对采用放坡和土钉墙相结合的深基坑支护设计的简单计算
基坑放坡加土钉墙支护组织施工设计方案

基坑放坡加土钉墙支护组织施工设计方案一、施工组织方案1.施工队伍组织根据基坑的规模和复杂程度,合理组织施工队伍。
施工队伍应包括工地负责人、技术人员、土建工人、设备操作人员等。
确保施工过程中各岗位的协调配合和工作安全。
2.施工进度计划制定详细的施工进度计划,包括工序安排、材料采购、设备调配等。
合理安排施工序列,确保施工的连续性和高效性。
同时考虑天气条件、交通状况等因素,制定灵活的施工计划。
3.安全管理施工过程中重视安全管理,制定合理的安全措施。
加强施工现场的安全巡查,落实好劳动防护措施,确保施工人员的安全。
加强施工现场的防护措施,设置警示标志牌、安全网等,防止施工过程中的安全事故发生。
4.环境保护在施工过程中,按照环境保护的要求进行工作。
采取合理的排污方案,控制扬尘、废水等对周边环境的影响。
施工完成后,及时清理施工现场,恢复原有环境。
1.基坑放坡设计根据基坑的具体情况,设计适当的坡度和坡高。
考虑基坑周边土体的稳定性和承载能力,确保基坑的稳定性。
同时,根据土体情况和施工方法,选择合适的放坡方式,如平面放坡、阶梯放坡等。
2.土钉墙支护设计根据基坑的深度和土体质量,设计合适的土钉长度和间距。
考虑土体的抗剪强度、拉力、抗压强度等参数,确保土钉墙的稳定性和承载力。
根据土钉墙的高度,确定合理的锚定长度和锚固深度。
3.土壤加固设计根据土体的性质和强度要求,设计合适的土壤加固措施。
可以采用深层加固、浅层加固等方法,如加固灌浆、点支撑等。
根据施工条件和土壤特性,选择合适的加固材料和加固方法。
4.施工工艺设计根据施工条件和工程要求,制定详细的施工工艺方案。
包括开挖工艺、加固工艺、土钉安装工艺等。
合理选择施工方法和设备,确保施工质量和进度。
同时,设置监测点,监测基坑和土钉墙的变形和稳定性。
通过合理组织施工队伍,切实做好施工现场的安全管理和环境保护,同时根据基坑的具体情况设计合适的放坡和土钉墙支护方案,可以有效地保证基坑施工的顺利进行,并最大程度地降低施工风险。
常见基坑支护形式优劣及成本

常见基坑支护形式优劣及成本常见的基坑支护形式包含以下多种类型:放坡、土钉墙支护、锚杆、钢板桩、水泥搅拌桩、SMW 工法桩、钻孔灌注桩、钻孔灌注桩双排刚架、内支撑、松木桩、空心方桩、高压旋喷桩以及地下连续墙。
现从适用条件、不适用条件、注意事项、具备的优势、存在的劣势、参考造价以及参考工期等多个角度,对上述所提及的这些常见基坑支护形式展开全面且详细的阐述。
一、放坡(一)适用条件1、基坑周边较为开阔,足以满足放坡条件;2、土层状况良好,且周边不存在重要建筑物以及地下管线的工程;3、基坑周边允许出现较大位移情况;4、开挖面以上的一定范围内不存在地下水,或者已进行降水处理。
(二)不适用条件1、存在于淤泥和流塑土层;2、地下水高于开挖面,或者未实施降水处理;3、基坑周边有对位移严格控制要求的建筑物、构筑物和地下管线等。
(三)注意事项1、在软土底层中采用单级放坡的基坑,其开挖深度不宜超过 4m,采用多级放坡开挖的基坑,开挖深度不宜大于 7m;2、在周边条件允许的情况下,应尽量增大放坡程度,尽量增加放坡脚的反压;3、要做好降水、截水、泄水等措施。
由于地下水会不断渗入基坑,在基础施工过程中需要持续抽水;4、坡面土体处于裸露状态,受雨水冲刷会影响边坡的稳定。
(四)优势1、造价最为低廉;2、支护施工的进度较快。
(五)劣势1、坑边变形较大;2、占用场地较多,回填土方量较大,在雨季或被地下水浸泡时容易坍塌;3、大放坡的土方开挖及回填工程量较大,在土方价格昂贵的地方造价较高。
(六)参考造价各地土方价格差异较大,单价可按150元/m3或1560元/延长米。
(七)参考工期按照 16 小时工作制,1 台 220 挖机 1 天可完成 1500m³土方,可完成 160 延长米边坡土方的平整。
二、土钉墙支护(一)适用条件1、主要用于岩土条件较好,基坑周边土体允许有较大位移,开挖深度不大于12m的基坑;2、适用于地下水位以上为粘土、粉质粘土、粉土和砂土,或已经降水处理、止水处理的岩土。
土钉墙支护方式计算说明

第2章土钉墙支护计算土钉支护技术2.1.1土钉支护的概念土钉支护亦称锚喷支护,就是逐层开挖基坑,逐层布置排列较密的土钉(钢筋),强化边坡土体,并在坡面铺设钢筋网,喷射混凝土。
相应的支护体称为土钉墙,它由被加固的土体、放置在土体中的土钉与喷射混凝土面板三个紧密结合的部分组成。
土钉是其最主要的构件,英文名叫Soil Nailing,它的设置有打入法,旋入法,以及先钻孔、后置入、再灌浆三种方法。
2.1.2土钉支护的特点与其它支护类型相比,土钉支护具有以下一些特点或优点:1.土钉与土体共同形成了一个复合体,土体是支护结构不可分割的部分。
从而合理的利用了土体的自承能力。
2.结构轻柔,有良好的延性和抗震性。
3.施工设备简单。
土钉的制作与成孔、喷射混凝土面层都不需要复杂的技术和大型机具。
4.施工占用场地少。
需要堆放的材料设备少。
5.对周围环境的干扰小。
没有打桩或钻孔机械的轰隆声,也没有地下连续墙施工时污浊的泥浆。
6.土钉支护是边开挖边支护,流水作业,不占独立工期,施工快捷。
7.工程造价低,经济效益好,国内外资料表明,土钉支护的工程造价能够比其它支护低1/2~1/3。
8.容易实现动态设计和信息化施工。
2.1.3土钉支护的适用范围土钉支护适用于:地下水位以上或经人工降水措施后的杂填土、普通粘土或弱胶结的砂土的基坑支护或边坡加固。
一般可用于标准贯入基数N值在5以上的砂质土与N值在3以上的粘性土。
单独的土钉墙宜用于深度不大于12m的基坑支护或边坡维护,当土钉墙与放坡开挖、土层锚杆联合使用时,深度可以进一步加大。
土钉支护不宜用于含水丰富的粉细砂岩、砂砾卵石层和淤泥质土。
不得用于没有自稳能力的淤泥和饱和软弱土层。
2.1.4土钉的作用机理土钉在复合土体中有个整体以下几种作用机理:1.箍束骨架作用:该作用是由于土钉本身的刚度和强度,以及它在土体内分布的空间所决定的。
它在复合土体中起骨架作用,使复合土体构成一个整体,从而约束土体的变形和破坏。
对采用放坡和土钉墙相结合的深基坑支护设计的简单计算

1、基坑支护方案的设计1.1考虑局部基坑断面为素填土为最不利基坑开挖工况,进行土钉墙支护方案设计,支护深度7m 。
依据《建筑基坑支护技术规程》(JGJ120-2012)第3.1.3条,基坑四周空旷、无建筑物。
支护结构失效,对基坑周边环境或主体结构施工安全的影响不严重,确定该支护结构的安全等级为三级。
1.2本工程为临时性工程,设计使用期限为3个月,自支护结构施工结束起算,为保证基坑四壁的安全稳定性,考虑基坑较深,局部为素填土、性质不均匀,四周具备放坡条件,基坑四周采用放坡和土钉墙结合的处理方案,按1:1.4进行放坡,配合设置土钉墙进行基坑四壁的加强处理。
沿坑壁均匀设置三排土钉,土钉的垂直间距2m ,自自然地坪算起每2m 设置一排土钉,水平间距2m ,均匀放置,采用自钻式锚杆(土钉)(型号为HRB300,2Ø16),错杆成孔直径130mm ,与水平向夹角为15°,锚杆钻进过程中可以使用水泥作为眼进浆液一起钻进,严格控制塌孔、流土现象。
采用压力注浆注纯水泥浆,注浆压力为0.2~3MPa ,水灰比为0.4~0.5,必要时可加入一定量的外加剂。
1.3单根土钉的轴向拉力标准值计算N kj =j z j x ak j s s a j j,,,cos 1ρξη(5.2.2) 式中:N kj ——第j 层土 钉的轴向拉力标准值(KN )a j ——第j 层钉倾角(15°)ξ——墙面倾斜时的主动土压力折减系数,可按本规程第 5.2.3条确定j η——第j 层土 钉轴向拉力调整系数,可按本规程公式5.2.4-1计算j ak,ρ——第j 层土钉处的主动土压力强度标准值(KP a ),应按本规程第3.4.2条确定S x,j ——土钉的水平间距(m )S x,j =2mS z,j ——土钉的垂直间距(m )S z,j =2m1.3.1坡面倾斜时的土压力折减系数)245(2tan /]12tan [2tan m mmtan β1ϕϕβϕβξ-︒-+-=式 (5.2.3) 式中:β-土钉墙坡面与水平面的夹角β=35°mϕ—基坑底面以上各土层按厚度加权的等效内摩擦角平均值(10°)mϕ=10° 计算得:ξ=0.311.3.2±钉轴向拉力调整系数h z j b a a j )(ηηηη--= (5.2.4-1) aj j aj j b a E Z h E z h )()(-∑-∑=ηη (5.2.4-2)式中Z j ——第j 层土钉至基坑顶面的垂直距离(m )h —基坑深度(m )h=7m△E aj —作用在以s x,j 、s z,j 为边长的面积内的主动土压力标准值(KN ) -a η计算系数 -b η经验系数,取0.6n —土钉层数计算得:11=η 93.02=η 785.03=η 1.3.3单根土钉各层的轴向拉力标准值计算得:kN N K 65.291=KN N K 8.462= KN N K 5.633= 1.4单根土钉的极限抗拔承载力计算t K N R KJ KJ ≥ (5.2.1)式中K t 一一土钉抗拔安全系数;安全等级为三级的土钉墙,K t 不应小于1.4;N k,j ---第j 层土钉的轴向拉力标准值(kN),应按本规程第5.2.2条的规定计算;R k,j ——第j 层土钉的极限抗拔承载力标准值(kN),应按本规程第5.2.5条的规定确定。
基坑土钉支护设计计算

