河北省中考数学试题(word版含答案)
河北省2023年中考数学试卷(附参考答案)

河北省2023年中考数学试卷一、选择题1.代数式的意义可以是()A.与x的和B.与x的差C.与x的积D.与x的商2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西的方向,则淇淇家位于西柏坡的()A.南偏西方向B.南偏东方向C.北偏西方向D.北偏东方向3.化简的结果是()A.B.C.D.4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A.B.C.D.5.四边形的边长如图所示,对角线的长度随四边形形状的改变而变化.当为等腰三角形时,对角线的长为()A.2B.3C.4D.56.若k为任意整数,则的值总能()A.被2整除B.被3整除C.被5整除D.被7整除7.若,则()A.2B.4C.D.8.综合实践课上,嘉嘉画出,利用尺规作图找一点C,使得四边形为平行四边形.图1~图3是其作图过程.(1)作的垂直平分线交于点O;(2)连接,在的延长线上截取;(3)连接,,则四边形即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等9.如图,点是八等分点.若,四边形的周长分别为a,b,则下列正确的是()A.B.C.D.a,b大小无法比较10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于.下列正确的是()A.B.C.是一个12位数D.是一个13位数11.如图,在中,,点M是斜边的中点,以为边作正方形,若,则()A.B.C.12D.1612.如图1,一个2×2平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个13.在和中,.已知,则()A.B.C.或D.或14.如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为和.若移动时间为x,两个机器人之间距离为y,则y与x关系的图象大致是()A.B.C.D.15.如图,直线,菱形和等边在,之间,点A,F分别在,上,点B,D,E,G在同一直线上:若,,则()A.B.C.D.16.已知二次函数和(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.C.4D.二、填空题17.如图,已知点,反比例函数图像的一支与线段有交点,写出一个符合条件的k的数值:.18.根据下表中的数据,写出a 的值为.b 的值为.x 结果代数式2n7b a119.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)度.(2)中间正六边形的中心到直线l的距离为(结果保留根号).三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)31在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为.(1)请用含a的式子分别表示;当时,求的值;(2)比较与的大小,并说明理由.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点处将沙包(看成点)抛出,并运动路线为抛物线的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线的一部分.(1)写出的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方的高度上,且到点A水平距离不超过的范围内可以接到沙包,求符合条件的n的整数值.24.装有水的水槽放置在水平台面上,其横截面是以为直径的半圆,,如图1和图2所示,为水面截线,为台面截线,.计算:在图1中,已知,作于点.(1)求的长.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段与的长度,并比较大小.25.在平面直角坐标系中,设计了点的两种移动方式:从点移动到点称为一次甲方式:从点移动到点称为一次乙方式.例、点P从原点O出发连续移动2次;若都按甲方式,最终移动到点;若都按乙方式,最终移动到点;若按1次甲方式和1次乙方式,最终移动到点.(1)设直线经过上例中的点,求的解析式;并直接写出将向上平移9个单位长度得到的直线的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点.其中,按甲方式移动了m次.①用含m的式子分别表示;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为,在图中直接画出的图象;(3)在(1)和(2)中的直线上分别有一个动点,横坐标依次为,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.26.如图1和图2,平面上,四边形中,,点在边上,且.将线段绕点顺时针旋转到的平分线所在直线交折线于点,设点在该折线上运动的路径长为,连接.(1)若点在上,求证:;(2)如图2.连接.①求的度数,并直接写出当时,的值;②若点到的距离为,求的值;(3)当时,请直接写出点到直线的距离.(用含的式子表示)1.C2.D3.A4.B5.B6.B7.A8.C9.A10.D11.B12.B13.C14.D15.C16.A17.4(答案不唯一,满足均可)18.;19.(1)(2)20.(1)解:由题意得(分),答:珍珍第一局的得分为6分;(2)解:由题意得,解得:.21.(1)解:依题意得,三种矩形卡片的面积分别为:,∴,,∴,∴当时,;(2)解:,理由如下:∵,∴∵,∴,∴.22.(1)解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:(分)由统计图可知,客户所评分数的平均数为:(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.(2)解:设监督人员抽取的问卷所评分数为x分,则有:解得:∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由分变成4分.23.(1)解:∵抛物线,∴的最高点坐标为,∵点在抛物线上,∴,解得:,∴抛物线的解析式为,令,则;(2)解:∵到点A水平距离不超过的范围内可以接到沙包,∴点A的坐标范围为,当经过时,,解得;当经过时,,解得;∴∴符合条件的n的整数值为4和5.24.(1)解:连接,∵为圆心,于点,,∴,∵,∴,∴在中,.操作:将图1中的水面沿向右作无滑动的滚动,使水流出一部分,当时停止滚动,如图2.其中,半圆的中点为,与半圆的切点为,连接交于点.探究:在图2中(2)解:∵与半圆的切点为,∴∵∴于点,∵,,∴,∴操作后水面高度下降高度为:.(3)解:∵于点,∴,∵半圆的中点为,∴,∴,∴,∴,,∵,∴.25.(1)解:设的解析式为,把、代入,得,解得:,∴的解析式为;将向上平移9个单位长度得到的直线的解析式为;(2)解:①∵点P按照甲方式移动了m次,点P从原点O出发连续移动10次,∴点P按照乙方式移动了次,∴点P按照甲方式移动m次后得到的点的坐标为;∴点按照乙方式移动次后得到的点的横坐标为,纵坐标为,∴;②由于,∴直线的解析式为;函数图象如图所示:(3)解:26.(1)证明:∵将线段绕点顺时针旋转到,∴∵的平分线所在直线交折线于点,∴又∵∴∴;(2)解:①∵,,∴∵,∴,∴∴;如图所示,当时,∵平分∴∴∴∴∵,∴∴,∴∵,∴∴,即∴解得∴.②如图所示,当点在上时,,∵,∴,,∴,∴∴;如图所示,当在上时,则,过点作交的延长线于点,延长交的延长线于点,∵,∴,∴∴即∴,,∴∵∴,∴,∴∴解得:∴,综上所述,的值为或;(3)解:点到直线的距离为。
河北中考数学试题及答案doc

河北中考数学试题及答案doc一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2B. √2C. 0.5D. 3/4答案:B2. 在一个直角三角形中,如果一个锐角是30°,那么另一个锐角是多少度?A. 60°B. 90°C. 120°D. 150°答案:A3. 将下列哪个数列按从小到大的顺序排列?A. 3, 2, 1B. 1, 2, 3C. 3, 1, 2D. 2, 3, 1答案:B4. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 等边三角形B. 矩形C. 圆D. 所有选项答案:D6. 一个数的绝对值是5,这个数可能是多少?A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 以下哪个表达式的结果是一个正数?A. -2 + 3B. 2 - 5C. -3 × 2D. 1 ÷ (-1)答案:A8. 一个圆的半径是5厘米,那么这个圆的周长是多少?A. 10π厘米B. 20π厘米C. 25π厘米D. 30π厘米答案:B9. 一个数的立方是-8,这个数是多少?A. 2B. -2C. 8D. -8答案:B10. 下列哪个分数是最简分数?A. 3/6B. 4/8C. 5/10D. 7/14答案:B二、填空题(每题3分,共30分)11. 一个数的相反数是-4,这个数是________。
答案:412. 如果一个数的绝对值是7,那么这个数可能是________或________。
答案:7或-713. 一个等腰三角形的底角是45°,那么顶角是________度。
答案:9014. 一个数的平方根是2,那么这个数是________。
答案:415. 一个圆的直径是10厘米,那么这个圆的半径是________厘米。
答案:516. 一个数的立方根是-2,那么这个数是________。
河北中考数学试题及答案

河北中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. 圆的周长公式是C=2πrB. 圆的周长公式是C=πdC. 圆的面积公式是A=πr^2D. 圆的面积公式是A=πd^2答案:A2. 已知x+y=5,x-y=3,求x和y的值。
A. x=4,y=1B. x=3,y=2C. x=1,y=4D. x=2,y=3答案:A3. 计算下列哪个表达式的值等于10?A. 3x + 7B. 2x - 5C. 5x - 3D. 4x + 6答案:C4. 下列哪个二次方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 3x + 2 = 0C. x^2 - 2x + 1 = 0D. x^2 - 5x + 6 = 0答案:A5. 一个等腰三角形的底边长为6,高为4,求其周长。
A. 12B. 16C. 18D. 20答案:C6. 一个数的平方根是3,这个数是多少?A. 6B. 9C. 12D. 15答案:B7. 一个正数的倒数是1/4,这个正数是多少?A. 4B. 1/4C. 1/2D. 2答案:A8. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C9. 计算下列哪个表达式的值等于-2?A. 3x - 5B. 2x + 3C. 4x - 6D. 5x + 7答案:A10. 一个直角三角形的两条直角边长分别为3和4,求斜边长。
A. 5B. 6C. 7D. 8答案:A二、填空题(每题3分,共15分)11. 一个数的立方是8,这个数是______。
答案:212. 一个数的相反数是-7,这个数是______。
答案:713. 一个数的绝对值是10,这个数可能是______或______。
答案:10或-1014. 一个等差数列的首项是2,公差是3,第5项是______。
答案:1715. 一个等比数列的首项是3,公比是2,第3项是______。
答案:24三、解答题(每题10分,共40分)16. 已知一个二次函数y=ax^2+bx+c,其中a=1,b=-6,c=5,求该函数的顶点坐标。
2023年河北中考数学真题+答案详解

