1222a ,a '满足:1222a 110a 110⎛⎫⎡⎤⎛⎫=⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取1222a a ⎛⎫⎛⎫ ⎪= ⎪ ⎝⎭- ⎝,其对应的主成分为:212F 22=-.7.2设随机变量123X (X ,X ,X )'=的协差阵为120250,002-⎡⎤⎢⎥∑=-⎢⎥⎢⎥⎣⎦试求X的主成分及主成分对变量X的贡献率。

解:先求X的特征根λ,λ满足方程:12025002-λ---λ=-λ,即()2(2)610-λλ-λ+=,因此三个特征根分别为1235.8284,2,0.1716λ=λ=λ=设1 5.8284λ=对应的单位特征向量为()112131a ,a ,a ',则它满足:1121314.828420a 020.82840a 000 3.8284a 0--⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥--=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取 112131a 10.38271a 2.41420.92392.6131a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 112F 0.3827X 0.9239X =-,其贡献率为5.828472.86%5.828420.1716=++;设22λ=对应的单位特征向量为()122232a,a ,a ',则它满足:122232120a 0230a 0000a 0--⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取122232a 0a 0a 1⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其对应主成分为: 23F X =,其贡献率为225%5.828420.1716=++;设30.1716λ=对应的单位特征向量为()132333a ,a ,a ',则它满足:1323330.828420a 02 4.82840a 000 1.8284a 0-⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥-=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取132333a 10.92391a 0.41420.38271.0824a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 312F 0.9239X 0.3827X =+,其贡献率为0.17162.14%5.828420.1716=++.7.3 设随机变量12X (X ,X )'=的协差阵为14,4100⎡⎤∑=⎢⎥⎣⎦试从∑和相关阵R出发求出总体主成分,并加以比较。

主成分分析

主成分分析
2、主成分分析的数学模型及几何解释
(1 )、 数学模型
设有 n 个样品,每个样品观测p项指标(变量), X1,
X2,202…0/7/7,Xp,得到原始数据资料阵:
5
其中
用数据矩阵X的p个向量(即p个指标向量)X1,…,Xp作线
性组合(即综合指标向量)为:
2020/7/7
6
简写成
(注意:Xi是n维向量,所以Fi也是 n 维向量) 上述方程组要求:
主成分分析
2020/7/7
1
一、什么是主成分分析及基本思想
1 、什么是主成分分析
主成分概念首先由Karl parson在1901年引进,不 过当时只对非随机变量来讨论的。1933年Hotelling将 这个概念推广到随机向量:
在实际问题中,研究多指标(变量)问题是经常遇到的,
然而在多数情况下,不同指标之间是有一定相关性。由于
一般情况,p个变量组成p维空间,n个样本就是p维 空间的n个点,对p元正态分布变量来说,找主成分的问 题就是找p维空间中椭球体的主轴问题。
3 主成分的推导及性质
在下面推导过程中,要用到线性代数中的两个定理先 作一下复习:
定理一 若矩阵A是p阶实对称阵,则一定可以找到 正交阵
定理二 若上述矩阵A的特征根所对应的单位特征向量
X1,…,Xp构成的坐标系旋转产生的新坐标系,新坐标 轴使之通过样品变差最大的方向(或说具有最大的样品
方差)。下面以最简单的二元正态变量来说明主成分的
几何202意0/7/7义。
9
设有 n 个样本,每个样本有p个变量记为X1,…,Xp,
它们的综合变量记为F1,F2,…,Fp。当p=2时,原变
量是X1,X2,设
指标较多再加上指标之间有一定的相关性,势必增加了分

