高一数学必修一对数与对数的运算练习题及答案

合集下载

高一数学(对数与对数的运算)

高一数学(对数与对数的运算)

例6 求下列各式中x的值:
2 (1) log64 x (2)logx 8 6 3 (3) lg100 x (4) - lne2 x
(5) logx (3 2 2 ) 2
( 5)
(6) log5 (log2 x) 0
2 例7.求x的值: log 64 x 3
思考4:log2x2=2log2x对任意实数x恒成 立吗?
思考5:如果a>0,且a≠1,M>0,则
log a M 等于什么?
n
思考6:上述关于对数运算的三个基本 性质如何用文字语言描述?
①两数积的对数,等于各数的对数的和; ②两数商的对数,等于被除数的对数减 去 除数的对数;
4.对数的运算法则
如果a > 0, 且a ≠ 1, M > 0, N > 0, n ∈ R, 那么 (1) loga ( M N ) = loga M + loga N ; M (2) loga = loga M loga N ; N n (3) log M = n loga M ; (4) loga
思考Ⅲ:已知 log1 (log2 x) log1 (log3 y) 1
2 3
1
试比较x和y的大小
1 解: log1 (log2 x) 1 log2 x 2 2
1 1 即: log 2 x 22 x 2 同理可得: y 3 3
x 2
6
x
logc N p 即证得 logc a
logc N loga N logc a
其他重要公式 2:
1 log a b logb a
logb b loga b logb a
a, b (0,1) (1,)

高一数学对数的概念与对数运算公式课后练习题

高一数学对数的概念与对数运算公式课后练习题

对数与对数运算一、对数1.对数的概念一般地,如果N a x =)1,0(≠>a a ,那么数x 叫做以.a 为底..N的对数,记作:N x a log =(a — 底数,N — 真数,N a log — 对数式)说明:① 注意底数的限制0>a ,且1≠a ;②x N N a a x =⇔=log ;两个重要对数:①常用对数:以10为底的对数N lg ;②自然对数:以无理数 71828.2=e 为底的对数的对数N ln . ③对数的性质:(1)负数和零没有对数;(2)1的对数是零:01log =a ;(3)底数的对数是1:1log =a a ; (4)对数恒等式:N aN a =log ; (5)n a n a =log .注意:指数式与对数式的互化:x N a =log ⇔N a x = 对数式 ⇔ 指数式对数底数 ← a → 幂底数对数← x → 指数 真数← N → 幂二、对数的运算性质 如果0>a ,且1≠a ,0>M ,0>N ,那么: ① M a (log ·=)N M a log +N a log ;② =NM a log M a log -N a log ; ③ n a M log n =M a log )(R n ∈. 注意:换底公式ab bc c a log log log =(0>a ,且1≠a ;0>c ,且1≠c ;0>b ).题型一、 对数概念例1求下列各式中x 的取值范围(1)()10log 2−x ; (2)()2log 1+−x x ; (3)()()211log −+x x例2把下列各等式化为相应的对数式或指数式(1)12553=; (2)16412=⎪⎭⎫ ⎝⎛−; (3)38log 21−=; (4)3271log 3−= (5)log 3a =b例3 求下列各式中的x (1)2327log =x ; (2)32log 2−=x ; (3)()2223log −=+x ; (4)()0log log 25=x .题型二、对数的运算性质例4 化简: (1)51lg 5lg 32lg 4−+; (2)2.1lg 1000lg 8lg 27lg −+; (3)3log 333558log 932log 2log 2−+−; (4)⎪⎭⎫ ⎝⎛−−+246246log 2; (5)()()321log 321log 22−++++; (6)⎪⎭⎫ ⎝⎛−++5353lg例5(1)4771.03lg ,3010.02lg ≈≈,求45lg ;(2)已知m =35log 5,试用m 表示4.1log 7.例6 计算(1)5log 177−;(2)⎪⎭⎫ ⎝⎛−2lg 9lg 21100;(3)7lg142lg lg 7lg183−+−(b a ,为不等于零的正数,0>c ).(4)12lg 25+lg 2+7log 73=(5)4log 23−log 2814−5log 53+log 9√3.题型三 、换底公式的应用例7(1)计算:()3lg 2lg 3log 3log 84+; (2) 已知518,9log 18==b a ,用b a ,表示45log 36的值.题型四 、对数运算性质的综合运算 例8 求下列各式的值:(1)2log 233−; (2)8.1log 7log 37log 235log 5555−+−.例9 (1)已知()()23lg lg 23lg 2++=−x x x ,求222log x 的值; (2)已知()n m n m lg lg 21lg 2+=⎥⎦⎤⎢⎣⎡−,求n m 的值.题型五、 综合类问题例10 设z y x ,,均为正整数,且z y x 643==.(1)试求z y x ,,之间的关系;(2)比较z y x 6,4,3的大小.课后作业1.设log 23=a ,log 215=b ,则log 275=__________(结果用a ,b 表示).2、已知a =log 32,用a 表示log 38-2log 36是( )A .a -2B .5a -2C .3a -(1+a)2D .3a -a 2-13、(log 43+log 83)(log 32+log 98)等于( ) A.56 B.2512 C.94 D .以上都不对4、已知2x =5y =10,则1x +1y =________.5、求下列各式的值:(1)(lg 5)2+lg 50·lg 2;(2)lg 14-2lg 73+lg 7-lg 18;(3)log 1327-log 139;(4)log 89×log 332.(5)lg25+lg2•lg50+lg22。

高一数学(必修一)对数的运算练习题及答案

高一数学(必修一)对数的运算练习题及答案

高一数学(必修一)对数的运算练习题及答案一、单选题(本大题共8小题)1. 化简的结果为( )A. B. C. D.2. 已知,且,则的值为( )A. B. C. D.3. 已知,,,则,,的大小关系为( )A. B. C. D.4. 下列结论正确的是( )A. B. 若,则C. D. 若,则5. 已知,则用表示为( )A. B. C. D.6. 我们可以把看作每天的“进步率都是,一年后是;而把看作每天的“落后”率都是,一年后是,可以计算得到,一年后的“进步”是“落后的,倍,如果每天的“进步率和“落后”率都是,大约经过天后,“进步”是“落后”的倍( )A. B. C. D.7. 设,,则( )A. B. C. D.8. ( )A. B. C. D.二、多选题(本大题共4小题)9. 下列计算正确的是( )A. B.C. D.10. 下列各式正确的是( )A. B. C. D.11. 若,,则下列说法正确的是( )A. B. C. D.12. 已知,且,则( )A. B.C. D.三、填空题(本大题共4小题)13. .14. 已知正实数,满足,则的最小值为.15. 已知,,则用,表示16. 基础建设对社会经济效益产生巨大的作用,某市投入亿元进行基础建设,年后产生亿元社会经济效益若该市投资基础建设年后产生的社会经济效益是投资额的倍,则再过_______年,该项投资产生的社会经济效益是投资额的倍.四、解答题(本大题共2小题)17. 求值:;.18. 求值:;若,求与的值.参考答案1.【答案】【解答】解:.2.【答案】【解答】解:,,则,,故选D.3.【答案】【解答】解:,,,,,,故选:4.【答案】【解答】解:,,故A正确;若,则,故B不正确;,,没意义,故C不正确;若,则,故D不正确.故选A.5.【答案】【解答】解:,,.故选D.6.【答案】【解答】解:经过天后,“进步”与“落后”的比,,两边取以为底的对数得,,,所以大约经过天后,“进步”是“落后”的倍.故选:.7.【答案】【解答】解:,,,,故选:.8.【答案】【解答】解:.故选A .9.【答案】【解答】解:对,,正确;对,,正确;对,,错误;对,,正确;故选ABD.10.【答案】【解答】解:,A错误;,B错误;,C正确;D正确.11.【答案】【解答】解:,,,,,故A正确;,故B错误;,故C正确;,即,故D正确.故选:.12.【答案】【解答】解:因为,且,对,,所以,故A正确;对,取,此时,故B错误;对,,当且仅当时取等号,又因为,当且仅当时取等号,所以,当且仅当时取等号,因为,所以不能取等号,故C正确;对,当时,,所以;当时,,所以,当且仅当时取等号,因为,所以不能取等号,故D正确.13.【答案】【解答】解:.故答案为:.14.【答案】【解答】解:,,即,,,,当且仅当即,时,等号成立,的最小值为,故答案为:.15.【答案】【解答】解:因为,所以,又,所以.故答案为.16.【答案】【解答】解:由已知可得,,则,即,设投资年后,产生的社会经济效益是投资额的倍,则有,解得,所以再过年,该项投资产生的社会经济效益是投资额的倍.17.【答案】解:.18.【答案】解:;因为,所以,所以,即,所以,所以,即;所以,即,所以,因为所以.。

