1解释结构模型ISM及其应用
解释结构模型(ISM)
要素集合 M-L1
M-L1-L2
层次划分
si
P(si)
Q(si)
P(si)∩Q(si)
层次
2
2
2,3,6,7,8,9
2
3
2,3
3,6,7,8,9
3
5
5
5,6,7,8,9
5
6
2,3,5,6
6
6
L2={s2,s5}
7
2,3,5,7,8,9
7
7
8
2,3,5,8,9
7,8,9
8
9
2,3,5,8,9
7,8,9
7
1,2,3,4,5,7,8,9
8
1,2,3,4,5,8,9
9
1,2,3,4,5,8,9
L1={s1,s4}
Q(si)
1,2,3,6,7,8,9 2,3,6,7,8,9 3,6,7,8,9 4,5,6,7,8,9 5,6,7,8,9 6 7 7,8,9 7,8,9
P(si)∩Q(si)
1 2 3 4 5 6 7 8,9 8,9
机场陆侧衔接系统
邻接矩阵
对于一个有向图,我们可以用一个m×m方形矩阵来表示。m为系统要 素的个数。矩阵的每一行和每一列对应图中一个节点(系统要素)。 规定:
aij
1 0
当Si对S j有影响 当Si对S j无影响
邻接矩阵
可达矩阵
如果系统A满足条件:
( A I ) k1 ( A I )k ( A I )k1 M
如果 Psi Qsi Psi ,则 si为当前的最高级要素
层次划分: 先找出符合以上条件的最高级要素,将他们从缩减可达矩阵 中划去,然后再找到新矩阵中的最高级要素,这样层层递进 就可以将影响因素划分层次。
SPSS解释结构模型(ISM)——研究系统结构关系情况
SPSS解释结构模型(ISM)——研究系统结构关系情况解释结构模型(ISM)是一种系统分析方法,用于得到要素之间的复杂相互关系和层次。
其思想是先通过调查或者技术手段找出问题的组成要素或影响因素,然后通过矩阵模型分析各要素之间的联系,得到一个多级递阶结构模型。
比如现在我们要分析旅游社的萧条原因,发现可能跟如下要素有关:疫情影响、价格过高、旅游套餐不合理、导游质量不行、景区质量下滑、气候问题。
使用解释结构模型对其进行分析。
1. 矩阵中有哪些要素由研究问题的目标抽象确定,一般希望要素较为精炼,没有冗余重复的要素。
2. 判断要素之间的两两因果关系,如要素1对要素2是否存在影响、要素2对要素1是否存在影响,存在影响则赋值为1。
要素自身的因果关系则无需判断,故对角线的值固定为0。
其中,因果关系的判断可以根据ISM小组讨论结果、或者采用德尔菲方法确定。
邻接矩阵是表示顶点之间相邻关系的矩阵(是有向图的矩阵描述),从行的方向看,如果值为1,则代表行名的元素对列名的元素有影响。
(如图中,第一行第三/五列的值为1,则代表疫情影响对旅游套餐不合理和景区质量下滑有影响。
)分析步骤1.由研究问题的目标抽象确定模型中的要素和要素之间的关系,最终得到邻接矩阵。
要素之间的关系可以通过实际调研,组建ISM小组进行讨论、或者采用德尔菲法等方法进行确定。
2.计算邻接相乘矩阵,再通过不断自乘直至矩阵不再发生变化,得到可达矩阵。
3.通过可达矩阵进行模型的层级分解,最终得到模型的层级情况。
一般认为顶层为系统的最终目标,而下面各层分别为上一层的原因。
4.层次划分完毕后,再通过绘制有向连接图,更直观的表示模型的层次结构。
软件操作Step1:选择解释结构模型(ISM);Step2:增加要素或者减少要素;Step3:输入邻接矩阵的值(注:邻接矩阵的值只能为0/1);Step4:点击【开始分析】进入分析;输出结果分析输出结果1:邻接矩阵上表展示了模型的邻接矩阵,邻接矩阵即为初始输入矩阵。
ism模型
ISM模型ISM模型,即 Interpretive Structural Modeling,是一种系统性的分析方法,旨在揭示事物之间的相互作用关系和结构。
该模型可以帮助理解和解释事物之间的因果关系,为决策提供可靠的依据。
ISM模型的应用领域广泛,涵盖了管理、工程、经济、社会科学等多个领域。
下面将对ISM模型的原理和应用进行详细介绍。
ISM模型的原理ISM模型主要基于图论、系统论和结构方程等理论,通过对事物之间的相互影响和作用关系进行分析,抽象出事物的结构性关系。
ISM模型的核心思想是将事物分解成不同的元素,并通过建立元素之间的关系来描绘事物的整体结构。
ISM模型的建模过程包括以下几个步骤:1.确定元素:首先确定要分析的事物和元素,将事物分解成可操作的元素。
