化工原理下册天津大学柴诚敬05-06学时

合集下载

《化工原理-下》课程教学大纲

《化工原理-下》课程教学大纲

《化工原理-下》课程教学大纲课程编号:CHET2017课程类别:学科基础课程授课对象:化学工程与工艺专业开课学期:春季学分:2学分主讲教师:朱秀林、程振平、张正彪等指定教材:夏清,陈长贵主编,《化工原理》(下册),天津科学技术出版社,2006年第七章蒸馏课时:6周,共12课时教学内容第一节两组分溶液的气液平衡一、相律和相组成教学要点:相律,质量分数与摩尔分数的换算二、两组分理想物系的气液平衡教学要点:用饱和蒸气压表示气液平衡关系,相对挥发度,t-x-y图,x-y图三、两组分非理想物系的气液平衡教学要点:恒沸组成,t-x-y图,x-y图第二节平衡蒸馏和简单蒸馏一、平衡蒸馏教学要点:平衡蒸馏的流程及计算二、简单蒸馏第三节精馏原理和流程一、精馏原理及操作流程教学要点:部分汽化与冷凝,精馏段,提馏段第四节两组分连续精馏的计算一、理论板的概念及恒摩尔流的假定教学要点:理论板,恒摩尔液流,恒摩尔气流二、物料衡算和操作线方程教学要点:全塔物料衡算,精馏段的操作线方程,提馏段的操作线方程三、进料热状况的影响教学要点:加料板,进料热状况参数四、理论板的求法教学要点:逐板计算法,图解法,进料方程五、几种特殊情况时理论板层数的求法教学要点:直接蒸气加热,多侧线塔六、回流比的影响及其选择教学要点:全回流,最少理论板层数,芬斯克方程,最小回流比,适宜回流比的选择七、简捷法求理论板层数,塔高和塔径的计算教学要点:吉利兰图及应用,塔高的计算,塔径的计算八、连续精馏装置的焓衡算及精馏塔的操作和调节教学要点:冷凝负荷,再沸器的热负荷,精馏过程的节能,影响精馏操作的主要因素,精馏塔的控制和调节第五节间歇精馏一、回流比恒定时间歇精馏的计算教学要点:确定理论板层数,瞬间x D和x W的关系,釜液量的计算二、溜出液组成恒定的间歇精馏的计算教学要点:理论板层数的确定,x W和R的关系,气化量的计算第六节恒沸精馏和萃取精馏一、恒沸精馏教学要点:原理及特点二、萃取精馏教学要点:原理及特点第七节多组分精馏一、流程方案的选择教学要点:精馏塔的数目,流程方案的选择二、多组分物系的气液平衡教学要点:理想系统的气液平衡,非理想系统的气液平衡,相平衡常数的应用 三、关键组分的概念及各组分在塔顶和塔底产品中的分配教学要点:关键组分的概念,清晰分割四、最小回流比,简捷法确定理论板层数教学要点:轻重关键组分,吉利兰图思考题:1、压强对气液平衡有何影响?一般如何确定精馏塔的操作压强?2、进料量对塔板层数有无影响?为什么?3、对不正常形状的气液平衡曲线,是否必须通过曲线的切点来确定最小回流比R min,为什么?4、通常,精馏操作回流比R = (1~2) R min,试分析根据哪些因素确定倍数的大小。

化工原理第二版答案(柴诚敬主编)

化工原理第二版答案(柴诚敬主编)

绪论1.从基本单位换算入手,将下列物理量的单位换算为SI 单位。

(1)水的黏度μ=0.00856g/(cm ·s) (2)密度ρ=138.6kgf?s 2/m 4(3)某物质的比热容C P =0.24BTU/(lb ·℉) (4)传质系数K G =34.2kmol/(m 2?h?atm) (5)表面张力σ=74dyn/cm (6(1则.0=μ(2则=ρ(3则(4则(5则(6则2.乱堆25cm 拉西环的填料塔用于精馏操作时,等板高度可用下面经验公式计算,即 式中H E —等板高度,ft ;G —气相质量速度,lb/(ft 2?h); D —塔径,ft ;Z 0—每段(即两层液体分布板之间)填料层高度,ft ; α—相对挥发度,量纲为一; μL —液相黏度,cP ; ρL —液相密度,lb/ft 3A 、B 、C 为常数,对25mm 的拉西环,其数值分别为0.57、-0.1及1.24。