2014—2015学年高一数学(苏教版)必修一午间小练及答案:15 对数与对数运算

2014—2015学年高一数学(苏教版)必修一午间小练及答案:15 对数与对数运算

高一数学(苏教版)必修一午间小练:对数与对数运算1.定义两个实数间的一种运算“*”:()l g1010x yx y *=+,x 、y R ∈.对任意实数a 、b 、c ,给出如下结论:a b b a *=*;②()()a b c a b c **=**;③()()()a b c a c b c *+=+*+.其中正确的个数是 2.已知222125log 5,log 7,log 7a b ===则 3.若210,5100==b a ,则b a +2=4.若lg lg x y a -=,则33lg lg x y -=5.12lg 4lg 254(4-0++--π) .6.方程211log 1log 2x x ++=的解是 . 7. 计算:327log 2lg 225lg 432ln +++e= 。

8. 12log 6log 216log 332-+=9.计算(1)0143231)12(3.2)71(027.0-+-+-----(2)1.0lg 10lg 5lg 2lg 125lg 8lg --+10.计算:1132081()274e π-⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭; ②2lg5lg4++参考答案1.3 【解析】试题分析:根据题中的定义,对于命题,左边()lg 1010a ba b =*=+,右边()l g 1010b a b a =*=+,左边=右边,命题正确;对于命题②,左边()()()l g 1010l g 1010l g 1010a b abca b c c +⎛⎫=**=+*=+⎪⎝⎭()lg 101010a b c =++,右边()()()()lg 1010lg 1010lg 1010lg 101010b c bca abc a b c a +⎛⎫=**=*+=+=++ ⎪⎝⎭=左边,命题②正确;对于命题③,左边()()()lg 1010lg 1010lg10a b a b c a b c c =*+=++=++()lg 1010a c b c ++=+,右边()()()lg 1010a c b c a c b c ++=+*+=+,左边=右边,命题③也正确.攻答案为3个考点:新定义 2.3a -b 【解析】 试题分析:根据对数的运算法则,有b a -=-=-=-=37log 5log 37log 5log 7log 125log 7125log 22232222. 考点:对数的运算法则. 3.1【解析】解:因为若a b 1001010101011005,102a log 5log 5,b log 2,22a b log 5log 21==∴===∴+=+=,4.3a【解析】33lg lg 3lg 3lg 3(lg lg )3x y x y x y a -=-=-=5.23 【解析】试题分析:原式=()23121212100lg 212=-+=-+-考点:指数与对数 6.1 【解析】试题分析:原方程可变为22log log (1)1x x ++=,即2l o g (1)1x x +=,∴(1)2x x +=,解得1x =或2x =-,又01011x x x >⎧⎪+>⎨⎪+≠⎩,∴1x =.考点:解对数方程.7.415【解析】解:因为ln 23115lg 252lg 2e log 2lg52lg 2244+++=++-= 8. 5【解析】222333336log 162log 6log 124log 6log 124log 512+-=+-=+= 9.(1)19 (2)-4 【解析】 试题分析:(1)指数式运算,先将负指数化为正指数,小数化为分数,即,131)2()7()271000()12(3256)71(027.04382310143231+-+--=-+-+-----再将分数化为指数形式,即191316449310131249)310(63133=+-+-=+-+- , (2)对数式运算,首先将底统一,本题全为10,再根据对数运算法则进行运算,即.4)1(2110lg 10lg 10lg 521258lg1.0lg 10lg 5lg 2lg 125lg 8lg 2121-=-⨯=⨯⨯=--+-试题解析:(1)131)2()7()271000()12(3256)71(027.04382310143231+-+--=-+-+----- .191316449310131249)310(63133 =+-+-=+-+-=(2).4)1(2110lg10lg10lg521258lg1.0lg10lg5lg2lg125lg8lg2121-=-⨯=⨯⨯=--+-考点:指对数式化简10.① 2; ②3.【解析】试题分析:对数运算与指数运算的运算法则一定要搞清.试题解析:解:①原式=521233--+=2 , 6分②原式=21(lg5lg2)2ln2e++⨯⨯ =2lg101+=3. 12分考点:对数运算,指数运算.。

2023-2024学年高一上数学必修一:对数的运算(1)

2023-2024学年高一上数学必修一:对数的运算(1)
D.12m-23n
解析:log3
x =log3 x-log3 3 y· y
log3(y·y
1 3
)
1 2
=12log3x-23log3y=12m-23n.
3 y·
y=log3xຫໍສະໝຸດ 1 2-二、填空题(每小题 5 分,共 15 分)
9.4lg2+3lg5-lg15=
4.
解析:根据对数的运算性质知:4lg2+3lg5-lg15=lg(24×53×5) =lg104=4.故答案为 4.
——能力提升—— 一、多项选择题(每小题 5 分,共 10 分) 1.有以下四个结论:①lg(lg10)=0;②lg(lne)=0;③若 e=lnx, 则 x=e2;④ln(lg1)=0.其中正确的是( AB ) A.① B.② C.③ D.④
解析:因为 lg10=lne=1,lg1=0,所以①②均正确;③中若 e=lnx, 则 x=ee,故③错误;④中 lg1=0,而 ln0 没有意义,故④错误.综上, 选 AB.
lg8+lg125-lg2-lg5 (2) lg 10×lg0.1
8×125 =lg1l0g12×2×lg510-1 =12×lg1-021 =-4.
(3)(log62)2+(log63)2+3log62×log6
3
18-13log62
3 =(log62)2+(log63)2+3log62×log6 18
3 2
=(log62)2+(log63)2+3log62×log63 9 =(log62)2+(log63)2+2log62×log63 =(log62+log63)2 =1.
13.(10 分)已知 loga(x2+4)+loga(y2+1)=loga5+loga(2xy-1)(a>0, 且 a≠1),求 log8yx的值.

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

【名师点睛】高中数学 必修一 对数运算及对数函数练习题(含答案)

07课 对数运算1.下列式子中正确的个数是( )①log a (b 2-c 2)=2log a b -2log a c ②(log a 3)2=log a 32③log a (bc)=(log a b)·(log a c) ④log a x 2=2log a xA.0B.1C.2D.3 2.log 22的值为( )A.- 2B. 2C.-12D.123.如果lgx=lga +2lgb -3lgc ,则x 等于( )A.a +2b -3cB.a +b 2-c 3C.ab 2c 3D.2ab 3c4.计算2log 510+log 50.25=( )A.0B.1C.2D.4 5.已知a=log 32,那么log 38-2log 36用a 表示为( )A.a -2B.5a -2C.3a -(1+a)2D.3a -a 2-16.已知f(log 2x)=x ,则f(12)=( )A.14B.12C.22 D. 2 7.设lg2=a ,lg3=b ,则log 512等于( )A.2a +b 1+aB.a +2b 1+aC.2a +b 1-aD.a +2b1-a8.已知log 72=p ,log 75=q ,则lg2用p 、q 表示为( )A.pqB.q p +qC.pp +qD.pq1+pq 9.设方程(lgx)2-lgx 2-3=0的两实根是a 和b ,则log a b +log b a 等于()A.1B.-2C.-103D.-410.计算:log 6[log 4(log 381)]=________.11.使对数式log (x -1)(3-x)有意义的x 的取值范围是________.12.已知5lgx=25,则x=________,已知log x 8=32,则x=________.13.计算:(1)2log 210+log 20.04=________; (2)lg3+2lg2-1lg1.2=________;(3)lg 23-lg9+1=________; (4)13log 168+2log 163=________; (5)log 6112-2log 63+13log 627=________.14.计算:log 23·log 34·log 45·log 56·log 67·log 78= 15.设log 89=a ,log 35=b ,则lg2=________.16.已知log 34·log 48·log 8m=log 416,求m 的值.17.设4a =5b=m ,且1a +2b=1,求m 的值.18.计算(lg 12+lg1+lg2+lg4+lg8+……+lg1024)·log 210.19.已知lg(x +2y)+lg(x -y)=lg2+lgx +lgy ,求xy的值.20.若25a =53b =102c,试求a 、b 、c 之间的关系.21.已知二次函数f(x)=(lga)x 2+2x +4lga 的最大值是3,求a 的值.指数函数练习题1.函数f(x)=ln(x2-x)的定义域为( )A.(0,1)B.[0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)2.在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是( )3.函数的单调减区间为()A. B.C. D.4.设全集U=R,A={x|<2},B={x|},则右图中阴影部分表示的集合为( )A.{x|1≤x<2}B.{x|x≥1}C.{x|0<x≤1}D.{x|x≤1}5.计算所得的结果为()A.1B.2.5C.3.5D.46.设, 则()A. B. C. D.7.设全集,集合,,则 ( )A. B. C. D.8.已知集合,则( )A. B. C. D.9.已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且,则不等式的解集为()A. B. C. D.10.已知x, y为正实数, 则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y) =2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy) =2lg x·2lg y11.已知集合A={x|0<log4x<1}, B={x|x≤2}, 则A∩B=( )A.(0,1)B.(0,2]C.(1,2)D.(1,2]12.设a=log36, b=log510, c=log714, 则( )A.c> b> aB.b> c> aC.a> c> bD.a> b> c13.若a=log43,则2a+2-a=________.14.已知4a=2,lg x=a,则x=________.15.函数f(x) =lg(x-2) 的定义域是.16.函数f(x) =的定义域为.17.函数f(x) =log5(2x+1)的单调增区间是.18.函数f (x)=的定义域为.19.关于x的不等式|log2x|>4的解集为.20. 函数的定义域为___________ .21. .22.已知函数.(Ⅰ)当a=3时,求函数在上的最大值和最小值;(Ⅱ)求函数的定义域,并求函数的值域. (用a表示)答案[答案] 1.C[答案] 2.D[答案] 3.D[答案] 4.A[答案] 5.A[答案] 6.C[答案] 7.B[答案] 8.C[答案] 9.C[答案] 10.D[答案] 11.D[答案] 12.D[答案] 13.[答案] 14.[答案] 15. (2,+∞)[答案] 16.[3, +∞)[答案] 17.(-0.5,+∞)[答案] 18.{x|0<x≤}[答案] 19.[答案] 20.[-0.25,0)∪(0.75,1][答案] 21.4。