2.建立关系:确定元素之间的关系,包括因果关系、影响关系等。
3.构建矩阵:将元素之间的关系表示为矩阵,以便进行进一步分析和计算。
4.运用模型:利用计算工具和方法对矩阵进行分析,得出事物的结构性信息和结论。
ISM模型的应用ISM模型在各个领域都有广泛的应用,例如在管理领域,可以利用ISM模型分析组织结构、决策过程、产品设计等方面;在工程领域,可以应用ISM模型进行系统设计、风险评估等工作;在经济学领域,ISM模型可以用于市场分析、竞争战略制定等方面。
ISM模型的应用优势主要体现在以下几个方面:•系统性:ISM模型可以帮助分析事物的整体结构和相互作用关系,提供多维度的分析视角。
•可视化:通过建立元素之间的关系图,可以直观地展示事物的结构和关系。
•决策支持:ISM模型可以为决策提供科学依据,帮助制定有效的决策方案。
结语ISM模型作为一种解决复杂问题的工具,具有较强的实用性和普适性。
通过对事物结构的深入分析,可以揭示事物之间的关系和作用机制,为问题解决和决策提供有力支持。
希望本文对ISM模型的原理和应用有所帮助。
以上是对ISM模型的介绍,通过分析事物之间的相互关系,ISM模型可以为决策过程和问题解决提供有力的支持。
解释结构模型ISM及其应用探讨
解释结构模型ISM及其应用探讨作者:张贺来源:《市场周刊·市场版》2018年第02期摘要:解释结构模型ISM应用范围非常广泛,本文主要是该模型在教学研究方面的应用,这些应用也涉及到教学研究的各个方面,从一个教学计划的制定,到具体的教学课程的安排和教材的选择,直到最后教学结果的分析。
通过运用这种方法使得复杂的教学管理工作变得层次分明、条理清楚,为教学科研的管理提供了科学的方法和依据,同时也简化和方便了教学管理。
关键词:解释结构模型ISM;教学管理;科学一、解释结构模型ISM在教学系统制定方面的应用在《解释结构模型法ISM在内蒙古省高校体育教育专业课程设置中的应用》中使用解释结构模型法通过计算得到了内蒙古地区“体育教育复合型人才”的素质、能力、知识多层递阶结构模型。
许多学者还对现有的教学系统做了深入的思考。
王燕(2008)在《利用ISM法分析以教为主的教学系统设计的要素》中用ISM来分析了以教为主教学系统设计的要素,找出了要素间的关系,对教师进行以教为主的教学设计有一定的帮助。
而郑冬红等(2011)在《基于ISM 模型的以学生为中心的教学结构要素分析》和李志军(2015)在《利用ISM法分析项目教学法设计的要素》中利用ISM结构解释模型法来分析教学结构各要素之间的层次关联,论证以学生为中心的教学结构的一般模型,为建构主义学习理论下的教学实践活动提供直观模型,促进其操作性。
在现代互联网时代背景下,网上教学和远程教育以其方便性,廉价性,高效性等特点逐渐被人们所接受,并普及开来。
吕文波和赵君香(2006)在《基于网上教学资源的远程支持服务系统要素的ISM分析》和李慧(2011)在《基于ISM模型的现代远程教育系统的结构分析》中都通过ISM分析网上教学和远程教学系统的各个组成要素及子系统,研究系统要素的内部关联关系,建立了解释结构模型,实现系统结构的层次化分析,对我国现代远程教育系统和网上教学的构建、应用和研究具有重要的借鉴意义和参考价值。
系统结构模型法(ISM法)课件
根据关联矩阵,建立子系统的层级结构,将子系 统按照层级进行组织。
建立因果关系图
根据关联矩阵和层级结构,建立因果关系图,用 于表示子系统之间的因果关系和作用机制。
系统结构的简化与解释
简化系统结构
对建立的层级结构和因果关系图进行简化,去除不必要的细节和冗余信息,使系统结构更加清晰易懂 。
解释系统结构
需要收集完整的系统要素和关系 数据,对数据质量和完整性要求 较高。
02
计算复杂度大
03
对主观性依赖较强
对于大规模系统,ISM法的计算 复杂度较高,需要高性能计算机 和优化算法。
在确定系统要素和关系时,主观 判断和经验对分析结果有一定影 响。
02 ISM法的基本原理
系统分解
确定系统的边界和范围
确定子系统的关系
案例四:环境保护系统优化
总结词
通过ISM法分析环境保护各要素之间的关系,优化环境 保护系统,提高环境质量。
详细描述
运用ISM法对环境保护各要素之间的相互关系进行深入 分析,明确各要素在环境保护中的作用和影响,找出存 在的问题和瓶颈,优化环境保护系统,提高环境质量, 实现可持续发展。
05 ISM法的扩展与改进
划分系统层级与解释系统结构
要点一
总结词
要点二
详细描述