试将上面经验公式中各物理量的单位均换算为SI 单位。

解:上面经验公式是混合单位制度,液体黏度为物理单位制,而其余诸物理量均为英制。

经验公式单位换算的基本要点是:找出式中每个物理量新旧单位之间的换算关系,导出物理量“数字”的表达式,然后代入经验公式并整理,以便使式中各符号都变为所希望的单位。

具体换算过程如下: (1)从附录查出或计算出经验公式有关物理量新旧单位之间的关系为()()s m kg 10356.1h ft lb 1232⋅⨯=⋅-(见1)α量纲为一,不必换算13lb =133lb 1kg 3.2803ft ⎛⎫⎛⎫⎛⎫ ⎪⎪⎪=16.01kg/m 2(2)则E H =同理G =(3)第一章流体流动流体的重要性质1.某气柜的容积为6000m 3,若气柜内的表压力为5.5kPa ,温度为40℃。

已知各组分气体的体积分数为:H 240%、N 220%、CO 32%、CO 27%、C H 41%,大气压力为101.3kPa ,试计算气柜满载时各组分的质量。

化工原理天大下册第一部分

化工原理天大下册第一部分

p p

BM
p /p

BM
1
NA
p /p p /p

BM

1
~ 总体流动影响
BM
N A J A 无总体流动
三、液体中的稳态分子扩散
1.等分子反方向扩散 参照气体中的等分子反方向扩散过程,可写出
NA
D
AB
z
( c A1 c A 2 )
z z 2 z1
D —组分A在溶剂B中的扩散系数,m2/s
N=NA+NB=NA
N A D dc A
AB
dz
yAN A D
dc A
AB

c c
A
dz
NA

整理得
NA D c
总 AB 总
dc A
c c A dz
二、气体中的稳态分子扩散
边界条件 (1) z = z1 cA = cA1 ( pA= pA1 ) (2) z = z2 c A= cA2 ( pA= pA2 )
c B 2 c B1 c ln
B2 B1
停滞组分 B 对数平均物 质的量浓度
c
x BM
x B 2 x B1 x ln
B2 B1
停滞组分 B 对数平均摩 尔分数
x
四、扩散系数
1.气体中的扩散系数 通常,扩散系数与系统的温度、压力、浓度以 及物质的性质有关。对于双组分气体混合物,组分 的扩散系数在低压下与浓度无关,只是温度及压力 的函数。气体扩散系数可从有关资料中查得,某些 双组分气体混合物的扩散系数列于附录一中。气体 中的扩散系数,其值一般在 1 10 4 ~ 1 10 5 m2/s 范 围内。

化工原理课程设计柴诚敬

化工原理课程设计柴诚敬

化工原理课程设计 柴诚敬一、课程目标知识目标:1. 理解并掌握化工原理的基本概念,如流体力学、热力学、传质与传热等;2. 学会运用化学工程的基本原理分析典型化工过程中的现象与问题;3. 掌握化工流程设计的基本方法和步骤,能结合实际案例进行流程分析与优化。

技能目标:1. 能够运用数学工具解决化工过程中的计算问题,如物料平衡、能量平衡等;2. 培养学生运用实验、图表、模拟等方法对化工过程进行研究和评价的能力;3. 培养学生团队协作、沟通表达及解决实际问题的能力。

情感态度价值观目标:1. 培养学生对化工原理学科的兴趣和热爱,激发学习积极性;2. 增强学生的环保意识,使其认识到化工过程对环境的影响及责任感;3. 培养学生严谨、求实的科学态度,提高其创新意识和实践能力。