新教材北师大版高中数学必修第一册练习-换底公式答案含解析

新教材北师大版高中数学必修第一册练习-换底公式答案含解析

第四章 对数运算与对数函数§2 对数的运算2.2 换底公式知识点 对数的换底公式1.☉%8#65¥@7¥%☉(2020·银川一中月考)log 29·log 34=( )。

A.14 B.12C.2D.4 答案:D解析:原式=log 232·log 322=4log 23·log 32=4·lg3lg2·lg2lg3=4。

故选D 。

2.☉%11##*4#3%☉(2020·菏泽高一检测)log 849log 27的值是( )。

A.2B.32C.1D.23答案:D 解析:log 849log 27=log 272log 223÷log 27=23。

故选D 。

3.☉%0#90#¥0*%☉(2020·江西赣州十三县市高一期中考试)若log 2x ·log 34·log 59=8,则x 等于( )。

A.8 B.25 C.16 D.4 答案:B解析:因为log 2x ·log 34·log 59=lgxlg2·lg4lg3·lg9lg5=lgx lg2·2lg2lg3·2lg3lg5=8,所以lg x =2lg 5=lg 25,所以x =25。

故选B 。

4.☉%#*#29#62%☉(2020·白城一中月考)化简:log 212+log 223+log 234+…+log 21516等于( )。

A.5 B.4 C.-5 D.-4 答案:D解析:原式=log 2(12×23×34×…×1516)=log 2116=-4。

故选D 。

5.☉%¥7@@74#3%☉(2020·闽侯八中高一月考)若log 34·log 8m =log 416,则m 等于( )。

A.3 B.9 C.18 D.27 答案:D解析:原式可化为log 8m =2log 34,所以13log 2m =2log 43,所以m 13=3,m =27。

必修一 对数与对数运算 练习题C附答案

必修一 对数与对数运算 练习题C附答案

必修一 对数与对数运算 练习题C 附答案一、选择题 1.log 89log 23=( )A.23B.32 C .1 D .2[答案] A[点拨] 原式=lg9lg8lg3lg2=2lg33lg2lg3lg2=23,故选A.2.log 23·log 3m =12,则m =( ) A .2 B. 2 C .4 D .1[答案] B[解析] log 23·log 3m =log 2m =12 ∴m =2 12=2,故选B.3.log 23·log 34·log 45·log 56·log 67·log 78=( ) A .1 B .2 C .3 D .4[答案] C[解析] log 23·log 34·log 45·log 56·log 67·log 78=lg3lg2×lg4lg3×lg5lg4×lg6lg5×lg7lg6×lg8lg7=lg8lg2=3,故选C.4.若2.5x=1000,0.25y=1000,则1x -1y =( )A.13 B .3 C .-13 D .-3[答案] A[解析] x =log 2.51000,y =log 0.251000, ∴1x =log 10002.5,1y =log 10000.25,∴1x -1y =log 10002.5-log 10000.25=log 100010=13,故选A. 5.设lg2=a ,lg3=b ,则log 512等于( ) A.2a +b 1+a B.a +2b1+a C.2a +b 1-a D.a +2b 1-a[答案] C[解析] log 512=lg12lg5=2lg2+lg31-lg2=2a +b1-a,故选C.6.设,则x ∈( )A .(-2,-1)B .(1,2)C .(-3,-2)D .(2,3)[答案] D[解析]=log 310∈(2,3),故选D.7.设a 、b 、c ∈(0,+∞),且3a =4b =6c ,则以下四个式子中恒成立的是( )A.1c =1a +1bB.2c =2a +1bC.1c =2a +2bD.2c =1a +2b[答案] B[解析] 设3a =4b =6c =m , ∴a =log 3m ,b =log 4m ,c =log 6m , ∴1a =log m 3,1b =log m 4,1c =log m 6, 又∵log m 6=log m 3+log m 2,1c =1a +12b ,即 2c =2a +1b ,故选B.8.设方程(lg x )2-lg x 2-3=0的两实根是a 和b ,则log a b +log b a 等于( )A .1B .-2C .-103D .-4 [答案] C[解析] 由已知得:lg a +lg b =2,lg a lg b =-3,那么log a b +log b a =lg b lg a +lg a lg b =lg 2b +lg 2alg a lg b=(lg a +lg b )2-2lg a lg b lg a lg b =4+6-3=-103,故选C. 二、填空题9.log 22+log 927+4log 413=________.[答案] 15[解析] 原式=12+log 3233+13=15. 10.log 43·log 13432=________.[答案] -58[解析] 原式=log 43·(-14log 332)=-14×log 432=-14×log 2225=-14×52=-58.11.lg9=a,10b =5,用a 、b 表示log 3645为________. [答案]a +ba -2b +2[解析] 由已知b =lg5,则log 3645=lg45lg36=lg5+lg9lg4+lg9=a +b a +2lg2=a +b a +2(1-b )=a +ba -2b +2.12.(山东淄博2012~2013高一期中试题)设3x=4y=36,则2x +1y =________.[答案] 1[解析] 由3x=4y=36得x =log36,y =log 436,2x +1y =2log 336+1log 436=2log 363+log 364=log 369+log 364=log 3636=1. 三、解答题13.(瓮安二中2012~2013学年度第一学期高一年级期末考试数学科卷)求下列各式的值:(1)log 427·log 258·log 95;(2)(log 43+log 83)(log 32+log 92). [解析] (1)原式=lg27lg4·lg8lg25·lg5lg9 =3lg32lg2·3lg22lg5·lg52lg3 =98(2)解法一:原式=log 43·log 32+log 83·log 32+log 43·log 92+log 83·log 92=log 223·log 32+log 233·log 32+log 223·log 322+log 233·log 322=12log 23·log 32+13log 23·log 32+12log 23·12log 32+13log 23·12log 32=12+13+14+16=54.解法二:原式=(log 223+log 233)·(log 32+log 322) =(12log 23+13log 23)(log 32+12log 32) =56log 23×32log 32=54.14.计算:(log 23+log 49+log 827+…+log 2n 3n )×log 9n32. [分析] 此题是不同底数的对数运算,也需用换底公式进行化简求值.[解析] 原式=(log 23+2log 232log 22+3log 233log 22+…+n log 23n log 22)×log 9n32=(log 23+log 23+log 23+…+log 23)×log 9n32 =n ×log 23×5n ×12log 32=52.[点评] (1)应用换底公式时,究竟换成以什么为底? ①一般全都换成以10为底的对数.②根据情况找一个底数或真数的因子作为底.(2)直接利用换底公式的下面几个推论,加快解题速度. log a b =1log ba ,log anb m =mn log a b ,log an b n =log a b .15.某化工厂生产化工产品,去年生产成本为50元/桶,现使生产成本平均每年降低28%,那么几年后每桶的生产成本为20元(lg2≈0.301 0,lg3≈0.477 1,精确到1年)?[分析] 设x 年后每桶的生产成本为20元,由题意列出关于x,50,28%,20之间的关系式,解出x .[解析] 设x 年后每桶的生产成本为20元. 1年后每桶的生产成本为50×(1-28%), 2年后每桶的生产成本为50×(1-28%)2, x 年后每桶的生产成本为50×(1-28%)x =20. 所以,0.72x =0.4,等号两边取常用对数,得 x lg0.72=lg0.4.故x =lg0.4lg0.72=lg (4×10-1)lg (72×10-2)=lg4-1lg72-2=2lg2-13lg2+2lg3-2≈0.3010×2-13×0.3010+2×0.4771-2=-0.398-0.1428≈3(年). 所以,3年后每桶的生产成本为20元. 16.设3x =4y =6x =t >1,求证:1z -1x =12y .[分析] 对数与指数的底数都不相同时,首先用换底公式将底数化为相同.[解析] 证法一:∵3x =4y =6z =t >1, ∴x =lg t lg3,y =lg t lg4,z =lg t lg6, ∴1z -1x =lg6lg t -lg3lg t =lg2lg t =lg42lg t =12y . 证法二:∵3x =4y =6z =t >1,两边同时取以t 为底的对数,得x log t 3=y log t 4=z log t 6=1, ∴1z -1x =log t 6-log t 3=log t 2=12log t 4=12y .[点评] 化为同底与指对互化是解决指数、对数求值问题的常用策略.运用换底公式时,要注意选取合适的底数,以达到简化运算的作用.。