划分系统层级与解释系统结构
根据可达矩阵进行系统层级划分,并对系统结构进行解释 ,以直观地展示系统的层次结构和功能模块。
04 ISM法的应用案例
案例一:企业组织结构优化
总结词
通过ISM法分析企业内部各部门之间的关系 ,优化组织结构,提高管理效率。
定义
ISM法是一种基于图论和矩阵论的方法,通过构建邻接矩阵和可达矩阵来分析系统的结构特征和行为模式。
系统结构模型法(ISM法)
建立解释结构模型:根据可 达矩阵建立解释结构模型
分析模型:对解释结构模型 进行分析了解系统要素之间 的关系和影响
优化模型:根据分析结果对 解释结构模型进行优化提高 模型的准确性和实用性
结果分析和解释
案例背景:某 公司采用ISM 法进行系统结
构优化
实施过程:通 过ISM法对系 统结构进行建 模、分析和优
化
结果分析:系 统结构优化后 提高了系统的 稳定性和效率
解释:ISM法 在系统结构优 化中的作用和
效果
案例的优缺点和改进方向
优点:能够清 晰地展示系统 结构便于理解
和分析
缺点:可能过 于复杂难以理
解和应用
改进方向:简 化模型提高模 型的易用性和
实用性
改进方向:增 加模型的灵活 性适应不同的
应用场景
建立解释结构模型
确定系统目标:明确系统需要解决的问题和目标 建立概念模型:将系统分解为多个概念并建立概念之间的关系 确定关系矩阵:根据概念之间的关系建立关系矩阵 计算可达矩阵:根据关系矩阵计算可达矩阵 建立解释结构模型:根据可达矩阵建立解释结构模型 分析模型:对解释结构模型进行分析找出关键因素和影响因素
ISM法的应用领域
信息系统设 软件工程 计
企业架构设 业务流程优 项目管理
计
化
组织变革管 理
ISM法的优势和局限性
优势:能够全面、系统地分析问题有助于提高决策质量 优势:能够揭示问题的本质和规律有助于找到解决问题的关键 局限性:需要大量的数据和信息可能导致分析过程复杂化 局限性:需要较高的专业水平和分析能力可能导致分析结果不准确
分析系统模型:对建立的系统模型进 行分析包括稳定性、可靠性、效率等
确定要素之间的关系:分析要素之间 的相互影响和相互作用包括因果关系、 时间关系等
1解释结构模型ISM及其应用
7 0 0 0 0 0 0 1
关系图
可达性矩阵
17
区域划分表
i 1 2 3 4 5 6 7
R(ei) 1 1,2 3,4,5,6 4,5,6 5 4,5,6 1,2,7
A(e3 )
A(ei) 1,2,7 2,7 3 3,4,6 3,4,5,6 3,4,6 7
R(ei)∩A(ei) 1 2 3 4,6 5 4,6 7
24
4、是否强连接单元的划分 4 ( L) 在级别划分的某一级 Lk 内进行。如果某单元不属 于同级的任何强连接部分,则它的可达集就是它本身, 即 这样的单元称为孤立单元,否则称为强连接单元。 于是,我们把各级上的单元分成两类,一类是孤立 单元类,称为I1类;另一类是强连接单元类,称为I2类, 即 π4(L)={I1,I2}
2
结构模型:
系统有很多要素构成,建立要素之间的相互关系,即系 统的结构模型,是系统分析的重要方法。
3
凡系统必有结构,系统结构决定系统功能; 破坏结构,就会完全破坏系统的总体功能。这说 明了系统结构的普遍性与重要性。 结构模型描述系统结构形态,即系统各部分间 及其与环境间的关系(因果、顺序、联系、隶属、 优劣对比等)。结构模型是从概念模型过渡到定 量分析的中介,即使对那些难以量化的系统来说 也可以建立结构模型,故在系统分析中应用很广 泛。
1 2 11 3 4 5 6
3.上课不认真 6.太贪玩 9.朋友不好
7
8
9
10
8
例:温带草原食物链
12 11 9 10 8
7 2 3 4 6
5 1
1.草 2.兔 3.鼠 4.吃草的鸟 5.吃草的昆虫 6.捕食性昆虫 7.蜘蛛 8.蟾蜍 9.吃虫的鸟 10.蛇 11.狐狸 12.鹰和猫头鹰
解释结构模型(ISM)(课堂PPT)
8,9
7
L5={s7}
L 1 s1 , s4L 2 s2 , s5 L 3 s3L 4 s6 , s8 , s9L 5 s7
L1
s
,
1
s4
L 2 s 2, s 5
L3 s3
L 4 s 6, s 8, s 9
L5 s7
系统结构模型
含义
article
基于解释结构模型的公交客流量影响因素分析
—— 孙慧, 周颖, 范志清
article
article
article
article
总结
Thank you!