基坑土钉支护设计计算概述1.土钉支护的概念土钉支护是近年来发展起来用于土体开挖和边坡稳定的一种新型挡土结构,它由被加固土、存放于原位土体中的细长金属杆件(土钉)及附着于坡面的混凝土面板组成,形成一个非常类似重力式墙的挡土墙。
以此来抵抗墙后传来的土压力和其他作用力,从而使开挖坡面均衡。
土钉一般是通过钻孔、插筋、注浆来设置的,也可通过直接打入较粗的或型钢形成土钉。
土钉沿通长沉降与周围土体接触,仰仗接触磨细界面上的黏结摩阻力,与其周围锚定土体构筑复合土体,土钉在土体炸裂变形的条件下被动受力,并主要通过其受拉工作对土体进行加固。
而土钉之间变形则通过面板(通常为配筋喷射混凝土)予以约束。
其典型结构如图3-21所示。
2.土钉支护的发展现代土钉技术是从20世纪70年代出现的。
德国、法国和美国在几乎同一时期各自独立地开始了土钉墙的研究和纳米技术。
出现这种情况并非偶然,因为土钉在许多方面与隧道新奥法施工类似,可视为看做是新奥刑事法概念的延伸。
20世纪60年代初期出现的新奥法,紧固采用喷射混凝土和黏结型锚杆相结合的演算法,能迅速控制隧道变形并并使之稳定,特别70年代及稍后的时间内,在德国法兰克福及纽伦堡地铁的土体开挖工程中应用获得成功,对土钉墙的出现产生了积极的影响。
此外20世纪60年代发展起来的加筋土技术对土钉墙技术的萌生一定也有一定的推动示范作用。
1972年法国首先在工程应用软件中会应用土钉墙技术。
该工程为凡尔赛附近的一处地铁路堑的边坡法国政府开挖工程,这是有详细记录建设项目的第一个土钉墙工程。
美国最早应用土钉墙在1974年。
一项有名的建设工程是匹茨堡PPG工业总部的深基开凿。
德国于1979年首先在建造了第一个永久土钉工程(高14m)。
并进行了长达10年的工程测量,获得了很多有价值的数据。
我国应用土钉的首例工程可能是1980年将土钉用于山西柳弯煤矿的边坡稳定。
近年来,各地的基坑工程开始较广泛地应用土钉墙支护。
与国外相比,我国在发展土钉墙技术上所有一些独特的成就。
土钉墙支护计算计算(准确)

土钉墙支护计算计算书本计算书参照《建筑基坑支护技术规程》JGJ120-99 中国建筑工业出版《建筑施工计算手册》江正荣编著中国建筑工业、《实用土木工程手册》第三版文渊编著人民教同、《地基与基础》第三版中国建筑工业、《土力学》等相关文献进行编制。
土钉墙需要计算其土钉的抗拉承载力和土钉墙的整体稳定性。
一、参数信息:1、基本参数:侧壁安全级别:二级基坑开挖深度h(m):7.430;土钉墙计算宽度b'(m):100;土体的滑动摩擦系数按照tanφ计算,φ为坡角水平面所在土层的摩擦角;条分块数:/;不考虑地下水位影响;2、荷载参数:序号类型面荷载q(kPa) 基坑边线距离b0(m) 宽度b1(m)1 局布20.00 4.86 53、地质勘探数据如下::序号土名称土厚度坑壁土的重度γ 坑壁土的摩擦角φ 聚力C 极限摩擦阻力(m) (kN/m3) (°) (kPa) (kPa)1 填土 1.30 18.00 18.00 12.0080.002 粘性土 1.30 18.00 20.00 25.00100.003 粉土 3.10 19.00 25.00 18.00110.004 粘性土 1.20 18.00 20.00 25.00 100.005 粉砂 4.10 19.00 35.00 18.00 115.004、土钉墙布置数据:放坡参数:序号放坡高度(m) 放坡宽度(m) 平台宽度(m)1 7.43 3.00 100.00土钉数据:序号直径(mm) 长度(m) 入射角(度) 竖向间距(m) 水平间距(m)1 150 6.00 15.00 1.50 1.50二、土钉(含锚杆)抗拉承载力的计算:单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ 120-99,R=1.25γ0T jk1、其中土钉受拉承载力标准值T jk按以下公式计算:T jk=ζe ajk s xj s zj/cosαj其中ζ--荷载折减系数e ajk--土钉的水平荷载s xj、s zj --土钉之间的水平与垂直距离αj--土钉与水平面的夹角ζ按下式计算:ζ=tan[(β-φk)/2](1/(tan((β+φk)/2))-1/tanβ)/tan2(45°-φ/2)其中β--土钉墙坡面与水平面的夹角。
放坡与土钉墙支护技术

总的说来,土钉在复合土体中有以下几种作用机理:
(1)箍束骨架作用 该作用是由土钉本身的刚度和强度,以及它在土体内分布的空 间所决定的。它在复合体中起骨架作用,使复合土体构成一个 整体,从而约束土体的变形和破坏。
(2)分担作用 在复合体内,土钉与土体共同承担外荷载和自重应力,土钉起 着分担作用。由于土钉有很高的抗拉、抗剪强度和土体无法相 比的抗弯刚度,所以在土体进入塑性状态后,应力逐渐向土钉 转移。当土体发生开裂后,土钉的分担作用更为突出,这时土 钉内出现了弯剪、拉剪等复合应力,从而导致土钉中的浆体碎 裂、钢筋屈服。土钉墙之所以能够延迟塑性变形,并表现出渐 进性开裂,与土钉的分担作用是密切相关的。
(5)根据大比例足尺试验结果看,在土钉墙整体破坏之前,并未发现喷 射混凝土面板和锚头产生破坏现象,在实际工程中也未见任何锚头破坏现 象。所以,在设计中,对面板和锚头不要进行单独设计,只要满足结构上 的构造要求即可。
4.5 土钉墙设计计算
4.5.1 确定土钉墙结构尺寸
在初步设计时,应先根据基坑环境条件和工程地质资料,确定 土钉墙的适用性,然后确定土钉墙的结构尺寸,土钉墙高度由 工程开挖深度决定,开挖面坡度可取600 ~ 900,在条件许可时 ,尽可能降低坡面坡度。
基础的下部增加新的永久性支撑物或基。
广义上讲是当紧挨着或者是在现有基础建筑 物的正下方开挖土方时,为了消除对现有基础 建筑物功能与结构等可能带来的影响,对现有 基础建筑物进行加固补强、对建筑物的持力层 地基进行改良、新基础设置及新旧基础替换等 工程。因此在荷载的转移过程中必然存在托梁 (或桁架,以下同)拆柱(或墙,或桩以下同)、托 梁接柱和托梁换柱等技术过程。
对标贯击数小于10的砂土边坡,采用土钉法一般不经济。对 不均匀系数小于2的级配不良的砂土,不能采用土钉支护;对 塑性指数IP>20的土,必须详细评价其蠕变特性,当蠕变性很 小时,才能将土钉用作永久性支护。土钉不适应在腐蚀性土 中作为永久性支护。
土钉抗拔承载力经验验算方法