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.将转化为对数形式,其中错误的是().A.B.C.D.【答案】D【解析】将转化为对数式应为,即;由换底公式,得;;故选项A,B,C正确;而选项D:,错误;故选D.【考点】指数式与对数式的互化、换底公式.2.已知则的值等于( )A.B.C.D.【答案】A【解析】因为,所以因此【考点】对数式化简3.在对数函数中,下列描述正确的是()①定义域是、值域是R ②图像必过点(1,0).③当时,在上是减函数;当时,在上是增函数.④对数函数既不是奇函数,也不是偶函数.A.①②B.②③C.①②④D.①②③④【答案】D【解析】对数函数的性质可结合函数图像来进行理解.单调性,对称性都可由图可以清楚的感知.【考点】对数函数的性质.4.已知且,函数,,记(1)求函数的定义域及其零点;(2)若关于的方程在区间内仅有一解,求实数的取值范围.【答案】(1),0;(2)【解析】(1)均有意义时,才有意义,即两个对数的真数均大于0.解关于x的不等式即可得出的定义域,函数的零点,即,整理得,对数相等时底数相同所以真数相等,得到,基础x即为函数的零点(2)即,,应分和两种情况讨论的单调性在求其值域。

有分析可知在这两种情况下均为单调函数,所以的值域即为。

解关于m的不等式即可求得m。

所以本问的重点就是讨论单调性求其值域。

试题解析:(1)解:(1)(且),解得,所以函数的定义域为 2分令,则(*)方程变为,,即解得, 3分经检验是(*)的增根,所以方程(*)的解为,所以函数的零点为, 4分(2)∵函数在定义域D上是增函数∴①当时,在定义域D上是增函数②当时,函数在定义域D上是减函数 6分问题等价于关于的方程在区间内仅有一解,∴①当时,由(2)知,函数F(x)在上是增函数∴∴只需解得:或∴②当时,由(2)知,函数F(x)在上是减函数∴∴只需解得: 10分综上所述,当时:;当时,或(12分)【考点】对数函数的定义域,函数的零点,复合函数单调性5.式子的值为.【答案】5【解析】根据对数公式,可知,=5+0=5【考点】对数公式6.,则 ( )A.B.C.D.【答案】B【解析】由得故选B【考点】对数运算7.已知函数,则函数定义域是()A.B.C.D.【答案】C【解析】要使函数有意义需满足条件:,所以原函数的定义域为,答案选.【考点】1.根式有意义的条件以及对数函数有意义的条件;2.对数不等式.8.计算的结果为___________.【答案】1.【解析】由对数恒等式知,根据对数运算法则知,∴.【考点】对数的运算及对数恒等式.9.。

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析

高一数学对数与对数函数试题答案及解析1.若,,则().A.B.0C.1D.2【答案】A【解析】令,即;所以.【考点】复合函数求值.2.函数的定义域是().A.[2,+∞)B.(2,+∞)C.(﹣∞,2]D.(﹣∞,2)【答案】D【解析】要使有意义,则,即,所以定义域为.【考点】函数的定义域.3.函数在区间上恒为正值,则实数的取值范围是()A.B.C.D.【答案】B【解析】解:由题意,且在区间上恒成立.即恒成立,其中当时,,所以在区间单调递增,所以,即适合题意.当时,,与矛盾,不合题意.综上可知:故选B.【考点】1、对数函数的性质;2:二次函数的性质.4.求的值是 .【答案】【解析】【考点】对数运算公式5.已知函数为常数).(Ⅰ)求函数的定义域;(Ⅱ)若,,求函数的值域;(Ⅲ)若函数的图像恒在直线的上方,求实数的取值范围.【答案】(Ⅰ);(Ⅱ);(Ⅲ)且【解析】(1)对数中真数大于0(2)思路:要先求真数的范围再求对数的范围。

求真数范围时用配方法,求对数范围时用点调性(3)要使函数的图像恒在直线的上方,则有在上恒成立。

把看成整体,令即在上恒成立,转化成单调性求最值问题试题解析:(Ⅰ)所以定义域为(Ⅱ)时令则因为所以,所以即所以函数的值域为(Ⅲ)要使函数的图像恒在直线的上方则有在上恒成立。

令则即在上恒成立的图像的对称轴为且所以在上单调递增,要想恒成立,只需即因为且所以且【考点】(1)对数的定义域(2)对数的单调性(3)恒成立问题6.已知,且,,则等于A.B.C.D.【答案】D【解析】故选:D.【考点】对数的运算7.已知,函数,若实数、满足,则、的大小关系为 .【答案】【解析】因为所以函数在R上是单调减函数,因为,所以根据减函数的定义可得:.故答案为:.【考点】对数函数的单调性与特殊点;不等关系与不等式.8.已知函数,则实数t的取值范围是____.【答案】【解析】令,值域为由题意函数的值域为则是函数值域的子集所以即【考点】对数函数图象与性质的综合应用.9.计算:=.【答案】【解析】根据题意,由于可以变形为,故可知结论为【考点】指数式的运用点评:主要是考查了指数式的运算法则的运用,属于基础题。

【高中数学必修一】2.2.1 对数与对数运算-高一数学人教版(必修1)(解析版)

【高中数学必修一】2.2.1 对数与对数运算-高一数学人教版(必修1)(解析版)

一、选择题1.将指数式2a =b 写成对数式为A .log 2b =aB .log a b =2C .log 2a =bD .log b 2=a【答案】A【解析】指数式2a =b 所对应的对数式是:log 2b =a .故选A .2.若log a b •log 3a =5,则b =A .a 3B .a 5C .35D .53 【答案】C3.如果log 3x =log 6x ,那么x 的值为A .1B .1或0C .3D .6【答案】A【解析】∵log 3x =log 6x ,36log 1log 1==0,而对数函数3log y x =,6log y x =在x >0时,具有单调性,因此x =1.故选A .4.1411log 9+1511log 3= A .lg3B .–lg3C .1lg3D .–1lg3【答案】C 【解析】原式=191log 4+131log 5=131log 2+131log 5=131log 10=log 310=1lg3.故选C .5.若x =12log 16,则x = A.–4 B .–3 C .3 D .4【答案】A【解析】∵x =12log 16,∴2–x =24,∴–x =4,解得x =–4.故选A .6.log 8127等于A .34B .43C .12D .13【答案】A【解析】log 8127=3lg334lg34=.故选A . 7.计算lg (103–102)的结果为A .1B .32C .90D .2+lg9【答案】D8.若x log 34=1,则4x +4–x 的值为A .3B .4C .174D .103【答案】D【解析】∵x log 34=1,∴43log x =1,则4x =3,∴4x +4–x =3+11033=,故选D . 9.273log 16log 4的值为 A .2 B .32 C .1 D .23【答案】D【解析】原式=164332734433log 2log log 23log log 3==.故选D .二、填空题10.已知log 3(log 2x )=1,那么x 的值为__________.【答案】8【解析】由log 3(log 2x )=1,得log 2x =3,解得x =8.故答案为:8.11.已知lg2=a ,lg3=b ,用a ,b 的代数式表示lg12=__________.【答案】2a +b【解析】lg12=lg (3×4)=lg3+2lg2=2a +b .故答案为:2a +b .12.求值:2log 510+log 50.25–log 39=__________.【答案】0【解析】原式=()25log 100.25⨯–2=25log 5–2=2–2=0.故答案为:0.13.若lg2=a ,lg3=b ,则log 418=__________.(用含a ,b 的式子表示)【答案】22a b a+14.若log 32=log 23x ,则x =__________.【答案】223(log ) 【解析】∵log 32=log 23x ,∴32321log log x =,∴223(log )x =.故答案为:223(log ). 三、解答题15.计算(log 43+log 83)(log 32+log 92)的值.【解析】(log 43+log 83)(log 32+log 92)=lg3lg3lg2lg2lg4lg8lg3lg9⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭=lg3lg3lg2lg22lg23lg2lg32lg3⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭ =1111524364+++=. 16.解方程:log 2(x –1)+log 2x =1.【解析】∵log 2(x –1)+log 2x =1,∴log 2(x –1)x =1, ∴x (x –1)=2,解得x =–1或x =2,经检验,得x =–1是增根,x =2是原方程的解,∴x =2.17.计算:(1)lg 12–lg 58+lg12.5–log 89•log 34+0.5log 32; (2)0.21log 35-–(log 43+log 83)(log 32+log 92).(2)0.21log 35-–(log 43+log 83)(log 32+log 92) =5÷51log 35–(log 6427+log 649)(log 94+log 92)=15–5362lg3lg2lg2lg3⨯ =15–1512=554. 18.解关于x 的方程:lg (x 2+1)–2lg (x +3)+lg2=0.【解析】∵lg (x 2+1)–2lg (x +3)+lg2=0,∴()2221lg (3)x x ++=0,∴()2221(3)x x ++=1,解得x =–1或x =7,经检验满足条件.∴方程的根为:x =–1或x =7.。