则称M为系统A的可达矩阵。其中,I为单位矩阵。 可达矩阵表示从一个要素到另一个要素是否存在连接的路径。
ISM方法的基本步骤
要素关系表
邻接矩阵
可达矩阵
层次划分
➢ 可达集 P(si): P s i s jm i j1i 1 ,2 , ,n ➢ 先行集 Q(sj): Q s i s im j i1i 1 ,2 , ,n
M-L1-L2
层次划分
si
P(si)
Q(si)
P(si)∩Q(si)
层次
2
2Hale Waihona Puke 2,3,6,7,8,92
3
2,3
3,6,7,8,9
3
5
5
5,6,7,8,9
5
6
2,3,5,6
6
6
L2={s2,s5}
7
2,3,5,7,8,9
7
7
8
2,3,5,8,9
7,8,9
8
9
2,3,5,8,9
7,8,9
9
ISM(解释结构模型)
ISM(解释结构模型)一、ISM的起源与发展解释结构模型(ISM)由美国J.华费尔特教授于1973年作为分析复杂的社会经济系统有关问题开发的一种方法,它在计算机的帮助下,利用有向图和结构矩阵,分析所有涉及的构成要素间的层级的直接或间接联系,把要素间各种凌乱的关系变成一个层级清楚的多层级的递阶的结构模型。
ISM模型主要有三个方面的特征,一是可用MATLAB和excel实现算法,避免了人为运算的复杂性;二是将系统内凌乱的不清楚的各要素生成一个层级清楚的结构模型,这也是ISM的主要功能;三是综合了定性分析和定量分析这两种研究方法,既有人类的认识与实践也有量化的数据分析。
之后也有GISM(博弈解释结构模型)、FISM(模糊解释结构模型)、VISM(虚解释结构模型)等发展,广泛应用于系统结构分析、教学资源内容结构和学习资源设计与开发研究、教学过程模式的探索等方面。
二、模型实施步骤(1)抽样要素,分析各要素间的逻辑关系可通过查阅文献、头脑风暴、专家调查(德尔菲法)、问卷调查等方式抽样要素。
(2)建立邻接矩阵和可达矩阵邻接矩阵是根据各相邻要素的逻辑关系排列成矩阵,公式为:可达矩阵是用矩阵形式反映各要素之间通过一定路径可以到达的程度,可利用布尔代数规则实现,布尔算法公式为:11)()()(+-+=+≠+=k k k I A I A I A M(3)对可达矩阵进行层级划分对可达矩阵 M 进行分解,得到可达集)(S R 和前因集)(i S A ,若满足)()()(i i i S R S A S R = ,则iS 为最高层要素集。
找到最高层要素集后,在可达矩阵中划去其对应的行和列,然后再从剩余的可达矩阵中继续寻找最高层要素;依次类推,即得各层次所包含的要素集和分层后的可达矩阵。
(4)建立系统的结构模型和解释结构模型得到各层级后根据各要素的逻辑关系建立结构模型,并以此建立相应的解释结构模型。
三、教学应用(1)研究某一教学问题影响因素(教学效果、学生学情、学习绩效、教学评价……)(2)学习资源的设计与开发(教学内容的层级划分:概念图、教学序列的设计:教学计划大纲)(3)某一教学系统的结构分析(校园网、校园文化、在线教学平台等建设问题)参考文献:[1]李慧.基于ISM 模型的现代远程教育系统的结构分析[J].现代教育技术,2011(09):79-83.[2]张静,王欢.基于ISM的在线教育平台学习者持续学习行为的影响因素研究[J].中国电化教育,2018(10):123-130.。
系统结构模型法(ISM法)
通过建立系统结构模型,展示系统内 部各要素之间的关系,强调系统结构 和要素之间的相互关系。
ISM法与鱼骨图的比较
鱼骨图
主要用于问题原因分析,通过树状结构 展示问题的各种可能原因,强调问题原 因的分类和层次。
VS
ISM法
不仅可用于问题原因分析,还可用于系统 结构分析和解释,通过建立系统结构模型 展示系统内部各要素之间的关系,强调系 统结构和要素之间的相互关系。
统要素之间的关系。
模型分析
结构分析
分析解释结构模型图,了解系统要素之间的层次关系 和相互作用。
功能分析
根据解释结构模型图,分析系统的功能和行为特性。
优化建议
基于解释结构模型图,提出对系统的优化建议和改进 措施。
PART 03
ISM法的应用案例
案例一:企业战略规划
1 2 3
确定企业核心能力
通过ISM法分析企业内部各因素之间的相互关系, 识别企业的核心能力,为制定战略提供依据。
深入研究系统要素之间的 复杂关系
通过深入研究系统要素之间的复杂关系,进 一步揭示系统内部结构和动态变化,提高模 型的准确性。
引入人工智能和大数据技术
利用人工智能和大数据技术对大量数据进行处理和 分析,以更全面、准确地反映系统结构和行为。
建立多层次、多尺度模型
考虑系统的多层次、多尺度特征,建立更为 精细和全面的模型,以更准确地描述系统结 构和行为。
结合其他方法提高分析效果
01集Leabharlann 多种方法结合其他系统分析方法,如流程 图、因果图等,形成更为完善的 系统分析方法体系。
02
引入定性分析方法
03
加强定量分析
将定性分析方法引入ISM法中, 以更好地理解系统要素之间的关 系和结构。
解释结构模型
T {S︱ i Si N, R( Si ) A( Si ) A( Si )}
16
(二)模型的建立步骤
(1)区域划分
所谓区域划分,就是把要素之间的关系分为可达与不可达, 并且判断哪些要素是连通的,即把系统分为有关系的几个 部分或子部分。 例,有下列邻接矩阵
0 1 0 A 0 0 0 0
S1 S1 1 R ' S3 0 S4 0
S3 S 4 1 1 1 1 0 1
14
三、模型的建立
(一)相关定义 1、可达集R(Si) 要素S可以到达的集合定义为要素SI的可达集,并用R(Si) 表示 R(Si ) {S ︱ j S j N, r ij 1}
几个相关的数学概念