土钉抗拔承载力经验验算方法第27卷第2期2010年6月建筑科学与工程JournalofArchitectureandCivilEngineeringV o1.27NO.2June2010文章编号:1673—2049(2010)02一O018—07O土钉抗拔承载力经验验算方法杨敏,刘斌.(1.同济大学地下建筑与工程系,上海200092;2.同济大学岩土及地下工程教育部重点实验室,上海200092)摘要:通过对北京,广州等地区¨个工程实测的土钉最大轴力值和土钉最大轴力值位置的分析,提出了土钉抗拔承载力的经验验算方法,并采用梯形土压力分布模式和双折线潜在滑裂面分别计算土钉墙,预应力锚索加土钉复合支护及搅拌桩(微型桩)加土钉复合支护的土钉抗拔承载力.结合工程算例,将该方法与中国《建筑基坑支护技术规程》(JGJl2O一99)和《基坑土钉支护技术规程》(CECS96:97)方法进行了比较.结果表明:采用该方法进行土钉抗拔承载力验算可以满足工程设计要求,为进一步开展复合土钉墙设计方法的研究提供了依据.关键词:基坑;复合土钉墙;土钉抗拔承载力;预应力锚索;搅拌桩中图分类号:TU431文献标志码:AEmpiricalCheckingMethodforSoil(1.DepartmentGeotechnica1andNailingAnti—pullingCapacityYANGMin.LIUBin,ofGeotechnicalEngineering,TongjiUniversity,Shanghai200092,China;2.KeyLaborator yofUndergroundEngineeringofMinistryofEducation,TongjiUniversity,Shanghai200092,C hina)Abstract:BasedOntheanalysisonthemeasuredvalueand2ocationofthemaximumaxiajforc eofsoilnailingaccordingtothe11engineeringtestslocatedinBeijing,Guangzhouandotherarea s,anempiricalcheckingmethodforsoilnailinganti—pullingcapacitywasproposed,whichincluded thesoilpressureoftrapezoidaldistributionandthepotentialslipsurfaceofbilinear1ines.The presentmethodwascalculatedforsoilnailing,theprestressedanchorplussoilnailingcompos iteretainingandthemixingpile(micro—pile)biningwith theengineeringexamples,theproposedmethodwascomparedwiththemethodsofChinese TechnicalSpecificationforRetainingandProtectionofBuildingFoundationExcavations(J GJ12O一99)andTechnicalSpecificationforSoilNailinginFoundationExcavations(CECS96: 97).Resultsshowthatthismethodcanmeetthedesignrequirementofsoilnailinganti—pullingcapacity,andcanofferreferencesforfurtherresearchonthedesignmethodsofcompositesoil nailingwails.Keywords:foundationexcavation;compositesoilnailingwall;soilnailinganti—pullingcapacity;prestressedanchor;mixingpile引言土钉墙是一种在原位土体中设置土钉且在其表面喷射混凝土面层,借助土钉摩擦加筋,注浆加固和面层维护的作用以稳定边坡的支护技术.土钉墙施工简便,经济可靠,从2O世纪7O年代开始应用并得收稿日期:2010—03一O4基金项目:国家自然科学基金项目(40972179)作者简介:杨ft~(1960一),男,江西南昌人,教授,博士研究生导师,工学博士,Email:yangmin@.第2期杨敏,等:土钉抗拔承载力经验验算方法19到迅速发展l1J.为有效控制土钉墙变形,拓展土钉墙的适用范围和支护深度,实践中依据具体工程条件将土钉与搅拌桩,微型桩,预应力锚杆等进行组合,发展形成了复合土钉墙技术].依据中国《建筑基坑支护技术规程》(JGJ12O99)E83和《基坑土钉支护技术规程》(CECS96:97)Eg],土钉墙设计计算内容主要包括:土钉承载力验算,土钉墙稳定性验算和喷射混凝土面层的设计计算,其中喷射混凝土面层按构造要求一般可以满足,土钉墙抗滑移和抗倾覆稳定性均可采用重力式挡墙设计方法进行验算,而土钉抗弯和抗剪承载力只有在土钉墙整体失稳时才能得到充分发挥,此外,关于土钉墙和复合土钉墙变形计算也是研究的焦点],因此,土钉抗拔承载力,土钉墙和复合土钉墙的整体稳定性以及变形计算构成了土钉墙设计当中的3个关键内容.本文中笔者仅对其中的土钉抗拔承载力验算方法进行分析.土钉抗拔承载力验算的目的在于保证土钉杆体的抗拉强度和粘结强度,合理确定土钉的分布间距, 长度等设计参数,计算公式为N≥KN要求单根土钉i的抗拔承载力N与受拉荷载N的比值满足设计安全系数K.土钉的抗拔承载力N取土钉杆体抗拉力和有效粘聚力的较小值,土钉杆体抗拉力根据杆材抗拉强度计算,土钉的有效粘聚力由位于潜在滑裂面后的土钉有效抗拉长度以及土钉与土层间的粘结强度计算.土钉受拉荷载N为土钉在边坡荷载作用下所承受的轴向拉力,采用土压力作用模式来计算,因此,确定土压力分布模式和潜在滑裂面位置成为研究的重点.目前,在土钉墙设计中,普遍应用的土压力分布模式主要是根据经典土压力理论和工程实测结果来确定的,实测结果可以依据土钉墙面层压力值或土钉轴力值口,具体应用的土压力分布模式有三角形和梯形等分布模式口,潜在滑裂面依据试验和理论分析采用直线或双折线等滑裂面].对于复合土钉墙,土钉抗拔承载力验算方法沿用了土钉墙的设计方法,关于复合土钉墙的土压力分布模式和潜在滑裂面的研究甚少L1.本文中笔者以11个工程实测的土钉最大轴力值以及土钉最大轴力值位置为依据,对土钉墙以及2类复合土钉墙,即预应力锚索加土钉复合支护与搅拌桩(微型桩)加土钉复合支护的土压力分布模式和潜在滑裂面位置进行了分析,提出了土钉抗拔承载力验算的经验方法,其中采用了梯形土压力分布模式和双折线潜在滑裂面,最后通过实例计算对本文方法进行了验证.1工程实测资料土钉墙及复合土钉墙的工程实例概况如表1所示,表1中所列工程主要位于北京和广州地区,共包括4个土钉墙工程,3个预应力锚索加土钉复合支护工程和4个搅拌桩(微型桩)加土钉复合支护工程.表1工程实例Tab.1EngineeringExamples土钉墙与复合土钉墙支护参数实例工程名称基坑开挖土钉锚索搅拌桩微型桩放坡c?(yH)最大侧编号深度/iql移/mm排数长度/m排数长度/m桩长/m桩长/i71系数l深圳赛格群星广场z?]11.701O6.0~12.010.3O0.102102北京林达嘉园[22]12.5186.8~11.81:0.20O.O68173北京冠华大厦【.14.O075.8~]1.81:0.300.0l54珠江新城E2区商住楼]9.2066.0~12.0i{0.i50.143265深圳假日广场[25]16.351O6.0~12.0211.0~13.01:0.2O0.076736北京朝外SOHO[.jl4.6076.o~l2.o217.S~18.51:o.1o0.O347北京熊猫环岛地铁站Ez7]16.711O12.0~13.52l6.0~22.01:0.500.0458南京玄武湖隧道[zs]10.00915.0~18.018直立0.046209广州番禺某酒店]5.5048.0~24.0169.O直立0.129431O汉口某城市花园[.o]8.00312.01212.0直立0.O931311北京某商业楼[3]8.2O57.0~9.09.51:0.2O0.10418注,y分别为基坑开挖深度H范围内的土体粘聚力和重度,按土层厚度取加权平均值.对于土钉实测轴力值,本文中以朗肯主动土压力,对土钉轴力值进行量纲为1的计算,采用土压力力计算公式为依据,参考文献E13]并考虑土体粘聚作用模式参数K来表示,即20建筑科学与工程2010血K——一(1)(),HK一2c~/K)ShS式中:Tm为实测土钉最大轴力;a为土钉与水平方向的夹角;K为主动土压力系数,K一tan(45.+舻/2);s,s分别为土钉的水平向和竖直向的间距; 为土体内摩擦角,取基坑深度范围内按土层厚度计算的加权平均值.土钉最大轴力值位置用参数Ks来表示,即CKs一k)max(2)』J式中:S为土钉最大轴力值位置距土钉墙坡面的水平方向距离.根据式(1),(2)对表1所列工程进行计算,结果如图l~3所示,其中离散点表示计算值,两虚线之间为分布趋势,即土钉最大轴力值沿深度呈梯形分布模式,最大轴力值位置为双折线模式,为土钉距地表的距离.K.毫●H0lT0●~0l(a)土钉最大轴力值(b)土钉最大轴力值位置图1土钉墙支护的实测结果Fig.1MeasuredResultsofSoilNailingWallRetaining 2验算方法根据上述分析,结合现有文献[3],[8],[9],[13]和实例验算,在土钉抗拔承载力验算中,建议采用梯形土压力作用模式和双折线潜在滑裂面,如图4,5所示,K,K为双折线潜在滑裂面参数,土钉墙取Kc一0.65,K一0.5,K一0.3;预应力锚索加土钉复合支护取K一o.4,K一0.4,K一0.2;●h01(a)土钉最大轴力值fb)土钉最大轴力值位置图2预应力锚索加土钉复合支护的实测结果Fig.2MeasuredResultsofPrestressedAnchorPlus SoilNailingCompositeRetaining●N01毫●Ol(a)土钉最大轴力值s(b)_:钉最大轴力值位置图3搅拌桩(微型桩)加土钉复合支护的实测结果Fig.3MeasuredResultsofMixingPile(Micro-pile) PlusSoilNailingCompositeRetaining搅拌桩(微型桩)加土钉复合支护取K一0.6,K==: 0.6,K一0.4;当地表作用均布超载g时,超载q按照规程CECS96:97方法考虑.另外,根据土层条件和设计要求,K值可以适当降低,但土钉墙不宜小于0.3,预应力锚索加土钉复合支护不宜小于0.2,搅拌桩(微型桩)加土钉复合支护不宜小于0.3. 一×/卞一佻/一实实实—..................L.●外....工.一≮~◆◆一~.;一~删删刘删一~)(◆:6I~一×__▲▲If....Lr....L........[●●●●●一./一__}_实实实实一_◆▲×一.一-◆/一2—1234l~一一一佻~—一.一如如郏▲/一◆-▲×/×/第2期杨敏,等:土钉抗拔承载力经验验算方法21 (a)土钉墙,Kc=0.65c;(c)搅拌桩(微型桩)加(d)地表均布超载土钉复合支护,K20.6图4土压力分布模式Fig.4DistributionPatternsofSoilPressures卜图5双折线潜在滑裂面Fig.5PotentialSlipSurfaceofBilinearLines3算例分析算例1:广东深圳赛格群星广场的土钉墙支护处的基坑挖深l1.7m,放坡系数1:0.3,土层至上而下为:素填土厚0.2--1.2m,砾质粉质粘土厚6.6~4O.3m;采用q025钢筋注浆土钉,倾角15.,间距1.2m×1.2m;喷射100mm厚C2o混凝土面层,配双向钢筋网6@250×250,根据现场抗拔试验结果取土钉与土体间粘结强度为52kPa.考虑地表作用均布超载20kPa,土体参数取按土层厚度的加权平均值,即y一18.53kN,一24.02.,c一22.13kPa,分别采用规程JGJ12O99方法,规程CECS96:97方法和本文方法进行计算.由表2可见,对于该算例,本文方法所得的土钉抗拔承载力N值较其他2种方法所得结果要小,3种方法计算所得土钉受拉荷载N与实测值N之间都存在较大差别,对于本文方法,究其原因除了出于设计安全考虑地表超载外,K的取值也是按偏保守的情况考虑,当不考虑超载且取K一0.6时,土钉3,5,7,9 的受拉荷载计算值分别为53.62,56.O1,56.01,56.01kN,与实测值更为接近.对安全系数K值进行比较,规程JGJ12O一99与规程CECS96:97方法计算结果偏大,本文方法计算结果较符合工程实际.算例2:广东广州凯华城的预应力锚索加土钉复合支护处的基坑挖深12m,放坡系数1:0.2,土层至上而下为:杂填土厚2.3m,粉质粘土厚4.4m,粉土厚5.8m,全风化粗砂岩化3.9m.共设置9排土钉且第2排和第4排水平间隔设置预应力锚索,土钉为22钢筋注浆土钉,倾角15.,间距1.3m×1.3m,2.3m深处采用23的锚索,长度为22m,施加预应力200kN;4.9m深处采用4×74的锚索,长度为25m,施加预应力380kN.考虑地表作用均布超载20kPa,土体参数按土层厚度取加权表2算例1的计算结果Tab.2CalculatedResultsofExample1规程JGJ12O99方法规程CECS96:97方法本文方法土钉长度/nl深度/m,vk/kN编号N/kNNb/kNKN/kNNh/kNKN/kNNk/kNK16O.48.3512.8241.1721.131.956.4419.120.33281.650.557.2779.8853.541.4939.1145.760.853122.830.91125.411.5779.8O151.2681.8O1.8O104.4668.701.524l24.0134.9410.28l3.10l57.3O87.471.68104.4673.251.4251l5.239.19128.1219.106.70147.OO87.471.6888.0173.251.2O61l6.4137.6427.9l4.93l53.0487.471.6888.0l73.251.2O7107.654.1213O.8336.733.56142.7487.471.6374.6273.251.O28108.8140.3545.543.O8148.7787.471.6887.1973.251.199810.053.92117.2O54.352.16122.1487471.4067.1173.250.92lO811.2126.7257.9O2.19128.1780.181.6079.5267.141.18注:N为按土钉有效粘聚力计算的结果,按土钉杆体抗拉力计算得147kN;安全系数K取两者较小值计算.帼装[=====U复丁●22建筑科学与3-程2010血平均值,即y一18.63kN,—17.02.,f一22.50kPa,分别采用规程JGJl2O一99,规程CECS96:97方法和本文方法进行计算.由表3可见,本文方法计算所得安全系数K较规程JGJ120—99和规程CECS96:97方法更符合工程实际.算例3:上海东方肝胆外科医院病房的副搅拌桩加土钉复合支护处的基坑挖深7m,土层至上而下为:杂填土厚1.85m,褐黄色粘质粉土厚0.95m,粘质粉土厚1.85m,灰色砂质粉土厚14.4m,灰色粘土厚1.8m,灰色粉质粘土厚3.9m.共设置6排6排采用48×3.5钢管注浆土钉,土钉倾角1~5排为10.,第6排为20.,问距1.0rn×1.0m;设置双排水泥土搅拌桩形成止水帷幕,搅拌桩宽1.2m,深14.9m.考虑地表作用均布超载20kPa,土体参数按土层厚度取加权平均值,即y一18.35kN,一23.72.,C一6.11kPa,分别采用规程JGJ120~99方法,规程CECS96:97方法和本文方法进行计算.由表4可见,本文方法计算所得的安全系数K较规程JGJ12o一99和规程CECS96:97方法计算结果要保守,但实测局部最大水平位移达到65mm,故土钉,1~4排采用~D22钢筋注浆土钉,第5排和第结合变形值分析,本文方法更为合理.表3算例2的计算结果Tab.3CalculatedResultsofExample2土钉规程GJ12099方法规程CECS96:97方法本文方法长度/m深度/m编号N/kNNk2/kNKN/kNNk/kNKN/kNNk/kNK1151.o140.4o一23.79l6l_2465.381.74167.9974.631.532122.3102.951.4869.60122.14l09.381.04ll8.9881.441.40163.618O.7719.3】5.90197.39136.840.83184.3381.441.403123.6115.4219.315.90132.04136.840.83118.9881.441.404l24.9127.9037.143.07141.95136.840.83118.9881.441.40146.2l73.O554.972.O7184.52136.840.83151.6681.441.40586.275.0354.971.3686.5O136.840.6353.6481.440.6661O7.512O.1872.8O1.56l29.O8136.840.8386.3181.441.06788.899.9890.631.10106.31136.840.7864.5081.440.798810.1112.461O8.461.04l16.22136.840.8378.3781.440.969611.492.26l2l_430.7693.45l31.570.7159.6O49.571.2O注:N按土钉杆体抗拉力计算得114kN.表4算例3的计算结果Tab.4CalculatedResultsofExample3土钉规程GJi2099方法规程CECS96:97方法本文方法长度/m深度/1711编号N/kNNkJ/kNKN/kNN/kNKN/kNNk2/kNK1121.582.28l6.954.8582.2851.651.5972.9049.361.482l22.587.882O,414,3】87.8839.232.2472.9037.】51.96393.586.9528.353.O786.9539.232.2259.5037.151.60494.594.4236.292.6094.4239.232.4159.5037.151.6O565.564.1944.241.4564.1939.231.6430.6732.590.94666.571.8754.681.3171.8741.1l1.7542.2617.602.40注:N按土钉杆体抗拉力计'算得钢筋和钢管的抗拉力分别为114,105kN. 4结语基于对北京,广州等地区的】1个工程实测资料的土钉最大轴力值和土钉最大轴力值位置的分析,提出了土钉抗拔承载力的经验验算方法,其中采用的梯形土压力分布模式和双折线潜在滑裂面,适用于土钉墙,预应力锚索加土钉复合支护及搅拌桩(微型桩)加土钉复合支护,并结合工程算例与规程JGJ 120—99和规程CECS96:97法进行了比较,验证了本文方法的合理性,可以满足工程设计要求.参考文献:References:[1]SCHIOSSERF,UNTERREINERP,PLUMELLEC.FrenchResearchProgramClouterreonSoilNail—ing[C~//ASCE.GeotechnicalSpecialPublication No.30.NewYork:ASCE.1992:739—750.'第2期杨敏,等:土钉抗拨承载力经验验算方法23[2][3][4][5][6][7][8][9][1O][11]1,12]ST0CKERMF,RIEDINGERG.TheBearingBe—haviorofNailedRetainingStructures[C]//ASCE. GeotechnicalSpecialPublicationNo.25.NewYork: ASCE,1990:612-628.王步云.土钉墙设计FJ].岩土工程技术,1997(4):30—41.WANGBu—yun.DesignforSoilNailingi,J].Geotech—nicalEngineeringTechnique,1997(4):30—41.ZH0UWanhuan,YINJianhua.ASimpleMath- ematicalModelforSoilNallandSoilInteraction Analysisl'J].ComputersandGeotechnics,2008,35 (3):479488.李象范,徐水根.复合型土钉挡墙的研究[J].上海地质,1999(3):1—11.LIXiangfan,XUShui—gen.StudyoftheCompound SoilNailedRetainingWall[J].ShanghaiGeology,1999(3):111.汪剑辉,闫顺,曾宪明,等.复合土钉支护在我国的研究与应用[J].施工技术,2006,35(1):15—19. WANGJian—hui,YANShun,ZENGXianruing,eta1.StudyandApplicationofCompoundSoilNail SupportinChina[J].ConstructionTechnology,2006,35(1):15-19.杨志银,张俊,王凯旭.复合土钉墙技术的研究及应用[J].岩土工程,2005,27(2):153~156. YANGZhi—yin,ZHANGJun,WANGKai—xu.Devel—opmentofCompositeSoilNailingWalls[J].Chinese JournalofGeotechnicalEngineering,2005,27(2): 153~156.JGJ12O一99,建筑基坑支护技术规程[s].JGJ120—99,TechnicalSpecificationforRetaining andProtectionofBuildingFoundationExcavations [s].CECS96:97,基坑土钉支护技术规程[s].CECS96:97,TechnicalSpecificationforSoilNailing inFoundationExcavations[s].JEWEl1RA.ReviewofTheoreticalModelsforSoil Nailingi,C]//MCGOWNA,YEOK,ANDRAWES. ProceedingsoftheInternationalReinforcedSoilCon—ference.London:ThomasTelford,1991:265—275.尹骥,魏建华,李象范.计算复合土钉支护变形的增量方法[J].岩土工程,2007,29(5):755—759. YINJi,WEIJian-hua,LIXiang—fan.Increment MethodtoCalculateDisplacementofCompositeSoil NailledWalli,J].ChineseJournalofGeotechnicalEn gineering,2007,29(5):755759.魏焕卫,杨敏,孙剑平,等.土钉墙变形的实用计算方法[J].土木工程,2009,42(1):81—90.[13]i,14][15]E16]l,a7][18][19][2O]WEIHuanwei,YANGMin,SUNJian-ping,eta1. CalculationMethodforSoilNailingDisplacement FJ].ChinaCivilEngineeringJournal,2009,42(1):8l一90.JURANI,ELIASV.SoilNailedRetainingStruc—tures:AnalysisofCaseHistories[C]//ASCE. GeotechnicalSpecialPublicationNo.12.NewYork: ASCE,1987:232—244.刘晓红,饶秋华.土钉支护侧土压力合理分布模式探讨[J].中南公路工程,2006,31(2):29—32. IIUXiao—hong.RAOQiu-hua.MoreReasonable ModelfortheLateralSoilPressureDistributionof SoilNailBracing[J].CentralSouthHighwayEn gineering,2006,31(2):29—32.张明聚,宋二祥,陈肇元.土钉挡土技术(续)[J].中南公路工程,1998,23(2):37—43. ZHANGMing—ju.SONGEr—xiang,CHENZhao yuan.RetainingTechnologyofSoilNailing[J].Cen—tralSouthHighwayEngineering,1998,23(2):37—43.董建华,朱彦鹏.地震作用下土钉支护边坡稳定性分析[J].中国公路,2008,21(6):2025.D0NGJian-hua,ZHUYan-peng.StabilityAnalysis ofSlopeSupportedbySoilNailingRetainingWall UnderEarthquake[J].ChinaJournalofHighwayand Transport,2008,21(6):20—25.冯光乐,凌天清,许志鸿.公路边坡支护方案优化设计[J].交通运输工程,2002,2(1):43—47. FENGGuang—le,LINGTian—qing,XUZhi—hong.Op—timizingDesignMethodofHighwaySlopel,J].Jour—nalofTrafficandTransportationEngineering,2002,2(1):43—47.杨治国,侯恩科,李琰庆.FLAC一3D与理正软件在基坑支护设计中的应用5J].西安科技大学,2007,27(2):224—227.YANGZhi—guo.HOUEn—ke.LIYan-qing.Applica—tionofFIAC一3DandLizhengSoftwaretoDeisgnof FoundationProtection[J].JournalofXi'anUniversity ofScienceandTechnology,2007,27(2):224227.任建喜,高立新,刘杰,等.深基坑变形规律现场监测rJ].西安科技大学,2008,28(3):445449. RENJian-xi.GAOLi—xin,LIUJie,eta1.In-site MonitoringonDeformationLawsofDeepFounda—tionPit[J].JournalofXi'anUniversityofScience andTechnology,2008,28(3):445—449.童华炜,周龙翔,钟声.基坑土钉支护的突变分析IJ].西安建筑科技大学:自然科学版,2007,39 (4):485—491.T0NGHuawei,ZH0ULong—xiang,ZH0NG24建筑科学与工程2010隹E21][22][23][24][251[26][27]Sheng.CatastropheAnalysisofSoilNailingSupport inFoundationPit[J].JournalofXi'anUniversityof Architecture&Technology:NaturalScienceEdi—tion,2007,39(4):485—49i.杨志银,冯申铎.新型土钉墙技术的研究与应用[R]. 北京:冶金部建筑研究总院,1999. YANGZhi—yin,FENGShen—duo.ResearchandAp—plicationofaNewSoilNailWallTechnology[R]. Beijing:BuildingScienceResearchandDesignAcad—emyofMinistryofMetallurgicalIndustry,1999.耿玲."林达嘉园"深基坑土钉支护数值模拟与现场监测研究[D].北京:北京科技大学,2007. GENGLing.StudyonNumericalSimulationofSoil NailingSupportinDeepFoundationDitchandField Monitoringof"LindaJiayuan"[D].Beijing:Univer—sityofScienceandTechnologyBeijing,2007.徐教宇.土钉支护工作性状的研究[D].北京:中国建筑科学研究院,2003.XUJiao—yu.StudyontheBehaviorsofSoilNailing [D].Beijing:ChinaAcademyofBuildingResearch, 2003.张明聚,郭忠贤.土钉支护工作性能的现场测试研究[J].岩土工程,2001,23(3):319-323. ZHANGMing—ju,GUOZhongxian.ResearchonBe haviorsofSoilNailingbyFieldTest[J].Chinese JournalofGeotechnicalEngineering,2001,23(3):319-323.刘晓纲.深基坑复合土钼'支护结构试验研究与应用[D].重庆:重庆大学,2005.IAUXiao—gang.TestStudyandApplicationofCorn—positeSoilNailofDeepFoundationPit[D]. Chongqing:ChongqingUniversity,2005.张钦喜,秦汉坤,佟德凯,等.朝外S()HO土钉拉力现场监测研究[J].北京工I大学,2007,33(5):507-511.ZHAN『GQin—xi,QINHan—kun,T()NGI)ekai.eta1. MeasurementsandAnalysisofStressinSoilNailsof ChaowaiSOHOProject[J].JournalofBeijingUni—versityofTechnology,2007,33(5):507—5l1.李厚恩,秦四清.预应力锚索复合十钉支护的现场测试研究EJ].工程地质,2008,16(3):393—400.I1Hou—en,QINSi(1ing.VariationsofInsituForces inSoilNailsandPrestressedGroundAnchorsas[281[291[3O][313r32][33] CombinedStructureforExcavationofaSubwaySta—tionFoundationPitinBeijing[J].JournalofEn—gineeringGeology,2008,16(3):393—400.段建立,谭跃虎,樊有维,等.复合土钉支护的现场测试研究EJ].岩石力学与工程,2004,23(12): 2128—2132.DUANJian-li,TANYue-hu,FANYou—wei,eta1. FieldTestingStudyonCompositeSoilNailing[J]. ChineseJournalofRockMechanicsandEngineering, 2004,23(12):2128—2132.冯涛.搅拌桩与微预应力土钉复合支护体系的稳定与变形分析FD].广州:广州大学,2007. FENGTao.StabilityandDeformationAnalysisof MixingPileandPrestressedSoilNailComposite SupportingSystem[D].Guangzhou:GuangzhouUni—versity,2007.司马军,刘祖德,徐书平.加筋水泥土墙复合土钉支护的现场测试研究EJ].岩土力学,2007,28(2):371—375.SIMAJun,LIUZu—de,XUShu—ping.FieldTesting StudyonCo。
基坑支护常见形式与计算