2023年河北中考数学真题+答案详解(真题部分)一、选择题1. 代数式-7x 的意义可以是( )A. 7−与x 的和B. 7−与x 的差C. 7−与x 的积D. 7−与x 的商 2. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的( )A. 南偏西70︒方向B. 南偏东20︒方向C. 北偏西20︒方向D. 北偏东70︒方向3. 化简233y x x ⎛⎫ ⎪⎝⎭的结果是( ) A. 6xy B. 5xy C. 25x y D. 26x y4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D. 5. 四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为( )A. 2B. 3C. 4D. 56. 若k 为任意整数,则22(23)4k k +−的值总能( )A. 被2整除B. 被3整除C. 被5整除D. 被7整除7. 若27a b ==,2214a b=( ) A. 2 B. 4 C. 7 D. 28. 综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程. (1)作BD 的垂直平分线交BD 于点O ; (2)连接AO ,在AO 的延长线上截取OC AO =; (3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是()A. 两组对边分别平行B. 两组对边分别相等C. 对角线互相平分D. 一组对边平行且相等 9. 如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A. a b <B. a b =C. a b >D. a ,b 大小无法比较 10. 光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是( )A. 12119.4610109.4610⨯−=⨯B. 12129.46100.46910⨯−=⨯C. 129.4610⨯是一个12位数D. 129.4610⨯是一个13位数11. 如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABC S =( )A. 43B. 83C. 12D. 1612. 如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体( )A. 1个B. 2个C. 3个D. 4个13. 在ABC 和A B C '''中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=( )A. 30︒B. n ︒C. n ︒或180n ︒−︒D. 30︒或150︒ 14. 如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A. B.C. D.15. 如图,直线12l l ∥,菱形ABCD 和等边EFG 1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=( )A. 42︒B. 43︒C. 44︒D. 45︒16. 已知二次函数22y x m x =−+和22y x m =−(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( )A. 2B. 2mC. 4D. 22m二、填空题17. 如图,已知点(3,3),(3,1)A B ,反比例函数(0)k y k x=≠图像的一支与线段AB有交点,写出一个符合在条件的k 的数值:_________.18. 根据下表中的数据,写出a 的值为_______.b 的值为_______. x结果代数式 2 n31x +7 b 21x x + a 119. 将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).三、解答题20. 某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区 脱靶 一次计分(分) 3 1 2−在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.21. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值;(2)比较1S 与2S 的大小,并说明理由.22. 某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =−+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188n C y x x c =−+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.24. 装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥.计算:在图1中,已知48cm MN =,作OC MN ⊥于点C .(1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ 的长度,并比较大小.25. 在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定直线上.设这条直线为3l ,在图中直接画出3l 的图象; (3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.26. 如图1和图2,平面上,四边形ABCD 中,8,211,12,6,90AB BC CD DA A ====∠=︒,点M 在AD 边上,且2DM =.将线段MA 绕点M 顺时针旋转(0180)n n ︒<≤到,MA A MA ''∠的平分线MP 所在直线交折线—AB BC 于点P ,设点P 在该折线上运动的路径长为(0)x x >,连接A P '.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;(3)当08x <≤时,请直接..写出点A '到直线AB 的距离.(用含x 的式子表示).的2023年河北中考数学真题+答案详解(答案详解)一、选择题1. 代数式-7x的意义可以是()A. 7−与x的和B. 7−与x的差C. 7−与x的积D. 7−与x的商【答案】C【解析】【分析】根据代数式赋予实际意义即可解答.−的意义可以是7−与x的积.【详解】解:7x故选C.【点睛】本题主要考查了代数式的意义,掌握代数式和差乘除的意义是解答本题的关键.2. 淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西70︒的方向,则淇淇家位于西柏坡的()A. 南偏西70︒方向B. 南偏东20︒方向C. 北偏西20︒方向D. 北偏东70︒方向【答案】D【解析】【分析】根据方向角的定义可得答案.【详解】解:如图:∵西柏坡位于淇淇家南偏西70︒的方向,∴淇淇家位于西柏坡的北偏东70︒方向.故选D.【点睛】本题主要考查方向角,理解方向角的定义是正确解答的关键.3. 化简233y x x ⎛⎫ ⎪⎝⎭的结果是( )A. 6xyB. 5xyC. 25x yD. 26x y【答案】A 【解析】【分析】根据分式的乘方和除法的运算法则进行计算即可.【详解】解:2363362y y x x xy x x =⎛⎝⋅⎫= ⎪⎭, 故选:A .【点睛】本题考查分式的乘方,掌握公式准确计算是本题的解题关键.4. 1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A. B. C. D.【答案】B 【解析】【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张, ∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃, 故选B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5. 四边形ABCD 的边长如图所示,对角线AC 的长度随四边形形状的改变而变化.当ABC 为等腰三角形时,对角线AC 的长为( )A. 2B. 3C. 4D. 5【答案】B 【解析】【分析】利用三角形三边关系求得04AC <<,再利用等腰三角形的定义即可求解. 【详解】解:在ACD 中,2AD CD ==, ∴2222AC −<<+,即04AC <<,当4AC BC ==时,ABC 为等腰三角形,但不合题意,舍去; 若3AC AB ==时,ABC 为等腰三角形, 故选:B .【点睛】本题考查了三角形三边关系以及等腰三角形的定义,解题的关键是灵活运用所学知识解决问题. 6. 若k 为任意整数,则22(23)4k k +−的值总能( ) A. 被2整除 B. 被3整除C. 被5整除D. 被7整除【答案】B 【解析】【分析】用平方差公式进行因式分解,得到乘积的形式,然后直接可以找到能被整除的数或式. 【详解】解:22(23)4k k +−(232)(232)k k k k =+++− 3(43)k =+,3(43)k +能被3整除,∴22(23)4k k +−的值总能被3整除, 故选:B .【点睛】本题考查了平方差公式的应用,平方差公式为22()()a b a b a b −=−+通过因式分解,可以把多项式分解成若干个整式乘积的形式.7. 若27a b ==,2214a b=( ) A. 2 B. 4 C.7 D.2【答案】A 【解析】 【分析】把27a b ==,【详解】解:∵27a b ==,()()2222142141424277ab ⨯⨯====, 故选:A .【点睛】本题考查了求二次根式的值,掌握二次根式的乘方和乘除运算是解题的关键.8. 综合实践课上,嘉嘉画出ABD △,利用尺规作图找一点C ,使得四边形ABCD 为平行四边形.图1~图3是其作图过程. (1)作BD 的垂直平分线交BD 于点O ; (2)连接AO ,在AO 的延长线上截取OC AO =;(3)连接DC ,BC ,则四边形ABCD 即为所求.在嘉嘉的作法中,可直接判定四边形ABCD 为平行四边形的条件是( ) A. 两组对边分别平行 B. 两组对边分别相等 C. 对角线互相平分 D. 一组对边平行且相等【答案】C 【解析】【分析】根据作图步骤可知,得出了对角线互相平分,从而可以判断. 【详解】解:根据图1,得出BD 的中点O ,图2,得出OC AO =, 可知使得对角线互相平分,从而得出四边形ABCD 为平行四边形,判定四边形ABCD 为平行四边形的条件是:对角线互相平分, 故选:C .【点睛】本题考查了平行四边形的判断,解题的关键是掌握基本的作图方法及平行四边形的判定定理. 9. 如图,点18~P P 是O 的八等分点.若137PP P ,四边形3467P P P P 的周长分别为a ,b ,则下列正确的是( )A. a b <B. a b =C. a b >D. a ,b 大小无法比较【答案】A 【解析】【分析】连接1223,PP P P ,依题意得12233467PP P P P P P P ===,4617P P PP =,137PP P 的周长为131737a PP PP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+,故122313b a PP P P PP +−=−,根据123PP P 的三边关系即可得解. 【详解】连接1223,PP P P ,∵点18~P P 是O 的八等分点,即1223345566778148PP P P P P P P P P P P P P P P ======= ∴12233467PP P P P P P P ===,464556781178P P P P P P P P P P PP =+=+= ∴4617P P PP =又∵137PP P 的周长为131737a PPPP P P ++=,四边形3467P P P P 的周长为34466737b P P P P P P P P ++=+, ∴()()34466737131737b a P P P P P P P P PP PP P P ++−++=+−()()12172337131737PP PP P P P P PP PP P P =+++−++122313PP P P PP =−+在123PP P 中有122313PP P P PP >+ ∴1223130b a PP P P PP −=+>− 故选A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.10. 光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于129.4610km ⨯.下列正确的是( )A. 12119.4610109.4610⨯−=⨯B. 12129.46100.46910⨯−=⨯C. 129.4610⨯是一个12位数D. 129.4610⨯是一个13位数【答案】D 【解析】【分析】根据科学记数法、同底数幂乘法和除法逐项分析即可解答. 【详解】解:A. 12119.4610109.4610⨯÷=⨯,故该选项错误,不符合题意; B. 12129.46100.46910⨯−≠⨯,故该选项错误,不符合题意; C. 129.4610⨯是一个13位数,故该选项错误,不符合题意; D. 129.4610⨯是一个13位数,正确,符合题意. 故选D .【点睛】本题主要考查了科学记数法、同底数幂乘法和除法等知识点,理解相关定义和运算法则是解答本题的关键.11. 如图,在Rt ABC △中,4AB =,点M 是斜边BC 的中点,以AM 为边作正方形AMEF ,若16AMEF S =正方形,则ABCS=( )A. 43B. 83C. 12D. 16【答案】B 【解析】【分析】根据正方形的面积可求得AM 的长,利用直角三角形斜边的中线求得斜边BC 的长,利用勾股定理求得AC 的长,根据三角形的面积公式即可求解. 【详解】解:∵16AMEF S =正方形, ∴164AM ==,∵Rt ABC △中,点M 是斜边BC 的中点, ∴28BC AM ==, ∴22224438AC BC AB =−=−=∴114438322ABCSAB AC =⨯⨯=⨯⨯= 故选:B .【点睛】本题考查了直角三角形斜边中线的性质,勾股定理,掌握“直角三角形斜边中线等于斜边的一半”是解题的关键.12. 如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体( )A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】【分析】利用左视图和主视图画出草图,进而得出答案.【详解】解:由题意画出草图,如图,平台上至还需再放这样的正方体2个, 故选:B .【点睛】此题主要考查了三视图,正确掌握观察角度是解题关键.13. 在ABC 和A B C '''中,3064B B AB A B AC A C '''''∠=∠=︒====,,.已知C n ∠=︒,则C '∠=( )A. 30︒B. n ︒C. n ︒或180n ︒−︒D. 30︒或150︒【答案】C 【解析】【分析】过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢,求得3AD A D ''==,分两种情况讨论,利用全等三角形的判定和性质即可求解.【详解】解:过A 作AD BC ⊥于点D ,过A '作A D B C ''''⊥于点D ¢, ∵306B B AB A B '''∠=∠=︒==,, ∴3AD A D ''==,当B C 、在点D 的两侧,B C ''、在点D ¢的两侧时,如图,∵3AD A D ''==,4AC A C ''==, ∴()Rt Rt HL ACD A C D '''≌△△, ∴C C n '∠=∠=︒;当B C 、在点D 的两侧,B C ''、在点D ¢的同侧时,如图,∵3AD A D ''==,4AC A C ''==,∴()Rt Rt HL ACD A C D '''≌△△,∴'''A C D C n ∠=∠=︒,即'''180'''180A C B A C D n ∠=︒−∠=︒−︒; 综上,C '∠的值为n ︒或180n ︒−︒. 故选:C .【点睛】本题考查了含30度角的直角三角形的性质,全等三角形的判定和性质,分类讨论是解题的关键.14. 如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A. B.C. D.【答案】D 【解析】【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发, 设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++, ∵两个人机器人速度相同, ∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C , 故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.15. 如图,直线12l l ∥,菱形ABCD 和等边EFG 在1l ,2l 之间,点A ,F 分别在1l ,2l 上,点B ,D ,E ,G 在同一直线上:若50α∠=︒,146ADE ∠=︒,则β∠=( )A. 42︒B. 43︒C. 44︒D. 45︒【答案】C 【解析】【分析】如图,由平角的定义求得18034ADB ADE ???,由外角定理求得,16AHDADBα???,根据平行性质,得16GIFAHD???,进而求得44EGFGIFβ???.【详解】如图,∵146ADE ∠=︒ ∴18034ADB ADE ????∵ADB AHD α???∴503416AHD ADBα??????∵12l l ∥∴16GIF AHD??∵EGF GIF β?? ∴601644EGFGIFβ?????故选:C .【点睛】本题考查平行线的性质,平角的定义,等边三角形的性质,三角形外角定理,根据相关定理确定角之间的数量关系是解题的关键.16. 已知二次函数22y x m x =−+和22y x m =−(m 是常数)的图象与x 轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为( ) A. 2 B. 2m C. 4D. 22m【答案】A 【解析】【分析】先求得两个抛物线与x 轴的交点坐标,据此求解即可. 【详解】解:令0y =,则220x m x −+=和220x m −=, 解得0x =或2x m =或x m =−或x m =, 不妨设0m >,∵()0m ,和()0m −,关于原点对称,又这四个交点中每相邻两点间的距离都相等,∴()20m ,与原点关于点()0m ,对称,∴22m m =,∴2m =或0m =(舍去),∵抛物线22y x m =−的对称轴为0x =,抛物线22y x m x =−+的对称轴为222m x ==,∴这两个函数图象对称轴之间的距离为2, 故选:A .【点睛】本题考查了抛物线与x 轴的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件.二、填空题17. 如图,已知点(3,3),(3,1)A B ,反比例函数(0)ky k x=≠图像的一支与线段AB 有交点,写出一个符合条件的k 的数值:_________.【答案】4(答案不唯一,满足39k <<均可) 【解析】【分析】先分别求得反比例函数(0)ky k x=≠图像过A 、B 时k 的值,从而确定k 的取值范围,然后确定符合条件k 的值即可.【详解】解:当反比例函数(0)ky k x=≠图像过(3,3)A 时,339k =⨯=; 当反比例函数(0)ky k x=≠图像过(3,1)B 时,313k =⨯=; ∴k 的取值范围为39k << ∴k 可以取4.故答案为4(答案不唯一,满足39k <<均可).【点睛】本题主要考查了求反比例函数的解析式,确定边界点的k 的值是解答本题的关键. 18. 根据下表中的数据,写出a 的值为_______.b 的值为_______.x结果代数式2n31x +7 b 21x x+ a1【答案】 ①. 52②. 2− 【解析】【分析】把2x =代入得21x a x +=,可求得a 的值;把x n =分别代入31x b +=和211x x+=,据此求解即可.【详解】解:当x n =时,31x b +=,即31n b +=,当2x =时,21x a x +=,即221522a ⨯+==, 当x n =时,211x x +=,即211n n+=, 解得1n =−,经检验,1n =−是分式方程的解, ∴()3112b =⨯−+=−, 故答案为:52;2− 【点睛】本题考查了求代数式的值,解分式方程,准确计算是解题的关键.19. 将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中 (1)α∠=______度.(2)中间正六边形的中心到直线l 的距离为______(结果保留根号).【答案】 ①. 30 ②. 23【解析】【分析】(1)作图后,结合正多边形的外角的求法即可求解;(2)表问题转化为图形问题,首先作图,标出相应的字母,把正六边形的中心到直线l 的距离转化为求ON OM BE =+,再根据正六边形的特征及利用勾股定理及三角函数,分别求出,OM BE 即可求解.【详解】解:(1)作图如下:根据中间正六边形的一边与直线l 平行及多边形外角和,得60ABC ∠=︒,906030A α∠=∠=︒−︒=︒,故答案为:30;(2)取中间正六边形的中心为O ,作如下图形,由题意得:AG BF ∥,AB GF ∥,BF AB ⊥,∴四边形ABFG 为矩形,AB GF ∴=,,90BAC FGH ABC GFH ∠=∠∠=∠=︒,()Rt Rt SAS ABC GFH ≌,BC FH ∴=,在Rt PDE △中,1,3DE PE == 由图1知223AG BF PE === 由正六边形的结构特征知:12332OM =⨯=, ()1312BC BF CH =−=−,333tan 33BC AB BAC ∴===∠ 231BD AB ∴=−=,又1212DE =⨯=,3BE BD DE ∴=+= 23ON OM BE ∴=+=故答案为:3【点睛】本题考查了正六边形的特征,勾股定理,含30度直角三角形的特征,全等三角形的判定性质,解直角三角形,解题的关键是掌握正六边形的结构特征.三、解答题20. 某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置 A 区 B 区 脱靶一次计分(分)312−在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A 区k 次,B 区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.【答案】(1)珍珍第一局的得分为6分; (2)6k =. 【解析】【分析】(1)根据题意列式计算即可求解; (2)根据题意列一元一次方程即可求解.解:由题意得()4321426⨯+⨯+⨯−=(分), 答:珍珍第一局的得分为6分; 【小问2详解】解:由题意得()()3311032613k k +⨯+−−⨯−=+, 解得:6k =.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21. 现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示(1)a >.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为12,S S .(1)请用含a 的式子分别表示12,S S ;当2a =时,求12S S +的值; (2)比较1S 与2S 的大小,并说明理由.【答案】(1)2132S a a =++,251S a =+,当2a =时,1223S S +=(2)12S S >,理由见解析 【解析】【分析】(1)根据题意求出三种矩形卡片的面积,从而得到12,S S ,12S S +,将2a =代入用2a =a 表示12S S +的等式中求值即可;(2)利用(1)的结果,使用作差比较法比较即可.解:依题意得,三种矩形卡片的面积分别为:21S a S a S ===甲乙丙,,,∴213232S S S S a a =++=++甲乙丙,2551S S S a =+=+乙丙,∴()()2212325183S S a a a a a +=++++=++,∴当2a =时,212282323S S +=+⨯+=; 【小问2详解】12S S >,理由如下:∵2132S a a =++,251S a =+∴()()()222123251211S S a a a a a a −=++−+=−+=−∵1a >,∴()21210S S a −=−>, ∴12S S >.【点睛】本题考查列代数式,整式的加减,完全平方公式等知识,会根据题意列式和掌握做差比较法是解题的关键.22. 某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下的问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于3.55分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?【答案】(1)中位数为3.5分,平均数为3.5分,不需要整改(2)监督人员抽取的问卷所评分数为5分,中位数发生了变化,由3.5分变成4分【解析】【分析】(1)先求出客户所评分数的中位数、平均数,再根据中位数、平均数确定是否需要整改即可; (2)根据“重新计算后,发现客户所评分数的平均数大于3.55分”列出不等式,继而求出监督人员抽取的问卷所评分数,重新排列后再求出中位数即可得解. 【小问1详解】解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分; ∴客户所评分数的中位数为:343.52+=(分) 由统计图可知,客户所评分数的平均数为:11233645553.520⨯+⨯+⨯+⨯+⨯=(分)∴客户所评分数的平均数或中位数都不低于3.5分, ∴该部门不需要整改. 【小问2详解】设监督人员抽取的问卷所评分数为x 分,则有:3.520 3.55201x⨯+>+解得: 4.55x >∵调意度从低到高为1分,2分,3分,4分,5分,共5档, ∴监督人员抽取的问卷所评分数为5分, ∵45<,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分, 即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由3.5分变成4分.【点睛】本题考查条形统计图,中位数和加权平均数,一元一次不等式的应用等知识,掌握求中位数和加权平均数的方法和根据不等量关系列不等式是解题的关键.23. 嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m 长.嘉嘉在点(6,1)A 处将沙包(看成点)抛出,并运动路线为抛物线21:(3)2C y a x =−+的一部分,淇淇恰在点(0)B c ,处接住,然后跳起将沙包回传,其运动路线为抛物线221:188nC y x x c =−+++的一部分.(1)写出1C 的最高点坐标,并求a ,c 的值;(2)若嘉嘉在x 轴上方1m 的高度上,且到点A 水平距离不超过1m 的范围内可以接到沙包,求符合条件的n 的整数值.【答案】(1)1C 的最高点坐标为()32,,19a =−,1c =; (2)符合条件的n 的整数值为4和5. 【解析】【分析】(1)利用顶点式即可得到最高点坐标;点(6,1)A 在抛物线上,利用待定系数法即可求得a 的值;令0x =,即可求得c 的值;(2)求得点A 的坐标范围为()()5171,,,求得n 的取值范围,即可求解. 【小问1详解】解:∵抛物线21:(3)2C y a x =−+,∴1C 的最高点坐标为()32,, ∵点(6,1)A 在抛物线21:(3)2C y a x =−+上, ∴21(63)2a =−+,解得:19a =−, ∴抛物线1C 的解析式为21(3)29y x =−−+,令0x =,则21(03)219c =−−+=; 【小问2详解】解:∵到点A 水平距离不超过1m 的范围内可以接到沙包,∴点A 的坐标范围为()()5171,,, 当经过()51,时,211551188n=−⨯+⨯++, 解得175n =; 当经过()71,时,211771188n=−⨯+⨯++,解得417n =; ∴174157n ≤≤ ∴符合条件的n 的整数值为4和5.【点睛】本题考查了二次函数的应用,联系实际,读懂题意,熟练掌握二次函数图象上点的坐标特征是解题的关键.24. 装有水的水槽放置在水平台面上,其横截面是以AB 为直径的半圆O ,50cm AB =,如图1和图2所示,MN 为水面截线,GH 为台面截线,MN GH ∥. 计算:在图1中,已知48cm MN =,作OC MN ⊥于点C . (1)求OC 的长.操作:将图1中的水面沿GH 向右作无滑动的滚动,使水流出一部分,当30ANM ∠=︒时停止滚动,如图2.其中,半圆的中点为Q ,GH 与半圆的切点为E ,连接OE 交MN 于点D .探究:在图2中(2)操作后水面高度下降了多少?(3)连接OQ 并延长交GH 于点F ,求线段EF 与EQ 的长度,并比较大小. 【答案】(1)7cm ;(2)11cm 2;(3)3cm 3EF =,25π=cm 6EQ ,EF EQ >. 【解析】【分析】(1)连接OM ,利用垂径定理计算即可;。
2019年河北省中考数学试题(Word版,含答案解析)

