山东省济南市2017-2018学年八年级数学上学期期中试题及答案
2017-2018学年第二学期期末八年级数学试题(含答案)
2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
XXX版2017-2018学年度八年级上学期数学期末试题及答案
XXX版2017-2018学年度八年级上学期数学期末试题及答案2017-2018学年第一学期八年级期末数学试题本试题共4页,满分120分,考试时间90分钟。
请考生在答题卡上填写姓名、座号和准考证号,并在试题规定位置填写考点、姓名、准考证号和座号。
考试结束后,仅交回答题卡。
一、选择题(共15题,每题3分,共45分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.下列实数中是无理数的是()A。
0.38.B。
π。
C。
4.D。
-22/72.以下各组数为三角形的边长,能构成直角三角形的是()A。
8,12,17.B。
1,2,3.C。
6,8,10.D。
5,12,93.在平面直角坐标系中,点P(-2,3)关于x轴的对称点在()A。
第四象限。
B。
第三象限。
C。
第二象限。
D。
第一象限4.等腰三角形一边长等于5,一边长等于9,则它的周长是()A。
14.B。
23.C。
19.D。
19或235.每年的4月23日是“世界读书日”。
某中学为了了解八年级学生的读数情况,随机调查了50名学生的册数,统计数据如表所示:册数。
人数3.11.132.163.174.1则这50名学生读书册数的众数、中位数是()A。
3,3.B。
3,2.C。
2,3.D。
2,26.一次函数y=kx+b,y随x增大而增大,且b>0,则该函数的大致图象为()A。
三边垂直平分线的交点。
B。
三条中线的交点C。
三条高的交点。
D。
三条角平分线的交点7.三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()8.关于函数y=-2x+1,下列结论正确的是()A。
图象必经过(-2,1)。
B。
y随x的增大而增大C。
图象经过第一、二、三象限。
D。
当x>1/2时,y<09.下列图形中,已知∠1=∠2,则可得到AB∥CD的是()10.某班为筹备元旦联欢晚会,在准备工作中,班长对全班同学爱吃什么水果作了民意调查,再决定最终买哪种水果。
下面的调查数据中,他最关注的是()A。
2018年济南市中考数学试题及答案
山东省济南市2018年学业水平考试数学试题一、选择题(本大题共12小题,每小题4分,共48分)1.(2018济南,1,4分)4的算术平方根是( )A .2B .-2C .±2D .错误! 2.(2018济南,2,4分)如图所示的几何体,它的俯视图是( )正面A .B .C .D .3.(2018济南,3,4分)2018年1月,“墨子号”量子卫星实现了距离达7600千米的洲际量子密钥分发,这标志着“墨子号”具备了洲际量子保密通信的能力.数字7600用科学记数法表示为( )A .0。
76×104B .7.6×103C .7。
6×104D .76×102 4.(2018济南,4,4分)“瓦当"是中国古建筑装饰××头的附件,是中国特有的文化艺术遗产,下面“瓦当"图案中既是轴对称图形又是中心对称图形的是( )A B C D 5.(2018济南,5,4分)如图,AF 是∠BAC 的平分线,DF ∥AC ,若∠1=35°,则∠BAF 的度数为( ) A .17.5° B .35° C .55° D .70°6.(2018济南,6,4分)下列运算正确的是( ) A .a 2+2a =3a 3 B .(-2a 3)2=4a 5 C .(a +2)(a -1)=a 2+a -2 D .(a +b )2=a 2+b 2 7.(2018济南,7,4分)关于x 的方程3x -2m =1的解为正数,则m 的取值范围是( ) A .m <-12 B .m >-12 C .m >错误! D .m <错误!8.(2018济南,8,4分)在反比例函数y =-错误!图象上有三个点A (x 1,y 1)、B (x 2,y 2)、C (x 3,y 3),若x 1<0<x 2<x 3,则下列结论正确的是( )A .y 3<y 2<y 1B .y 1<y 3<y 2C .y 2<y 3<y 1D .y 3<y 1<y 2 9.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,1A B C DF将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( ) A .(0,4) B .(1,1) C .(1,2) D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O10.(2018济南,10,4分)下面的统计图大致反应了我国2012年至2017年人均阅读量的情况.根据统计图提供的信息,下列推断不合理...的是( ) A .与2016年相比,2017年我国电子书人均阅读量有所降低 B .2012年至2017年,我国纸质书的人均阅读量的中位数是4。
山东省烟台市2017-2018年初二数学第一学期期中考试试题及答案
山东省烟台市2017-2018年初二数学第一学期期中考试试题及答案(120分钟120分)一、 选择题(3′×12=36′)1、在23310227,3.1415926,0.123123123,,4,,25,,32π⋅⋅⋅0.1010010001⋅⋅⋅(相邻两个“1”之间依次多一个“0”)中,无理数的个数为( )A .2个B .3个C .4个D .5个2、下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是( ) A . B . C . D .3、下列说法正确的是( )A. 角是轴对称图形,它的平分线就是它的对称轴;B. 等腰三角形的内角平分线,中线和高三线合一;C. 直角三角形不是轴对称图形;D. 等边三角形有三条对称轴.4、已知a ,b ,c 是ΔABC 的三条边长,化简a b c c a b +----的结果为( )A. 2a +2b-cB. 2a +2bC. 2cD. 05、已知,如图,B 、C 、E 三点在同一条直线上,AC=CD ,∠B=∠E=90°,AB=CE ,则不正确的结论是( )A .