第二章 基坑支护结构计算
2.2 水土压力—分算
pak ( ak ua )k up )K p,i 2ci K p,i up
其中
u p whwp
式中:ua、up 分别为支护结构外侧、内侧计算点的水压力(KPa)
ak ac k, j
土钉墙
土钉墙结构
复合土钉墙
第一章 基坑支护常见形式 二 土钉墙结构
复合土钉墙是由土钉墙和止水帷幕、微型桩、预应力锚杆等组合形成的基 坑支护技术。适用于各种施工环境和多种地质条件的基坑支护。
土钉墙+止水帷幕+预应力锚杆组合
土钉墙+微型桩+预应力锚杆组合
土钉墙+止水帷幕+微型桩+预应力锚杆组合
第一章 基坑支护常见形式 三 支挡式结构
q0 均布附加荷载标准值(KPa)
第二章 基坑支护结构计算
2.3 地面荷载—条形基础(荷载)
d a / tan za d (3a b) / tan
k
p0b b 2a
za d a / tan或za d (3a b) / tan
k 0
p0 基础底面附加压力标准值(KPa) d、b 基础埋置深度、基础宽度(m)
井点降水 放坡开挖
地下水埋深较浅、基坑开挖较深可 能产生流砂、管涌、突涌等不良现 象时,可采用井点降水放坡开挖
第一章 基坑支护常见形式
2、 放坡开挖—坡度选择
查表法 适用条件:对开挖深度不大,基坑周围无较大荷载时。
坑壁土类型 软质岩石 碎石类土 粘性土
粉土
状态
微风化 中等风化
强风化 密实 中密 稍密 坚硬 硬塑 可塑 Sr< 0.5
Eak1
1 2
(完整版)基坑支护方案设计(土钉墙,详细计算)