2019年河北省中考数学试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:正五边形五个角相等,五条边都相等,故选:D.2.【解答】解:“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作﹣3.故选:B.3.【解答】解:∵从点C观测点D的视线是CD,水平线是CE,∴从点C观测点D的仰角是∠DCE,故选:B.4.【解答】解:“x的与x的和不超过5”用不等式表示为x+x≤5.故选:A.5.【解答】解:∵四边形ABCD是菱形,∠D=150°,∴AB∥CD,∠BAD=2∠1,∴∠BAD+∠D=180°,∴∠BAD=180°﹣150°=30°,∴∠1=15°;故选:D.6.【解答】解:①a(b+c)=ab+ac,正确;②a(b﹣c)=ab﹣ac,正确;③(b﹣c)÷a=b÷a﹣c÷a(a≠0),正确;④a÷(b+c)=a÷b+a÷c(a≠0),错误,无法分解计算.故选:C.7.【解答】证明:延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻两个内角之和).又∠BEC=∠B+∠C,得∠B=∠EFC.故AB∥CD(内错角相等,两直线平行).故选:C.8.【解答】解:=0.00002=2×10﹣5.故选:D.9.【解答】解:如图所示,n的最小值为3,故选:C.10.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.故选:C.11.【解答】解:由题意可得,正确统计步骤的顺序是:②去图书馆收集学生借阅图书的记录→④整理借阅图书记录并绘制频数分布表→③绘制扇形图来表示各个种类所占的百分比→①从扇形图中分析出最受学生欢迎的种类,故选:D.12.【解答】解:由已知可知函数y=关于y轴对称,所以点M是原点;故选:A.13.【解答】解∵﹣=﹣=1﹣=又∵x为正整数,∴≤x<1故表示﹣的值的点落在②故选:B.14.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.15.【解答】解:∵小刚在解关于x的方程ax2+bx+c=0(a≠0)时,只抄对了a=1,b=4,解出其中一个根是x=﹣1,∴(﹣1)2﹣4+c=0,解得:c=3,故原方程中c=5,则b2﹣4ac=16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.故选:A.16.【解答】解:甲的思路正确,长方形对角线最长,只要对角线能通过就可以,但是计算错误,应为n =14;乙的思路与计算都正确;乙的思路与计算都错误,图示情况不是最长;故选:B.二、填空题(本大题有3个小题,共11分,17小题3分:18~19小题各有2个空,每空2分,把答案写在题中横线上)17.【解答】解:∵7﹣2×7﹣1×70=7p,∴﹣2﹣1+0=p,解得:p=﹣3.故答案为:﹣3.18.【解答】解:(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.19.【解答】解:(1)由A、B两点的纵坐标相同可知:AB∥x轴,∴AB=12﹣(﹣8)20;(2)过点C作l⊥AB于点E,连接AC,作AC的垂直平分线交直线l于点D,由(1)可知:CE=1﹣(﹣17)=18,AE=12,设CD=x,∴AD=CD=x,由勾股定理可知:x2=(18﹣x)2+122,∴解得:x=13,∴CD=13,故答案为:(1)20;(2)13;三、解答题(本大题有7个小题,共67分.解答应写出文字说明、证明过程或演算步骤)20.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.21.【解答】解:A=(n2﹣1)2+(2n)2=n4﹣2n2+1+4n2=n4+2n2+1=(n2+1)2,∵A=B2,B>0,∴B=n2+1,当2n=8时,n=4,∴n2+1=42+1=15;当n2﹣1=35时,n2+1=37.故答案为:15;3722.【解答】解:(1)∵P(一次拿到8元球)=,∴8元球的个数为4×=2(个),按照从小到大的顺序排列为7,8,8,9,∴这4个球价格的众数为8元;(2)①所剩的3个球价格的中位数与原来4个球价格的中位数相同;理由如下:原来4个球的价格按照从小到大的顺序排列为7,8,8,9,∴原来4个球价格的中位数为=8(元),所剩的3个球价格为8,8,9,∴所剩的3个球价格的中位数为8元,∴所剩的3个球价格的中位数与原来4个球价格的中位数相同;②列表如图所示:共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,∴乙组两次都拿到8元球的概率为.23.【解答】解:(1)在△ABC和△ADE中,(如图1)∴△ABC≌△ADE(SAS)∴∠BAC=∠DAE即∠BAD+∠DAC=∠DAC+∠CAE∴∠BAD=∠CAE.(2)∵AD=6,AP=x,∴PD=6﹣x当AD⊥BC时,AP=AB=3最小,即PD=6﹣3=3为PD的最大值.(3)如图2,设∠BAP=α,则∠APC=α+30°,∵AB⊥AC∴∠BAC=90°,∠PCA=60°,∠PAC=90°﹣α,∵I为△APC的内心∴AI、CI分别平分∠PAC,∠PCA,∴∠IAC=∠PAC,∠ICA=∠PCA∴∠AIC=180°﹣(∠IAC+∠ICA)=180°﹣(∠PAC+∠PCA)=180°﹣(90°﹣α+60°)=α+105°∵0<α<90°,∴105°<α+105°<150°,即105°<∠AIC<150°,∴m=105,n=150.24.【解答】解:(1)①排尾从位置O开始行进的时间为t(s),则排头也离开原排头t(s),∴S头=2t+300②甲从排尾赶到排头的时间为300÷(2v﹣v)=300÷v=300÷2=150 s,此时S头=2t+300=600m甲返回时间为:(t﹣150)s∴S甲=S头﹣S甲回=2×150+300﹣4(t﹣150)=﹣4t+1200;因此,S头与t的函数关系式为S头=2t+300,当甲赶到排头位置时,求S的值为600m,在甲从排头返回到排尾过程中,S甲与t的函数关系式为S甲=﹣4t+1200.(2)T=t追及+t返回=+=,在甲这次往返队伍的过程中队伍行进的路程为:v×(T﹣150)=v×(﹣﹣150)=400﹣150v;因此T与v的函数关系式为:T=,此时队伍在此过程中行进的路程为(400﹣150v)m.25.【解答】解:(1)如图1,AP经过圆心O,∵CP与⊙O相切于P,∴∠APC=90°,∵▱ABCD,∴AD∥BC,∴∠PBC=∠DAB∴=tan∠PBC=tan∠DAB=,设CP=4k,BP=3k,由CP2+BP2=BC2,得(4k)2+(3k)2=152,解得k1=﹣3(舍去),k2=3,∴x=BP=3×3=9,故当x=9时,圆心O落在AP上;∵AP是⊙O的直径,∴∠AEP=90°,∴PE⊥AD,∵▱ABCD,∴BC∥AD∴PE⊥BC(2)如图2,过点C作CG⊥AP于G,∵▱ABCD,∴BC∥AD,∴∠CBG=∠DAB∴=tan∠CBG=tan∠DAB=,设CG=4m,BG=3m,由勾股定理得:(4m)2+(3m)2=152,解得m=3,∴CG=4×3=12,BG=3×3=9,PG=BG﹣BP=9﹣4=5,AP=AB+BP=3+4=7,∴AG=AB+BG=3+9=12∴tan∠CAP===1,∴∠CAP=45°;连接OP,OQ,过点O作OH⊥AP于H,则∠POQ=2∠CAP=2×45°=90°,PH=AP=,在Rt△CPG中,==13,∵CP是⊙O的切线,∴∠OPC=∠OHP=90°,∠OPH+∠CPG=90°,∠PCG+∠CPG=90°∴∠OPH=∠PCG∴△OPH∽△PCG∴,即PH×CP=CG×OP,×13=12OP,∴OP=∴劣弧长度==,∵<2π<7∴弦AP的长度>劣弧长度.(3)如图3,⊙O与线段AD只有一个公共点,即圆心O位于直线AB下方,且∠OAD≥90°,当∠OAD=90°,∠CPM=∠DAB时,此时BP取得最小值,过点C作CM⊥AB于M,∵∠DAB=∠CBP,∴∠CPM=∠CBP∴CB=CP,∵CM⊥AB∴BP=2BM=2×9=18,∴x≥1826.【解答】解:(1)当x=0吋,y=x﹣b=﹣b,∴B(0,﹣b),∵AB=8,而A(0,b),∴b﹣(﹣b)=8,∴b=4.∴L:y=﹣x2+4x,∴L的对称轴x=2,当x=2吋,y=x﹣4=﹣2,∴L的对称轴与a的交点为(2,﹣2 );(2)y=﹣(x﹣)2+,∴L的顶点C()∵点C在l下方,∴C与l的距离b﹣=﹣(b﹣2)2+1≤1,∴点C与1距离的最大值为1;(3)由題意得,即y1+y2=2y3,得b+x0﹣b=2(﹣x02+bx0)解得x0=0或x0=b﹣.但x0#0,取x0=b﹣,对于L,当y=0吋,0=﹣x2+bx,即0=﹣x(x﹣b),解得x1=0,x2=b,∵b>0,∴右交点D(b,0).∴点(x0,0)与点D间的距离b﹣(b﹣)=(4)①当b=2019时,抛物线解析式L:y=﹣x2+2019x直线解析式a:y=x﹣2019联立上述两个解析式可得:x1=﹣1,x2=2019,∴可知每一个整数x的值都对应的一个整数y值,且﹣1和2019之间(包括﹣1和﹣2019)共有2021个整数;∵另外要知道所围成的封闭图形边界分两部分:线段和抛物线,∴线段和抛物线上各有2021个整数点∴总计4042个点,∵这两段图象交点有2个点重复重复,∴美点”的个数:4042﹣2=4040(个);②当b=2019.5时,抛物线解析式L:y=﹣x2+2019.5x,直线解析式a:y=x﹣2019.5,联立上述两个解析式可得:x1=﹣1,x2=2019.5,∴当x取整数时,在一次函数y=x﹣2019.5上,y取不到整数值,因此在该图象上“美点”为0,在二次函数y=x+2019.5x图象上,当x为偶数时,函数值y可取整数,可知﹣1到2019.5之间有1009个偶数,并且在﹣1和2019.5之间还有整数0,验证后可知0也符合条件,因此“美点”共有1010个.故b=2019时“美点”的个数为4040个,b=2019.5时“美点”的个数为1010个.。
河北中考数学试卷(含答案解析)

河北省中考数学试卷一、选择题(共12小题,1-6小题每小题2分,7-12小题,每题3分,满分30分)1、(•河北)计算30的结果是()A、3B、30C、1D、0考点:零指数幂。
专题:计算题。
分析:根据零指数幂:a0=1(a≠0)计算即可.解答:解:30=1,故选C.点评:本题主要考查了零指数幂,任何非0数的0次幂等于1.2、(•河北)如图,∠1+∠2等于()A、60°B、90°C、110°D、180°考点:余角和补角。
专题:计算题。
分析:根据平角的定义得到∠1+90°+∠2=180°,即由∠1+∠2=90°.解答:解:∵∠1+90°+∠2=180°,∴∠1+∠2=90°.故选B.点评:本题考查了平角的定义:180°的角叫平角.3、(•河北)下列分解因式正确的是()A、﹣a+a3=﹣a(1+a2)B、2a﹣4b+2=2(a﹣2b)C、a2﹣4=(a﹣2)2D、a2﹣2a+1=(a﹣1)2考点:提公因式法与公式法的综合运用。
专题:因式分解。
分析:根据提公因式法,平方差公式,完全平方公式求解即可求得答案.解答:解:A、﹣a+a3=﹣a(1﹣a2)=﹣a(1+a)(1﹣a),故本选项错误;B、2a﹣4b+2=2(a﹣2b+1),故本选项错误;C、a2﹣4=(a﹣2)(a+2),故本选项错误;D、a2﹣2a+1=(a﹣1)2,故本选项正确.故选D.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,理解因式分解与整式的乘法是互逆运算是解题的关键.4、(•河北)下列运算中,正确的是()A、2x﹣x=1B、x+x4=x5C、(﹣2x)3=﹣6x3D、x2y÷y=x2考点:整式的除法;合并同类项;幂的乘方与积的乘方。
专题:计算题。
分析:A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.解答:解:A中整式相减,系数相减再乘以未知数,故本选项错误;B,不同次数的幂的加法,无法相加,故本选项错误;C,整式的幂等于各项的幂,故本选项错误;D,整式的除法,相同底数幂底数不变,指数相减.故本答案正确.故选D.点评:本题考查了整式的除法,A中整式相减,系数相减再乘以未知数,故错误;B,不同次数的幂的加法,无法相加;C,整式的幂等于各项的幂,错误;D,整式的除法,相同底数幂底数不变,指数相减.本题很容易判断.5、(•河北)一次函数y=6x+1的图象不经过()A、第一象限B、第二象限C、第三象限D、第四象限考点:一次函数的性质。
2020-2021年河北省中考数学试题及答案(Word版)

2021年河北省中考数学试卷及答案2021年河北省中考数学试卷及答案(1——34页)2020年河北省中考数学试卷及答案(35——45页)一、选择题(本大题有16个小题,共42分。
1~10小题各3分,11~16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)如图,已知四条线段a ,b ,c ,d 中的一条与挡板另一侧的线段m 在同一直线上,请借助直尺判断该线段是( )A .aB .bC .cD .d2.(3分)不一定相等的一组是( )A .a +b 与b +aB .3a 与a +a +aC .a 3与a •a •aD .3(a +b )与3a +b3.(3分)已知a >b ,则一定有﹣4a □﹣4b ,“□”中应填的符号是( )A .>B .<C .≥D .=4.(3分)与√32−22−12结果相同的是( )A .3﹣2+1B .3+2﹣1C .3+2+1D .3﹣2﹣15.(3分)能与﹣(34−65)相加得0的是( )A .−34−65B .65+34C .−65+34D .−34+656.(3分)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A .A 代B .B 代C .C 代D .B 代7.(3分)如图1,▱ABCD 中,AD >AB ,∠ABC 为锐角.要在对角线BD 上找点N ,M ,使四边形ANCM 为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案( )A .甲、乙、丙都是B .只有甲、乙才是C .只有甲、丙才是D .只有乙、丙才是8.(3分)图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =( )A .1cmB .2cmC .3cmD .4cm 9.(3分)若√33取1.442,计算√33−3√33−98√33的结果是( )A .﹣100B .﹣144.2C .144.2D .﹣0.0144210.(3分)如图,点O 为正六边形ABCDEF 对角线FD 上一点,S △AFO =8,S △CDO =2,则S 正六边形ABCDEF 的值是( )A.20B.30C.40D.随点O位置而变化11.(2分)如图,将数轴上﹣6与6两点间的线段六等分,这五个等分点所对应数依次为a1,a2,a3,a4,a5,则下列正确的是()A.a3>0B.|a1|=|a4|C.a1+a2+a3+a4+a5=0D.a2+a5<012.(2分)如图,直线l,m相交于点O.P为这两直线外一点,且OP=2.8.若点P关于直线l,m的对称点分别是点P1,P2,则P1,P2之间的距离可能是()A.0B.5C.6D.713.(2分)定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠ACD是△ABC的外角.求证:∠ACD=∠A+∠B.证法1:如图,∵∠A+∠B+∠ACB=180°(三角形内角和定理),又∵∠ACD+∠ACB=180°(平角定义),∴∠ACD+∠ACB=∠A+∠B+∠ACB(等量代换).∴∠ACD=∠A+∠B(等式性质).证法2:如图,∵∠A=76°,∠B=59°,且∠ACD=135°(量角器测量所得)又∵135°=76°+59°(计算所得)∴∠ACD =∠A +∠B (等量代换).下列说法正确的是( )A .证法1还需证明其他形状的三角形,该定理的证明才完整B .证法1用严谨的推理证明了该定理C .证法2用特殊到一般法证明了该定理D .证法2只要测量够一百个三角形进行验证,就能证明该定理14.(2分)小明调查了本班每位同学最喜欢的颜色,并绘制了不完整的扇形图1及条形图2(柱的高度从高到低排列).条形图不小心被撕了一块,图2中“( )”应填的颜色是( )A .蓝B .粉C .黄D .红 15.(2分)由(1+c 2+c −12)值的正负可以比较A =1+c 2+c 与12的大小,下列正确的是( )A .当c =﹣2时,A =12B .当c =0时,A ≠12C .当c <﹣2时,A >12D .当c <0时,A <12 16.(2分)如图,等腰△AOB 中,顶角∠AOB =40°,用尺规按①到④的步骤操作: ①以O 为圆心,OA 为半径画圆;②在⊙O 上任取一点P (不与点A ,B 重合),连接AP ;③作AB 的垂直平分线与⊙O 交于M ,N ;④作AP 的垂直平分线与⊙O 交于E ,F .结论Ⅰ:顺次连接M ,E ,N ,F 四点必能得到矩形;结论Ⅱ:⊙O 上只有唯一的点P ,使得S 扇形FOM =S 扇形AOB .对于结论Ⅰ和Ⅱ,下列判断正确的是( )A .Ⅰ和Ⅱ都对B .Ⅰ和Ⅱ都不对C .Ⅰ不对Ⅱ对D .Ⅰ对Ⅱ不对二、填空题(本大题有3个小题,每小题有2个空,每空2分,共12分)17.(4分)现有甲、乙、丙三种不同的矩形纸片(边长如图).(1)取甲、乙纸片各1块,其面积和为 ;(2)嘉嘉要用这三种纸片紧密拼接成一个大正方形,先取甲纸片1块,再取乙纸片4块,还需取丙纸片 块.18.(4分)如图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且∠A ,∠B ,∠E 保持不变.为了舒适,需调整∠D 的大小,使∠EFD =110°,则图中∠D 应 (填“增加”或“减少”) 度.19.(4分)用绘图软件绘制双曲线m :y =60x 与动直线l :y =a ,且交于一点,图1为a =8时的视窗情形.(1)当a =15时,l 与m 的交点坐标为 ;(2)视窗的大小不变,但其可视范围可以变化,且变化前后原点O 始终在视窗中心. 例如,为在视窗中看到(1)中的交点,可将图1中坐标系的单位长度变为原来的12,其可视范围就由﹣15≤x≤15及﹣10≤y≤10变成了﹣30≤x≤30及﹣20≤y≤20(如图2).当a=﹣1.2和a=﹣1.5时,l与m的交点分别是点A和B,为能看到m在A和B之间的一整段图象,需要将图1中坐标系的单位长度至少变为原来的1k,则整数k=.三、解答题(本大题有7个小题,共66分。
河北省2022年中考数学试卷含答案解析(Word版)

河北省2022年中考数学试卷含答案解析〔Word版〕2022年河北省初中毕业生升学文化课考试数学试卷本试卷分卷I和卷II两局部;卷I为选择题,卷II为非选择题本试卷总分120分,考试时间120分钟.卷I〔选择题,共42分〕一、选择题〔本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕 1.计算:-〔-1〕=〔〕 A.±1B.-2C.-1D.1答案: D解析:利用“负负得正〞的口诀,就可以解题。
知识点:有理数的运算 2.计算正确的选项是〔〕 A.(-5)0=0B.x2+x3=x5·a-1=2a答案: D解析:除0以外的任何数的0次幂都等于1,故A项错误;x2+x3的结果不是指数相加,故B项错误;(ab2)3的结果是括号里的指数和外面的指数都相乘,结果是a3b6,故C项错误;2a2·a-1的结果是2不变,指数相加,正好是2a。
知识点:x0=0(x≠0〕;〔ambn〕p=ampbnp;aman=am+n3.以下图形中,既是轴对称图形,又是中心对称图形的是〔〕A B C D答案: A解析:先根据轴对称图形,排除C、D两项,再根据中心对称,排除B项。
知识点:轴对称,是指在平面内沿一条直线折叠,直线两旁的局部能够完全重合的图形;中心对称,如果把一个图形绕某一点旋转180度后能与自身重合,这个图形就是中心对称图形。
第 1 页共 1 页4.以下运算结果为x-1的是〔〕1A.1?xx2?1xx2?2x?1x?11??B. C. D.xx?1xx?1x?1x-1 x2-1 答案:B解析:挨个算就可以了,A项结果为—— , B项的结果为x-1,C项的结果为——x D项的结果为x+1。
x 知识点:〔x+1〕〔x-1〕=x2-1;(x+1)2=x2+2x+1,(x-1)2=x2-2x+1。
≠0,b0;丁:丙:|a|a2+c2,那么关于x的方程ax2+bx+c=0根的情况是〔〕A.有两个相等的实数根 B.有两个不相等的实数根 C.无实数根D.有一根为0[来源学科网]答案:B解析:由〔a-c〕2>a2+c2得出-2ac>0,因此△=b2-4ac>0,所以两根,应选B项。
2024年河北省中考数学试卷(Word版含解析)