北师版高中数学必修第一册课后习题 第4章对数运算与对数函数 2.1 对数的运算性质 2.2 换底公式

北师版高中数学必修第一册课后习题 第4章对数运算与对数函数 2.1 对数的运算性质 2.2 换底公式

04§2对数的运算2.1 对数的运算性质 2.2 换底公式A级必备知识基础练1.[探究点一]2log510+log50.25=( )A.0B.1C.2D.42.[探究点一]已知x,y为正实数,则( )A.2lg x+lg y=2lg x+2lg yB.2lg(x+y)=2lg x·2lg yC.2lg x·lg y=2lg x+2lg yD.2lg(xy)=2lg x·2lg y3.[探究点三]已知2a=3b=k(k≠1),且2a+b=ab,则实数k的值为( )A.6B.9C.12D.184.[探究点二]已知2x=3,log483=y,则x+2y的值为( )A.3B.8C.4D.log485.[探究点二]log23·log32+813= .6.[探究点一]设a>0,N>0).试用x,y表示log a3√N54= .7.[探究点四]某火箭的最大速度v(单位:km/s)和燃料的质量M(单位:kg)、火箭(除燃料外)的质量m(单位:kg)满足的函数关系是v=3ln1+Mm.若火箭的最大速度为11.9 km/s,试求燃料质量与火箭质量(除燃料外)的比值.(保留小数点后三位有效数字)(参考数据:e0.017 85≈1.018)B级关键能力提升练的值为( )8.若2log a(P-2Q)=log a P+log a Q(a>0,且a≠1),则PQA.1B.4C.1D.4或149.(多选题)设a,b,c都是正数,且4a=6b=9c,那么( )A.ab+bc=2acB.ab+bc=acC.2c =2a+1bD.1c=2b−1a10.已知实数x,y,正数a,b满足a x=b y=2,且2x +1y=-3,则1b-a的最小值为.11.化简求值:(1)0.252×0.5-4-338-23-(√3-π)0+0.064-13+√(-2)44;(2)lo g√39+12lg 25+lg 2-log49×log38+2log23-1+ln√e.C级学科素养创新练12.已知log a x+3log x a-log x y=3(a>1).(1)若设x=a t,试用a,t表示y;(2)若当0<t≤2时,y有最小值8,求a和x的值.参考答案 §2 对数的运算 2.1 对数的运算性质2.2 换底公式1.C 原式=log 5102+log 50.25=log 5(100×0.25)=log 525=2. 2.D 2lgx ·2lgy =2lgx+lgy =2lg(xy).故选D.3.D ∵2a =3b =k(k≠1),∴a=log 2k,b=log 3k,∴1a=log k 2,1b=log k 3.∵2a+b=ab,∴2b+1a=2log k 3+log k 2=log k 9+log k 2=log k 18=1,∴k=18.4.A 由2x =3,得x=log 23,∴x+2y=log 23+2log 483=log 23+2log 283log 24=log 23+(3log 22-log 23)=3. 5.3 log 23·log 32+813=lg3lg2·lg2lg3+2=3.6.3x-5y4 ∵a,∴log a 3√N54=log a M 3-log a √N 54=3log a M-54log a N=3x-54y. 7.解由v=3ln 1+Mm=11.9,可得ln 1+Mm=35.7=0.01785,∴M m=e 0.01785-1≈0.018.8.B 由2log a (P-2Q)=log a P+log a Q,得log a (P-2Q)2=log a (PQ),P>0,Q>0,P>2Q.则(P-2Q)2=PQ,即P 2-5PQ+4Q 2=0,所以P=Q(舍去)或P=4Q,所以PQ =4.9.AD 由题意,设4a =6b =9c =k(k>1),则a=log 4k,b=log 6k,c=log 9k,因为bc+b a=log 6k log 9k +log 6k log 4k =log k 9log k 6+log k 4log k 6=log 69+log 64=log 636=2,所以A 正确,B 错误;2a+1b=2log 4k+1log 6k =2log k 4+log k 6=log k 96,2c=2log 9k=2log k 9=log k 81,故2c≠2a+1b,故C 错误;2b−1a=2log 6k−1log 4k=2log k 6-log k 4=log k 9,1c=1log 9k=log k 9,故1c=2b−1a ,故D 正确.10.-132已知实数x,y,正数a,b 满足a x =b y =2,则x=log a 2,y=log b 2,a>0且a≠1,b>0且b≠1,则2x+1y=2log 2a+log 2b=log 2(a 2b)=-3,可得a 2b=18,则1b=8a 2,因为a>0且a≠1,所以1b-a=8a 2-a=8a-1162-132≥-132,当且仅当a=116时,等号成立,因此,1b-a 的最小值为-132.11.解(1)0.252×0.5-4-338-23-(√3-π)0+0.064-13+√(-2)44=142×12-4-323-23-1+253-13+2=1-49-1+52+2=7318.(2)lo g √39+12lg25+lg2-log 49×log 38+2log 23-1+ln √e =lo g 31232+12lg52+lg2-lo g 2232×log 323+2log 232+ln e 12=4log 33+lg5+lg2-log 23×3log 32+32+12=4+lg(5×2)-log 23×3log 32+32+12=4+1-3+2=4.12.解(1)由换底公式,得log a x+3log a x−log a y log a x=3(a>1),所以log a y=(log a x)2-3log a x+3.当x=a t 时,log a x=log a a t =t,所以log a y=t 2-3t+3,所以y=at 2-3t+3(t≠0).(2)y=a(t -32) 2+34,因为0<t≤2,a>1,所以当t=32时,y min =a 34=8.所以a=16,此时x=a 32=64.。

人教版高中数学必修一学案:《对数与对数运算》(含答案)

人教版高中数学必修一学案:《对数与对数运算》(含答案)

2.2.1 对数与对数运算(二)自主学习1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么,(1)log a (MN )=______________;(2)log a M N=____________;(3)log a M n =__________(n ∈R ).2.对数换底公式:________________________.对点讲练正确理解对数运算性质【例1】 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( )①log a x + log a y =log a (x +y ); ②log a x -log a y =log a (x -y );③log a x y=log a x ÷log a y ; ④log a (xy )=log a x ·log a y . A .0个 B .1个 C .2个 D .3个规律方法 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件.使用运算性质时,应牢记公式的形式及公式成立的条件.变式迁移1 (1)若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x(2)对于a >0且a ≠1,下列说法中正确的是( )①若M =N ,则log a M =log a N ;②若log a M =log a N ,则M =N ;③若log a M 2=log a N 2,则M =N ;④若M =N ,则log a M 2=log a N 2.A .①③B .②④C .②D .①②③④对数运算性质的应用【例2】 计算:(1)log 535-2log 573+log 57-log 51.8; (2)2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1.变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514; (2)(lg 5)2+lg 2·lg 50.换底公式的应用【例3】 设3x =4y =36,求2x +1y的值.规律方法 换底公式的本质是化同底,这是解决对数问题的基本方法.解题过程中换什么样的底应结合题目条件,并非一定用常用对数、自然对数.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 142=a ,用a 表示log 27.1.对于同底的对数的化简要用的方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数;(2)“拆”,将积(商)的对数拆成两对数的和(差).2.对于常用对数的化简要创设情境充分利用“lg 5+lg 2=1”来解题.3.对于多重对数符号对数的化简,应从内向外逐层化简求值.4.要充分运用“1”的对数等于0,底的对数等于“1”等对数的运算性质.5.两个常用的推论:(1)log a b ·log b a =1;(2)log am b n =n mlog a b (a 、b >0且均不为1).课时作业一、选择题1.lg 8+3lg 5的值为( )A .-3B .-1C .1D .32.已知lg 2=a ,lg 3=b ,则log 36等于( )A.a +b aB.a +b bC.a a +bD.b a +b3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg a b 2的值等于( ) A .2 B.12 C .4 D.144.若2.5x =1 000,0.25y =1 000,则1x -1y等于( ) A.13 B .3 C .-13D .-3 5.计算2log 525+3log 264-8log 71的值为( )A .14B .8C .22D .27二、填空题6.设lg 2=a ,lg 3=b ,那么lg 1.8=______________.7.已知log 63=0.613 1,log 6x =0.386 9,则x =____________.三、解答题8.求下列各式的值:(1)12lg 3249-43lg 8+lg 245; (2)(lg 5)2+2lg 2-(lg 2)2.9.已知log 189=a,18b =5,试用a ,b 表示log 365.2.2.1 对数与对数运算(二) 答案自学导引1.(1)log a M +log a N (2)log a M -log a N(3)n log a M2.log a b =log c b log c a对点讲练【例1】 A [对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.] 变式迁移1 (1)A(2)C [在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立. 在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有 M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立.]【例2】 解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55=2log 55=2.(2)原式=lg 2(2lg 2+lg 5)+(lg 2-1)2=lg 2(lg 2+lg 5)+1-lg 2=lg 2+1-lg 2=1.变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514; (2)(lg 5)2+lg 2·lg 50.解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7) =1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=(lg 5)2+lg 2·(lg 2+2lg 5)=(lg 5)2+2lg 5·lg 2+(lg 2)2=(lg 5+lg 2)2=1.【例3】 解 由已知分别求出x 和y .∵3x =36,4y =36,∴x =log 336,y =log 436,由换底公式得:x =log 3636log 363=1log 363,y =log 3636log 364=1log 364, ∴1x =log 363,1y=log 364, ∴2x +1y=2log 363+log 364 =log 36(32×4)=log 3636=1.变式迁移3 解 (1)利用换底公式,得lg 4lg 3·lg 8lg 4·lg m lg 8=2, ∴lg m =2lg 3,于是m =9.(2)由对数换底公式,得log 27=log 27log 22=log 2712=2log 27=2(log 214-log 22) =2(1a -1)=2(1-a )a. 课时作业1.D [lg 8+3lg 5=lg 8+lg 53=lg 1 000=3.]2.B [log 36=lg 6lg 3=lg 2+lg 3lg 3=a +b b.] 3.A [由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12, ∴⎝⎛⎭⎫lg a b 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b=22-4×12=2.] 4.A [由指数式转化为对数式:x =log 2.51 000,y =log 0.251 000,则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13.] 5.C6.a +2b -12解析 lg 1.8=12lg 1.8 =12lg 1810=12lg 2×910=12(lg 2+lg 9-1)=12(a +2b -1). 7.2解析 由log 63+log 6x=0.613 1+0.386 9=1.得log 6(3x )=1.故3x =6,x =2.8.解 (1)方法一 原式=12(5 lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5) =52lg 2-lg 7-2lg 2+lg 7+12lg 5 =12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12. 方法二 原式=lg 427-lg 4+lg 7 5 =lg 42×757×4=lg(2·5)=lg 10=12. (2)方法一 原式=(lg 5+lg 2)(lg 5-lg 2)+2lg 2=lg 10·lg 52+lg 4=lg ⎝⎛⎭⎫52×4=lg 10=1. 方法二 原式=(lg 10-lg 2)2+2lg 2-lg 22=1-2lg 2+lg 22+2lg 2-lg 22=1.9.解 ∵18b =5,∴log 185=b,又∵log 189=a ,∴log 365=log 185lg 1836=b log 18(18×2) =b 1+log 182=b 1+log 18189 =b 1+(1-log 189)=b 2-a.。