3、可达性矩阵(Reachability Matrix) 可达矩阵R是指用矩阵形式来描述有向连接图各节点之间, 经过一定长度的通路后可以到达的程度。 可达矩阵R有一个重要特性,即推移律特性。当Si经过长 度为1的通路直接到达SK,而SK经过长度为1的通路直接到 达Sj,那么,Si经过长度为2的通路必可到达Sj。通过推移 律进行演算,这就是矩阵演算的特点。 所以说,可达矩阵可以应用邻接矩阵A加上单位矩阵I,并 经过一定的演算后求得。
假设和图、矩阵的有关运算,可以得到可达性矩 阵;然后再通过人-机结合,分解可达性矩阵,使 复杂的系统分解成多级递阶结构形式。
(三)性质
(1)结构模型是一种几何模型。结构模型是由节点 和有向边构成的图或树图来描述一个系统的结构。 节点用来表示系统的要素,有向边则表示要素间所 存在的关系。 (2)结构模型是一种以定性分析为主的模型。 (3)结构模型除了可以用有向连接图描述外,还可 以用矩阵形式来描述。矩阵可以通过逻辑演算用数 学方法进行处理。
解释结构模型ISM
解释结构模型ISM结构模型ISM(Integrated Structural Model)是一种用于描述和分析系统结构的综合性建模方法。
该方法主要用于研究和设计复杂系统(如企业、组织或机构)的结构与运作方式。
本文将解释ISM的概念和特点,并介绍ISM的基本建模过程及其在实际应用中的价值。
1.ISM的概念和特点:ISM的基本概念是将一个复杂的系统分解为一系列互相关联的子系统。
这些子系统可以是物理的、信息的、决策的,或者是其他特定功能领域的,彼此之间相互作用,共同达成系统的整体目标。
ISM的特点有以下几点:1)综合性:ISM可以处理包括物质、信息和能量在内的多种系统要素,实现对系统整体的综合分析。
2)层次性:ISM将系统分解为多个层次的子系统,并通过层次间的相互关系进行综合分析。
3)关联性:ISM注重系统中各个组成部分之间的相互关联和相互作用,从而能够揭示系统整体的行为特征。
4)动态性:ISM能够反映系统的动态演化,捕捉系统结构及其变化的过程。
2.ISM的基本建模过程:ISM的建模过程包括以下几个步骤:1)确定目标:明确研究对象和研究目标,定义需要解决的问题和达成的目标。
2)定义系统边界:界定系统的范围和边界,确定系统所包含的组成部分和相互关系。
3)分析系统结构:对系统进行分解,确定系统的层次结构,识别子系统和它们之间的关系。
5)分析系统性能:分析系统的性能和行为,评估系统的结构是否能够实现预期目标,并分析系统各层次之间的相互作用。
6)优化系统结构:通过调整子系统之间的连接和信息流,优化系统的结构,以实现更好的性能。
3.ISM在实际应用中的价值:ISM具有很高的实用性,被广泛应用于各类复杂系统的建模和分析,包括企业管理、组织设计、项目管理等。
具体有以下几个方面的价值:1)综合分析:ISM能够将系统的各个要素、层次和关系进行综合分析,有助于全面理解系统的运作机制。
2)结构优化:通过ISM建模,可以发现不同层次之间的矛盾和冲突,并通过调整系统结构实现性能的优化。
ISM(解释结构模型)
图-1表示。
T
M
S
教师
计算机多媒体
学生
图1 CAI系统结构模型
二、有向图的矩阵描述
对于一个有向图,我们可以用一个m×m方形矩阵来表示。m为系统要素的个数。 矩阵的每一行和每一列对应图中一个节点(系统要素)。规定,要素Si 对Sj 有影响时, 矩阵元素aij为1,要素Si对Sj无影响时,矩阵元素aij为0。即
第一节 解释结构模型法的基本概念
定义:
解释结构模型法(Interpretative Structural Modelling Method,简称 ISM方法)ISM方法是现代系统工程中广泛应用的一种分析方法,它在揭示系 统结构,尤其是分析教学资源内容结构和进行学习资源设计与开发研究、教 学过程模式的探索等方面具有十分重要作用,它也是教育技术学研究中的一 种专门研究方法。
一、系统结构的有向图示法
有向图形——是系统中各要素之间的联系情况的一种模型 化描述方法。它由节点和边两部分组成
节点——利用一个圆圈代表系统中的一个要素,圆圈 标有该要素的符号;
边——用带有箭头的线段表示要素之间的影响。箭 头代表影响的方向。
例1:在教育技术应用中的计算机辅助教学(CAI)其过程可以简单表示为:教
① → ④ → ②;① → ③ → ⑤;③ → ④ → ⑤;④ → ③ → ⑤
计算出矩阵 A3 得到:
0 0 0 0 1 0 0 0 0 0 A3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 A4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
工业系统工程ISM(完整)
系统结构模型化技术
一、系统结构模型化基础 二、解释结构模型法(ISM)原理及应用
1
系统结构模型化基础
ISM (一) 结构分析的概念和意义
任何系统都是由两个以上有机联系、相互作用的 要素所组成的,具有特定功能与结构的整体。结构即组 成系统诸要素之间相互关联的方式。包括现代企业在 内的大规模复杂系统具有要素及其层次众多、结构复 杂和社会性突出等特点。在研究和解决这类系统问题 时,往往要通过建立系统的结构模型,进行系统的结 构分析,以求得对问题全面和本质的认识。
4
ISM
(二) 系统结构的基本表达方式 系统的要素及其关系形成系统的特定
结构。在通常情况下,可采用集合、有向图 和矩阵等三种相互对应的方式来表达系统 的某种结构。
5
ISM 1、系统结构的集合表达
设系统由n(n≥2)个要素(S1,S2,…,Sn)所组成,其集合 为S,则有:
S={S1,S2,…,Sn}
aij= 1 aij= 0
Si对Sj有某种二元关系 Si对Sj没有某种二元关系
18
ISM
一般情况下,建立邻接矩阵前,根据ISM工 作小组成员的实际经验,对系统结构先有一个 大体的或模糊的认识,可以建立一个构思模型; 接着,回答Si与Sj是否有关,这样即可构造出系 统的邻接矩阵A,并可事先设想的构思模型进 行比较和调整。
12
意识 模型
SjRSj?