《主成分分析》幻灯片PPT

《主成分分析》幻灯片PPT

PCA的实质——简化数据
用尽可能少的变量〔主成分〕反映原始数据中尽 可能多的信息,以简化数据,突出主要矛盾。
反映原始数据特征的指标:方差-离散度 主成分:原始变量的最优加权线性组合 最优加权:
第一主成分:寻找原始数据的一个线性组合,使 之具有最大方差〔数据离散度最大的方向〕
第二主成分:寻找原始数据的一个线性组合,使 之具有次大方差,且与第一主成分无关
12.00
14.00
16.00
run100m
18.00
20.00
二、PCA的模型与算法
设:x为标准化变量, 原始数据阵 X s [x 1 ,x 2 , x p ] PCA目标:找到原始数据方差最大的线性组合
❖设:线性组合系数为p×1=[1, 2, … p]T
❖即:要找一个 使z=Xs= 1x1+ 2x2 +…+ pxp具有
What does PCA do?
Original data matrix, say n by p 正交旋转
New data matrix, say n by q, with q < p:
例:研究55个国家运发动径赛 能力,用8项径赛成绩
经PCA得到新数据阵: z55×2:选取2个主成分, 其中第一主成分表示综合
0.0
1
第一主成分-1.0包0 含的信0.0息0 量显然1.00
-21..000
售 电 量
Z2
大于第二主成分,因而忽略s 第
二主成分信息损失不大 -2.0
-2
-1
Ma Xin, North China Electric Power University
0
1
2
3

主成分分析

主成分分析

x12 x22 M xn 2
L x1 p L x2 p M L xnp
主成分分析的概念(续)
由于实测的变量间存在一定的相关关系, 由于实测的变量间存在一定的相关关系, 因此有可能用较少数的综合指标分别综 合存在于各变量中的各类信息, 合存在于各变量中的各类信息,而综合 指标之间彼此不相关, 指标之间彼此不相关,即各指标代表的 信息不重叠。综合指标称为主成分( 信息不重叠。综合指标称为主成分(提 取几个因子),一般有两种方法: ),一般有两种方法 取几个因子),一般有两种方法: 特征值>1 特征值 累计贡献率>0.8 累计贡献率
0.198 99.015
0.049 100.000
Component Matrix(a) Component 1 X1 X2 X3 X4 X5 .808 .814 -.791 .101 .846 2 -.487 .397 .479 .977 .415
由此可建立第一、二主成分(即两个新的综合指标) 由此可建立第一、二主成分(即两个新的综合指标) Z1=0.808X1+0.814X2-0.791X3+0.101X4+0.846X5; Z2=-0.487X1+0.397X2+0.479X3+0.977X4+0.415X5;
主成分分析的基本思想
主成分分析是研究如何通过原来变量的少数几个线性 组合来解释原来变量绝大多数信息的一种多元统计方法. 组合来解释原来变量绝大多数信息的一种多元统计方法 既然研究某一个问题涉及的众多变量之间有一定的相 关性,就必然存在着起支配作用的共同因素 根据这一点 关性 就必然存在着起支配作用的共同因素,根据这一点 就必然存在着起支配作用的共同因素 根据这一点, 通过对原始变量相关矩阵或协方差矩阵内部结构关系的 研究,利用原始变量的线性组合形成几个综合指标 主成分 研究 利用原始变量的线性组合形成几个综合指标(主成分 利用原始变量的线性组合形成几个综合指标 主成分) 在保留原始变量主要信息的前提下起到降维与简化问题 的作用,从而在研究复杂问题时抓住主要矛盾 的作用 从而在研究复杂问题时抓住主要矛盾. 从而在研究复杂问题时抓住主要矛盾