2024年河北省中考数学试卷一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图显示了某地连续5天的日最低气温,则能表示这5天日最低气温变化情况的是()A.B.C.D.2.下列运算正确的是()A.a7﹣a3=a4B.3a2•2a2=6a2C.(﹣2a)3=﹣8a3D.a4÷a4=a3.如图,AD与BC交于点O,△ABO和△CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A.AD⊥BC B.AC⊥PQ C.△ABO≌△CDO D.AC∥BD4.下列数中,能使不等式5x﹣1<6成立的x的值为()A.1B.2C.3D.45.观察图中尺规作图的痕迹,可得线段BD一定是△ABC的()A.角平分线B.高线C.中位线D.中线6.如图是由11个大小相同的正方体搭成的几何体,它的左视图是()A.B.C.D.7.节能环保已成为人们的共识.淇淇家计划购买500度电,若平均每天用电x度,则能使用y天.下列说法错误的是()A.若x=5,则y=100B.若y=125,则x=4C.若x减小,则y也减小D.若x减小一半,则y增大一倍8.若a,b是正整数,且满足=,则a与b的关系正确的是()A.a+3=8b B.3a=8b C.a+3=b8D.3a=8+b9.淇淇在计算正数a的平方时,误算成a与2的积,求得的答案比正确答案小1,则a=()A.1B.﹣1C.+1D.1或+110.下面是嘉嘉作业本上的一道习题及解答过程:已知:如图,△ABC中,AB=AC,AE平分△ABC的外角∠CAN,点M是AC的中点,连接BM并延长交AE于点D,连接CD.求证:四边形ABCD是平行四边形.证明:∵AB=AC,∴∠ABC=∠3.∵∠CAN=∠ABC+∠3,∠CAN=∠1+∠2,∠1=∠2,∴①______.又∵∠4=∠5,MA=MC,∴△MAD≌△MCB(②______).∴MD=MB.∴四边形ABCD是平行四边形.若以上解答过程正确,①,②应分别为()A.∠1=∠3,AAS B.∠1=∠3,ASA C.∠2=∠3,AAS D.∠2=∠3,ASA11.直线l与正六边形ABCDEF的边AB,EF分别相交于点M,N,如图所示,则α+β=()A.115°B.120°C.135°D.144°12.在平面直角坐标系中,我们把一个点的纵坐标与横坐标的比值称为该点的“特征值”.如图,矩形ABCD 位于第一象限,其四条边分别与坐标轴平行,则该矩形四个顶点中“特征值”最小的是()A.点A B.点B C.点C D.点D13.已知A为整式,若计算﹣的结果为,则A=()A.x B.y C.x+y D.x﹣y14.扇文化是中华优秀传统文化的组成部分,在我国有着深厚的底蕴.如图,某折扇张开的角度为120°时,扇面面积为S,该折扇张开的角度为n°时,扇面面积为S n,若m=,则m与n关系的图象大致是()A.B.C.D.15.“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示132×23,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A.“20”左边的数是16B.“20”右边的“■”表示5C.运算结果小于6000D.运算结果可以表示为4100a+102516.平面直角坐标系中,我们把横、纵坐标都是整数,且横、纵坐标之和大于0的点称为“和点”.将某“和点”平移,每次平移的方向取决于该点横、纵坐标之和除以3所得的余数(当余数为0时,向右平移;当余数为1时,向上平移;当余数为2时,向左平移),每次平移1个单位长度.例:“和点”P(2,1)按上述规则连续平移3次后,到达点P3(2,2),其平移过程如下:.若“和点”Q按上述规则连续平移16次后,到达点Q16(﹣1,9),则点Q的坐标为()A.(6,1)或(7,1)B.(15,﹣7)或(8,0)C.(6,0)或(8,0)D.(5,1)或(7,1)二、填空题(本大题共3个小题,共10分.17小题2分,18~19小题各4分,每空2分)17.某校生物小组的9名同学各用100粒种子做发芽实验,几天后观察并记录种子的发芽数分别为:89,73,90,86,75,86,89,95,89,以上数据的众数为.18.已知a,b,n均为正整数.(1)若n<<n+1,则n=;(2)若n﹣1<<n,n<<n+1,则满足条件的a的个数总比b的个数少个.19.如图,△ABC的面积为2,AD为BC边上的中线,点A,C1,C2,C3是线段CC4的五等分点,点A,D1,D2是线段DD3的四等分点,点A是线段BB1的中点.(1)△AC1D1的面积为;(2)△B1C4D3的面积为.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.如图,有甲、乙两条数轴.甲数轴上的三点A,B,C所对应的数依次为﹣4,2,32,乙数轴上的三点D,E,F所对应的数依次为0,x,12.(1)计算A,B,C三点所对应的数的和,并求的值;(2)当点A与点D上下对齐时,点B,C恰好分别与点E,F上下对齐,求x的值.21.甲、乙、丙三张卡片正面分别写有a+b,2a+b,a﹣b,除正面的代数式不同外,其余均相同.(1)将三张卡片背面向上并洗匀,从中随机抽取一张,当a=1,b=﹣2时,求取出的卡片上代数式的值为负数的概率;(2)将三张卡片背面向上并洗匀,从中随机抽取一张,放回后重新洗匀,再随机抽取一张.请在表格中补全两次取出的卡片上代数式之和的所有可能结果(化为最简),并求出和为单项式的概率.a+b2a+b a﹣b第一次和第二次a+b2a+2b2a2a+ba﹣b2a22.中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P恰好看到一颗星星,此时淇淇距窗户的水平距离BQ=4m,仰角为α;淇淇向前走了3m后到达点D,透过点P恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ的距离AB=CD=1.6m,点P到BQ 的距离PQ=2.6m,AC的延长线交PQ于点E.(注:图中所有点均在同一平面)(1)求β的大小及tanα的值;(2)求CP的长及sin∠APC的值.23.情境图1是由正方形纸片去掉一个以中心O为顶点的等腰直角三角形后得到的.该纸片通过裁剪,可拼接为图2所示的钻石型五边形,数据如图所示.(说明:纸片不折叠,拼接不重叠无缝隙无剩余)操作嘉嘉将图1所示的纸片通过裁剪,拼成了钻石型五边形.如图3,嘉嘉沿虚线EF,GH裁剪,将该纸片剪成①,②,③三块,再按照图4所示进行拼接.根据嘉嘉的剪拼过程,解答问题:(1)直接写出线段EF的长;(2)直接写出图3中所有与线段BE相等的线段,并计算BE的长.探究淇淇说:将图1所示纸片沿直线裁剪,剪成两块,就可以拼成钻石型五边形.请你按照淇淇的说法设计一种方案:在图5所示纸片的BC边上找一点P(可以借助刻度尺或圆规),画出裁剪线(线段PQ)的位置,并直接写出BP的长.24.某公司为提高员工的专业能力,定期对员工进行技能测试.考虑多种因素影响,需将测试的原始成绩x(分)换算为报告成绩y(分).已知原始成绩满分150分,报告成绩满分100分、换算规则如下:当0≤x<p时,y=;当p≤x≤150时,y=+80.(其中p是小于150的常数,是原始成绩的合格分数线,80是报告成绩的合格分数线)公司规定报告成绩为80分及80分以上(即原始成绩为p及p以上)为合格.(1)甲、乙的原始成绩分别为95分和130分,若p=100,求甲、乙的报告成绩;(2)丙、丁的报告成绩分别为92分和64分,若丙的原始成绩比丁的原始成绩高40分,请推算p的值;(3)下表是该公司100名员工某次测试的原始成绩统计表:95100105110115120125130135140145150原始成绩(分)人数1225810716201595①直接写出这100名员工原始成绩的中位数;②若①中的中位数换算成报告成绩为90分,直接写出该公司此次测试的合格率.25.已知⊙O的半径为3,弦MN=2.△ABC中,∠ABC=90°,AB=3,BC=3.在平面上,先将△ABC和⊙O按图1位置摆放(点B与点N重合,点A在⊙O上,点C在⊙O内),随后移动△ABC,使点B在弦MN上移动,点A始终在⊙O上随之移动.设BN=x.(1)当点B与点N重合时,求劣弧的长;(2)当OA∥MN时,如图2,求点B到OA的距离,并求此时x的值;(3)设点O到BC的距离为d.①当点A在劣弧上,且过点A的切线与AC垂直时,求d的值;②直接写出d的最小值.26.如图,抛物线C1:y=ax2﹣2x过点(4,0),顶点为Q.抛物线C2:y=﹣(x﹣t)2+t2﹣2(其中t为常数,且t>2),顶点为P.(1)直接写出a的值和点Q的坐标.(2)嘉嘉说:无论t为何值,将C1的顶点Q向左平移2个单位长度后一定落在C2上.淇淇说:无论t为何值,C2总经过一个定点.请选择其中一人的说法进行说理.(3)当t=4时,①求直线PQ的解析式;②作直线l∥PQ,当l与C2的交点到x轴的距离恰为6时,求l与x轴交点的横坐标.(4)设C1与C2的交点A,B的横坐标分别为x A,x B,且x A<x B,点M在C1上,横坐标为m(2≤m≤x B).点N在C2上,横坐标为n(x A≤n≤t),若点M是到直线PQ的距离最大的点,最大距离为d,点N到直线PQ的距离恰好也为d,直接用含t和m的式子表示n.。
2020年河北中考数学试卷及答案(word中考格式版)

2020年河北省初中毕业生升学文化课考试数 学 试 卷注意事项:1.本试卷共8页,总分120分,考试时间为120分钟.2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上.3.答选择题时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答非选择题时,将答案写在答题卡上.写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.一、选择题(本大题共16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.如图1,在平面内作已知直线m 的垂线,可作垂线的条数有 A .0条 B .1条C .2条D .无数条2.墨迹覆盖了等式“x 3 x =x 2(x ≠0)”中的运算符号,则覆盖的是 A .+ B .– C .D .÷3.对于①x –3xy =x (1–3y ),②(x +3)(x –1)=x 2+2x –3,从左到右的变形,表述正确的是 A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解4.图2的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是 A .仅主视图不同 B .仅主视图不同 C .仅主视图不同D .主视图、左视图和俯视图都相同5.图3是小颖前三次购买苹果单价的统计图,第四次又买 的苹果单价是a 元/千克,发现这四个单价的中位数恰 好也是众数,则a = A .9 B .8C .7D .6m图1图2正面正面第3次第2次第1次图3986次数单价(元/千克)6.如图4-1,已知∠ABC ,用尺规作它的角平分线. 如图4-1,步骤如下,第一步:以B 圆心,以a 为半径画弧,分别交射线BA ,BC 于点D ,E ; 第二步:分别以D 、E 为圆心,以b 为半径画弧,两弧在∠ABC 内部交于点P ; 第三步:画射线BP ,射线BP 即为所求.下列正确的是 A .a ,b 均无限制B .a >0,b >12DE 的长C .a 有最小限制,b 无限制D .a ≥0,b <12DE 的长7.若a ≠b ,则下列分式化简正确的是A .a +2b +2=abB .a –2b –2=abC .a2b 2=abD .12a 12b =a b8.在图5所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是 A .四边形NPMQ B .四边形NPMRC .四边形NHMQD .四边形NHMR9.若(92–1)(112–1)k=8⨯10⨯12,则k = A .12 B .10C .8D .6E DCBAP E DCBA ABCDE P 第三步第二步第一步图4-2图 4-1CBA图5NMHP QROD CBA10.如图6,将△ABC 绕边AC 的中点O 顺时针转180°.嘉淇发现,旋转后的△CDA 与△ABC 构成平行四边形,并推理如下:11.若k 为正整数,则 A .k 2k B .k 2k +1C .2k kD .k 2+k12.如图7,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也 到达l .下列说法错误..的是 A .从点P 向北偏西45°走3km 到达l B .公路l 的走向是南偏西45° C .公路l 的走向是北偏东45°D .从点P 向北走3km 后,再向西走3km 到达l13.已知光束为300 000千米/秒,光经过t 秒(1≤t ≤10)传播的距离用科学记数法表示 为a 10n 千米,则n 可能为 A .5 B .6C .5或6D .5或6或714.有一题目:“已知:点O 为△ABC 的外心,∠BOC =130°,求∠A .”嘉嘉的解答为:画△ABC 以及它的外接圆O ,连接OB ,OC ,如图8.由∠BOC =2∠A =130°,得∠A =65°. 而淇淇说:“嘉嘉考虑的不周全,∠A 还应有另一个不同的值.” 下列判断正确的是A .淇淇说的对,且∠A 的另一个值是115°B .淇淇说的不对,∠A 就得65°C .嘉喜求的结果不对,∠A 应得50°D .两人都不对,∠A 应有3个不同值点A ,C 分别转到了点C ,A 处,而点B 转到了点D 处. ∵CB =AD∴四边形ABCD 是平行四边形.图6DOBCA(k +k +…+k )k = k 个k图7l北东P图8OBC A15.如图9,现要在抛物线y =x (4–x )上找点P (a ,b ),针对b 的不同取值,所找点P 的个数,三人的说法如下, 甲:若b =5,则点P 的个数为0; 乙:若b =4,则点P 的个数为1; 丙:若b =3,则点P 的个数为1; 下列判断正确的是 A .乙错,丙对 B .甲和乙都错C .乙对,丙错D .甲错,丙对16.图10是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是 1,2,3,4,5,选取其中三块(可重复选取)按图10 的方式组成图案,使所围成的三角形是面积最大..的直角 三角形,则选取的三块纸片的面积分别是 A .1,4,5 B .2,3,5C .3,4,5D .2,2,4二、填空题(本大题有3个小题,共12分.17 ~18小题各3分,19小题有3个空,每空2分) 17.已知:18–2=a 2–2=b 2,则ab =________.18.正六边形的一个内角是正n 边形一个外角的4倍,则n =_________.19.图11是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作Tm (m 为1~8的整数).函数y =kx (x <0)的图象为曲线L . (1)若L 过点T 1,则k =________;(2)若L 过点T 4,则它必定还过另一点Tm ,则 m =________;(3)若曲线L 使得T 1~ T 8这些点分布在它的两侧,每侧各4个点,则k 的整数值有________个yx图9y = x ∙4 x ()O图10xy-21T 8T 7T 6T 5T 4T 3T 2T 1L图11O三、解答题(本大题共7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)已知两个有理数:–9和5 (1)计算:(–9)+52(2)若再添一个负整数m ,且–9,5与m 这三个数的平均数仍小于m ,求m 的值. 21.(本小题满分8分)有一电脑程序:每按一次按键,屏幕的A 区就会自动加上a 2, 同时B 区就会自动减去3a ,且均显示化简后的结果.已知A ,B 两区初始显示的分别是25和–16,如图12.如,第按键后,A ,B 两区分别显示:(1)从初动员状态按2次后,分别求A ,B 两区显示的结果;(2)从初动员状态按4次后,计算A ,B 两区代数式的和,请判断这个和能为负数吗?说明理由.22.(本小题满分9分)如图13,点O 为AB 中点,分别延长OA 到点C ,OB 到点D ,使OC =OD .以点O 为圆心,分别以OA ,OC 为半径在CD 上方作两个半圆.点P 为小半圆上任一点(不与点 A ,B 重合),连接OP 并延长交大半圆于点E ,连接AE ,CP .(1)①求证:△AOE ≌△OPC ;②写出∠1,∠2和∠C 三者间的数量关系,并说明理由.(2)若OC =2OA =2,当∠C 最大时,直接..指出CP 与小半圆的位置关系,并求此时 S 扇形EOD (答案保留π).备用图图13B AO BE AOCDDCP用承重指数W 衡量水平放置的长方体木板的最大承载量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W 与木板厚度x (厘米)的平方成正比,当x =3时,W =3.(1)求W 与x 的函数关系式;(2)如图14,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x (厘米),Q =W 厚–W 薄. ①求Q 与x 的函数关系式; ②x 为何值时,Q 是W 薄的3倍?【注:(1)及(2)中的①不必写x 的取值范围】24.(本小题满分10分)表格中的两组对应值满足一次函数y =kx +b ,现画出了它的图象为直线l ,如图15. 而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得到另一个一次函数,设其图象为直线l ´.(1)求直线l 的解析式;(2)请在图15上画出直线l ´(不要求列表计算),并求直线l ´被直线l 和y 轴所截线段的长;(3)设直线y =a 与直线l ,l ´及y 轴有三个不同的交点, 且其中两点关于第三点对称,直接..写出a 的值.xyl图15–1–2–3123–1–212345678O如图16,甲、乙两人(看成点)分别在数轴–3和5的位置上,沿数轴做移动游戏. 每次移动游戏规则:裁判先捂住一枚硬币,再让两 人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位. (1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P ;(2)从图16的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终停留的位置对应的数为m ,试用含n 的代数式 表示m ,并求该位置距离原点O 最近时n 的值;(3)从图16的位置开始,若进行了k 次移动游戏后,甲与乙的位置相距2个单位,直接..写出k 的值.图16乙甲西东5-3O如图17-1和图17-2,在△ABC 中,AB =AC ,BC =8,tanC =34.点K 在AC 边上, 点M ,N 分别在AB ,BC 上,且AM =CN =2.点P 从点M 出发沿折线MB -BN 匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持∠APQ =∠B . (1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)当点P 在MB 上,且PQ 将△ABC 的面积分成上下4:5两部分时,求MP 的长; (3)设点P 移动的路程为x ,当0≤x ≤3及3≤x ≤9时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)设点P 处设计并安装一扫描器,按定角∠APQ 扫描△APQ 区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若AK =94,请直接..写出点K 被扫描到的 总时长.图17-2图17-1Q K NMAKQN M ABCCBP P。
2020年河北省中考数学试题(word版,含答案)