要素及其关 系集合
推断
修正
分析报告
(人) 计
算 机
解释结构 模型
解释
可达矩阵
ISM
分检 骨架矩阵
作图 递阶结构模型 (多级递阶有向图)
13
ISM
由图可知,实施ISM技术,首先是提出问题,组建ISM 实施小组;接着采用集体创造性技术,搜集和初步整理 问题的构成要素,并设定某种必须考虑的二元关系(如 因果关系),经小组成员及与其他有关人员的讨论,形 成对问题初步认识的意识(构思)模型。
系统工程ISM课程设计
1.引言1.1 设计目的解释结构模型法是现代系统工程中广泛应用的一种分析方法,能够利用系统要素之间已知的零乱关系,用于分析复杂系统要素间关联结构,揭示出系统内部结构。
本次课程设计的目的是,通过对大学生身边实际问题的分析,掌握运用ISM方法对复杂问题进行建模的过程,提高学生系统分析以及运用计算机求解问题的能力,强化计算机实际应用能力。
1.2设计的意义在课程设计的过程中将理论知识应用到实际的操作过程,使得理论与实践能很好地结合。
与此同时应用一些相关的计算机知识,使设计者能很好地掌握以前没有掌握的各种知识,并且能在以后的实际生活和学习中能熟练准确地运用,以便降低解决问题的难度,提高解决问题的效率。
另外,在设计过程中通过小组分配任务,使得设计者明确如何准确按时的完成自己的任务,以及单独解决问题的能力得以提高,也明白了合作的重要性。
1.3设计的内容在明确问题背景的前提下,通过分析问题,找出存在的主要影响因素,运用解释结构模型的方法解决问题,是原有问题得以优化,达到设计的目的。
同时对用到的方法加以详细的阐述,对方法解决问题时的步骤做以具体的安排。
在现代社会高速发展的状态下,对兰州市的公共交通发展进行分析研究,找出其影响因素,运用解释结构模型(Interpretative Structural Modeling Method,简称ISM 方法)法对其进行优化更新,找到最优的方案。
1.4设计任务在对实际问题实际调查过程中,明确现有问题的缺陷和不足,通过各种方法,找出解决实际问题的有效方法,再通过手工或者计算机的编程计算找到最优的方案,使最终的方案在原始方案的基础上得以优化,更进一步的改进原始的方案,从而满足现实的需求,以节省成本,赢取利润.。
此次课程设计是利用解释结构模型方法首先对影响兰州市公共交通的发展因素进行分析,确定关键的因素,然后利用此方法解决关键因素引起的关键问题,在通过逐层逐次的分解和分析之后,对兰州市公共交通的发展进行优化,找到最优的解决方案,以满足现实生活的需求。
ism方法的软件开发及其在教学设计中的应用
ism方法的软件开发及其在教学设计中的应用
ism方法是一种分析系统结构的方法。
它可将系统单元之间复杂、凌乱的关系分解成清晰的、多级递阶的结构形式。
我们这里只在教学领域中研究它。
在教学内容的范围和深度都已明确的前提下,ism方法可以揭示出各项知识或技能之间的教学关联结构和层次关系,有助于学校和教师安排教学计划和进度。
但是,无论是学科内容的结构,还是课程之间的关系,都是由许多相互关联的要素构成的。
如果用传统的矩阵算法来划分系统层次,其运算量之大是让任何人都难以承受的。
因此采用这种简便的算法设计开发出一个ism方法系统的软件是很有必要的。
目前,国内对这一课题进行的研究不多,而且大部分还是采用了传统的、大量复杂运算的矩阵算法,如江西师范大学传播系的汪青云做的《ism方法的软件开发及其在教学设计中的应用》。
这样的算法理解起来比较复杂,并且随着系统要素个数的增加,软件的时间复杂度和空间复杂度都呈指数增长。
针对这种情况,本文给出了一个基于邻接链表存储的、相对简便并利于理解的算法,使得随着系统要素个数的增加,软件的时间复杂度和空间复杂度都只是呈线性增长。
本文通过介绍开发出的ism方法软件,重点探讨了该算法的流程,组织顺序为:ism方法软件系统的功能设计、ism方法软件设计技术(包括数据结构、算法流程、算法实现)、应用实例(包括问题描述、问题分析、数据输入及运算、运行结果测试与分析)、总结。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从可达性矩阵各元素是 1 还是 0 很容易进 行关系划分。
关系划分可以表示为:
14
2、区域划分 2 ( S )
区域划分将系统分成若干个相互独立的、 没有直接或间接影响的子系统。
可达集 先行集 底层单元集(初始集,其中元素具有此性质: 不能存在一个单元只指向它而不被它所指向。)
15