本课程针对高年级学生,结合化工原理课程性质,注重理论与实践相结合,旨在培养学生运用基本原理解决实际问题的能力。

教学要求以学生为中心,注重启发式教学,激发学生的主动性和创造性。

课程目标分解为具体学习成果,以便于后续教学设计和评估。

通过本课程的学习,使学生能够全面掌握化工原理知识,为未来从事化工领域工作打下坚实基础。

二、教学内容本章节教学内容主要包括:1. 化工流体力学基础:流体静力学、流体动力学、流体阻力与流动形态等;参考教材第二章:流体力学基础。

2. 热力学原理及应用:热力学第一定律、第二定律,以及理想气体、实际气体的热力学性质;参考教材第三章:热力学原理及其在化工中的应用。

3. 传质与传热过程:质量传递、热量传递的基本原理,以及相应的传递速率计算;参考教材第四章:传质与传热。

4. 化工过程模拟与优化:介绍化工过程模拟的基本方法,如流程模拟、动态模拟等,以及优化策略;参考教材第五章:化工过程模拟与优化。

5. 典型化工单元操作:分析各类单元操作的基本原理及设备选型,如反应器、塔器、换热器等;参考教材第六章:典型化工单元操作。

教学大纲安排如下:第一周:化工流体力学基础;第二周:热力学原理及应用;第三周:传质与传热过程;第四周:化工过程模拟与优化;第五周:典型化工单元操作。

化工原理下册天津大学柴诚敬01-02学时演示教学

化工原理下册天津大学柴诚敬01-02学时演示教学
ii
平均摩尔质量
cA
A
MA
2020/9/29
二、质量分数与摩尔分数
1.质量分数
质量分数定义式
wA
mA m
混合物的总质量分数
N
wi 1
i1
2020/9/29
二、质量分数与摩尔分数
2.摩尔分数 摩尔分数定义式
xA
nA n
液相
yA
nA n
气相
混合物的总摩尔分数
N
xi 1
i 1
2020/9/29
何意义? 作业题: 1、2
2020/9/29
2020/9/29
网络课程辅助教学
《化工原理及实验》网络课程 网址:202.113.179.181
2020/9/29
网络课程辅助教学
网络课程站点
《化工原理及实验》网络课程
虚 演图 动 作 思 讨 网 教 附

示片


考 题
论 与



课 实汇 汇 汇 汇 答 自 主 下
堂 验总 总 总 总 疑 测 页 载
2020/9/29
蒸馏 (精馏)
三、传质分离方法
(3)液液传质过程
液液传质过程是指 物质在两个不互溶的液 相间的转移,它主要包 括液体的萃取等单元操 作过程 。
2020/9/29
萃取
三、传质分离方法
(4)液固传质过程 液固传质过程是指物质在液、固两相间的转移,
它主要包括结晶(或溶解)、液体吸附(或脱附)、 浸取等单元操作过程。
wA 1 wA
2020/9/29
wA
XA 1 X
A
三、质量比与摩尔比
2.摩尔比

天津大学《化工原理》课程设计报告

天津大学《化工原理》课程设计报告

《化工原理》课程设计报告真空蒸发制盐系统卤水分效预热器设计学院天津大学化工学院专业化学工程与工艺班级2014学号3014207018姓名孙国铭指导教师马红钦化工流体传热课程设计任务书专业化学工程与工艺班级化工1班姓名孙国铭学号(编号)3014207018(一)设计题目:真空蒸发制盐系统卤水分效预热器设计(二)设计任务及条件1、蒸发系统流程及有关条件见附图。

2、系统生产能力:60 万吨/年。

3、有效生产时间:300天/年。

4、设计内容:Ⅱ效预热器(组)第12345678 台预热器的设计。

5、卤水分效预热器采用单管程固定管板式列管换热器,试根据附图中卤水预热的温度要求对预热器(组)进行设计。

6、卤水为易结垢工质,卤水流速不得低于0.5m/s。

7、换热管直径选为Φ38×3mm。

(三)设计项目1、由物料衡算确定卤水流量。

2、假设K计算传热面积。

3、确定预热器的台数及工艺结构尺寸。

4、核算总传热系数。

5、核算压降。

6、确定预热器附件。

7、设计评述。

(四)设计要求1、根据设计任务要求编制详细设计说明书。

2、按机械制图标准和规范,绘制预热器的工艺条件图(2#),注意工艺尺寸和结构的清晰表达。

设计说明书的编制按下列条目编制并装订:(统一采用A4纸,左装订)(1)标题页,参阅文献1附录一。

(2)设计任务书。

(3)目录。

(4)说明书正文设计简介:设计背景,目的,意义。

由物料衡算确定卤水流量。

假设K计算传热面积。

确定预热器的台数及工艺结构尺寸。

核算总传热系数。

核算压降。

确定预热器附件。

设计结果概要或设计一览表。

设计评述。

(5)主要符号说明。

(6)参考文献。

(7)预热器设计条件图。

主要参考文献1. 贾绍义,柴诚敬. 化工原理课程设计. 天津: 天津大学出版社, 20022. 柴诚敬,张国亮. 化工流体流动和传热. 北京: 化学工业出版社, 20073. 黄璐,王保国. 化工设计. 北京: 化学工业出版社, 20014. 机械制图自学内容:参考文献1,第一章、第三章及附录一、三;参考文献2,第五~七章;参考文献3,第1、3、4、5、11部分。