适用文档第一章基坑边坡计算一、工程概略(一)土质散布状况①1杂填土( Q4ml):由粉质黏土混许多的碎砖、碎石子等建筑垃圾及生活垃圾构成。
层厚 0.50 ~ 4.80 米。
①2素填土( Q4ml):主要由软~可塑状粉质黏土夹少许小碎石子、碎砖构成。
层厚 0.40 ~ 2.90 米。
①3淤泥质填土( Q4ml):。
主要为原场所塘沟底部的淤泥,后经翻填。
散布无规律,局部散布。
层厚 0.80 ~2.30 米。
②1粉质黏土( Q4al):可塑,局部偏软塑,中压缩性,切面稍有光彩,干强度中等,韧性中等,土质不平均,该层散布不均,局部缺失。
层顶标高 5.00 ~ 13.85 米,层厚 0.50 ~ 8.20 米。
②2粉土夹粉砂( Q4al):中压缩性,干强度及韧性低。
夹薄层粉砂,具水平状堆积层理,单层厚 1.0 ~,局部富集。
该层散布不平均,局部缺失。
层顶标高 1.30 ~10.93 米,层厚 0.80 ~4.50 米。
②3含淤泥质粉质黏土( Q4al):软~流塑,高压缩性,干强度、韧性中等偏低。
局部夹少许薄层状粉土及粉砂,层顶标高 1.87 ~ 10.03 米,层厚 1.00 ~13.50 米。
②4粉质黏土(Q4al):饱和,可塑,局部软塑,中压缩性,层顶标高 -8.30 ~米,层厚 1.10 ~14.60 米。
③1粉质黏土 (Q3al) :可~硬塑,中压缩性。
干强度高,韧性高。
含少许铁质浸染斑点及许多的铁锰质结核。
该层顶标高-11.83 ~13.23 米,层厚 1.40 ~14.00 米。
③2粉质黏土 (Q3al) 可塑,局部软塑,中压缩性。
该层顶标高 -18.83 ~ 6.83 米,层厚 2.20 ~ 23.70 米。
④粉质黏土混砂砾石(Q3al):可塑,局部软塑,中偏低压缩性,干强度中等,韧性中等。
该层顶标高 -26.73 ~-10.64 米,层厚 0.50 ~6.50 米。
(二)支护方案的选择依据本工程现场实质状况,基坑各部位确立采纳以下支护举措1、 3#楼与 4#楼地下室相邻处,地下室间距,基坑底高差,土质散布○○○为 2 1、22、31土层,采纳土钉墙支护的方式。
土钉墙支护项目工程量详细计算

土钉墙支护项目工程量详细计算土钉墙支护是一种常见的边坡治理方式,适用于边坡出现滑坡、塌方、冲刷等问题时的加固及稳定处理。
土钉墙支护项目工程量的详细计算涉及多个方面,包括土钉数量、尺寸、材料消耗等。
下面是一个关于土钉墙支护项目工程量详细计算的例子,以帮助你更好地理解。
1.边坡尺寸测量:对边坡进行详细测量,包括边坡的高度、宽度、倾斜度等。
2.深度测量:根据边坡的情况,确定土钉的插入深度。
一般来说,土钉的插入深度应该大于边坡的厚度。
3.土钉数量计算:根据边坡的高度、倾斜度和土钉的间距,计算所需的土钉数量。
一般情况下,土钉的间距应根据土钉的直径而定,一般取土钉直径的2-3倍。
4.土钉直径计算:土钉的直径应根据边坡的稳定性要求进行计算。
一般来说,土钉的直径应大于或等于边坡的最大粒径。
5.土钉长度计算:土钉的长度应根据边坡的高度和倾斜度进行计算。
一般情况下,土钉的长度应大于或等于边坡的高度。
6.材料消耗计算:根据土钉的尺寸和数量,计算所需的材料消耗。
包括土钉、锚具、注浆材料等。
7.安全系数计算:根据土钉的设计强度和边坡的稳定性要求,计算土钉的安全系数。
一般来说,土钉的安全系数应大于1.58.总工程量计算:将以上各项计算结果进行综合计算,得出土钉墙支护工程的总工程量。
需要注意的是,土钉墙支护项目的工程量计算涉及多个参数和因素,其中一些参数和因素需要根据具体情况进行确定,例如边坡的特性、土壤的性质和地理环境等。
因此,在进行土钉墙支护项目的工程量计算时,需要充分了解边坡和土钉的情况,并参考相关的设计规范和标准进行计算。
总之,土钉墙支护项目的工程量详细计算涉及较多的参数和因素,需要根据具体情况进行确定。
以上例子只是一个简单的示例,实际工程量计算需要根据具体情况进行精细化计算。
希望以上内容能够帮助你更好地理解土钉墙支护项目的工程量计算。
基坑边坡土钉墙支护方案