主成分分析实例和含义讲解

主成分分析实例和含义讲解

主成分分析实例和含义讲解1.数据标准化:对原始数据进行标准化处理,使得每个变量的均值为0,方差为1、这一步是为了将不同量级的变量进行比较。

2.计算协方差矩阵:根据标准化后的数据,计算协方差矩阵。

协方差矩阵反映了各个变量之间的线性关系。

3.特征值分解:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

特征值表示了各个特征向量的重要程度。

4.选择主成分:根据特征值的大小,选择前k个特征向量作为主成分,k通常是根据主成分所解释的方差比例进行确定。

5.数据投影:将原始数据投影到选取的主成分上,得到降维后的数据。

主成分分析的含义可以从两个方面来解释。

一方面,主成分分析表示了原始数据在新坐标系下的投影,可以帮助我们理解数据的结构和变化。

通过选择前几个主成分,我们可以找到最能够代表原始数据的几个因素,从而实现数据的降维。

例如,在一个包含多个变量的数据集中,如果我们选择了前两个主成分,那么我们可以通过绘制数据在这两个主成分上的投影,来理解数据的分布和变化规律。

同时,主成分的累计方差贡献率可以帮助我们评估所选择的主成分对原始数据方差的解释程度,从而确定降维的精度。

另一方面,主成分分析还可以用于数据的预处理和异常值检测。

通过计算每个变量在主成分上的权重,我们可以判断每个变量对主成分的贡献大小。

如果一些变量的权重很小,那么可以考虑将其从数据集中剔除,从而减少数据的维度和复杂度。

此外,主成分分析还可以检测数据集中的异常值。

在降维的过程中,异常值对主成分的计算结果会产生较大的影响,因此可以通过比较各个主成分的方差贡献率,来识别可能存在的异常值。

总之,主成分分析是一种常用的数据降维方法,它能够帮助我们理解数据集的结构,并鉴别对数据变化影响最大的因素。

通过选择适当的主成分,我们可以实现数据的降维和可视化,并对异常值进行检测。

在实际应用中,主成分分析常常与其他数据挖掘和机器学习方法结合使用,从而发现数据的隐藏模式和关联规则,提高数据分析的效果和准确性。

主成分分析法的原理和步骤

主成分分析法的原理和步骤

主成分分析法的原理和步骤
主成分分析(Principal Component Analysis,PCA)是一种常用的降维技术,主要用于数据预处理和特征提取。

其原理是通过线性变换将原始数据转换为具有特定性质的新坐标系,使得转换后的坐标系上数据的方差最大化。

主成分分析的步骤如下:
1. 标准化数据:对原始数据进行标准化处理,即对每个特征进行零均值化。

这是为了消除不同量纲的影响。

2. 计算协方差矩阵:计算标准化后的数据的协方差矩阵。

协方差矩阵描述了不同特征之间的相关性。

3. 计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和对应的特征向量。

特征值表示新坐标系上每个特征的方差,而特征向量则表示原始特征在新坐标系上的投影。

4. 选择主成分:按照特征值的大小排序,选择前k个特征值对应的特征向量作为主成分。

选择的主成分应该能够解释数据中大部分的方差。

5. 构造新的特征空间:将选择的主成分组合起来,构成新的特征空间。

这些主成分通常被视为数据的“重要”特征,用于表示原始数据。

通过主成分分析,可以将原始数据降维到低维度的子空间上,并且保留了原始数据中的信息。

这样做的好处是可以减少数据维度,简化模型,降低计算复杂度。

同时,通过选择合适的主成分,还可以实现数据的压缩和特征的提取。

主成分分析法

主成分分析法
第七章 主成分分析
§7.1
引言 §7.2 总体的主成分 §7.3 样本的主成分
§7.1 引言
主成分分析(或称主分量分析,principal component analysis)由皮尔逊(Pearson,1901)首先引入,后来 被霍特林(Hotelling,1933)发展了。 主成分分析是一种通过降维技术把多个变量化为少 数几个主成分(即综合变量)的统计分析方法。这些 主成分能够反映原始变量的绝大部分信息,它们通 常表示为原始变量的某种线性组合。 主成分分析的一般目的是:(1)变量的降维;(2)主成 分的解释。

现比较本例中从R 出发和例7.2.2中从 Σ 出发的主成 分计算结果。从R 出发的 y1* 的贡献率0.705明显小于 从 Σ 出发的 y1的贡献率0.938,事实上,原始变量方 差之间的差异越大,这一点也就倾向于越明显, * * * (7.2.15)式有助于我们理解之。 y1 , y2 , y3 可用标准 化前的原变量表达如下: x3 3 x1 1 x2 2 *
Cov y1 , y2 0 我们在此条件和约束条件 a2a 2 1 下寻求向量a 2 ,使 得 V y2 a2 Σa2 达到最大,所求的 y2 称为第二主成
分。求得的第二主成分为
y2 t12 x1 t22 x2 t p 2 x p t x 2

3.原始变量 xi 与主成分 yk 之间的相关系数 k xi , yk tik , i, k 1, 2,, p ii
在实际应用中,通常我们只对 xi (i 1, 2,, p) 与 yk (k 1, 2,, m) 的相关系数感兴趣。

三、从相关阵出发求主成分

主成分分析完整ppt课件

主成分分析完整ppt课件
的系数向量。对于多维的情况,上面的结论依然成立。
这样,我们就对主成分分析的几何意义有了一个充分的了解。 主成分分析的过程无非就是坐标系旋转的过程,各主成分表达 式就是新坐标系与原坐标系的转换关系,在新坐标系中,各坐 标轴的方向就是原始数据变差最大的方向。
2021/6/12
1199
目录 上页 下页 返回 结束
其中,U为旋转变换矩阵,由上式可知它是正交阵, 即满足
U'U1 , U'UI
2021/6/12
1144
目录 上页 下页 返回 结束
§2 主成分分析的几何意义
经过这样的旋转之后,N个样品点在 Y 1 轴上的离散程度最
大,变量 Y 1 代表了原始数据绝大部分信息,这样,有时在研
究实际问题时,即使不考虑变量 Y 2 也无损大局。因此,经过
指标转化为几个综合指标的多元统计方法。通常把转化生成