化工原理天大柴诚敬

化工原理天大柴诚敬

]
[
kg
m/ m2
s2
]
[
kg m / m2 s
s
]
动量 面积 时间
单位时间通过单位面积的动量,称为动量通量
(momentum flux)
[ux
]
[kg
/
m3
m
/
s]
[
kg
m m3
/
s
]
动量 体积
单位体积具有的动量,称为动量浓度
45
层流—分子动量传递
d (ux )
dy
为动量浓度梯度
[ ] [ ] [ kg m3 ] [ m2 ] m s kg s
14
一、流动系统的总能量衡算方程
衡算范围: 1-1′、2-2′截面以及 管内壁所围成的空间
基准水平面: 0-0′水平面
图1-12 流动系统的总能量衡算 1-换热器; 2-流体输送机械
15
一、流动系统的总能量衡算方程
推导思路:
总能量 衡算
机械能 衡算
不可压缩流体 机械能衡算
16
一、流动系统的总能量衡算方程
48
一、湍流的特点与表征
湍流的特点 1、质点的脉动 2、湍流的流动阻力远远大于层流 3、由于质点的高频脉动与混合,使得在与流 动垂直的方向上流体的速度分布较层流均匀。
49
一、湍流的特点与表征
图1-14 圆管中流体的速度分布
50
一、湍流的特点与表征
1.时均量与脉动量
图1-15 湍流中的速度脉动
51
qmu22
p2qV ,2
上式经整理,可得
21
一、流动系统的总能量衡算方程
U
gz
u2 2

化工原理天大柴诚敬学时

化工原理天大柴诚敬学时

第—草流体输送机械O 、通过本章学习,拿握化工中常用流体输送机械的基本结构、工作原理和操作特性,能够根据生产工艺要求和流体特性,合理地选择和正确操作流体输送机械,并使之在高效下安全可靠运行。

第二章流体输送机械2. 1概述2.1.1流体输送机械的作用管路对流体输送机械的能量要求由伯努利方程计算。

对于液体,采用以单位重量(1N)流体为基准的伯努利方程式+眷等 + 輕J/" —(2-1)K =立+也Pg7T2dA g心z+誉等+沪方程对于通风机的气体输送系统,在风机进出口截面间采用以单位体积(1m3)为基准的伯努利方程式,乩=Q£AZ+A D +卫-Q + Q 好G ・l/m3HVPa(2-6)流体输送机械除满足工艺上对流量和压头(对气体为风压与风量)两项主要技术指标要求外, 还应满足如下要求:①结构简单,重量轻,投资费用低。

②运行可靠,操作效率高,日常操作费用低。

③能适应被输送流体的特性,如黏度、可燃性、第二章流体输送机械2. 1概述2.1.1流体输送机械的作用2. 1.2流体输送机械的分类r输送液体泵按输送流体J的状态分类1 C通风机I输送气体鼓风机I压缩机动力式(叶轮式)按工作原理分类Y容积式(正位移式)流体作用式第二章流体输送机械2. 2离心泵2. 2. 1离心泵的工作原理和基本结构—・离心泵的工作原理是工业生产中应用最为广泛的液体输送机械。

其突出是结构简单、体积小、流量均匀、调节控制方便、故障少、寿命长、适用范围广(包括流量、压头和介质性质)、购置费和操作费用均较低。

—・离心泵的工作原理122-1离心泵装置简图g :斗r F离心泵的工作原理077//////////离心泵的叶轮吸液方式单吸式双吸式平衡图2-3离心泵的吸液方式图2-4泵壳和导轮泵轴与泵壳之间的密封称为轴封,其作用 是防止泵内高压液体从间隙漏出,或避免外界 空气进入泵内。

常用的轴封装置有填料密封和 机械密封两大类。

化工原理下课后习题解答天津大学化工学院柴诚敬

化工原理下课后习题解答天津大学化工学院柴诚敬

第七章传质与分离过程概论1.在吸收塔中用水吸收混于空气中的氨。

已知入塔混合气中氨含量为5.5%(质量分数,下同),吸收后出塔气体中氨含量为0.2%,试计算进、出塔气体中氨的摩尔比1Y 、2Y 。

解:先计算进、出塔气体中氨的摩尔分数1y 和2y 。

120.055/170.09030.055/170.945/290.002/170.00340.002/170.998/29y y ==+==+进、出塔气体中氨的摩尔比1Y 、2Y 为10.09030.099310.0903Y ==-20.00340.003410.0034Y ==-由计算可知,当混合物中某组分的摩尔分数很小时,摩尔比近似等于摩尔分数。