高一数学(必修一)《第四章 对数》练习题及答案解析-人教版

高一数学(必修一)《第四章 对数》练习题及答案解析-人教版

高一数学(必修一)《第四章 对数》练习题及答案解析-人教版班级:___________姓名:___________考号:___________一、解答题1.求下列各式的值: (1)2log 32-; (2)2lg310; (3)3ln 7e ; (4)23log 9; (5)2lg100; (6)2lg 0.001. 2.求下列各式的值:(1)2log 32-;(2)2lg310;(3)3ln 7e ;(4)23log 9;(5)2lg100;(6)2lg 0.001. 3.化简下列各式(1)1223321()4(0.1)()a b ---.4.已知()2lg lg lg lg lg 0lg lg lg lg x y x y x y x y x y-⎡⎤++⎣⎦++=⋅,求()2log xy 的值. 5.对数的运算性质在数学发展史上是伟大的成就.(1)对数运算性质的推导有很多方法,请同学们推导如下的对数运算性质:如果0a >,且1a ≠,0M >那么()log log n a a M n M n =∈R ;(2)因为()10342102410,10=∈,所以102的位数为4(一个自然数数位的个数,叫作位数),试判断220219的位数;(注:lg 219 2.34≈)(3)中国围棋九段棋手柯洁与机器人阿尔法狗曾进行了三局对弈,以复杂的围棋来测试人工智能,围棋复杂度的上限约为3613=M .根据有关资料,可观测宇宙中普通物质的原子总数的和约为8010=N ,甲、乙两个同学都估算了MN的近似值,甲认为是7310,乙认为是9310.现有一种定义:若实数x 、y 满足x m y m -<-,则称x 比y 接近m ,试判断哪个同学的近似值更接近MN,并说明理由.(注:lg 20.3010≈和lg30.4771≈)6.计算:(1)21023213(2)(9.6)(3)(1.5)48----+(2)lg232log 9lg lg 4105+--7.计算求值(1)()362189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++;(3)已知623a b ==,求11a b-的值.8.计算:(1)7lg142lg lg 7lg183-+-;(2)()2lg53lg 22lg5lg 2lg5+++⨯;(3)()()22666661log 2log 33log 2log log 23⎛⎫++⨯ ⎪⎝⎭.9.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式0lnMv v m=计算火箭的最大速度v (单位:m/s ).其中0v (单位m/s )是喷流相对速度,m (单位:kg )是火箭(除推进剂外)的质量,M (单位:kg )是推进剂与火箭质量的总和,Mm称为“总质比”,已知A 型火箭的喷流相对速度为2000m/s . 参考数据:ln 230 5.4≈和0.51.648 1.649e <<.(1)当总质比为230时,则利用给出的参考数据求A 型火箭的最大速度;(2)经过材料更新和技术改进后,A 型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的13,若要使火箭的最大速度增加500 m/s ,记此时在材料更新和技术改进前的总质比为T ,求不小于T 的最小整数? 10.(1)()()2293777log 49log 7log 3log 3log 3+--;(2)2log 31431lg 25lg 2log 9log 822-++-⨯++11.已知函数()()()ln 3ln 3f x x x =++-. (1)证明:函数()f x 是偶函数;(2)求函数()f x 的零点.12.已知集合{}54log 2,log 25,2A =,集合231log 5,log 9B ⎧⎫=⎨⎬⎩⎭.记集合A 中最小元素为a ,集合B 中最大元素为b . (1)求A B 及a ,b 的值; (2)证明:函数()1f x x x =+在[)2,+∞上单调递增;并用上述结论比较a b +与52的大小. 13.某公司为了实现2019年销售利润1000万元的目标,准备制定一个激励销售人员的奖励方案:从销售利润达到10万元开始,按销售利润进行奖励,且奖金数额y (万元)随销售利润x (万元)的增加而增加,但奖金数额不超过5万元.现有三个奖励模型:y =0.025x ,y =1.003x ,y =12ln x +1,其中是否有模型能完全符合公司的要求?请说明理由.(参考数据:1.003538≈5,e ≈2.71828…,e 8≈2981)14.已知2x =3y =a ,若112x y+=,求a 的值.15.将下列对数形式化为指数形式或将指数形式化为对数形式: (1)2-7=1128; (2)12log 325=-;(3)lg1000=3; (4)ln 2x =二、单选题16.在下列函数中,最小值为2的是( ) A .1y x x=+B .1lg (110)lg y x x x=+<< C .222(1)1x x y x x -+=>-D .1sin 0sin 2y x x x π⎛⎫=+<< ⎪⎝⎭17.已知集合{}|2x A x x N *=≤∈,{}2|log (1)0B x x =-=,则A B =( )A .{}1,2B .{}2C .∅D .{}0,1,2参考答案与解析1.(1)13;(2)9;(3)343; (4)4; (5)4; (6)6-.【分析】根据指对数的关系及对数的运算性质求值. (1)由2log 3a =-,则1232aa -==,即123a=,故2log 33212a -==. (2)由22lg 3lg 3lg 9a ===,则109a =,故2lg309110a ==. (3)由33ln 7ln 7a ==,则3e 7343a ==,故3ln733e 4a e ==. (4)223333log 9log 9log 34log 2234====.(5)2222lg100lg100lg104lg104====.(6)23lg 0.001lg 0.001lg106lg10622-==-=-=. 2.(1)13(2)9(3)343(4)4(5)4(6)6-【解析】(1)根据log a b a b =,即可求得2log 32-; (2)根据log a b a b =,即可求得2lg310; (3)根据log a b a b =,即可求得3ln 7e ;(4)根据log log Ma ab M b =和log 1a a =,即可求得23log 9;(5)根据log log Ma ab M b =和log 1a a =,即可求得2lg100;(6)根据log log M a a b M b =和,log 1a a =,即可求得2lg 0.001.【详解】(1) log a b a b =∴ 22log 3log 31112(2)33---===;(2) log a b a b = ∴2lg3lg32210(10)39===;(3) log a b a b = ∴3ln 7ln 33e (e 7)7343===;(4) log log Ma ab M b =和log 1a a =∴2433log 9log 34==;(5) log log Ma ab M b =和log 1a a =∴24lg100lg104==;(6) log log Ma ab M b =和log 1a a =∴26lg 0.001lg106-==-.【点睛】本题考查了对数的化简求值,解题关键是掌握log log Ma ab M b =和log 1a a =,考查了计算能力,属于基础题. 3.(1)425(2)-4【分析】(1)利用分数指数幂和根式的性质和运算法则求解即可得到结果; (2)利用对数的性质和运算法则求解即可得到结果. (1) ()1原式3312233221824222525100a ba b---⎛⎫=⨯=⨯= ⎪⎝⎭; (2) 原式()()lg 812525100241111222lg ⨯÷÷====-⨯---. 4.()2log 0xy =【分析】对原式化简,得()()22lg lg lg 0x y x y ++-=⎡⎤⎣⎦,由对数的运算性质求解xy 的值,再代入即可. 【详解】由()2lg lg lg lg lg 0lg lg lg lg x y x y x y x y x y-⎡⎤++⎣⎦++=,去分母可得 ()()22lg lg lg 0x y x y ++-=⎡⎤⎣⎦,所以()lg lg lg 01lg 01x y xy xy x y x y +===⎧⎧⇒⎨⎨-=-=⎩⎩所以()2log 0xy =. 5.(1)答案见解析 (2)515(3)甲同学的近似值更接近MN,理由见解析【分析】(1)利用对数的恒等式结合指数的运算性质可证得结论成立; (2)利用对数运算性质计算出220lg 219的近似值,即可得出220219的位数;(3)由题意可得出36180310=M N ,比较7310M N -与9310M N -的大小关系,即可得出结论. (1)解:若0a >,且1a ≠,0M >和n ∈R ,则()log log a a nn M M n a a M ==化为对数式得log log na a M n M =.