设计方案一、设计原则岩土工程设计应以至少旳投资,最短旳工期,到达设计基准期内安全运行,并满足所有旳预定功能规定,包括三个方面:1、安全性和耐久性规定:这是基坑工程施工旳首要问题,首先要保证基坑边坡及周围建(构)筑物旳安全和稳定。
2、预定功能规定:保证较短旳施工工期在保障安全旳前题下,要尽量旳压缩基坑工程旳施工工期,以便为后续旳主体构造施工赢得时间。
3、经济合理:在保障安全旳前提下,要尽量充足运用较先进旳理论及有关施工经验,最大程度旳减少造价,节省投资。
二,设计计算根据设计计算根据《建筑基坑支护技术规程》(JGJ120-99)计算公式,结合专家论证及经验公式,采用理正深基坑设计软件辅助计算。
设计时综合考虑旳原因:1)场区工程地质、水文地质状况。
2)基坑周围构造旳安全性。
3)周围红线外地下管线、构造物及市政管线旳安全性。
4)支护构造旳整体稳定及对周围环境影响,尽量减小施工引起旳地面沉降值及沉降影响范围。
5)综合考虑支护构造工程既安全又经济。
6)结合我企业既有机械实力状况,便于施工管理、机械调配。
7)在岩土工程设计中,岩土工程师与构造工程师应亲密配合,使岩土工程设计与构造工程设计协调一致。
综合考虑基坑周围状况及后期施工规定,在进行边坡支护设计时,分别对基坑周围施加了均部荷载和集中荷载,将整个基坑视为整体旳同步,采用了较为常用旳瑞典条分法进行了基坑支护设计。
三, 方案旳选择:本工程施工工序:先施工地下车库,其构造强度满足规定后施工5#楼,另一方面施工6#、7#楼。
椐以上特定条件和工序基坑支护设计选用支护方案:土钉支护四、土钉支护设计参数以基坑现实状况和坑深,划分6个经典剖面,其分布详见基坑平面图1-1剖面坡高10.5m 1:0.3放坡2-2剖面坡高10.5m 1:0.4放坡3-3剖面坡高8.0m 1:0.3放坡4-4剖面坡高8.0m 1:0.1放坡5-5剖面坡高3.3m 1:0.3放坡6-6剖面坡高3.3m 1:0.1放坡各剖面支护参数如下A 土钉参数:1-1,2-2剖面支护参数(1)开槽深度按10.5m进行设计,西坡坡度1:0.3东坡坡度1:0.4。
土钉支护计算书

土钉支护计算书介绍本文档旨在提供土钉支护计算的详细步骤和方法。
通过使用土钉支护进行工程结构的加固和稳定,可以有效地抵抗土壤侧压和滑动力,从而确保工程的安全性和可靠性。
计算步骤1. 掌握土壤力学参数:首先,需要根据实际情况测定土壤的重度、内摩擦角、黏聚力等土壤力学参数。
2. 计算土壤侧压力:使用相关公式计算土壤对支护结构施加的侧压力。
考虑到土壤干湿度、墙面的形状和倾角等因素,确保准确计算侧压力。
3. 确定土钉参数:根据计算出的土壤侧压力,确定适当的土钉参数。
根据实际工程需要,包括土钉的直径、长度、间距、受力锚固长度等参数。
4. 计算土钉的锚固力和抗滑力:通过使用适当的公式,计算土钉的锚固力和抗滑力。
确保土钉足够强大,能够有效地抵抗土壤的侧方向滑动。
5. 校核土钉的受力状态:通过对土钉进行受力校核,确保土钉在受力状态下不会产生破坏。
考虑土壤的强度参数和土钉的受力情况,进行合理的校核。
6. 绘制土钉支护计算表格:将计算结果以表格形式进行总结和整理,以便于工程师和技术人员进行查看和参考。
注意事项- 在进行土钉支护计算时,需严格遵循相关规范和标准,确保计算结果的准确性和可靠性。
- 对于土壤力学参数的确定,应选择合适的试验方法和设备进行测试,确保测试结果的可靠性和准确性。
- 在计算过程中,应充分考虑土壤的不同特性和条件对计算结果的影响,采取适当的修正措施。
- 需要保证土钉的施工质量和材料质量,对于土钉的质量问题,进行严格控制和检测。
结论土钉支护计算是确保土壤工程结构稳定和安全的重要步骤。
通过合理地计算土壤侧压力、确定合适的土钉参数、计算土钉的锚固力和抗滑力,以及校核土钉的受力状态,可以确保土钉支护的有效性和可靠性。
基坑支护工程量计算公式

基坑支护工程量计算公式
1. 地下室工程量计算公式
一般情况下,地下室的工程量计算可根据以下公式进行:
地下室工程量 = 地下室周长 ×地下室深度 ×单位长度延伸量
其中,地下室周长指的是地下室的外围长;地下室深度为地下室的有效深度;单位长度延伸量为单位长度的地下室支护工程量。
2. 地下管道工程量计算公式
地下管道的工程量计算可按照以下公式进行:
地下管道工程量 = 管道长度 ×管道直径 ×单位长度延伸量
其中,管道长度为地下管道的总长度;管道直径为地下管道的直径;单位长度延伸量为单位长度的管道支护工程量。
3. 基坑挡土墙工程量计算公式
基坑挡土墙的工程量计算可参考以下公式:
基坑挡土墙工程量 = 基坑挡土墙总长度 ×基坑挡土墙高度 ×单位长度延伸量
其中,基坑挡土墙总长度是指基坑挡土墙的总长度;基坑挡土
墙高度为基坑挡土墙的高度;单位长度延伸量为单位长度的挡土墙
支护工程量。
总结
本文档介绍了基坑支护工程量的计算公式,分别适用于地下室、地下管道和基坑挡土墙。
根据实际工程需求,可以使用相应的公式
计算工程量,并据此进行工程规划和预算编制。
请根据具体情况结
合相关技术标准和规范进行计算,并确保工程量计算的准确性和可
靠性。
> 注意:本文提供的公式仅供参考,具体工程量计算应根据实际情况进行审慎调整和确认。
基于PLAXIS的某深基坑开挖与土钉支护设计数值模拟

基于PLAXIS的某深基坑开挖与土钉支护设计数值模拟李勇【摘要】以霍州市某基坑工程为例,运用PLAXIS软件对深基坑开挖与土钉支护设计进行了数值模拟计算,得到了土钉支护条件下基坑变形特征和开挖过程的安全性系数,对类似工程设计和信息化施工的实施有一定的参考价值。
%Taking a excavation engineering in Huozhou as an example,this paper made numerical simulation calculation using PLAXIS software to deep foundation pit excavation and soil nailing support design,gained the safety coefficient of foundation pit deformation characteristic and exca-vation process under the soil nailing support design,had certain reference value for similar engineering design and informatization construction im-plementation.【期刊名称】《山西建筑》【年(卷),期】2015(000)033【总页数】3页(P85-86,87)【关键词】PLAXIS软件;基坑支护;安全系数;数值模拟【作者】李勇【作者单位】中国能源建设集团山西省电力勘测设计院有限公司发电工程分公司,山西太原 030001【正文语种】中文【中图分类】TU463霍州某发电厂4号运煤皮带自2号转运站起斜向15°连接至3号转运站,为输煤系统的枢纽工程,本次施工部分为4号运煤皮带地下廊道部分。
周边地形特征:基坑西侧距离基础边约24 m,为一条原厂区道路,马路标高约11.4 m,比4号廊道自然地坪+6.0 m高5.4 m,马路东侧有原片石挡土墙护坡,马路向西方向长度约16 m;基坑北侧为2号转运站,已开挖至-6 m,且2号转运站开挖时采用钢筋混凝土筒壁支护,2号转运站西侧边坡采用了土钉支护;基坑东侧在卸煤沟开挖时已开挖至约-6.0 m,采用天然放坡即可满足边坡稳定。
基坑支护计算公式