2. 试证明由组分A 和B 组成的双组分混合物系统,下列关系式成立: (1)2)B A A B A B A A (d d M x M x x M M w +=(2)2A )(d d BB AA B A A M w M w M M w x +=解:(1)BB A A A AA M x M x x M w +=BA A A)1(A A M x M x x M -+=2)B B A )B A )B B A (A A (A (A A A d A d M x M x M M M x M x M x M x w +-+=-2)B B A )B A (B A A (M x M x x x M M +=+由于 1B A =+x x 故2)B B A A B A A (d A d M x M x x M M w +=(2)BB AAA AA M w M w M w x+=2)()(Ad A d BB A A BAA ABB AA A 11)(1M w M w M M M w M w M w M w x+-+=-2)(BA 1(BB A A )B A M w M w M M w w ++=2)(BB AA B A 1M w M w M M +=故 2)(d A d BB AA B A A M w M w M M w x +=3. 在直径为0.012 m 、长度为0.35 m 的圆管中,CO 气体通过N 2进行稳态分子扩散。

化工原理下册天津大学柴诚敬49-50学时

化工原理下册天津大学柴诚敬49-50学时
A
D
G B
G F F
FE
稳定区
超溶 解度 曲线
溶解 度曲
线
溶液的过饱和与 超溶解度曲线
EFG EFG
EFG
冷却法 蒸发法 真空绝热蒸发法(冷却-蒸发法)
2020/6/3
第十二章 其他分离方法
12.1 结晶 12.1.1 结晶的基本概念 12.1.2 结晶热力学简介 12.1.3 结晶动力学简介
2020/6/3
初级成核 二级成核
初级成核速率 > 二级成核速率
超细粒子制造
初级成核
大粒子制造
二级成核
2020/6/3
二、晶体的生长
1.晶体生长的过程 晶体成长系指过饱和溶液中的溶质质点在过饱
和度推动力作用下,向晶核或加入晶种运动并在其 表面上层层有序排列,使晶核或晶种微粒不断长大 的过程。
2020/6/3
晶体 生长
一、晶核的形成
1.晶核产生
溶液中快速运动的 溶质元素(原子、离 子或分子)
相互碰撞
线体单元
线体单元增长
晶胚分解
晶核
晶胚增长
晶胚
晶核直径:数十纳米至几微米
2020/6/3
一、晶核的形成
2.初级成核与二级成核
没有晶体存在的过饱和溶 液中自发产生晶核的过程
有晶体(晶种)存在过饱 和溶液中产生晶核的过程
2020/6/3
第十二章 其他分离方法
12.1 结晶 12.2 膜分离(选读) 12.3 吸附(选读) 12.4 离子交换(选读)
2020/6/3
练习题目
思考题 1.何为晶格、晶系和晶习? 2.何为溶解度和超溶解度? 3.结晶动力学包括哪些内容?

化工原理(柴诚敬编)下册习题解答

化工原理(柴诚敬编)下册习题解答

第七章 传质与分离过程概论1.在吸收塔中用水吸收混于空气中的氨。

已知入塔混合气中氨含量为5.5%(质量分数,下同),吸收后出塔气体中氨含量为0.2%,试计算进、出塔气体中氨的摩尔比1Y 、2Y 。

解:先计算进、出塔气体中氨的摩尔分数1y 和2y 。

120.055/170.09030.055/170.945/290.002/170.00340.002/170.998/29y y ==+==+进、出塔气体中氨的摩尔比1Y 、2Y 为10.09030.099310.0903Y ==- 20.00340.003410.0034Y ==-由计算可知,当混合物中某组分的摩尔分数很小时,摩尔比近似等于摩尔分数。