的综合指标称之为主成分,其中每个主成分都是原始变量的
线性组合,且各个主成分之间互不相关,这就使得主成分比
原始变量具有某些更优越的性能。这样在研究复杂问题时就 可以只考虑少数几个主成分而不至于损失太多信息,从而更
容易抓住主要矛盾,揭示事物内部变量之间的规律性,同时
上述旋转变换就可以把原始数据的信息集中到
Y
轴上,对数
1
据中包含的信息起到了浓缩的作用。进行主成分分析的目的
就是找出转换矩阵 U ,而进行主成分分析的作用与几何意义
也就很明了了。下面我们用遵从正态分布的变量进行分析,
以使主成分分析的几何意义更为明显。为方便,我们以二元
正态分布为例。对于多元正态总体的情况,有类似的结论。
1.每一个主成分都是各原始变量的线性组合;

主成分分析

主成分分析

(二)汇付的当事人
1.汇款人(remitter) 2.收款人(payee; beneficiary ) 3.汇出行(remitting bank ) 4.汇入行(receiving bank )又称
第二节 信用证的审核与修改
一、信用证的审核要求 (一)审核信用证的真实性、安全可靠性 (二)审核信用证与合同条款是否一致,
信用证条款是否合理,有无前后矛盾现 象 (三)审核信用证是否包括软条款
二、信用证的修改要求
(一)接受修改信用证和接受信用证修改 的权利
(二)修改信用证应注意以下问题:
(三)对信用证修改内容的接受或拒绝有 两种表示形式:
Clause) 十六.信用证生效性条款(Valid Conditions Clause) 十七.信用证特别条款(Special Conditions)
三、信用证项下单证的流转程序
• ① 买卖双方签订贸易合同,在合同中规定 使用信用证方式支付货款。
• ② 买方向当地银行提出申请,根据所签的 贸易合同填写开证申请书,落实开证保证 金,或提供其它保证,请银行(开证行) 开证。
• ⑦寄单索汇。议付行将汇票和货运单据按 照信用证的要求寄给开证行(或其指定的 付款行)索偿。
• ⑧开证行(或其指定的付款行)核对单据 无误后,付款给议付行。
• ⑨开证行向买方(开证申请人)提示单据, 买方付款赎单。
• ⑩开证申请人取得单据后向承运人提货。
• ⑾议付行收到货款后,为企业结汇入账, 并收回垫款。
信用证是一种银行开立的有条件的承诺付款的书面文 件。即开证行根据进口商(开证申请人)的请求和指 示向出口商(受益人)开立的一定金额的,并在一定 的期限内凭规定的单据承诺付款的书面文件。 1.由银行开出; 2.应客户的申请开出(或开证行因自身的需要而开出); 3.在符合信用证的条款和条件前提下,凭规定的单据向 受益人付款;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a1 a1 a1 a1 1
(1)
欲使方程组(3)有非零解,其充要条件是 I 0 是协方差阵 的特征根。又由 由此可见, a (2)式知,欲使 1 a1 的值最大,就是要 的 值最大。也就是说, 应取为 的最大的特 征根 1 。再由(1)式知,我们所要求的 a1 , 应该是 的最大的特征根 1所对应的单位化 特征向量。这样,我们就求得第一个综合 指标 ( a1 a1 1) y1 a1 X , 并称y1为第一个主成分。
a1 X , , a k X
就分别是第一,…,第k个主成分。
由于协方差阵 是对称阵,根据线性代数知,
的不同特征根所对应的特征向量是正交的。 所以,如果上面求得的k个特征根全不相同 时,则它们所对应的特征向量a1 ,… ak ,是相 互正交的,于是有 cov(ai X , a j X ) ai a j ai j a j j ai a j 0 这表明上面所求得的主成分y1,…,yk之间互 不相关。
y1,…,yq既能充分反映原来p个指标x1,…,xp所反
映的信息,又能使这q个综合指标之间互不相关。
首先,考虑第一个综合指标y1如何求得。它应该
是由原来p个指标x1,…,xp综合而成的,通常将其 取为原来p个指标的线性组合: y1 a1 X a11 x1 a1 p x p 其中a1 (a11 ,, a1 p ) ,是一个p维非零常向量。我
即 a2 也是协方差阵 的特征根所对应的单 位化特征向量。
a 2 a 2 1
为了使y2的方差尽量地大,自然a2 应为 的仅次于 1第二大特征根2 所对应的单位化 特征向量。这样,我们也求得了第二个综 合指标