(2)解:令220219t =,所以lg 220lg 219t = 因为lg 219 2.34≈,所以lg 220lg 219514.8t =≈ 所以()514.85145151010,10t ≈∈,所以220219的位数为515.(3)解:根据题意,得36180310=M N 所以36136180803lg lg lg3lg10361lg38092.233110M N ==-=⋅-≈ 所以()92.233192931010,10MN≈∈ 因为()361173lg 23lg 2361lg3172.5341173lg10⨯=+⋅≈<=所以36117317315323101010⨯<<+,所以36193738023101010⨯<+ 所以361361739380803310101010-<-,所以甲同学的近似值更接近M N .6.(1)4736- (2)1-【分析】(1)根据指数幂运算性质计算即可; (2)根据对数的运算性质计算即可. (1)解:21023213(2)(9.6)(3)(1.5)48----+=212329273()1()()482=23233321[()]()223=22132()()223=194249=4736-; (2)解:lg232log 9lg lg 4105+--=2lg 2lg52lg 22=lg 2(1lg 2)2lg 21.7.(1)44 (2)92(3)1【分析】(1)由指数的运算法则计算 (2)由对数的运算法则计算 (3)将指数式转化为对数式后计算 (1)()33622023218323172271449-⨯⎛⎫---=⨯--=--= ⎪⎝⎭;(2)221lglg 2log 24log log 32+++ ()32232lg 2lg 2log 38log 3log 3=-++⨯+- 2239log 33log 322=++-=; (3)6log 3a = 2log 3b =则31log 6a = 31log 2b=; 所以33311log 6log 2log 31a b-=-==.8.(1)0 (2)3 (3)1【分析】(1)利用对数相加相减的运算法则求解即可; (2)提公因式,逐步化简即可求解; (3)逐步将原式化成只含6log 2和6log 3形式. (1)方法一:(直接运算)原式227147lg14lg lg 7lg18lg lg1037183⎛⨯⎛⎫=-+-==⎫⎪⎝⎭= ⎪⎝⎭⨯. 方法二:(拆项后运算)原式()()()2lg 272lg7lg3lg7lg 32=⨯--+-⨯lg 2lg72lg72lg3lg72lg3lg 20=+-++--=.(2)原式()()lg5lg5lg22lg2lg5lg2=⨯++++()lg5lg102lg10lg22lg5lg23=⨯++=++=.(3)原式()()226666log 2log 33log 2log =++⨯ ()()22666log 2log 33log 2log =++⨯()()226666log 2log 32log 2log 3=++⨯ ()626log 2log 31=+=.9.(1)10800 m/s (2)45【分析】(1)运用代入法直接求解即可;(2)根据题意列出不等式,结合对数的运算性质和已知题中所给的参考数据进行求解即可. (1)当总质比为230时,则2000ln 2302000 5.410800v =≈⨯= 即A 型火箭的最大速度为10800m /s . (2)A 型火箭的喷流相对速度提高到了原来的1.5倍,所以A 型火箭的喷流相对速度为2000 1.53000/m s ⨯=,总质比为3Mm由题意得:3000ln2000ln 5003M M m m-≥ 0.50.5ln 0.5272727M M M e e m m m⇒≥⇒≥⇒≥因为0.51.648 1.649e <<,所以0.544.4962744.523e << 即44.49644.523T <<,所以不小于T 的最小整数为45. 10.(1)2;(2)4.【分析】(1)将()237log 7log 3+展开再根据对数的运算求解; (2)根据对数的运算求解即可.【详解】解:(1)原式()()()2223373777log 7log 7log 32log 7log 3log 3log 3=++⨯-- ()()2233log 72log 72=+-=.(2)原式2221221log 322233312log 3lg 5lg 2log 3log 2ln e 22=++-⨯++323314log 3lg5lg 2log 33log 222=++-⨯++ ()4lg 52324114=+⨯-+=+-=.11.(1)证明见解析;(2)-【分析】(1)先证明函数()f x 的定义域关于原点对称,再证明()()f x f x -=即可;(2)利用对数运算对函数()f x 的解析式进行化简,求解方程()0f x =即可得到函数()f x 的零点. (1)证明:由3030x x +>⎧⎨->⎩,解得33x -<<∴函数的定义域为{}33x x -<<,且定义域关于原点对称 又∵()()()()ln 3ln 3f x x x f x -=-++=,∴()f x 是偶函数. (2)解:()()()()2ln 3ln 3ln 9f x x x x =-++=-,令()()2ln 90f x x =-=∴291x -=,解得x =±∴函数()f x的零点为-和12.(1){}2log 5⋂=A B ,5log 2a =和2log 5b =; (2)证明见解析52+>a b【分析】(1)根据对数的运算性质以及对数函数的单调性即可解出; (2)根据单调性的定义即可证明函数()1f x x x=+在[)2,+∞上单调递增,再根据单调性以及对数的性质1log log a b b a=即可比较出大小. (1)因为42log 25log 5=,所以{}52log 2,log 5,2A =,{}2log 5,2B =-即{}2log 5⋂=A B .因为5522log 2log 252log 4log 5<==<,所以5log 2a = 2log 5b =.(2)设12,x x 为[)2,+∞上任意两个实数,且122x x ≤<,则120x x -< 121x x >()()()1212121212121212111110x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫--=+-+=-+-=-⨯< ⎪ ⎪⎝⎭⎝⎭,即()()12f x f x <,所以()f x 在[)2,+∞上单调递增.所以()()522f x f >=,所以()5222215log 2log 5log 5log 5log 52f +=+=>. 13.奖励模型1ln 12y x =+能完全符合公司的要求,答案见解析.【分析】由题意得模型需满足①函数为增函数;②函数的最大值不超过5;③y ≤x ·25%,依次判断三个模型是否满足上述条件即可.【详解】解:由题意,符合公司要求的模型需同时满足:当x∈[10,1000]时,则①函数为增函数;②函数的最大值不超过5;③y≤x·25%. (1)对于y=0.025x,易知满足①,但当x>200时,则y>5,不满足公司的要求;(2)对于y=1.003x,易知满足①,但当x>538时,则不满足公司的要求;(3)对于1ln12y x=+,易知满足①.当x∈[10,1000]时,则y≤12ln1000+1.下面证明12ln1000+1<5.因为12ln1000+1-5=12ln1000-4=12(ln1000-8)=12(ln1000-ln2981)<0,满足②.再证明12ln x+1≤x·25%,即2ln x+4-x≤0.设F(x)=2ln x+4-x,则F′(x)= 2x-1=2xx-<0,x∈[10,1000]所以F(x)在[10,1000]上为减函数F(x)max=F(10)=2ln10+4-10=2ln10-6=2(ln10-3)<0,满足③.综上,奖励模型1ln12y x=+能完全符合公司的要求.【点睛】本题主要考查函数的模型应用,属于简单题.14.a.【分析】利用对指互化得到x=log2a,y=log3a,再利用对数的运算化简求值. 【详解】因为2x=3y=a,所以x=log2a,y=log3a所以1x+1y=2311log loga a+=log a2+log a3=log a6=2所以a2=6,解得a=又因为a>0,所以a15.(1)log217 128=-(2)511 232-⎛⎫=⎪⎝⎭(3)103=1 000(4)2e x=【分析】根据对数和指数互化公式得到相应结果即可.(1)由2-7=1128,可得log 21128=-7. (2) 由12log 325=-,可得512-⎛⎫ ⎪⎝⎭=32. (3)由lg 1 000=3,可得103=1 000.(4)由ln 2x =,可得e 2=x .16.C【分析】结合基本不等式的知识对选项逐一分析,由此确定正确选项.【详解】对于A 选项,1x =-时,则y 为负数,A 错误.以D 错误.故选:C17.B【分析】分别求出集合,A B ,根据集合的交集运算得出答案.【详解】由题意知:{}{}|20,1,2x A x x N *=≤∈= {}{}2|log (1)02B x x =-== {}2A B ⋂=.故选:B.。