2. 试证明由组分A 和B 组成的双组分混合物系统,下列关系式成立: (1) 2)B A A B A B A A (d d M x M x x M M w +=(2)2A )(d d BB AA B A A M w M w M M w x +=解:(1) BB A A A A A M x M x x M w +=BA A A)1(A A M x M x x M -+=2)B B A )B A )B B A (A A (A (A A A d A d M x M x M M M x M x M x M x w +-+=-2)B B A )B A (B A A (M x M x x x M M +=+由于 1B A =+x x 故2)B B A A B A A (d A d M x M x x M M w +=(2)BB AA A AA M w M w M w x +=2)((A d A d BB A A BAA ABB AA A 11(1M w M w M M M w M w M w M w x+-+=-2)(BA 1(BB A A )B A M w M w M M w w ++=2)(BB AA B A 1M w M w M M +=故 2)(d A d BB AA B A AM w M w M M w x +=3. 在直径为0.012 m 、长度为0.35 m 的圆管中,CO 气体通过N 2进行稳态分子扩散。

柴诚敬化工原理课后答案(05)第五章 传热过程基础

柴诚敬化工原理课后答案(05)第五章 传热过程基础

第五章 传热过程基础1.用平板法测定固体的导热系数,在平板一侧用电热器加热,另一侧用冷却器冷却,同时在板两侧用热电偶测量其表面温度,若所测固体的表面积为0.02 m 2,厚度为0.02 m ,实验测得电流表读数为0.5 A ,伏特表读数为100 V ,两侧表面温度分别为200 ℃和50 ℃,试求该材料的导热系数。

解:传热达稳态后电热器的加热速率应与固体的散热(导热)速率相等,即 Lt t SQ 21-=λ 式中 W 50W 1005.0=⨯==IV Qm 02.0C 50C 200m 02.0212=︒=︒==L t t S ,,, 将上述数据代入,可得()()()()C m W 333.0C m W 5020002.002.05021︒⋅=︒⋅-⨯⨯=-=t t S QL λ2.某平壁燃烧炉由一层400 mm 厚的耐火砖和一层200 mm 厚的绝缘砖砌成,操作稳定后,测得炉的内表面温度为1500 ℃,外表面温度为100 ℃,试求导热的热通量及两砖间的界面温度。

设两砖接触良好,已知耐火砖的导热系数为10.80.0006t λ=+,绝缘砖的导热系数为20.30.0003t λ=+,W /(m C)⋅︒。

两式中的t 可分别取为各层材料的平均温度。

解:此为两层平壁的热传导问题,稳态导热时,通过各层平壁截面的传热速率相等,即 Q Q Q ==21 (5-32) 或 23221211b t t S b t t SQ -=-=λλ (5-32a ) 式中 115000.80.00060.80.0006 1.250.00032t t t λ+=+=+⨯=+21000.30.00030.30.00030.3150.000152t t t λ+=+=+⨯=+代入λ1、λ2得2.0100)00015.0315.0(4.01500)0003.025.1(-+=-+t t t t解之得C 9772︒==t t())()C m W 543.1C m W 9770003.025.10003.025.11︒⋅=︒⋅⨯+=+=t λ则 ()22111m W 2017m W 4.09771500543.1=-⨯=-=b t t S Q λ3.外径为159 mm 的钢管,其外依次包扎A 、B 两层保温材料,A 层保温材料的厚度为50 mm ,导热系数为0.1 W /(m·℃),B 层保温材料的厚度为100 mm ,导热系数为1.0 W /(m·℃),设A 的内层温度和B 的外层温度分别为170 ℃和40 ℃,试求每米管长的热损失;若将两层材料互换并假设温度不变,每米管长的热损失又为多少?解:()()mW 150m W 100159100502159ln 0.11159502159ln 1.014017014.32ln 21ln 2123212121=++⨯++⨯+-⨯⨯=+-=r r r r t t L Q πλπλA 、B 两层互换位置后,热损失为()()mW 5.131m W 100159100502159ln 1.01159502159ln 0.114017014.32ln 21ln 2123212121=++⨯++⨯+-⨯⨯=+-=r r r r t t L Q πλπλ4.直径为57mm 3.5φ⨯mm 的钢管用40 mm 厚的软木包扎,其外又包扎100 mm 厚的保温灰作为绝热层。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章 传质与分离过程概论
7.1 概述 7.2 质量传递的方式与描述 7.2.1 分子传质(扩散) 7.2.2 对流传质
2020/6/16
一、涡流扩散现象
1.涡流扩散 由于流体质点的湍动和旋涡而形成的物质传递
现象—涡流扩散。
❖ 涡流扩散在湍流流体中发生 ❖ 在涡流扩散中时刻存在分子扩散 ❖ 涡流扩散的通量远大于分子扩散的通量
表面更新率,用符号S 表示。
2020/6/16
二、相际间对流传质模型
根据表面更新模型,可导出
N
A
DAS B(cA i cA0)
设对流传质速率方程分别为
N AkL(cA icA)b
2020/6/16
二、相际间对流传质模型
比较可得
k
L
DABS
kL