对属于初始集B的任意两个元素 t、t′,如果可能指 向相同元素 这种划分对经济区划分、行政区、 R( t )∩R( t′)≠φ 功能和职能范围等划分工作很有 意义。 则元素 t 和 t′属于同一区域; 反之,如果 t、t′不可能指向相同元素 R( t )∩R( t′)=φ 则元素 t 和 t′属于不同区域。 这样可以以底层单元为标准进行区域的划分。 经过上述运算后,系统单元集系统就划分成若干区 域, 可以写成 π2(S)={P1,P2,…,Pm}, 其中m为区域数。
34
7
6
5
4 3
1
2
图4-2
35
1 1 2
2
3
4
5
6
7
1 1 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 1 1 0 1 0
0 0 1 1 1 1 0
0 0 1 1 0 1 0
0 0 0 0 0 0 1
3
M= 4 5 6 7
36
1.区域划分
为对给出的与图4-5所对应的可达矩阵进行区域划分,可列出任一要 素Si(简记作i,i=1,2,…,7)的可达集R(Si) 、先行集A(Si) 、共同 集C (Si),并据此写出系统要素集合的起始集B(S),如表4-1所示:
18
R(e3 ) ? A(e3 )
子系统I
子系统II
子系统I
子系统II
π2(S)={P1,P2}={{e3,e4,e5,e6},{e1,e2,e7}}
19
3 ( P) 3. 级别划分 级别划分在每一区域内进行。ei 为最上级单元的条 件为R(ei)=R(ei)∩A(ei) 得出最上级各单元后,把它们暂时去掉,再用同样方 法便可求得次一级诸单元,这样继续下去,便可一级 一级地把各单元划分出来。 系统S中的一个区域(独立子系统) P 的级别划分 可用下式表示 π3(P)={L1,L2,…,Ll} 其中L1,L2,…,Ll表示从上到下的各级。
24
4、是否强连接单元的划分 4 ( L) 在级别划分的某一级 Lk 内进行。如果某单元不属 于同级的任何强连接部分,则它的可达集就是它本身, 即 这样的单元称为孤立单元,否则称为强连接单元。 于是,我们把各级上的单元分成两类,一类是孤立 单元类,称为I1类;另一类是强连接单元类,称为I2类, 即 π4(L)={I1,I2}
32
四、建立递阶结构模型的规范方法
建立反映系统问题要素间层次关系的递阶结构 模型,可在可达矩阵M的基础上进行,一般要 经过区域划分、级位划分、骨架矩阵提取和多 级递阶有向图绘制等四个阶段。这是建立递阶 结构模型的基本方法。 现以例所示问题为例说明: 与图对应的可达矩阵(其中将Si简记为i)为:
6
一、几个相关的重要数学概念 1、关系图 假设系统所涉及到的关系都是二元关 系。则系统的单元可用节点表示,单元之 间的关系可以用带有箭头的边(箭线)来 表示,从而构成一个有向连接图。这种图 统称关系图。关系图中,称具有对称性关 系的单元 ei 和ej 具有强连接性。
7
一、几个相关的数学概念
例:一个孩子的学习问题 1.成绩不好 2.老师常批评 4.平时作业不认真 5.学习环境差 7.父母常打牌 8.父母不管 10.给很多钱 11.缺乏自信
5
1
2
4,6
7
3
30
3、骨架阵 从浓缩阵找骨架阵的方法 在判断过程中,对M′中的“1”元素逐 个检查,如果
则 是诱导元素,将它从M′中“划掉”, 否则 是基本元素,保留在M′中。程序执 行完毕打印的M′就是骨架阵N。
31
由于给定可达性矩阵M后,对应的浓 缩阵M′是唯一的(不计节点的重新排列),M′ 的骨架阵,也叫作M的骨架阵,也是唯一 的。骨架阵不仅保留了浓缩阵的全部信息, 而且对应的层次结构图更加清楚。
0 1 0 0
1 1 0 1
1 1 0 0 1 1 0 0
0 1 0 0
1 1 0 1
1 1 0 1 1 1 0 1
0 1 0 0
1 1 1 0
1 1 1 1
13
二、可达性矩阵的划分
1、关系划分
关系划分将系统各单元按照相互间的关系分 成两大类 R与 R ,R类包括所有可达关系,R 类 包括所有不可达关系。有序对( ei , ej ),如果 ei到 e j 是可达的,则( ei , ej )属于R 类,否则( ei , ej ) 属于 R 类。
1 2 11 3 4 5 6
3.上课不认真 6.太贪玩 9.朋友不好
7
8
9
10
8
例:温带草原食物链
12 11 9 10 8
7 2 3 4 6
5 1