考生须知1.考生应按规定的时间入场,开始考试后15分钟禁止迟到考生进入考场。
2.考生入场时须主动出示《准考证》以及有效身份证件(身份证、军人、武警人员证件、未成年人的户口本、公安户籍部门开具的《身份证》号码证明、护照或者港、澳、台同胞证件),接受考试工作人员的核验,并按要求在“考生花名册”上签自己的姓名。
3.考生只准携带必要的文具入场,如铅笔、签字笔、毛笔、水粉水彩颜料等,具体要求见招考简章。
禁止携带任何已完成作品以及各种无线通信工具(如寻呼机、移动电话)等物品。
如发现考生携带以上禁带物品,考生将作为违纪处理,取消该次考试成绩。
考场内不得擅自相互借用文具。
4.考生入场后按号入座,将本人《准考证》以及有效身份证件放在课桌上,以便核验。
5.考生答题前应认真填写试卷及答题纸上的姓名、准考证号等栏目并粘贴带有考生个人信息的条形码。
凡不按要求填写或字迹不清、无法辨认的,试卷及答题纸一律无效。
责任由考生自付。
6.开考后,考生不得中途退场。
如因身体不适要求中途退场,须征得监考人员及考点主考批准,并在退场前将试卷、答题纸如数上交。
7.考生遇试卷分发错误或试题字迹不清等情况应及时要求更换;涉及试题内容的疑问,不得向监考人员询问。
8.考生在考场内必须严格遵守考场纪律,对于违反考场规定、不服从监考人员管理和舞弊者,取消当次考试成绩。
9.考试结束铃声响时,考生要立即停止答题,并将试卷、答题纸按要求整理好,翻放在桌上,待监考人员收齐后方可离开考场。
任何考生不准携带试卷、答题纸离开考场。
离开考场后不准在考场附近逗留和交谈。
试卷第1页,总8页2020年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,在平面内作已知直线的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条2.墨迹覆盖了等式“()”中的运算符号,则覆盖的是( )A.+B.-C.×D.÷3.对于①,②,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.①是因式分解,②是乘法运算D.①是乘法运算,②是因式分解4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是( )A.仅主视图不同B.仅俯视图不同C.仅左视图不同D.主视图、左视图和俯视图都相同5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是元/千克,发现这四个单价的中位数恰好也是众数,则()A.9B.8C.7D.66.如图1,已知,用尺规作它的角平分线.m 0x ≠3(13)x xy x y -=-2(3)(1)23x x x x +-=+-a a =ABC ∠第一步:以为圆心,以为半径画弧,分别交射线,于点,; 第二步:分别以,为圆心,以为半径画弧,两弧在内部交于点; 第三步:画射线.射线即为所求. 下列正确的是()A.,均无限制B.,的长C.有最小限制,无限制D.,的长7.若,则下列分式化简正确的是()A.B.C. D. 8.在如图所示的网格中,以点为位似中心,四边形的位似图形是()A.四边形B.四边形C.四边形D.四边形9.若,则( )A.12B.10C.8D.610.如图,将绕边的中点顺时针旋转180°.嘉淇发现,旋转后的与构成平行四B a BA BCDE D E b ABC ∠P BP BP a b 0a >12b DE >a b 0a ≥12b DE <a b ≠22a ab b +=+22a ab b -=-22a a b b=1212aab b =O ABCD NPMQ NPMR NHMQ NHMR ()()229111181012k--=⨯⨯k =ABC ∆AC O CDA ∆ABC ∆点,分别转到了点,处, 而点转到了点处. ∵,∴四边形是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵,”和“∴四边形……”之间作补充.下列正确的是()A.嘉淇推理严谨,不必补充B.应补充:且,C.应补充:且D.应补充:且, 11.若为正整数,则( ) A.B. C.D.12.如图,从笔直的公路旁一点出发,向西走到达;从出发向北走也到达.下列说法错误的是()A.从点向北偏西45°走到达B.公路的走向是南偏西45°C.公路的走向是北偏东45°D.从点向北走后,再向西走到达13.已知光速为300 000千米秒,光经过秒()传播的距离用科学记数法表示为千米,则可能为()A C C AB D CB AD =ABCD CB AD =AB CD =//AB CD OA OC =k ()kk kk k k ++⋅⋅⋅+=个2kk21k k+2kk 2kk+l P 6km l P 6km l P 3km l l l P 3km 3km l t 110t ≤≤10na ⨯nA.5B.6C.5或6D.5或6或714.有一题目:“已知;点为的外心,,求.”嘉嘉的解答为:画以及它的外接圆,连接,,如图.由,得.而淇淇说:“嘉嘉考虑的不周全,还应有另一个不同的值.” 下列判断正确的是()A.淇淇说的对,且的另一个值是115°B.淇淇说的不对,就得65°C.嘉嘉求的结果不对,应得50°D.两人都不对,应有3个不同值15.如图,现要在抛物线上找点,针对的不同取值,所找点的个数,三人的说法如下,甲:若,则点的个数为0; 乙:若,则点的个数为1; 丙:若,则点的个数为1. 下列判断正确的是()A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是()O ABC ∆130BOC ∠=︒A ∠ABC ∆O OB OC 2130BOC A ∠=∠=︒65A ∠=︒A ∠A ∠A ∠A ∠A ∠(4)y x x =-(,)P a b b P 5b =P 4b =P 3b =PA.1,4,5B.2,3,5C.3,4,5D.2,2,4二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有3个空,每空2分)17.,则_________. 18.正六边形的一个内角是正边形一个外角的4倍,则_________.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作(为1~8的整数).函数()的图象为曲线.(1)若过点,则_________;(2)若过点,则它必定还过另一点,则_________;(3)若曲线使得这些点分布在它的两侧,每侧各4个点,则的整数值有_________个.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.已知两个有理数:-9和5. (1)计算:; (2)若再添一个负整数,且-9,5与这三个数的平均数仍小于,求的值.21.有一电脑程序:每按一次按键,屏幕的区就会自动加上,同时区就会自动减去,且均显示化简后的结果.已知,两区初始显示的分别是25和-16,如图.==ab =n n =m T m ky x=0x <L L 1T k =L 4T m T m =L 18~T T k (9)52-+m m m m A 2a B 3a A B如,第一次按键后,,两区分别显示:(1)从初始状态按2次后,分别求,两区显示的结果;(2)从初始状态按4次后,计算,两区代数式的和,请判断这个和能为负数吗?说明理由.22.如图,点为中点,分别延长到点,到点,使.以点为圆心,分别以,为半径在上方作两个半圆.点为小半圆上任一点(不与点,重合),连接并延长交大半圆于点,连接,.(1)①求证:;②写出∠1,∠2和三者间的数量关系,并说明理由.(2)若,当最大时,直接指出与小半圆的位置关系,并求此时(答案保留).23.用承重指数衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数与木板厚度(厘米)的平方成正比,当时,. (1)求与的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为(厘米),.①求与的函数关系式; ②为何值时,是的3倍?【注:(1)及(2)中的①不必写的取值范围】24.表格中的两组对应值满足一次函数,现画出了它的图象为直线,如图.而某同学为观察,A B A B A B O AB OA C OB D OC OD =O OA OC CD P A B OP E AE CP AOE POC ∆∆≌C ∠22OC OA ==C ∠CP EOD S 扇形πW W x 3x =3W =W x x Q W W =-厚薄Q x x Q W 薄x y kx b =+l k b对图象的影响,将上面函数中的与交换位置后得另一个一次函数,设其图象为直线.-1 0-21(1)求直线的解析式;(2)请在图上画出直线(不要求列表计算),并求直线被直线和轴所截线段的长;(3)设直线与直线,及轴有三个不同的交点,且其中两点关于第三点对称,直接写出的值. 25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动. ①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对次,且他最终停留的位置对应的数为,试用含的代数式表示,并求该位置距离原点最近时的值; (3)从图的位置开始,若进行了次移动游戏后,甲与乙的位置相距2个单位,直接写出的值. 26.如图1和图2,在中,,,.点在边上,点,分别在,上,且.点从点出发沿折线匀速移动,到达点时停止;而点在边上随移动,且始终保持.k b l 'x y l l 'l 'l y y a =l l 'y a P n m n m O n k k ABC ∆AB AC =8BC =3tan 4C =K AC M N AB BC 2AM CN ==P M MB BN -N Q ACP APQ B ∠=∠(1)当点在上时,求点与点的最短距离;(2)若点在上,且将的面积分成上下4:5两部分时,求的长;(3)设点移动的路程为,当及时,分别求点到直线的距离(用含的式子表示);(4)在点处设计并安装一扫描器,按定角扫描区域(含边界),扫描器随点从到再到共用时36秒.若,请直接写出点被扫描到的总时长. 2020年河北省初中毕业生升学文化课考试数学答案卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1-10小题各3分,11~16小题各2分,每小题给出的四个选项中只有一个是符合题目要求的)题号 1 2 3 4 5 6 7 8 选项 D D C D B B D A 题号 9 10 11 12 13 14 15 16 选项 BBAACACB卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题各有3个空,每空2分)17.6 18.12 19.-16;5;7三、解答題(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤)20.(1)-2 (2)21.(1);P BC P A P MB PQ ABC ∆MP P x 03x ≤≤39x ≤≤P AC x P APQ ∠APQ ∆P M B N 94AK =K 1m =-2252a +166a --(2),和不能为负数 22.(1)①证明略; ② (2)23.(1) (2)①②由题可知: 解得:;(舍) ∴当时,是的3倍. 24.(1):(2):(3)的值为或或7 25.(1) (2) 当时,解得 ∵为整数∴当时,距离原点最近 (3)或5 26.(1) (2)∴即 ∴, (3)当时, 22254(1612)(23)0a a a ++--=-≥21C ∠=∠+∠43π213W x =2211(6)33Q x x =--124x =-2112433x x -=⨯12x =26x =-2cm x =Q W 薄l 31y x =+l '3y x =+a 5217514P =256m n =-0m =256n =n 4n =3k =min 1tan 32d BC C =⋅=APQ ABC ∆∆∽2APQ ABC S AP AB S ∆∆⎛⎫= ⎪⎝⎭23AP AB =103AP =43MP =03x ≤≤24482525d x =+当时, (4)39x ≤≤33355d x =-+23t s =。
2021年河北省中考数学试题(word版含答案)

2021年河北省初中毕业生升学文化课考试数学试卷一、选择题(本大题共16个小题,1—10小题,每题3分;11—16小题,每题2分,共42分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.计算:=-⨯-)1(23 ( )A. 5B.1C.-1D.62.以下说法正确的选项是( )A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数3.一张菱形纸片按图1-一、图1-2依次对折后,再按图1-3打出一个圆形小孔,那么展开摊平后的图案( )4.以下运算正确的选项是( ) A.21211-=⎪⎭⎫ ⎝⎛- B. 60000001067=⨯ C.()2222a a = D.523a a a =⋅5.图2中的三视图所对应的几何体是( )D C B A 图1—3 图1—2 图1—16.如图3,AC ,BE 是⊙O 的直径,弦AD 与BE 交于点F ,以下三角形中,外心不是..点O 的是( ) A.△ABE B.△ACF C.△ABD D.△ADE7.在数轴上标注了四段范围,如图4,那么表示8的点落在( )A.段①B.段 ②C.段③D.段④8.如图5,AB ∥EF ,CD ⊥EF ,∠BAC=50°,那么∠ACD=( )A.120°B.130°C.140°D.150°9.已知:岛P 位于岛Q 的正西方,由岛P ,Q 别离测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示用意是( )10.一台印刷机每一年印刷的书本数量y(万册)与它的利历时刻x(年)成反比例关系,当x=2时,y=20,那么y 与x 的函数图像大致是( )图4 图3图511.利用加减消元法解方程组⎩⎨⎧=--=+②①635 1052y x y x ,以下做法正确的选项是( )A.要消去y ,能够将25⨯+⨯②①B.要消去x ,能够将)5(3-⨯+⨯②①C.要消去y ,能够将35⨯+⨯②①D.要消去x ,能够将2)5(⨯+-⨯②①12.假设关于x 的方程022=++a x x 不存在...实数根,那么a 的取值范围是( )A.a<1B.a>1C.a ≤1D.a ≥113.将一质地均匀的正方体骰子掷一次,观看向上一面的点数,与点数3相差2的概率是( ) A.21 B.31 C.51 D.6114.如图6,直线332:--=x y l 与直线a y =(a 为常数)的交点在第四象限,那么a 可能在( )A.21<<aB.02<<-aC.23-≤≤-aD.410-<<-a15.如图7,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 别离为PA ,PB 的中点,关于以下各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而转变的是( )A.②③B.②⑤C.①③④D.④⑤图6图7图8图8是甲、乙两张不同的矩形纸片,将它们别离沿着虚线剪开后,各自要拼一个与原先面积相等的正方形,那么( )A.甲、乙都能够B.甲、乙都不能够C.甲不能够,乙能够D.甲能够,乙不能够二、填空题(本大题共4个小题,每题3分,共12分,把答案写在题中横线上)17.假设02015=a ,那么=a18.假设02≠=b a ,那么aba b a--222的值为 19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重归并叠在一路,如图9,那么∠3+∠1-∠2= °20.如图10,∠BOC=9°,点A 在OB 上,且OA=1,按以下要求画图:以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…… 如此画下去,直到得第n 条线段,以后就不能再画出符合要求的线段了,那么n=三、解答题(本大题共6个小题,共66分。
河北省2020年中考数学试题(Word版,含答案与解析)