基坑支护计算公式基坑支护是在基础工程施工中非常重要的一环,要确保施工安全和稳定性,那就得依靠各种计算公式来精确计算和设计。
咱先来说说土钉墙支护的水平荷载计算。
这可不能马虎,稍不注意,就可能出大问题。
计算公式里涉及到的参数那可不少,比如土的重度、内摩擦角、粘聚力等等。
就拿土的重度来说,这可不是随便估个数字就行的。
我记得有一次在一个施工现场,有个年轻的技术员,在计算土钉墙水平荷载时,把土的重度给弄错了。
结果呢,设计出来的土钉长度短了一大截。
施工的时候,差点就出了事故。
这可把大家吓得够呛!再说说排桩支护结构的计算。
这里面有个弯矩计算,那也是个关键。
弯矩要是算错了,桩的配筋就不合理,要么浪费材料,要么桩的强度不够。
我之前参与的一个项目,就是因为最初的弯矩计算有点偏差,导致后来重新调整设计,浪费了不少时间和成本。
还有一个比较重要的,就是锚杆支护的拉力计算。
这得考虑到锚杆的长度、倾角、土体的性质等等。
有一回,我们在计算锚杆拉力的时候,对土体的性质判断不太准确,结果锚杆拉拔试验的时候,达不到设计要求,只能重新调整锚杆的布置和参数。
基坑支护的计算公式就像是一道道数学谜题,得仔细琢磨,每个参数都要准确无误。
比如说在计算土压力的时候,不同的土层就得分别计算,可不能一股脑儿混在一起。
这就像是做饭,各种食材得分门别类处理好,才能做出美味佳肴。
而且,这些计算公式不是孤立的,它们之间相互关联,相互影响。
一个参数的变化可能会引起一连串的反应。
就像多米诺骨牌一样,一块倒了,后面的都跟着受影响。
在实际工作中,可不能只知道套公式,还得结合实际情况灵活运用。
比如说,地质条件的复杂性,地下水位的变化,周边建筑物的影响等等。
有一次,我们遇到一个基坑,旁边就是一个老旧的居民楼。
这时候,在计算支护结构的时候,就得充分考虑到施工对居民楼的影响,不能只盯着公式里的那些数字。
总之,基坑支护的计算公式是我们进行安全、有效施工的重要工具。
但要想用好这些工具,就得认真、细致,多考虑实际情况,不能生搬硬套。
基坑支护方案(土钉墙-详细计算)

φ--土的内摩擦角
eajk按根据土力学按照下式计算:
eajk=∑{[(γi×szj)+q0]×Kai-2c(Kai)1/2}
2、土钉抗拉承载力设计值Tuj按照下式计算
Tuj=(1/γs)πdnj∑qsikli
其中dnj--土钉的直径。
γs--土钉的抗拉力分项系数,取1.3
R=1.25γ0Tjk
1、其中土钉受拉承载力标准值Tjk按以下公式计算:
Tjk=ζeajksxjszj/cosαj
其中ζ--荷载折减系数
eajk--土钉的水平荷载
sxj、szj--土钉之间的水平与垂直距离
αj--土钉与水平面的夹角
ζ按下式计算:
ζ=tan[(β-φk)/2](1/(tan((β+φk)/2))-1/tanβ)/tan2(45°-φ/2)
土钉参数:
序号孔径(mm)长度(m)入射角(度)竖向间距(m)水平间距(m)
1 100.00 7.00 15.00 1.00 2.00
2 100.00 6.00 15.00 1.50 2.00
(二)土钉(含锚杆)抗拉承载力的计算:
单根土钉受拉承载力计算,根据《建筑基坑支护技术规程》JGJ120-2012,
基坑支护方案(土钉墙-详细计算)
第一章基坑边坡计算
一、工程概况
(一)土质分布情况
①1杂填土(Q4ml):由粉质粘土混较多的碎砖、碎石子等建筑垃圾及生活垃圾组成。层厚0.50~4.80米。
①2素填土(Q4ml):主要由软~可塑状粉质粘土夹少量小碎石子、碎砖组成。层厚0.40~2.90米。
①3淤泥质填土(Q4ml):。主要为原场地塘沟底部的淤泥,后经翻填。分布无规律,局部分布。层厚0.80~2.30米。
浅谈锚碇深基坑支护设计

1 工程概况万州驸马长江大桥北岸锚碇位于重庆市万州区驸马镇吊龙村,与北索塔间距为285m ,距离县道(X549)约50m 。
北岸锚碇为重力式锚碇,基坑最大开挖深度为40m ,开挖方量约为13.6万m 3。
庄屋滑坡为该段的最大滑坡体,地质勘查报告中确定的滑坡范围为K8+550〜K8+820段右侧约105m ,该滑坡远离路线,对锚碇基坑开挖影响并不大,但锚碇所在位置上部较为平缓,存在较厚的堆积体,堆积层厚度为8.0m左右,靠近长江唯一斜坡体,上覆堆积层,详细地质柱状图见图1。
综合分析,该段上部为较厚的堆积体,目前稳定度较高,但在前部变形及后部加压的作用下,易产生变形;前部为斜坡体上较薄的堆积层,易产生局部的表层滑塌变形,故对北岸锚碇基坑开挖增加了难度。
浅谈锚碇深基坑支护设计任威,王巍伟(中交一公局第三工程有限公司,北京 101102)2 基坑支护设计2.1 基坑支护设计要求基坑支护作为一个临时结构体系,首先要满足稳定和变形的要求,通常规范规定的两种极限状态的要求,即承载能力极限状态和正常使用极限状态。
因此,基坑支护设计相对于承载力极限状态要有足够的安全系数,不会使支护产生失稳,而在保证不出现失稳的条件下,还要控制位移量,不致影响周边建筑物的安全使用。
因而,作为设计的计算理论,不但要能计算支护结构的稳定性,还应计算其变形量,并根据周边环境条件,控制其在一定的范围内。
2.2 基坑支护分类深基坑支护工程种类繁多,大体可以分为:坡率法、土钉墙、预应力锚杆结合土钉墙、排桩、排桩结合预应力图1 北岸锚锭工程地质剖面图粉质粘土泥质砂岩泥岩粉质粘土夹碎石砂岩地层分界线强风化中风化基岩风化带界线岩层产状(视倾角)层底深度(层底标高)/m稳定水位标高及地下水位线锚杆、地下连续墙加锚杆等。
根据锚锭基坑周边情况及土质情况并结合设计要求,初步选出2种支护类型,即放坡土钉喷锚支护和排桩结合预应力锚索支护。
3 北岸锚碇深基坑开挖支护方案设计深基坑支护体系的选型很关键,它在很大程度上决定了工程的造价和工期。
基坑支护工程施工方案

基坑支护工程施工方案目录1工程概述 (2)2 工艺安排 (3)3 基本施工方法 (3)4 施工平面布置图及详图.......................... 错误!未定义书签。
1工程概述1.1本工程基坑支护设计采用放坡开挖和土钉墙相结合的围护方案。
1.2土钉采用洛阳铲成孔,孔径直径为110mm,土钉钻孔完成后及时安设主筋以防坍孔。
土钉墙面层采用100厚C20喷射混凝土,内配钢筋网Φ6.5@200×200mm。
1.3土钉注浆材料采用纯水泥浆,水泥标号42.5,水灰比0.5。
终了注浆压力不小于0.4MPa,土钉注浆水泥用量应不小于30kg/m。
2 工艺安排根据现场情况及设计要求基坑支护总施工顺序为:3 基本施工方法3.1.设计要求由于本基坑面积较大,挖土次序应严格遵循"大基坑,小开挖"的原则,根据后浇带位置分块间隔开挖。
各块之间的土方开挖应以大于1:1放坡坡度分层盆式进行。
土钉墙施工与挖土作业应交叉进行,二者的配合至关重要,直接关系到基坑的安全和施工工期,需合理安排、分层进行:基坑土方开挖应结合土钉墙施工,分层分段进行,每层开挖深度不得超过相应排土钉。
以下0.3-0.5m,每层分段开挖长度不得超过30m,并采用跳段开挖。
严禁超挖或在上一层未加固完毕就开挖下一层。
土钉应由经验丰富的专业单位施工。
下层土方应在上层土钉注浆完成三天后方可进行开挖。
土钉采用洛阳铲成孔,孔径直径为110mm,孔深允许偏差为100mm,孔径允许偏差为5mm,孔距允许确保基坑土体不长期暴露,提高基坑稳定性,垫层需浇筑至基坑下坎线位置,使垫层对围护结构形成偏差为100mm,土钉钢筋保护层厚度不宜小于30mm,土钉掏孔完成后应及时安设土钉以防坍孔。
土钉在坑壁上呈梅花型布置,掏孔式土钉的主筋上应设对中支架,间距不大于2.5m。
土钉应作现场抗拔试验,数量为总数的1%,土钉抗拔力应不小于9kN/m。
土钉施工前应探明周围地下管线的准确位置,不可盲目施工。
某办公楼深基坑土钉墙支护设计与计算分析