D 1/2 AB
表面更新模型 的模型参数
2020/6/16
根据溶质渗透模型,可导出
4D
NA
AB(c c )
c Ai A0
设对流传质速率方程分别为
N AkL(cA icA)b
2020/6/16
二、相际间对流传质模型
比较可得
k
L
4D
AB
c
k ∝ L
D 1/2 AB
溶质渗透模型 的模型参数
暴露时间
c
2020/6/16
二、相际间对流传质模型
3.表面更新模型
表面更新率
S
第七章 传质与分离过程概论
7.1 概述 7.2 质量传递的方式与描述 7.3 传质设备简介 7.3.1 传质设备的分类与性能要求
2020/6/16
一、传质设备的分类
按所处理物系相态分类
气液传质设备
传质 设备
液液传质设备 气固传质设备
液固传质设备
按两相的接触方式分类
传质 逐级接触式设备 设备 微分接触式设备
c Af

流体与管壁间的浓度分布
二、对流传质
在与壁 面垂直 的方向 上分为 三层
层流 内层
缓冲 层
湍流 主体
2020/6/16
传质机理:分子传质
浓度分布:为一陡峭直线
传质机理
分子传质 涡流传质
浓度分布:为一渐缓曲线
传质机理:涡流传质为主
浓度分布:为一平坦曲线
二、对流传质
2.对流传质速率方程 描述对流传质的基本方程—对流传质速率方程。
可靠
2020/6/16
第七章 传质与分离过程概论
7.1 概述 7.2 质量传递的方式与描述 7.3 传质设备简介 7.3.1 传质设备的分类与性能要求 7.3.2 典型的传质设备
2020/6/16
一、板式塔
板式塔为逐级接触式的气
液传质设备,它主要由圆柱形 壳体、塔板、溢流堰、降液管 及受液盘等部件构成。
2020/6/16
一、相际间的对流传质过程
设组分 A从气相传递到液相(如吸收),该过 程由以下3步串联而成:
① 组分A从气相主体扩散到相界面;
② 在相界面上组分A由气相转入液相;
③ 组分A由相界面扩散到液相主体。
一般来说,相界面上组分A从气相转入液相的 过程很快,相界面传质阻力可以忽略。因此,相际 间传质的阻力主要集中在气相和液相中。若其中一 相传质阻力较另一相大得多,则另一相传质阻力可 以忽略,此种传质过程即称之为“该相控制”。
定的相界面,界面的两侧各有一个很薄的停滞 膜—气膜和液膜,溶质A经过两膜层的传质方式 为分子扩散。 ② 在气液相界面处,气液两相处于平衡状态,无 传质阻力。 ③ 在气膜、液膜以外的气、液两相主体中,由于流 体强烈湍动,各处浓度均匀一致,无传质阻力。
2020/6/16
二、相际间对流传质模型
依据双膜模型,组分A通过气膜、液膜的扩散 通量方程分别为
学习指导
本章重点掌握的内容
❖传质分离方法 ❖相组成的表示方法 ❖质量传递的方式与描述
分子传质(扩散) 对流传质 ❖典型的传质设备
2020/6/16
丹克沃茨(Danckwerts) 于1951年提出,为非
稳态模型。
表面更新模型的要点 ① 溶质向液相内部传质为非稳态分子扩散过程。
② 界面上液体单元有不同的暴露时间或称年龄,界 面上各种不同年龄的液体单元都存在。
③ 不论界面上液体单元暴露时间多长,被置换的概 率是均等的。单位时间内表面被置换的分率称为
2020/6/16
一、涡流扩散现象
2.涡流扩散通量方程 描述涡流扩散通量的方程为
J
e A
M
dcA dz
kmol/(m2· s )
—涡流扩散系数,m2/s M
涡流扩 散通量
2020/6/16
二、对流传质
1.对流传质的类型
运动流体与固体表面之间,或两个有限互溶的
运动流体之间的质量传递过程—对流传质。
对流 传质