河北省2020年中考数学试卷一、单选题(共16题;共32分)1.如图,在平面内作已知直线m的垂线,可作垂线的条数有()A. 0条B. 1条C. 2条D. 无数条【答案】 D【考点】垂线【解析】【解答】在同一平面内,画已知直线的垂线,可以画无数条;故答案为:D.【分析】在同一平面内,过已知直线上的一点有且只有一条直线垂直于已知直线;但画已知直线的垂线,可以画无数条.2.墨迹覆盖了等式“ x3x=x2(x≠0)”中的运算符号,则覆盖的是()A. +B. -C. ×D. ÷【答案】 D【考点】同底数幂的除法【解析】【解答】∵x3x=x2(x≠0),x3÷x=x2,∴覆盖的是:÷.故答案为:D.【分析】直接利用同底数幂的除法运算法则计算得出答案.3.对于① x−3xy=x(1−3y),② (x+3)(x−1)=x2+2x−3,从左到右的变形,表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解【答案】C【考点】因式分解的定义【解析】【解答】①左边多项式,右边整式乘积形式,属于因式分解;②左边整式乘积,右边多项式,属于整式乘法;故答案选C.【分析】根据因式分解的定义进行判断即可;4.如图的两个几何体分别由7个和6个相同的小正方体搭成,比较两个几何体的三视图,正确的是()A. 仅主视图不同B. 仅俯视图不同C. 仅左视图不同D. 主视图、左视图和俯视图都相同【答案】 D【考点】简单组合体的三视图【解析】【解答】第一个几何体的三视图如图所示:第二个几何体的三视图如图所示:观察可知这两个几何体的主视图、左视图和俯视图都相同,故答案为:D.【分析】分别画出所给两个几何体的三视图,然后比较即可得答案.5.如图是小颖前三次购买苹果单价的统计图,第四次又买的苹果单价是a元/千克,发现这四个单价的中位数恰好也是众数,则a=()A. 9B. 8C. 7D. 6【答案】B【考点】中位数,众数【解析】【解答】解:由条形统计图可知,前三次的中位数是8∵第四次又买的苹果单价是a元/千克,这四个单价的中位数恰好也是众数∴a=8.故答案为B.【分析】根据统计图中的数据结合中位数和众数的定义,确定a的值即可.6.如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()DE的长A. a,b均无限制B. a>0,b>12DE的长C. a有最小限制,b无限制D. a≥0,b<12【答案】B【考点】角平分线的性质【解析】【解答】第一步:以B为圆心,适当长为半径画弧,分别交射线BA,BC于点D,E;∴a>0;DE的长为半径画弧,两弧在∠ABC内部交于点P;第二步:分别以D,E为圆心,大于12∴b>1DE的长;2第三步:画射线BP.射线BP即为所求.综上,答案为:a>0;b>12DE的长,故答案为:B.【分析】根据作角平分线的方法进行判断,即可得出结论.7.若a≠b,则下列分式化简正确的是()A. a+2b+2=abB. a−2b−2=abC. a2b2=abD.12a12b=ab【答案】 D【考点】分式的通分【解析】【解答】∵a≠b,∴a+2b+2≠ab,选项A不符合题意;a−2 b−2≠ab,选项B不符合题意;a2 b2≠ab,选项C不符合题意;1 2a1 2b=ab,选项D符合题意;故答案为:D.【分析】根据a≠b,可以判断各个选项中的式子是否符合题意,从而可以解答本题.8.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A. 四边形NPMQB. 四边形NPMRC. 四边形NHMQD. 四边形NHMR【答案】A【考点】作图﹣位似变换【解析】【解答】解:如图所示,四边形ABCD的位似图形是四边形NPMQ.故答案为:A【分析】以O为位似中心,作四边形ABCD的位似图形,根据图像可判断出答案.9.若(92−1)(112−1)k=8×10×12,则k=()A. 12B. 10C. 8D. 6【答案】B【考点】平方差公式及应用【解析】【解答】原等式(92−1)(112−1)k=8×10×12变形得:k=(92−1)(112−1) 8×10×12=(9−1)(9+1)(11−1)(11+1)8×10×12=8×10×10×128×10×12=10.故答案为:B.【分析】利用平方差公式变形即可求解.10.如图,将ΔABC绕边AC的中点O顺时针旋转180°.嘉淇发现,旋转后的ΔCDA与ΔABC构成平行四边形,并推理如下:点A,C分别转到了点C,A处,而点B转到了点D处.∵CB=AD,∴四边形ABCD是平行四边形.小明为保证嘉淇的推理更严谨,想在方框中“∵ CB =AD ,”和“∴四边形……”之间作补充.下列正确的是( )A. 嘉淇推理严谨,不必补充B. 应补充:且 AB =CD ,C. 应补充:且 AB //CDD. 应补充:且 OA =OC ,【答案】 B【考点】平行四边形的判定【解析】【解答】根据旋转的性质得: CB=AD ,AB=CD ,∴四边形ABDC 是平行四边形;故应补充“AB=CD”,故答案为:B .【分析】根据平行四边形的判定方法“两组对边分别相等的四边形是平行四边形”即可作答.11.若k 为正整数,则 (k +k +⋅⋅⋅+k ︸k 个k )k = ( )A. k 2kB. k 2k+1C. 2k kD. k 2+k【答案】 A【考点】积的乘方,幂的乘方【解析】【解答】(k +k +⋅⋅⋅+k ︸k 个k )k = (k ⋅k)k =(k 2)k = k 2k ,故答案为:A .【分析】根据乘方的定义及幂的运算法则即可求解.12.如图,从笔直的公路 l 旁一点P 出发,向西走 6km 到达 l ;从P 出发向北走 6km 也到达l .下列说法错误的...是( )A. 从点P 向北偏西45°走 3km 到达lB. 公路l 的走向是南偏西45°C. 公路l 的走向是北偏东45°D. 从点P 向北走 3km 后,再向西走 3km 到达l【答案】 A【考点】钟面角、方位角,勾股定理【解析】【解答】解:如图所示,过P 点作AB 的垂线PH ,A.∵BP=AP=6km,且∠BPA=90°,∴△PAB为等腰直角三角形,∠PAB=∠PBA=45°,又PH⊥AB,∴△PAH为等腰直角三角形,∴PH= √2PA=3√2km,A错误;2B.站在公路上向西南方向看,公路l的走向是南偏西45°,B正确;C.站在公路上向东北方向看,公路l的走向是北偏东45°,C正确;D.从点P向北走3km后到达BP中点E,此时EH为△PEH的中位线,故EH= 1AP=3,故再向西走3km2到达l,D正确.故答案为:A.【分析】根据方位角的定义及勾股定理逐个分析即可.13.已知光速为300000千米秒,光经过t秒(1≤t≤10)传播的距离用科学记数法表示为a×10n千米,则n可能为()A. 5B. 6C. 5或6D. 5或6或7【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:当t=1时,传播的距离为300000千米,写成科学记数法为:3×105千米,当t=10时,传播的距离为3000000千米,写成科学记数法为:3×106千米,∴n的值为5或6,故答案为:C.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.14.有一题目:“已知;点O为ΔABC的外心,∠BOC=130°,求∠A.”嘉嘉的解答为:画ΔABC以及它的外接圆O,连接OB,OC,如图.由∠BOC=2∠A=130°,得∠A= 65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”,下列判断正确的是()A. 淇淇说的对,且∠A的另一个值是115°B. 淇淇说的不对,∠A就得65°C. 嘉嘉求的结果不对,∠A应得50°D. 两人都不对,∠A应有3个不同值【答案】A【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:如图所示:∵∠BOC=130°,∴∠A=65°,∠A还应有另一个不同的值∠A′与∠A互补.故∠A′=180°−65°=115°.故答案为:A.【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.15.如图,现要在抛物线y=x(4−x)上找点P(a,b),针对b的不同取值,所找点P的个数,三人的说法如下,甲:若b=5,则点P的个数为0;乙:若b=4,则点P的个数为1;丙:若b=3,则点P的个数为1.下列判断正确的是()A. 乙错,丙对B. 甲和乙都错C. 乙对,丙错D. 甲错,丙对【答案】C【考点】一元二次方程根的判别式及应用【解析】【解答】当b=5时,令x(4-x)=5,整理得:x2-4x+5=0,△=(-4)2-4×5=-6<0,因此点P的个数为0,甲的说法符合题意;当b=4时,令x(4-x)=4,整理得:x2-4x+4=0,△=(-4)2-4×4=0,因此点P有1个,乙的说法符合题意;当b=3时,令x(4-x)=3,整理得:x2-4x+3=0,△=(-4)2-4×3=4>0,因此点P有2个,丙的说法不符合题意;故答案为:C.【分析】分别令x(4-x)的值为5,4,3,得到一元二次方程后,利用根的判别式确定方程的根有几个,即可得到点P的个数.16.如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是()A. 1,4,5B. 2,3,5C. 3,4,5D. 2,2,4【答案】B【考点】勾股定理【解析】【解答】解:根据题意,设三个正方形的边长分别为a、b、c,由勾股定理,得a2+b2=c2,A、∵1+4=5,则两直角边分别为:1和2,则面积为:12×1×2=1;B、∵2+3=5,则两直角边分别为:√2和√3,则面积为:12×√2×√3=√62;C、∵3+4≠5,则不符合题意;D、∵2+2=4,则两直角边分别为:√2和√2,则面积为:12×√2×√2=1;∵√62>1,故答案为:B.【分析】根据勾股定理,a2+b2=c2,则小的两个正方形的面积等于大三角形的面积,再分别进行判断,即可得到面积最大的三角形.二、填空题(共3题;共5分)17.已知:√18−√2=a√2−√2=b√2,则ab=________.【答案】6【考点】二次根式的混合运算【解析】【解答】∵√18−√2=3√2−√2=2√2∴a=3,b=2∴ab=6故答案为:6.【分析】根据二次根式的运算法则即可求解.18.正六边形的一个内角是正n边形一个外角的4倍,则n=________.【答案】12【考点】多边形内角与外角【解析】【解答】解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n边形一个外角的4倍,∴正n边形的外角为30°,∴正n边形的边数为:360°÷30°=12.故答案为:12.【分析】先根据外角和定理求出正六边形的外角为60°,进而得到其内角为120°,再求出正n边形的外角为30°,再根据外角和定理即可求解.19.如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作T m(m为1~8的整数).函数y=k(x<0)的图象为曲线L.x(1)若L过点T1,则k=________;(2)若L过点T4,则它必定还过另一点T m,则m=________;(3)若曲线L使得T1~T8这些点分布在它的两侧,每侧各4个点,则k的整数值有________个.【答案】(1)-16(2)5(3)7【考点】反比例函数的图象,反比例函数的性质【解析】【解答】解:(1)由图像可知T1(-16,1)(x<0)的图象经过T1又∵.函数y=kx∴1=k,即k=-16;(2)由图像可知T1(-16,1)、T2(-14,2)、T3(-12,3)、T4(-10,4)、T5(-8,5)、−16T6(-6,6)、T7(-4,7)、T8(-2,8)∵L过点T4∴k=-10×4=40观察T1~T8,发现T5正确,即m=5;(3)∵T1~T8的横纵坐标积分别为:-16,-28,-36,-40,-40,-36,-28,-16∴要使这8个点为于L的两侧,k必须满足-36<k<-28∴k可取-29、-30、-31、-32、-33、-34、-35共7个整数值.故答案为:(1)-16;(2)5;(3)7.(x<0)即可确定k的值;(2)观察发【分析】(1)先确定T1的坐标,然后根据反比例函数y=kx现,在反比例函数图像上的点,横纵坐标只积相等,即可确定另一点;(3)先分别求出T1~T8的横纵坐标积,再从小到大排列,然后让k位于第4个和第5个点的横纵坐标积之间,即可确定k的取值范围和k的整数值的个数.三、解答题(共7题;共90分)20.已知两个有理数:-9和5.(1)计算:(−9)+52;(2)若再添一个负整数m,且-9,5与m这三个数的平均数仍小于m,求m的值.【答案】(1)解:(−9)+52= −42=−2;(2)解:依题意得(−9)+5+m3<m解得m>-2∴负整数m=-1.【考点】有理数的加减混合运算,平均数及其计算【解析】【分析】(1)根据有理数的混合运算法则即可求解;(2)根据平均数的定义列出不等式即可求出m的取值,故可求解.21.有一电脑程序:每按一次按键,屏幕的A区就会自动加上a2,同时B区就会自动减去3a,且均显示化简后的结果.已知A,B两区初始显示的分别是25和-16,如图.如,第一次按键后,A,B两区分别显示:(1)从初始状态按2次后,分别求A,B两区显示的结果;(2)从初始状态按4次后,计算A,B两区代数式的和,请判断这个和能为负数吗?说明理由.【答案】(1)解:A区显示结果为:25+a2+a2=25+2a2,B区显示结果为:﹣16-3a-3a=﹣16-6a;(2)解:初始状态按4次后A显示为:25+a2+a2+a2+a2=25+4a2B显示为:﹣16-3a-3a-3a-3a=﹣16-12a∴A+B= 25+4a2+(-16−12a)= 4a2-12a+9= (2a-3)2∵(2a-3)2≥0恒成立,∴和不能为负数.【考点】探索数与式的规律【解析】【分析】(1)根据题意,每按一次按键,屏幕的A 区就会自动加上 a 2 , B 区就会自动减去 3a ,可直接求出初始状态按2次后A ,B 两区显示的结果.(2)依据题意,分别求出初始状态下按4次后A ,B 两区显示的代数式,再求A ,B 两区显示的代数式的和,判断能否为负数即可.22.如图,点O 为 AB 中点,分别延长 OA 到点C , OB 到点D ,使 OC =OD .以点O 为圆心,分别以 OA , OC 为半径在 CD 上方作两个半圆.点P 为小半圆上任一点(不与点A ,B 重合),连接 OP 并延长交大半圆于点E ,连接 AE , CP .(1)①求证: ΔAOE ≌ΔPOC ;②写出∠1,∠2和 ∠C 三者间的数量关系,并说明理由.(2)若 OC =2OA =2 ,当 ∠C 最大时,直接..指出 CP 与小半圆的位置关系,并求此时 S 扇形EOD (答案保留 π ).【答案】 (1)证明:①在△AOE 和△POC 中 {AO =PO∠AOE =∠POC OE =OC ,∴△AOE ≌△POC ;②∠2=∠C+∠1,理由如下: 由(1)得△AOE ≌△POC , ∴∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC , ∴∠2=∠C+∠1;(2)解:在P 点的运动过程中,只有CP 与小圆相切时∠C 有最大值, ∴当 ∠C 最大时,可知此时 CP 与小半圆相切, 由此可得CP ⊥OP ,又∵ OC =2OA =2OP =2 ,∴可得在Rt △POC 中,∠C=30°,∠POC=60°, ∴∠EOD=180°-∠POC=120°, ∴S 扇EOD = 120∘×π×R 2360∘= 43π .【考点】三角形全等及其性质,三角形全等的判定,扇形面积的计算【解析】【分析】(1)①直接由已知即可得出AO=PO ,∠AOE=∠POC ,OE=OC ,即可证明;②由(1)得△AOE ≌△POC ,可得∠1=∠OPC ,根据三角形外角的性质可得∠2=∠C+∠OPC ,即可得出答案;(2)当 ∠C 最大时,可知此时 CP 与小半圆相切,可得CP ⊥OP ,然后根据 OC =2OA =2OP =2 ,可得在Rt △POC 中,∠C=30°,∠POC=60°,可得出∠EOD ,即可求出S 扇EOD .23.用承重指数W衡量水平放置的长方体木板的最大承重量.实验室有一些同材质同长同宽而厚度不一的木板,实验发现:木板承重指数W与木板厚度x(厘米)的平方成正比,当x=3时,W=3.(1)求W与x的函数关系式.(2)如图,选一块厚度为6厘米的木板,把它分割成与原来同长同宽但薄厚不同的两块板(不计分割损耗).设薄板的厚度为x(厘米),Q=W厚−W薄.①求Q与x的函数关系式;② x为何值时,Q是W薄的3倍?(注:(1)及(2)中的①不必写x的取值范围)【答案】(1)解:设W=kx2,∵x=3时,W=3∴3=9k∴k= 13∴W与x的函数关系式为W=13x2;(2)解:①∵薄板的厚度为xcm,木板的厚度为6cm∴厚板的厚度为(6-x)cm,∴Q= 13×(6−x)2−13x2=−4x+12∴Q与x的函数关系式为Q=12−4x;②∵Q是W薄的3倍∴-4x+12=3× 13x2解得x1=2,x2=-6(不符题意,舍去)经检验,x=2是原方程的解,∴x=2时,Q是W薄的3倍.【考点】待定系数法求二次函数解析式,二次函数y=ax^2+bx+c的图象,二次函数y=ax^2+bx+c的性质【解析】【分析】(1)设W=kx2,利用待定系数法即可求解;(2)①根据题意列出函数,化简即可;②根据题意列出方程故可求解.24.表格中的两组对应值满足一次函数 y =kx +b ,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线 l ′ .(1)求直线l 的解析式;(2)请在图上画出..直线 l ′ (不要求列表计算),并求直线 l ′ 被直线l 和y 轴所截线段的长;(3)设直线 y =a 与直线l , l ′ 及 y 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值.【答案】 (1)解:依题意把(-1,-2)和(0,1)代入 y =kx +b , 得 {−2=−k +b1=b , 解得 {k =3b =1, ∴直线l 的解析式为 y =3x +1 ,(2)解:依题意可得直线 l ′ 的解析式为 y =x +3 , 作函数图像如下:令x=0,得y=3,故B (0,3), 令 {y =3x +1y =x +3 , 解得 {x =1y =4 , ∴A (1,4),∴直线 l ′ 被直线l 和y 轴所截线段的长AB= √(1−0)2+(4−3)2=√2 ;(3)解:①当对称点在直线l上时,令a=3x+1,解得x= a−13,令a=x+3,解得x= a−3,∴2× a−13=a-3,解得a=7;②当对称点在直线l′上时,则2×(a-3)= a−13,解得a= 175;③当对称点在y轴上时,则a−13+(a−3)=0,解得a= 52;综上:a的值为52或175或7.【考点】待定系数法求一次函数解析式,勾股定理【解析】【分析】(1)根据待定系数法即可求解;(2)根据题意得到直线l′,联立两直线求出交点坐标,再根据两点间的距离公式即可求解;(3)分对称点在直线l,直线l′和y轴分别列式求解即可.25.如图,甲、乙两人(看成点)分别在数轴-3和5的位置上,沿数轴做移动游戏.每次移动游戏规则:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位;②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位;③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)经过第一次移动游戏,求甲的位置停留在正半轴上的概率P;(2)从图的位置开始,若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n次,且他最终..停留的位置对应的数为m ,试用含n 的代数式表示m ,并求该位置距离原点 O 最近时 n 的值;(3)从图的位置开始,若进行了k 次移动游戏后,甲与乙的位置相距2个单位,直接..写出k 的值. 【答案】 (1)解:题干中对应的三种情况的概率为: ① 12×12+12×12=12 ; ② 12×14+12×14=14 ; ③ 12×14+12×14=14 ;甲的位置停留在正半轴上的位置对应情况②,故P= 14 .(2)解:根据题意可知乙答了10次,答对了n 次,则打错了(10-n )次, 根据题意可得,n 次答对,向西移动4n , 10-n 次答错,向东移了2(10-n ), ∴m=5-4n+2(10-n )=25-6n , ∴当n=4时,距离原点最近.(3)解:起初,甲乙的距离是8,易知,当甲乙一对一错时,二者之间距离缩小2, 当甲乙同时答对打错时,二者之间的距离缩小2,∴当加一位置相距2个单位时,共缩小了6个单位或10个单位, ∴ 6÷2=3 或 10÷2=5 , ∴ k =3 或 k =5 .【考点】实数在数轴上的表示,平移的性质【解析】【分析】(1)对题干中三种情况计算对应概率,分析出正确的概率即可;硬币朝上为正面、反面的概率均为 12 ,甲和乙猜正反的情况也分为三种情况:①甲和乙都猜正面或反面,概率为 12 ,②甲猜正,乙猜反,概率为 14 ,③甲猜反,乙猜正,概率为 14 ,(2)根据题意可知乙答了10次,答对了n 次,则打错了(10-n )次,再根据平移的规则推算出结果即可;(3)刚开始的距离是8,根据三种情况算出缩小的距离,即可算出缩小的总距离,分别除以2即可得到结果;26.如图1和图2,在 ΔABC 中, AB =AC , BC =8 , tanC =34 .点K 在 AC 边上,点M ,N 分别在 AB , BC 上,且 AM =CN =2 .点P 从点M 出发沿折线 MB −BN 匀速移动,到达点N 时停止;而点Q 在 AC 边上随P 移动,且始终保持 ∠APQ =∠B .(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ΔABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3≤x≤9时,分别求点P到直线AC的距离(用含x 的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描ΔAPQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=94,请直接..写出点K被扫描到的总时长.【答案】(1)解:当点P在BC上时,PA⊥BC时PA最小,∵AB=AC,△ABC为等腰三角形,∴PA min=tanC·BC2= 34×4=3;(2)解:过A点向BC边作垂线,交BC于点E,S上=S△APQ,S下=S四边形BPQC,∵∠APQ=∠B,∴PQ∥BC,∴△APQ∽△ABC,∴APAB =ADAC=PQBC,∴SΔAPQSΔABC =(APAB)2,当S上S下= 45时,SΔAPQSΔABC=(APAB)2=49,∴APAB =23,AE= BC2·tanC=3,根据勾股定理可得AB=5,∴APAB =MP+25=23,解得MP= 43;(3)解:当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,由(2)可知sinC= 35,∴d= 35PQ,∵AP=x+2,∴APAB =x+25=PQBC,∴PQ= x+25×8,∴d= x+25×8×35= 2425x+4825,当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,d=CP·sinC= 35(11-x)=- 35x+ 335,综上d={2425x+4825(0≤x≤3)−35x+335(3≤x≤9);(4)解:AM=2<AQ= 94,移动的速度= 936= 14,①从Q平移到K,耗时:94−214=1秒,②P在BC上时,K与Q重合时CQ=CK=5- 94= 114,∵∠APQ+∠QPC=∠B+∠BAP,∠APQ=∠B ∴∠QPC=∠BAP,又∵∠B=∠C,∴△ABP∽△PCQ,设BP=y,CP=8-y,AB PC =BPCQ,即58−y=y114,整理得y2-8y= −554,(y-4)2= 94,解得y1= 52,y2= 112,5 2÷ 14=10秒,11 2÷ 14=22秒,∴点K被扫描到的总时长36-(22-10)-1=23秒.【考点】相似三角形的判定与性质,锐角三角函数的定义【解析】【分析】(1)根据当点P在BC上时,PA⊥BC时PA最小,即可求出答案;(2)过A点向BC边作垂线,交BC于点E,证明△APQ∽△ABC,可得SΔAPQSΔABC=(APAB)2,根据S上S下= 45可得SΔAPQSΔABC=(AP AB )2=49,可得APAB=23,求出AB=5,即可解出MP;(3)先讨论当0≤x≤3时,P在BM上运动,P到AC的距离:d=PQ·sinC,求解即可,再讨论当3≤x≤9时,P在BN上运动,BP=x-3,CP=8-(x-3)=11-x,根据d=CP·sinC即可得出答案;(4)先求出移动的速度= 936= 14,然后先求出从Q平移到K耗时,再求出不能被扫描的时间段即可求出时间.。
河北省2021年中考数学试卷及答案(Word版)