某办公楼深基坑土钉墙支护设计与计算分析
张耀庆;杨华林;刘娴静;穆凤君
【期刊名称】《智能建筑与智慧城市》
【年(卷),期】2024()2
【摘要】由于国外某办公楼深基坑施工空间狭小,且与周围既有道路和河流距离很近,不具备自然放坡支护的条件,工程根据基础开挖特点和工程地质条件,通过论证和可行性研究,结合土钉墙支护的优点,确定在开挖深度最大的边坡采用土钉墙支护方案。
文章通过对土样试验数据的分析和参数的选择,借助土钉墙设计软件对本项目的土钉长度进行设计,并按照土钉墙结构的构造要求和施工技术要求,对本项目深基坑边坡进行支护。
【总页数】4页(P91-94)
【作者】张耀庆;杨华林;刘娴静;穆凤君
【作者单位】中国航空技术国际工程有限公司;中电投工程研究检测评定中心有限公司
【正文语种】中文
【中图分类】TV551.4;TU753
【相关文献】
1.深基坑土钉墙支护设计案例分析
2.土钉墙深基坑支护优化设计——以广州市珠江新城某深基坑为例
3.水泥搅拌桩加土钉的复合土钉墙支护技术在深基坑中的应
用4.深基坑土钉墙支护稳定性分析方法的改进及其设计软件的开发5.深基坑土钉墙支护体系设计与计算
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、基坑支护方案的设计1.1考虑局部基坑断面为素填土为最不利基坑开挖工况,进行土钉墙支护方案设计,支护深度7m 。
依据《建筑基坑支护技术规程》(JGJ120-2012)第3.1.3条,基坑四周空旷、无建筑物。
支护结构失效,对基坑周边环境或主体结构施工安全的影响不严重,确定该支护结构的安全等级为三级。
1.2本工程为临时性工程,设计使用期限为3个月,自支护结构施工结束起算,为保证基坑四壁的安全稳定性,考虑基坑较深,局部为素填土、性质不均匀,四周具备放坡条件,基坑四周采用放坡和土钉墙结合的处理方案,按1:1.4进行放坡,配合设置土钉墙进行基坑四壁的加强处理。
沿坑壁均匀设置三排土钉,土钉的垂直间距2m ,自自然地坪算起每2m 设置一排土钉,水平间距2m ,均匀放置,采用自钻式锚杆(土钉)(型号为HRB300,2Ø16),错杆成孔直径130mm ,与水平向夹角为15°,锚杆钻进过程中可以使用水泥作为眼进浆液一起钻进,严格控制塌孔、流土现象。
采用压力注浆注纯水泥浆,注浆压力为0.2~3MPa ,水灰比为0.4~0.5,必要时可加入一定量的外加剂。
1.3单根土钉的轴向拉力标准值计算N kj =j z j x ak j s s a j j,,,cos 1ρξη(5.2.2) 式中:N kj ——第j 层土 钉的轴向拉力标准值(KN )a j ——第j 层钉倾角(15°)ξ——墙面倾斜时的主动土压力折减系数,可按本规程第 5.2.3条确定j η——第j 层土 钉轴向拉力调整系数,可按本规程公式5.2.4-1计算j ak,ρ——第j 层土钉处的主动土压力强度标准值(KP a ),应按本规程第3.4.2条确定S x,j ——土钉的水平间距(m )S x,j =2mS z,j ——土钉的垂直间距(m )S z,j =2m1.3.1坡面倾斜时的土压力折减系数)245(2tan /]12tan [2tan m mmtan β1ϕϕβϕβξ-︒-+-=式 (5.2.3) 式中:β-土钉墙坡面与水平面的夹角β=35°mϕ—基坑底面以上各土层按厚度加权的等效内摩擦角平均值(10°)mϕ=10° 计算得:ξ=0.311.3.2±钉轴向拉力调整系数h z j b a a j )(ηηηη--= (5.2.4-1) aj j aj j b a E Z h E z h )()(-∑-∑=ηη (5.2.4-2)式中Z j ——第j 层土钉至基坑顶面的垂直距离(m )h —基坑深度(m )h=7m△E aj —作用在以s x,j 、s z,j 为边长的面积内的主动土压力标准值(KN ) -a η计算系数 -b η经验系数,取0.6n —土钉层数计算得:11=η 93.02=η 785.03=η 1.3.3单根土钉各层的轴向拉力标准值计算得:kN N K 65.291=KN N K 8.462= KN N K 5.633= 1.4单根土钉的极限抗拔承载力计算t K N R KJ KJ ≥ (5.2.1)式中K t 一一土钉抗拔安全系数;安全等级为三级的土钉墙,K t 不应小于1.4;N k,j ---第j 层土钉的轴向拉力标准值(kN),应按本规程第5.2.2条的规定计算;R k,j ——第j 层土钉的极限抗拔承载力标准值(kN),应按本规程第5.2.5条的规定确定。
计算得: R K1 =41.5KN R K2=65.5KN R K3=88.9KN1.5土钉取HRB300,2Ø16,f yk =300Mp a ,土钉杆体的受拉承受力符合N J ≤f yK A s (5.2.6)式中:N j —第j 层土钉的轴向拉力设计值,按本规程第3.1.7的规定计算,N 3=r 0r F N K =71.KN <f yK A s =120.5KN1.6对安全等级为三级的土钉墙,按公式(5.2.5)确定土钉的粘结段长度R KJ =πdj ∑q skj l i (5.2.5)式中:dj ——土钉的锚固体直径d1=d2=d3=0.13mq sk,i ——第j 层土钉与第i 土层中的极限粘结强度标准值(KP a ),根据经验并结合表5.2.5取值,素填土,成孔注浆钉取q sk,i =25KP al i ——第j 层土钉滑滑动面以外的部分在i 土层中的长度(m ),直线滑面与水平 向的夹角取2m ϕβ+1-土钉 2-喷射混凝土面层 3-滑动面1.6.1土钉的粘结段长度计算得:L 1=4.0m L 2=6.4m L 3=8.7m1.6.2土钉在滑动面以内部分的非锚固段长度计算得:L f1=3.1m L f2=1.8m L f3=0.6m1.6.3土钉的计算段长度分别为:L 1+L F1=7.1m L 2+L F2=8.2 m L 3+L F3=9.3m统一取土钉总长度10m1.7验算基坑压挖的各工况的整体滑动稳定性,因基坑安全等级为三级,采用简易的平面滑动法计算 β2m ϕβ+ψ∑∑∑∆++++∆++=j j j j K X vk k KK j j j j j j j G b q S a R G b q l c ks θψθϕθsin )(/])[cos(']tan cos )([,(5.1.1-2)式中:Ks ——圆弧滑动稳定安全系数;安全等级为三级的土钉墙,Ks 不应小于1.25;C j 、Ҩj ——分别为第j 土条滑弧面处土的黏聚力(kP a )、内摩擦角(°),按本规程第 3.1.14条的规定取值;C j =5KP a 、Ҩj =10。
B j ——第j 土条的宽度(m)θj ——第j 土条滑弧面中点处的法线与垂直面的夹角(°) θj =35。
l j ——第j 条的K 滑弧长度(m),取l j =b j/cos θjq j ——第j 土条上的附加分布荷载标准值(kP a ) q j =0△G j ——第j 条的自重(kN),按天然重度计算R’k,k ——第k 层土钉或锚杆在滑动面以外的锚固段的极限抗拔承载力标准值与杆体受拉承载力标准值(fA s 或f ptk A p )的较小值(kN);锚固段的极限抗拔承载力应按本规程第5.2.5条和第4.7.4条的规定计算,但锚固段应取圆弧滑动面以外的长度。
计算得:R K1=41.5KN R K2=65.5KN R K3=88.9KNa k ——第k 层土钉或锚杆的倾角(°) a K =15°θk ——滑弧面在第k 层土钉或锚杆处的法线与垂直面的夹角(°)θK =35。
S x,k 一第k 层土钉或锚杆的水平间距(m); S x,k =2mV ——计算系数;可取Ψv =0.5sin(θk +a k )tanΨ 计算得:Øv=0.55Ҩ——第k层土钉或備杆与滑弧交点处土的内摩擦角(°)Ks——滑动三级土钉墙ks>1.25计算得:Ks=1.54>1.25 基坑四壁的稳定性符合要求1.8基坑为保证基坑的安全稳定性,经过技术经济效益与技术方案比较拟采用坑内集水坑与明沟排水相结合的排水方案。
1.8.1坡底排水沟与集水井:沿基坑周围设置排水沟,其尺寸为400mX300m距槽边50cm,内填碎石,沿基坑四周每30米设置一集水井并与排水沟相连,北侧设基水坑3个,南侧设基水坑2个,水流向为由北向南,南侧安装水泵3.5kw一台。
1.8.2坡体排水:基坑侧壁按照水平和竖向间距3m设置泄水孔,泄水孔主体采用直径75m的PWC管。
地面防排水措施:基坑坡顶设置挡水墙,挡水墙高为300mm,宽为240m,砖砌,外抹1:2.5水泥砂米,并沿挡水墙外侧设置防护栏杆。
坡顶场地应全面进行混凝土硬化封闭,防止地表水滲透、流入基坑。
1.9喷射混凝土面层设计要求1.9.1面层挂单层钢筋网Ø6.5@250×250,面层厚80mm:面层钢筋网固定时,将Ø14(L=400m)短钢筋击入土层,外部与面层钢筋网连接,短钢筋间距为2000m×2000m1.9.2细骨料宜选用中粗砂,含泥量应小于3%:粗骨料宜选用粒径不大于20mm的级配砾石;1.9.3水泥与砂石的重量比宜取1:4~1:4.5,砂率宜取45%~55%,水灰比宜取0.4~0.451.9.4使用速凝剂等外掺剂时,应做外加剂与水泥的相容性试验及水泥净浆凝结试验,并应通过试验确定外掺剂量及入方法;1.9.5钢筋网可采用绑扎固定;钢筋连接宜采用搭接焊,焊缝长度不应小于钢筋直径的10倍。
1.9.6基坑坡项面平整应结合士建工要求进行硬化,并设置挡水墙・截水沟和防护栏1.20m,以防止基坑外地表水流入基坑,同时防止施工人员与杂物误落入基坑内。
2、施工注事项2.1基坑开挖与支护的施工必须符合规行有关规范、规程的规定,并满足本设计说明及施工图的要求,本工程分三-四层开挖,基坑土方与支护持施正式施工前必须编制详细的施工组织设计与设计方案相结合,并经有关部门确认后方可施工。
本设计方案对场地附加荷载要求严格,建设单位、总承包単位应监督、协调各施工单位,根据场地况做好材料堆放区的布局,预先严拉堵塞设置好地表水的排放通道,在北侧设置检测点两处,南侧塔机处设置检测点1处,以观察支护水平位移及垂直变形数据,安排专人做好书面记录。
2.2应急人员配备,坑周边有专人巡视,责任到人,发现沉陷断裂异常及时汇报;做好变形监測工作,对监测资料及时分所,并向施工项目经理及时汇报,到信息化施工。
2.3应急材料、设备准备,开挖前准备钢管,以备护坡脚或行临时内支撑:50m范围内存放30m3袋:施工现场24小时配备相关机械设备,做到随叫随到:准备必要的抽水泵,随时应急突发事件。
2.4应急预案与措施,当基坑软岩士边坡变形过大、过快,周边构筑物出现沉降等险情时应暂停工根据验情因和现场允许条件近用如下应急措施:2.4.1基坑开挖过程中若位移出现异常,应及时坡斟被动区进行临时土体回填或临时钢支撑加固,待位移稳定加固方可续施工。
2.4.2坡顶主动区土体即土减载,严格控制卸载程序。
2.4.3做好坡顶、坡面临时排水与泄水设施,封面处理,如下掘出现漏水现象,用高压注浆进行堵漏。
2.5安全文明施工措施:工程施工在保质保量完成的前提下,全体施工人员要严格遵守安全第一,预防为主的方针,做到安全生产,文明施工。
对因堆放、装卸、运输、搅拌等易产生扬尘的污染源,应采取密目网遮盖、洒水、封闭等有效的控制措施,最大限度的减少扬尘污染。