高一数学对数及运算测试题及答案

高一数学对数及运算测试题及答案

高一数学对数及运算测试题及答案1.log123+log124等于()A.7 B.12C.1 D.log127【解析】log123+log124=log12(3×4)=1.故选C.【答案】 C2.log52•log25的值为()A.12 B.1C.32 D.2【解析】log52•log25=log52•log55log52=1.故选B.【答案】 B3.已知lg2=a,lg7=b,那么log898=________.【解析】log898=lg98lg8=lg(72×2)lg23=lg72+lg23lg2=2lg7+lg23lg2=2b+a3a.【答案】2b+a3a4.设3x=4y=36,求2x+1y的值.【解析】(1)∵3x=36,4y=36,∴x=log336,y=log436,∴1x=1log336=1log3636log363=log363,1y=1log436=1log3636log364=log364,∴2x+1y=2log363+log364=log36(9×4)=1.一、选择题(每小题5分,共20分)1.(2009年湖南卷)log22的值为()A.-2 B.2C.-12 D.12【解析】log22=12log22=12.故选D.【答案】 D2.若lg 2=a,lg 3=b,则lg 15lg 12等于()A.1+a+b2a+bB.1+a+ba+2bC.1-a+b2a+bD.1-a+ba+2b¥资%源~网【答案】 C3.已知a=log32,用a表示log38-2log36是()A.a-2 B.5a-2C.3a-(1+a)2 D.3a-a2-1【解析】由log38-2log36=3log32-2(log32+log33)=3a-2(a+1)=a-2. 【答案】 A4.(log43+log83)(log32+log98)等于()A.56B.2512C.94 D.以上都不对【解析】原式=log33log34+log33log38•log32+log38log39=12log32+13log32•log32+3log322=56log32×52log32=2512.故选B.【答案】 B二、填空题(每小题5分,共10分)5.log327=________.【解析】log327=log3(3)6=6.【答案】 66.已知2x=5y=10,则1x+1y=________.【解析】由2x=5y=10得x=log210,y=log510,1x+1y=1log210+1log510=lg2+lg5=1.【答案】 1三、解答题(每小题10分,共20分)7.求下列各式的值:(1)(lg 5)2+lg 50•lg 2;(2)lg 14-2lg 73+lg 7-lg 18;(3)log1327-log139;(4)log89×log332.【解析】(1)原式=(lg 5)2+lg(10×5)lg 105=(lg 5)2+(1+lg 5)(1-lg 5)=(lg 5)2+1-(lg 5)2=1.(2)方法一:原式=lg(2×7)-2lg73+lg 7-lg(32×2)=lg 2+lg 7-2(lg 7-lg 3)+lg 7-(2lg 3+lg 2)=0方法二:原式=lg 14+lg732+lg 7-lg 18=lg14×7732×18=lg 1=0.(3)原式=log13279=log133=-1.(4)原式=lg9lg8×lg32lg3=2lg33lg2×5lg2lg3=103.8.已知m2=a,m3=b,m>0且m≠1,求2logma+logmb.【解析】由m2=a,m3=b,m>0且m≠1,得logma=2,logmb=3;∴2logma+logmb=2×2+3=7.9.(10分)已知ln a+ln b=2ln(a-2b),求log2ab的值.【解析】因为ln a+ln b=2ln(a-2b),解得ab=(a-2b)2.a2-5ab+4b2=0,解得a=b或a=4b,又a>0,b>0,a-2b>0所以a>2b>0,故a=4b,log2ab=log24=2,即log2ab的值是2.【答案】 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1 对数与对数的运算
练习一
一、选择题
1、 2
5)(log 5a -(a ≠0)化简得结果是( )
A 、-a
B 、a 2
C 、|a |
D 、a
2、 log 7[log 3(log 2x )]=0,则21-x
等于( ) A 、
31 B 、321 C 、221 D 、331
3、 n n ++1log (n n -+1)等于( )
A 、1
B 、-1
C 、2
D 、-2 4、 已知32a =,那么33log 82log 6-用表示是( )
A 、2a -
B 、52a -
C 、23(1)a a -+
D 、 23a a -
5、 2log (2)log log a a a M N M N -=+,则
N M 的值为( ) A 、
41 B 、4 C 、1 D 、4或1
6、 若log m 9<log n 9<0,那么m,n 满足的条件是( )
A 、m>n>1
B 、n>m>1
C 、0<n<m<1
D 、0<m<n<1
7、 若1<x<b,a=log 2b x,c=log a x,则a,b,c 的关系是( )
A 、a<b<c
B 、 a<c<b
C 、c<b<a
D 、c<a<b
二、填空题
8、 若log a x =log b y =-
2
1log c 2,a ,b ,c 均为不等于1的正数,且x >0,y >0,c =ab ,则xy =________
9 、若lg2=a ,lg3=b ,则log 512=________
10、 3a =2,则log 38-2log 36=__________
11、 若2log 2,log 3,m n a a m n a +===___________________
12、 lg25+lg2lg50+(lg2)2=
三、解答题
13、 222522122(lg )lg lg (lg )lg +⋅+
-+
14、 若lga 、lgb 是方程01422=+-x x 的两个实根,求2
)(lg )lg(b a ab ⋅的值。

15、 若f(x)=1+log x 3, g(x)=2log x 2, 试比较f(x)与g(x)的大小.
练习一答案:
一、选择题
1、C ;
2、C ;
3、B ;
4、A ;
5、B ;
6、C ;
7、D
二、填空题8、
219、a
b a -+1210、a -211、1212、2 二、解答题
13、解:原式2)12(lg )5lg 2lg 2(2lg -++= =++-=+-=lg (lg lg )|lg |
lg lg 225212121
14、解: ⎪⎩
⎪⎨⎧=⋅=+21lg lg 2lg lg b a b a , 2)(lg )lg(b a ab ⋅=(lga+lgb)(lga -lgb)2=2[(lga+lgb)-4lgalgb]2 =2(4-4×2
1)=4 15、解: f(x)-g(x)=log x (4
3x). (1) ⎪⎪⎩
⎪⎪⎨⎧>--≠>0)143)(1(10x x x x , 即0<x<1或x>34时, f(x)>g(x) (2) ⎪⎪⎩
⎪⎪⎨⎧<--≠>0)143)(1(10x x x x , 即1<x<34时, f(x)<g(x) (3) x=3
4时, f(x)=g(x).
2.2.1 对数与对数的运算
练习二
一、选择题
1、在)5(log 2a b a -=-中,实数a 的范围是( )
A 、 a >5或a <2
B 、 25<<a
C 、 23<<a 或35<<a
D 、 34<<a
2、 若log [log (log )]4320x =,则x -1
2等于( )
A 、 1
42 B 、 1
22 C 、 8 D 、 4
3、334log 的值是( )
A 、 16
B 、 2
C 、 3
D 、 4
4、 已知b a ==4log 3log 55,,则log 2512是( )
A 、 a b +
B 、 )(21
b a + C 、 ab D 、 1
2ab
5、 已知21366log log x =-,则x 的值是( )
A 、 3
B 、 2
C 、 2或-2
D 、 3或2
6、 计算=++5lg 2lg 35lg 2lg 33( )
A 、 1
B 、 3
C 、 2
D 、 0
7、 已知238
34x y ==,log ,则x y +2的值为( )
A 、 3
B 、 8
C 、 4
D 、 log 48
8、 设a 、b 、c 都是正数,且c b a 643==,则( )
A 、 1
1
1
c a b =+ B 、 2
2
1c a b =+ C 、 122
c a b =+
D 、 212c a b =+
二、填空题
9、 若1)12(log -=+x ,则x=________,若log
28=y ,则y=___________。

10、 若f x x ()log ()=-31,且f a ()=2,则a=_____________
11、 已知log log log a b c x x x ===214,,,则log abc x =_________
12、 2
342923232log ()log ()+-+=___________
三、解答题
13、计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258) 14、已知b a ==5log 7log 1414,
,用a 、b 表示log 3528。

15、设M N a a a a
==-{}{lg }01112,,,,,,是否存在实数a ,使得M N ={}1?
练习二答案:
一、选择题
1、 C ;
2、A ;
3、A ;
4、B ;
5、B ;
6、A ;
7、A ;
8、B
二、填空题9、216-,10、1011、
4712、4 三、解答题13、解:原式=)125
log 8log 25log 4log 2)(log 8log 5log 4log 25log 5(log 55555222232++++ =)5
log 32log 35log 22log 22)(log 2log 35log 2log 25log 25log 3(5555522222++++ = 2log 35log )3113(52⋅++
=2log 2
log 5log 13555⋅⋅=13、 14、解:log log log 351414282835==++=++=++=+-+=+-+=-+log log log log log log (log )()141414141414147475222147217212a a b
a a
b a a b a a a b a a b
15、解: M N a a a a ==-{}{lg }01112,,,,,
要使M N ={}1,只需1∈N 且0∉N
若111-=a ,则a =10,这时lg a =1,这与集合中元素的互异性矛盾,∴≠a 10 若lg a =1,则a =10,与a ≠10矛盾
若21a
=,则a =0,这时lg a 无意义,∴≠a 0
若a =1,则1110-=a ,lg lg a a ===1022, 此时}10{}12010{,,,,,
==N M N ,这与已知条件矛盾 因此不存在a 的值,使M N ={}1。

相关文档
最新文档