河北省2021年中考数学试卷及答案(Word版) 河北省2021年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是()A.2.一个整数815550 B. C. D.0用科学记数法表示为8.1555?1010,则原数中“0”的个数为()A.4 B.6 C.7 D.103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1 B.l2 C.l3 D.l4 4.将9.52变形正确的是()A.9.52?92?0.52B.9.5?(10?0.5)(10?0.5)2C.9.52?102?2?10?0.5?0.52 D.9.52?92?9?0.5?0.52 5.图2中三视图对应的几何体是()A. B.C. D.6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线. 图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是().A. B.C. D.8.已知:如图4,点P在线段AB外,且PA?PB.求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是().A.作?APB的平分线PC交AB于点C B.过点P作PC?AB于点C且AC?BC C.取AB中点C,连接PC D.过点P作PC?AB,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗22高(单位:cm)的平均数与方差为:x甲?x丙?13,x乙?x丁?15;s甲?s丁?3.6,22s乙?s丙?6.3.则麦苗又高又整齐的是()A.甲 B.乙 C.丙 D.丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50?航行到B处,再向右转80?继续航行,此时的航行方向为()A.北偏东30? B.北偏东80? C.北偏西30? D.北偏西50?12.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm),得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a?4)cm D.(a?8)cm感谢您的阅读,祝您生活愉快。
hebei中考数学试题及答案

hebei中考数学试题及答案一、选择题(每题3分,共30分)1. 已知\(a\)和\(b\)是两个不同的实数,且\(a^2 + b^2 = 10\),\(a + b = 4\),那么\(ab\)的值是多少?A. 2B. 3C. 4D. 52. 若\(x^2 - 5x + 6 = 0\),则\(x\)的值是:A. 2或3B. 3或4C. 2或-3D. -2或-33. 在一个直角三角形中,如果一个锐角是30度,那么另一个锐角的度数是:A. 30度B. 45度C. 60度D. 90度4. 函数\(y = 2x + 3\)的图像是:A. 一条直线B. 一条曲线C. 一个圆D. 一个椭圆5. 已知\(\triangle ABC\)中,\(AB = AC\),\(\angle BAC =90^\circ\),则\(\triangle ABC\)是:A. 等腰三角形B. 直角三角形C. 等边三角形D. 等腰直角三角形6. 如果一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -27. 一个圆的半径扩大到原来的2倍,那么它的面积扩大到原来的:A. 2倍B. 4倍C. 8倍D. 16倍8. 已知\(\sin 30^\circ = \frac{1}{2}\),那么\(\cos 60^\circ\)的值是:A. \(\frac{1}{2}\)B. \(\frac{\sqrt{3}}{2}\)C. \(\frac{\sqrt{2}}{2}\)D. 19. 一个等差数列的前三项分别是1,3,5,那么第10项的值是:A. 19B. 21C. 19D. 2110. 一个二次函数\(y = ax^2 + bx + c\)的图像开口向上,且经过点(1,0)和(-1,0),则\(a\)的符号是:A. 正B. 负C. 零D. 不确定二、填空题(每题3分,共15分)11. 已知\(\triangle ABC\)中,\(AB = 5\),\(AC = 7\),\(BC =8\),根据勾股定理,\(\triangle ABC\)是直角三角形。
河北省2023年中考数学试卷(附参考答案)

河北省2023年中考数学试卷一、选择题1.代数式的意义可以是()A.与x的和B.与x的差C.与x的积D.与x的商2.淇淇一家要到革命圣地西柏坡参观.如图,西柏坡位于淇淇家南偏西的方向,则淇淇家位于西柏坡的()A.南偏西方向B.南偏东方向C.北偏西方向D.北偏东方向3.化简的结果是()A.B.C.D.4.1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A.B.C.D.5.四边形的边长如图所示,对角线的长度随四边形形状的改变而变化.当为等腰三角形时,对角线的长为()A.2B.3C.4D.56.若k为任意整数,则的值总能()A.被2整除B.被3整除C.被5整除D.被7整除7.若,则()A.2B.4C.D.8.综合实践课上,嘉嘉画出,利用尺规作图找一点C,使得四边形为平行四边形.图1~图3是其作图过程.(1)作的垂直平分线交于点O;(2)连接,在的延长线上截取;(3)连接,,则四边形即为所求.在嘉嘉的作法中,可直接判定四边形ABCD为平行四边形的条件是()A.两组对边分别平行B.两组对边分别相等C.对角线互相平分D.一组对边平行且相等9.如图,点是八等分点.若,四边形的周长分别为a,b,则下列正确的是()A.B.C.D.a,b大小无法比较10.光年是天文学上的一种距离单位,一光年是指光在一年内走过的路程,约等于.下列正确的是()A.B.C.是一个12位数D.是一个13位数11.如图,在中,,点M是斜边的中点,以为边作正方形,若,则()A.B.C.12D.1612.如图1,一个2×2平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至还需再放这样的正方体()A.1个B.2个C.3个D.4个13.在和中,.已知,则()A.B.C.或D.或14.如图是一种轨道示意图,其中和均为半圆,点M,A,C,N依次在同一直线上,且.现有两个机器人(看成点)分别从M,N两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为和.若移动时间为x,两个机器人之间距离为y,则y与x关系的图象大致是()A.B.C.D.15.如图,直线,菱形和等边在,之间,点A,F分别在,上,点B,D,E,G在同一直线上:若,,则()A.B.C.D.16.已知二次函数和(m是常数)的图象与x轴都有两个交点,且这四个交点中每相邻两点间的距离都相等,则这两个函数图象对称轴之间的距离为()A.2B.C.4D.二、填空题17.如图,已知点,反比例函数图像的一支与线段有交点,写出一个符合条件的k的数值:.18.根据下表中的数据,写出a 的值为.b 的值为.x 结果代数式2n7b a119.将三个相同的六角形螺母并排摆放在桌面上,其俯视图如图1,正六边形边长为2且各有一个顶点在直线l 上,两侧螺母不动,把中间螺母抽出并重新摆放后,其俯视图如图2,其中,中间正六边形的一边与直线l 平行,有两边分别经过两侧正六边形的一个顶点.则图2中(1)度.(2)中间正六边形的中心到直线l的距离为(结果保留根号).三、解答题20.某磁性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投,计分规则如下:投中位置A 区B 区脱靶一次计分(分)31在第一局中,珍珍投中A 区4次,B 区2次,脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k 的值.21.现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图1所示.某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如图2和图3,其面积分别为.(1)请用含a的式子分别表示;当时,求的值;(2)比较与的大小,并说明理由.22.某公司为提高服务质量,对其某个部门开展了客户满意度问卷调查,客户满意度以分数呈现,调意度从低到高为1分,2分,3分,4分,5分,共5档.公司规定:若客户所评分数的平均数或中位数低于3.5分,则该部门需要对服务质量进行整改.工作人员从收回的问卷中随机抽取了20份,下图是根据这20份问卷中的客户所评分数绘制的统计图.(1)求客户所评分数的中位数、平均数,并判断该部门是否需要整改;(2)监督人员从余下问卷中又随机抽取了1份,与之前的20份合在一起,重新计算后,发现客户所评分数的平均数大于分,求监督人员抽取的问卷所评分数为几分?与(1)相比,中位数是否发生变化?23.嘉嘉和淇淇在玩沙包游戏.某同学借此情境编制了一道数学题,请解答这道题.如图,在平面直角坐标系中,一个单位长度代表1m长.嘉嘉在点处将沙包(看成点)抛出,并运动路线为抛物线的一部分,淇淇恰在点处接住,然后跳起将沙包回传,其运动路线为抛物线的一部分.(1)写出的最高点坐标,并求a,c的值;(2)若嘉嘉在x轴上方的高度上,且到点A水平距离不超过的范围内可以接到沙包,求符合条件的n的整数值.24.装有水的水槽放置在水平台面上,其横截面是以为直径的半圆,,如图1和图2所示,为水面截线,为台面截线,.计算:在图1中,已知,作于点.(1)求的长.(2)操作后水面高度下降了多少?(3)连接OQ并延长交GH于点F,求线段与的长度,并比较大小.25.在平面直角坐标系中,设计了点的两种移动方式:从点移动到点称为一次甲方式:从点移动到点称为一次乙方式.例、点P从原点O出发连续移动2次;若都按甲方式,最终移动到点;若都按乙方式,最终移动到点;若按1次甲方式和1次乙方式,最终移动到点.(1)设直线经过上例中的点,求的解析式;并直接写出将向上平移9个单位长度得到的直线的解析式;(2)点P从原点O出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点.其中,按甲方式移动了m次.①用含m的式子分别表示;②请说明:无论m怎样变化,点Q都在一条确定的直线上.设这条直线为,在图中直接画出的图象;(3)在(1)和(2)中的直线上分别有一个动点,横坐标依次为,若A,B,C三点始终在一条直线上,直接写出此时a,b,c之间的关系式.26.如图1和图2,平面上,四边形中,,点在边上,且.将线段绕点顺时针旋转到的平分线所在直线交折线于点,设点在该折线上运动的路径长为,连接.(1)若点在上,求证:;(2)如图2.连接.①求的度数,并直接写出当时,的值;②若点到的距离为,求的值;(3)当时,请直接写出点到直线的距离.(用含的式子表示)1.C2.D3.A4.B5.B6.B7.A8.C9.A10.D11.B12.B13.C14.D15.C16.A17.4(答案不唯一,满足均可)18.;19.(1)(2)20.(1)解:由题意得(分),答:珍珍第一局的得分为6分;(2)解:由题意得,解得:.21.(1)解:依题意得,三种矩形卡片的面积分别为:,∴,,∴,∴当时,;(2)解:,理由如下:∵,∴∵,∴,∴.22.(1)解:由条形统计图可知,客户所评分数按从小到大排列后,第10个数据是3分,第11个数据是4分;∴客户所评分数的中位数为:(分)由统计图可知,客户所评分数的平均数为:(分)∴客户所评分数的平均数或中位数都不低于3.5分,∴该部门不需要整改.(2)解:设监督人员抽取的问卷所评分数为x分,则有:解得:∵调意度从低到高为1分,2分,3分,4分,5分,共5档,∴监督人员抽取的问卷所评分数为5分,∵,∴加入这个数据,客户所评分数按从小到大排列之后,第11个数据不变依然是4分,即加入这个数据之后,中位数是4分.∴与(1)相比,中位数发生了变化,由分变成4分.23.(1)解:∵抛物线,∴的最高点坐标为,∵点在抛物线上,∴,解得:,∴抛物线的解析式为,令,则;(2)解:∵到点A水平距离不超过的范围内可以接到沙包,∴点A的坐标范围为,当经过时,,解得;当经过时,,解得;∴∴符合条件的n的整数值为4和5.24.(1)解:连接,∵为圆心,于点,,∴,∵,∴,∴在中,.操作:将图1中的水面沿向右作无滑动的滚动,使水流出一部分,当时停止滚动,如图2.其中,半圆的中点为,与半圆的切点为,连接交于点.探究:在图2中(2)解:∵与半圆的切点为,∴∵∴于点,∵,,∴,∴操作后水面高度下降高度为:.(3)解:∵于点,∴,∵半圆的中点为,∴,∴,∴,∴,,∵,∴.25.(1)解:设的解析式为,把、代入,得,解得:,∴的解析式为;将向上平移9个单位长度得到的直线的解析式为;(2)解:①∵点P按照甲方式移动了m次,点P从原点O出发连续移动10次,∴点P按照乙方式移动了次,∴点P按照甲方式移动m次后得到的点的坐标为;∴点按照乙方式移动次后得到的点的横坐标为,纵坐标为,∴;②由于,∴直线的解析式为;函数图象如图所示:(3)解:26.(1)证明:∵将线段绕点顺时针旋转到,∴∵的平分线所在直线交折线于点,∴又∵∴∴;(2)解:①∵,,∴∵,∴,∴∴;如图所示,当时,∵平分∴∴∴∴∵,∴∴,∴∵,∴∴,即∴解得∴.②如图所示,当点在上时,,∵,∴,,∴,∴∴;如图所示,当在上时,则,过点作交的延长线于点,延长交的延长线于点,∵,∴,∴∴即∴,,∴∵∴,∴,∴∴解得:∴,综上所述,的值为或;(3)解:点到直线的距离为。
2020河北省中考数学试题(精校word版,含答案)2套