1.草 2.兔 3.鼠 4.吃草的鸟 5.吃草的昆虫 6.捕食性昆虫 7.蜘蛛 8.蟾蜍 9.吃虫的鸟 10.蛇 11.狐狸 12.鹰和猫头鹰
解释结构模型ISM及其应用
Interpretive Structural Modeling (ISM)
1
从概念模型到结构模型——系统概念开发 解决复杂系统问题,困难在于弄清楚要解决什 么问题,什么是表面问题,什么是潜在问题,什 么是原因层的问题,什么是根子层的问题。这就 是问题诊断和系统概念开发。 如何能使用自然语言或图形等较直观的方式 来描述和阐明问题,这就是根据问题导向,建立 概念模型。系统结构模型是一种较正规的概念模 型。这类模型对于理清思路、明确问题,与利益 相关者进行沟通,都极为有用。这种结构化的概 念模型就是系统结构模型。
4
5
Interpretive Structure Model 解析结构模型属于静态的定性模型。 它的基本理论是图论的重构理论,通过一些基本 假设和图、矩阵的有关运算,可以得到可达性矩 阵;然后再通过人-机结合,分解可达性矩阵, 使复杂的系统分解成多级递阶结构形式。 在总体设计、区域规划、技术评估和系统诊断方 面应用广泛。 要研究一个由大量单元组成的、各单元之间又存 在着相互关系的系统,就必须了解系统的结构, 一个有效的方法就是建立系统的结构模型,而结 构模型技术已发展到100余种。
2
结构模型:
系统有很多要素构成,建立要素之间的相互关系,即系 统的结构模型,是系统分析的重要方法。
3
凡系统必有结构,系统结构决定系统功能; 破坏结构,就会完全破坏系统的总体功能。这说 明了系统结构的普遍性与重要性。 结构模型描述系统结构形态,即系统各部分间 及其与环境间的关系(因果、顺序、联系、隶属、 优劣对比等)。结构模型是从概念模型过渡到定 量分析的中介,即使对那些难以量化的系统来说 也可以建立结构模型,故在系统分析中应用很广 泛。
ei 可达且“长度”
12
性质: 一般对于任意正整数r(≤n),若ei到ej是可达的且“长度” 为r,则Ar中第 i 行第 j 列上的元素等于1。 对有回路系统来说,当 k 增大时,Ak 形成一定的周期性 重复。 对无回路系统来说,到某个 k 值,Ak=0。
1
3
4
2
1 0 2 A 1 0
26
例:上例中可达性矩阵的浓缩阵
27
浓缩阵的标准形式
其中m’ij=1或0 (i>j)
28
2、从属阵 矩阵M′- I 叫做系统从属矩阵,记为M″,从中可以分析从 上到下各级别之间的关系,找出结构矩阵,并绘制系统多级 层次结构图。 例:上例所给浓缩阵的从属阵及得到的结构矩阵。
29
根据结构矩阵绘制系统多级层次结构图
33
例4-1 某系统由七个要素(S1,S2,…,S7)组成。经过 两两判断认为:S2影响S1、S3影响S4、S4影响 S5、S7影响S2、S4和S6相互影响。这样,该系 统的基本结构可用要素集合S和二元关系集合Rb 来表达,其中: S = {S1,S2,S3,S4,S5,S6,S7} Rb = {(S2,S1),(S3,S4),(S4,S5), (S7,S2),(S4,S6),(S6,S4)}
16
例:对一个7单元系统的区域划分
7
5 4
6
2 1
3
1 1轾 1 犏 2犏 1 犏 3犏 0 犏 M = 4犏 0 犏 5犏 0 犏 6犏 0 犏 7犏 1 臌
2 0 1 0 0 0 0 1
3 0 0 1 0 0 0 0
4 0 0 1 1 0 1 0
5 0 0 1 1 1 1 0
6 0 0 1 1 0 1 0
9
2、邻接矩阵
用来表示关系图中各单元之间的直接连接状态的矩 阵A。设系统S共有n个单元S={e1,e2,…,en} 则 e1 e2 en
e1 轾11 a 犏 e2 犏21 a 犏 A= 犏 犏 en 犏n1 a 臌 a12 a22 an 2 a1n a2 n ann
20
级别划分的步骤 令L0 =φ,j=1; (1) Lj = {ei∈P-L0-L1-…-Lj-1|Rj-1(ei)∩Aj-1(ei) = Rj-1(ei)} 其中 Rj-1(ei) = {ei∈P-L0-L1-…-Lj-1 |mij = 1} Aj-1(ei) = {ei∈P-L0-L1-…-Lj-1 |mji = 1} (2) 当{P-L0-L1-…-Lj } = φ时,划分完毕;否则j = j+1, 返回步骤(1)。 注:如果条件R(ei) = R(ei)∩A(ei) 换成条件 A(ei) = R(ei)∩A(ei) 则上述级别划分可类似进行,但每次分出的是底层单元。