强制对流传质 自然对流传质
强制层流传质
强制湍流传质√
2020/6/16
二、对流传质
2.对流传质的机理
所谓对流传质 的机理是指在传质 过程中,流体以哪 种方式进行传质。 研究对流传质速率 需首先弄清对流传 质的机理。
2020/6/16
层流
内层
c Ai
缓冲 层
湍流 中心
湍流 流体
cA f (r)
2020/6/16
练习题目
思考题
1. 对流传质有哪些类型,其传质机理如何? 2. 提出对流传质模型的意义是什么? 3.停滞膜模型,溶质渗透模型和表面更新模型的要
点是什么,各模型求得的传质系数与扩散系数有 何关系,其模型参数是什么? 4.板式塔和填料塔的构造如何? 作业题: 6、7、8
2020/6/16
2020/6/16
一、相际间的对流传质过程
2020/6/16
相际间的传质
二、相际间对流传质模型
1.双膜模型
惠特曼(Whiteman)
于1923年提出,最早提出
的一种传质模型。
pb
停滞膜模型
(双阻力模型)
cb
播放动画32:双膜模型
2020/6/16
双膜模型示意图
二、相际间对流传质模型
停滞膜模型的要点 ① 当气液两相相互接触时,在气液两相间存在着稳
N k (c c ) kmol/(m2· s ) A L Ai Af
对流传质 速率方程
对流传 质通量
k L —对流传质系数,kmol/(m2·s·△c)
2020/6/16
第七章 传质与分离过程概论
7.1 概述 7.2 质量传递的方式与描述 7.2.1 分子传质(扩散) 7.2.2 对流传质 7.2.3 相际间的传质
2020/6/16
二、相际间对流传质模型
溶质渗透模型的要点 ① 液面由无数微小的液体单元所构成,当气液两
相相互接触时,液相主体中的某些单元运动至 相界面便停滞下来。在气液未接触前,液体单 元中溶质的浓度和液相主体的浓度相等,接触 开始后,相界面处立即达到与气相平衡状态。 ② 随着接触时间的延长,溶质 A通过不稳态扩 散方式不断地向液体单元中渗透。
1. 壳体
2. 塔板
3. 溢流堰
板 式 塔
液相 连续相 汽相 分散相
4. 受液盘 5. 降液管
2020/6/16
板式塔的结构
二、板式塔
2020/6/16
1. 筛孔 2. 鼓泡层 3. 泡沫层 4. 降液管
筛孔塔板示意图
二、填料塔
填料塔为连续接触式的气 液传质设备,它主要由圆柱形 壳体、液体分布器、填料支承 板、塔填料、填料压板及液体 再分布装置等部件构成。
气膜对 流
传质系 数
液膜对 流
传质系 数
二、相际间对流传质模型
根据双膜模型,导出
k G ∝ DAB

k L ∝ DAB
停滞膜模型 的模型参数
2020/6/16
气膜厚度 zG 液膜厚度 zL
二、相际间对流传质模型
2.溶质渗透模型
希格比( Higbie )
于1935年提出,为非稳 态模型。
溶质渗透模型示意图 播放动画33:溶质渗透模型
按促使两相混合与接触动力分类 传质 无外加能量式设备 设备 有外加能量式设备
2020/6/16
二、传质设备的性能要求
对传质设备的基本要求
❖单位体积中,两相的接触面积应尽可能大 ❖两相分布均匀,避免或抑制沟流、短路及返混等
现象发生
❖流体的通量大,单位设备体积的处理量大 ❖流动阻力小,运转时动力消耗低 ❖操作弹性大,对物料的适应性强 ❖结构简单,造价低廉,操作调节方便,运行安全
2020/6/16
二、相际间对流传质模型
③ 液体单元在界面处暴露的时间是有限的,经
过时间θc后,旧的液体单元即被新的液体单
元所置换而回到液相主体中去。在液体单元 深处,仍保持原来的主体浓度不变。 ④ 液体单元不断进行交换,每批液体单元在界
面暴露的时间θc 都是一样的。
2020/6/16
二、相际间对流传质模型
Dp NA RTAGzBp总 BM(pAbpAi)
D c NA zALBcB总M(cAicAb)
2020/6/16
二、相际间对流传质模型
设对流传质速率方程分别为
NAkG(pAb pA)i
N AkL(cA icA)b
比较得
2020/6/16
Dp
kG
AB 总
RTzG pBM
D c
kL
AB 总
z L c BM
填 料 塔
2020/6/16
液相 分散相 气相 连续相
1.塔壳体; 2.液体分布器; 3.填料压板; 4.填料; 5.液体再分布器; 6.填料支承板。
相关文档
最新文档