河北中考数学试卷(一)第Ⅰ卷(共42分)一、选择题:本大题共16个小题,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列运算结果为正数的是( ) A .2(3)-B .32-÷C .0(2017)⨯-D .23-2.把0.0813写成10na ⨯(110a ≤<,n 为整数)的形式,则a 为( ) A .1B .2-C .0.813D .8.133.用量角器测量MON ∠的度数,操作正确的是( )4.23222333m n ⨯⨯⨯=+++个个……( )A .23n mB .23m nC .32m nD .23m n5.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是( )A .①B .②C .③D .④6.如图为张小亮的答卷,他的得分应是( )A .100分B .80分C .60分D .40分7.若ABC ∆的每条边长增加各自的10%得'''A B C ∆,则'B ∠的度数与其对应角B ∠的度数相比( ) A .增加了10%B .减少了10%C .增加了(110%)+D .没有改变8.如图是由相同的小正方体木块粘在一起的几何体,它的主视图是( )9.求证:菱形的两条对角线互相垂直.已知:如图,四边形ABCD 是菱形,对角线AC ,BD 交于点O . 求证:AC BD ⊥.以下是排乱的证明过程:①又BO DO =, ②∴AO BD ⊥,即AC BD ⊥. ③∵四边形ABCD 是菱形,④∴AB AD =.证明步骤正确的顺序是( )A .③→②→①→④B .③→④→①→②C .①→②→④→③D .①→④→③→②10.如图,码头A 在码头B 的正西方向,甲、乙两船分别从A 、B 同时出发,并以等速驶向某海域,甲的航向是北偏东35︒,为避免行进中甲、乙相撞,则乙的航向不能是( ) A .北偏东55︒B .北偏西55︒C .北偏东35︒D .北偏西35︒11.如图是边长为10cm 的正方形铁片,过两个顶点剪掉一个三角形,以下四种剪法中,裁剪线长度所标的数据(单位:cm )不正确的( )12.如图是国际数学日当天淇淇和嘉嘉的微信对话,根据对话内容,下列选项错误的是( )A .4446+-=B .004446++= C .34446++= D .14446-÷+=13.若321x x -=-( )11x +-,则( )中的数是( ) A .1-B .2-C .3-D .任意实数14.甲、乙两组各有12名学生,组长绘制了本组5月份家庭用水量的统计图表,如图,比较5月份两组家庭用水量的中位数,下列说法正确的是( )A .甲组比乙组大B .甲、乙两组相同C .乙组比甲组大D .无法判断15.如图,若抛物线23y x =-+与x 轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数ky x=(0x >)的图象是( )16.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( )A .1.4B .1.1C .0.8D .0.5第Ⅱ卷(共78分)二、填空题(本题共有3个小题,满分10分,将答案填在答题纸上)17.如图,A ,B 两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C ,连接CA ,CB ,分别延长到点M ,N ,使AM AC =,BN BC =,测得200MN m =,则A ,B 间的距离为m .18.如图,依据尺规作图的痕迹,计算α∠= .19.对于实数p ,q ,我们用符号{}min ,p q 表示p ,q 两数中较小的数,如{}min 1,21=,因此{}min 2,3--= ;若{}22min (1),1x x -=,则x = .三、解答题 (本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.在一条不完整的数轴上从左到右有点A ,B ,C ,其中2AB =,1BC =,如图所示.设点A ,B ,C 所对应数的和是p .(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?CO=,求p.(2)若原点O在图中数轴上点C的右边,且2821.编号为1~5号的5名学生进行定点投篮,规定每人投5次,每命中1次记1分,没有命中记0分.如图是根据他们各自的累积得分绘制的条形统计图,之后来了第6号学生也按同样记分规定投了5次,其命中率为40%.(1)求第6号学生的积分,并将图增补为这6名学生积分的条形统计图;(2)在这6名学生中,随机选一名学生,求选上命中率高于50%的学生的概率;(3)最后,又来了第7号学生,也按同样记分规定投了5次.这时7名学生积分的众数仍是前6名学生积分的众数,求这个众数,以及第7号学生的积分.22.发现任意五个连续整数的平方和是5的倍数.验证(1)22222-++++的结果是5的几倍?(1)0123(2)设五个连续整数的中间一个为n,写出它们的平方和,并说明是5的倍数.AB=,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转23.如图,16270︒后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.(1)求证:AP BQ =;(2)当43BQ =时,求QD 的长(结果保留π);(3)若APO ∆的外心在扇形COD 的内部,求OC 的取值范围.24.如图,直角坐标系xOy 中,(0,5)A ,直线5x =-与x 轴交于点D ,直线33988y x =--与x 轴及直线5x =-分别交于点C ,E .点B ,E 关于x 轴对称,连接AB .(1)求点C ,E 的坐标及直线AB 的解析式; (2)设面积的和CDE ABDO S S S ∆=+,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将CDE ∆沿x 轴翻折到CDB ∆的位置,而CDB ∆与四边形ABDO 拼接后可看成AOC ∆,这样求S 便转化为直接求AOC ∆的面积不更快捷吗?”但大家经反复验算,发现AOC S S ∆≠,请通过计算解释他的想法错在哪里.25.平面内,如图,在ABCD 中,10AB =,15AD =,4tan 3A =.点P 为AD 边上任意一点,连接PB ,将PB 绕点P 逆时针旋转90︒得到线段PQ .(1)当10DPQ ∠=︒时,求APB ∠的大小;(2)当tan :tan 3:2ABP A ∠=时,求点Q 与点B 间的距离(结果保留根号);(3)若点Q 恰好落在ABCD 的边所在的直线上,直接写出PB 旋转到PQ 所扫过的面积(结果保留π). 26.某厂按用户的月需求量x (件)完成一种产品的生产,其中0x >.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,112n ≤≤)符合关系式2229(3)x n kn k =-++(k 为常数),且得到了表中的数据.月份n (月) 1 2 成本y (万元/件) 11 12 需求量x (件/月)120100(1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;(3)在这一年12个月中,若第m 个月和第(1)m +个月的利润相差最大,求m .河北中考数学试卷(二)本试卷分卷I和卷II两部分;卷I为选择题,卷II为非选择题本试卷总分120分,考试时间120分钟.卷I(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:-(-1)=(D)A.±1 B.-2 C.-1 D.12.计算正确的是(D)A.(-5)0=0B.x2+x3=x5C.(ab2)3=a2b5D.2a2·a-1=2a3.下列图形中,既是轴对称图形,又是中心对称图形的是(A)A B C D4.下列运算结果为x-1的是(B)A.11x-B.211x xx x-•+C.111xx x+÷-D.2211x xx+++5.若k≠0,b<0,则y=kx+b的图象可能是(B)6.关于ABCD的叙述,正确的是(C)A.若AB⊥BC,则ABCD是菱形B.若AC⊥BD,则ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD,则ABCD是正方形7.12..的是(A)A12B.面积为1212C123D128.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的○1○2○3○4某一位置,所组成的图形不能..围成正方体的位置是(A)图1 图2第8题图A .○1B .○2C .○3D .○49.图示为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( B )第9题图A .△ACD 的外心B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心10.如图,已知钝角△ABC ,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C 为圆心,CA 为半径画弧○1;步骤2:以B 为圆心,BA 为半径画弧○2,将弧○1于点D ;步骤3:连接AD ,交BC 延长线于点H .下列叙述正确的是( A )第10题图A .BH 垂直分分线段ADB .AC 平分∠BADC .S △ABC =BC ·AHD .AB =AD11.点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b .对于以下结论:第11题图甲:b -a <0; 乙:a +b >0;丙:|a |<|b |; 丁:0ba .其中正确的是( C )A .甲乙B .丙丁C .甲丙D .乙丁12.在求3x的倒数的值时,嘉淇同学将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是( B )A.11538x x=-B.11538x x=+C.1853xx=-D.1853xx=+13.如图,将ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为(C)第13题图A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是(B)A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是(C)第15题图16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有(D)第16题图A.1个B.2个C.3个D.3个以上卷II(非选择题,共78分)二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根为____2___.18.若mn=m+3,则2mn+3m-5nm+10=___1___.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°-7°=83°.第19题图当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=__76___°.……若光线从点A发出后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=___6____°三、解答题(本大题有7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本小题满分9分)请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(-15);(2)999×41185+999×(15)-999×21.(本小题满分9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.第21题图22.(本小题满分9分)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.(本小题满分9分)如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.图1 图2第23题图如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从图A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;……设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法...求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.(本小题满分10分)某商店能过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数第1个第2个第3个第4个…第n个调整前单价x(元)x1x2=6 x3=72 x4…x n调整后单价x(元)y1y2=4 y3=59 y4…y n(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为_x,_y,猜想_y与_x的关系式,并写出推导出过.25.(本小题满分10分)如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在AQ(弧)上且不.与A点重合,但Q点可与B点重合.发现AP(弧)的长与QB(弧)的长之和为定值l,求l;思考点M与AB的最大距离为_______,此时点P,A间的距离为_______;点M与AB的最小距离为________,此时半圆M的弧与AB所围成的封闭图形面积为________.探究当半圆M与AB相切时,求AP(弧)的长.(注:结果保留π,cos 35°=63,cos 55°=33)第25题图备用图26.(本小题满分12分)如图,抛物线L: 1()(4)2y x t x t =---+(常数t >0)与x 轴从左到右的交点为B ,A ,过线段OA 的中点M 作MP ⊥x 轴,交双曲线(0,0)k y k x x =>>于点P ,且OA ·MP =12. (1)求k 值;(2)当t =1时,求AB 长,并求直线MP 与L 对称轴之间的距离;(3)把L 在直线MP 左侧部分的图象(含与直线MP 的交点)记为G ,用t 表示图象G 最高点的坐标;(4)设L 与双曲线有个交点的横坐标为x 0,且满足4≤x 0≤6,通过L 位置随t 变化的过程,直接..写出t 的取值范围.第26题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年河北省初中毕业生升学文化课考试
数学试卷
一、选择题(本大题共16个小题,1—10小题,每小题3分;11—16小题,每小题2分,共42分。
在每小题给出的四个选项中,只有一项是符合题目要求的)
1.计算:=-⨯-)1(23 ( )
A. 5
B.1
C.-1
D.6
2.下列说法正确的是( )
A.1的相反数是-1
B.1的倒数是-1
C.1的立方根是±1
D.-1是无理数
3.一张菱形纸片按图1-1、图1-2依次对折后,再按图1-3打出一个圆形小孔,则展开铺平后的图案( )
4.下列运算正确的是( ) A.21211-=⎪⎭⎫ ⎝⎛- B. 60000001067=⨯ C.()2222a a = D.523a a a =⋅
5.图2中的三视图所对应的几何体是( )
A B 图1—1 图1—3 图1—2 D C
6.如图3,AC ,BE 是⊙O 的直径,弦AD 与BE 交于点F ,下列三角形中,外心不是..
点O 的是( ) A.△ABE B.△ACF C.△ABD D.△ADE
7.在数轴上标注了四段范围,如图4,则表示8的点落在
( )
A.段①
B.段 ②
C.段③
D.段④
8.如图5,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )
A.120°
B.130°
C.140°
D.150°
9.已知:岛P 位于岛Q 的正西方,由岛P ,Q 分别测得船R 位于南偏东30°和南偏西45°方向上,符合条件的示意图是( )
10.一台印刷机每年印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y 与x 的函数图像大致是( )
图4
图3
图5
11.利用加减消元法解方程组⎩
⎨⎧=--=+②①
635 1052y x y x ,下列做法正确的是( )
A.要消去y ,可以将25⨯+⨯②①
B.要消去x ,可以将)5(3-⨯+⨯②①
C.要消去y ,可以将35⨯+⨯②①
D.要消去x ,可以将2)5(⨯+-⨯②①
12.若关于x 的方程022=++a x x 不存在...实数根,则a 的取值范围是( )
A.a<1
B.a>1
C.a ≤1
D.a ≥1
13.将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数3相差2的概率是( ) A.21 B.31 C.51 D.61
14.如图6,直线332
:--=x y l 与直线a y =(a 为常数)的交点在第四象
限,则a 可能在( )
A.21<<a
B.02<<-a
C.23-≤≤-a
D.410-<<-a
15.如图7,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点
M ,N 分别为PA ,PB 的中点,对于下列各值:
①线段MN 的长;②△PAB 的周长;
③△PMN 的面积;④直线MN ,AB 之间的距离; ⑤∠APB 的大小.
其中会随点P 的移动而变化的是( )
A.②③
B.②⑤
C.①③④
D.④⑤
16.图8是甲、乙两张不同的矩形纸片,将它们分别沿着虚
线剪开后,各自要拼一个与原来面积相等的正方形,则
( )
A.甲、乙都可以
B.甲、乙都不可以
C.甲不可以,乙可以
D.甲可以,乙不可以 二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)
17.若02015=a ,则=a
图6
图7 图8
18.若02≠=b a ,则ab a b a --222的值为 19.平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一
边重
合并叠在一起,如图9,则∠3+∠1-∠2= °
20.如图10,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图:
以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;
再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;
再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…… 这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=
三、解答题(本大题共6个小题,共66分。
解答应写出文字说明、证明过程或演算步骤)
21.(本小题满分10分)
老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个二次三项式,形式如下:
(1)求所捂的二次三项式;(2)若16+=x ,求所捂二次三项式的值.
22.(本小题满分10分)
嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图11的四边形ABCD ,并写出了如下不完整的已知和求证。
(1)在方框中填空,以补全已知和求证;
(2)按的想法写出证明;
证明:
图10 已知:如图11,在四边形ABCD 中,
BC=AD ,
AB= .
求证:四边形ABCD 是 四边形. 图11
1532+-=-x x x 图9 我的想法是:利用三角形全等,依据“两组对边分别平行的四边形是平行四边形”来证明.
嘉淇
(3)用文字叙述所证命题的逆命题为 23.(本小题满分10分) 水平放置的容器内原有210毫米高的水,如图12,将若干个球逐一放入该容器中,每放入一个大球水面就上升4毫米,每放入一个小球水面就上升3毫米,假定放入容器中的所有球完全浸没水中且水不溢出,设水面高为y 毫米.
(1)只放入大球,且个数为x 大,求y 与x 大的函数关系式(不必写出x 大的范围);
(2)仅放入6个大球后,开始放入小球,且小球个数为x 小.
①求y 与x 小的函数关系式(不必写出x 小的范围);
②限定水面高不超过260毫米,最多能放入几个小球?
24.(本小题满分11分)
某厂生产A ,B 两种产品,其单价随市场变化而做相应调整,营销人员根据前三次单价变化的情况,绘制了如下统计表及不完整的折线图:
A ,
B 产品单价变化统计表
并求得了A 产品三次单价的平均数和方差:
9.5=A x ;()()()[]
150439.55.69.52.59.56312222=-+-+-=A S (1)补全图13中B 产品单价变化的折线图,B 产品第三次的单价比上一次的单价降低了 %;
(2)求B 产品三次单价的方差,并比较哪种产品的单价波动小;
(3)该厂决定第四次调价,A 产品的单价仍为6.5元/件,B 产品的单价比3元/件上调m%(m>0),使得A 产品这四次单价的中位数是B 产品四次单价中位数的2倍少1,求m 的值。
25.(本小题满分11分)
如图14,已知点O(0,0),A(-5,0),B(2,1),抛物线1)(2+--=h x y l :(h 为常数)与y 轴的交点为C 。
第一次 第二次 第三次 A 产品单价
(元/件)
6 5.2 6.5 B 产品单价
(元/件)
3.5 4 3 图12 图13
(1)l 经过点B ,求它的解析式,并写出此时l 的对称轴及顶点坐标;
(2)设点C 的纵坐标为C y ,求C y 的最大值,此时l 上有两点()11y x ,,()22y x ,,其中021≥>x x ,比较1y 与2y 的大小;
(3)当线段OA 被l 只分为两部分...
,且这两部分的比是1:4时,求h 的值。
26.(本小题满分14分)
平面上,矩形ABCD 与直径为QP 的半圆K 如图15-1摆放,分别
延长DA 和QP 交于点O ,且∠DOQ=60°,OQ=OD=3,OP=2, OA=AB=1,
让线段OD 及矩形ABCD 位置固定,将线段OQ 连带着半圆K 一起绕着
点O 按逆时针方向开始旋转,设旋转角为)600(︒≤≤︒a a .
发现:(1)当︒=0a ,即初始位置时,点P 直线AB 上.
(填“在”或“不在”)
求当a 是多少时,OQ 经过点B ?
(2)在OQ 旋转过程中,简要说明a 是多少时,点P ,A 间的距离最小?并指出这个最小值;
(3)如图15-2,当点P 恰好落在BC 边上时,求a 及阴影S .
图13
图15-1
拓展:如图15-3,当线段OQ 与CB 边交于点M ,与BA 边交于点N 时,设BM=x(x>0),用含x 的代数式表示BN 的长,并求x 的取值范围.
探究:当半圆K 与矩形ABCD 的边相切时,求sin a 的值.
图15-3 图15-2
备用图。