y2 a2 X
, ( a 2 a 2 1 )
类似地,对于第二个综合指标y2,也设它 为原来p个指标x1,…,xp的线性组合,即设 y 2 a 2 X a21 x1 a2 p x p a2 (a21 ,, a2 p ) 也是一个p维非零常向 其中, a 量。同上,我们应在 2 满足单位化条件a 2 a 2 1 之下,求使y2的方差 a 2 a 2 达到最大的 a2 。 仍用Lagrange乘数法,可得应满足方程 a 2 a 2
2

a1 a1 1
这样一来,我们的问题就归结为在 a1 满足 单位化条件 a1 a1 1 之下,求使 a1 a1 达到 最大的 a1 。这就化成了求条件极值的问题。 可以用Lagrange乘数法来求解。为此令
其中 为Lagrange乘子。 对 (a1 , )分别求关于向量 a1 及乘子 的偏导 数,并令其等于零,得
一、求主成分的基本思想与方法
设 X ( x1 ,…, x p ) 是p维随机向量 EX ,V ( X ) 0
亦即来自总体X的样本有p个指标,其均值向量 为 ,协方差阵为
。现在的任务是要将这p个指
标x1,…,xp综合成尽可能少的几个综合性指标 y1,…,yq(q<p),而且要求这些新的综合指标
于是,从数学上考虑,就是要求有这样一种数学
方法:对原来提出的所有变量(即指标,设为p个) 综合成尽可能少的几个(设为q个,q<p)综合性 变量(即指标),并且要求这q个综合变量既能充 分反映原来的p个变量所反映的信息,又能使这q
个综合变量之间互不相关。主成分分析就是为解
决上述问题而引进的统计方法。
们的任务是如何选取适当的非零常向量a1 ,使得
y1能最大限度地反映原来ห้องสมุดไป่ตู้个指标的作用。
根据主成分分析的方法,这就意味着要使 原来p个指标x1,…,xp经过的变换后,得到 的y1具有最大的方差,也就是说使y1的方 差
V ( y1 ) V (a1 X ) a1 a1
尽可能地大。这就是主成分的基本思想。
(a1 , ) a1 a1 (a1 a1 1)


2a1 2a1 0 a1 a a 1 0 1 1
用 a1 右乘(1)式的两端,得 V ( y1 ) a1a1 a1 a1 (2) 再由(1)式可得 ( I )a1 0 (3)
然而,我们却不能通过增大向量a1 的长度 2 2 2 a a a (即 11 12 1 p )来使y1的方差变大。 因为对于任意常数 k >0,我们有
V (ka1 X ) k 2V (a1 X ) k 2 a1a1 , 即只要 a1 变长 k 倍,则相应的方差就变大 k 倍。因此如果对 a1 不加任何限制,问题 将会变得没有什么意义了。通常,一个很 自然的限制就是取为 a1 单位向量,即满足 单位化条件
第七章 主成分分析
在实际讨论统计问题时,为了获取充分的信息对
问题作出较可靠的推断,往往选择许多个指标 (变量)去进行观察,而这些指标甚至会多到十 几个或几十个,因为每个指标都在不同程度上反 映所研究的问题的信息。但是指标太多常常会增
加对问题分析的复杂性。因此,人们自然希望选
取的指标个数较少而得到的信息较多。在很多情 况下,这些指标之间有一定的相关关系,当两个 指标之间有一定的相关关系时,可以解释为两个 指标反映的信息有一定的重叠。
并称y2为第二个主成分。 依次下去,我们可求得第三主成分,第四 主成分,等等。
由于协方差阵 0 ,根据线性代数知识 知, 的所有特征根都是非负实数。将它 们按大小顺序排列为
1 2 p 0
并设前k个为正 (k p) ,且1 ,k相应的单 位化特征向量分别为 a1 ,…, ak ,那么,
相关文档
最新文档