∠A 与∠D 互为余角B .∠A=∠DCEC .△ABC ≌△CED D .∠ACB=∠DCE 6、若一个三角形的两边长分别为5和8,则第三边长可能是( )A. 14B. 10C. 3D. 27、已知正数m 满足m <38<m +1,则m 的值为( )A. 4B. 5C. 6D. 78、如图,在△PAB 中,PA=PB ,M ,N ,K 分别是PA ,PB ,AB 上的点,且AM=BK ,BN=AK ,若∠MKN=42°,则∠P 的度数为( )A .44°B .66°C .96°D .92°9、如图,已知点A 、D 、C 、F 在同一直线上,AB=DE ,BE=CF ,添加下列条件后,仍不能判断△ABC ≌△DEF 的是( )A .BC=EFB .∠B=∠DEF C. AB ∥DE D .∠BCA=∠F10、如图,△ABC 与△A′B′C′关于直线l 对称,则∠B 的度数为( )A. 100°B. 90°C. 50°D. 30°11、如图,△ABC 和△DCB 中,∠A=∠D=72°,∠ACB=∠DBC=36°,则图中等腰三角形的个数是( )A . 7cmB . 10cmC . 12cm D. 22cm12、如图,若用我们数学课本上采用的科学计算器进行计算,其按键顺序如下:则输出结果因为( )A. 12B. 132C. 172D. 252二、填空题(3分×6=18)13、一个正数x 的两个平方根分别是2a -3和a -9,则x = ;14、如图所示,两个三角形全等,其中已知某些边的长度和某些角的度数,则x = ;15、如图,在△ABC 中,∠B=∠ACB ,∠BAC 和∠ACB 的角平分线交于D 点,∠ADC=100°,则∠CAB= ;16、在△ABC 中,∠A:∠B:∠C=2:3:4,则∠A 的度数为 ;17、若m 是16的算术平方根,则m +3= .18、如图,∠BAC=110°,若A ,B 关于直线MP 对称,A ,C 关于直线NQ 对称,则∠PAQ 的度数是 .三、解答题(66分)19、(9分)()()()223112822-+-+-+(2)()2352227----- (3)33271893111864256⋅---20、(5分)阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数.因此,2的小数部分我们不可能全部地写出来,但是由于1<2<2,所以2的整数部分为1,将2减去其整数部分1,差就是小数部分,根据以上的内容,解答下面的问题:(1)5的整数部分是_______,小数部分是______;(2)2+6的小数部分为a,5-6小数部分是b,求a+b的值21、(6分)如图,已知∠ABC=90°,D是AB延长线上的点,AD=BC,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,求证:FD⊥CD.22、(8分)如图,在△ABC中,AD平分∠BAC,CD⊥AD于点D,∠DCB=∠B,若AC=10,AB=25,求CD之长.23、(8分)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=42°,求∠BDE的度数.24、(8分)如图,在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm.一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时由P、Q、A三点构成的三角形与△ABC全等?并说明理由.25、(12分)如图,已知O点是∠APB内的一点,M,N分别是点O关于PA、PB的对称点,连接MN,与PA、PB分别相交于点E、F,已知MN=6cm.(1)求△OEF的周长;(2)连接PM、PN,若∠APB=α,求∠MPN(用含α的代数式表示);(3)当∠α=30°时,试判定△PMN的形状,并说明理由.26、(10分)如图,Pt△ABC中,直角边AC=7cm,BC=3cm,CD为斜边AB上的高,点E从点B出发沿直线BC以2cm/s的速度移动,过点E作BC的垂线交直线CD于点F.(1)求证:∠A=∠BCD;(2)点E运动多长时间,CF=AB?并说明理由.2017-2018学年度初二数学答案一、选择题(每小题3分,共36分)CBDDD BCCDA DC二、填空题(每小题3分,共18分)13.25 14.60 15.140° 16.40° 17.5 18.40°三、解答题:19.解:⑴原式=22221+-+---------- 2分 =212 -------------------3分(2)原式=3225++-----------5分=26+ ----------6分(3)原式=16154523-⎪⎭⎫⎝⎛-⨯----------8分=1645------------9分20.解:(1)2 5-2(2)26462-=-+=a ,63265-=--=b , ------------3分∴6326-+-=+b a =1 -----5分21.证明:∵AF ⊥AD ,∠ABC=90°,∴∠FAD=∠DBC=90°,在△FAD 与△DBC 中,⎪⎩⎪⎨⎧=∠=∠=BDAF DBC FAD BCAD ,∴△FAD ≌△DBC (SAS );--------3分∴∠FDA=∠DCB ,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°, ----------------------4分∴∠FDC=90°,∴DF ⊥CD . ---------------6分-22.解:如图,延长CD 交AB 于点E .∵AD 平分∠BAC ,∴∠1=∠2.-∵CD ⊥AD ,∴∠ADE=∠ADC=90°.∵在△ADE 与△ADC 中,∠1=∠2AD=AD∠ADC=∠ADE∴△ADE ≌△ADC∴DE=DC .AE=AC=10,又AB=25∴BE=15∵∠DCB=∠B ,∴BE=CE=2DC=15. ---------------6分∴DC=7.5.---------------8分23.解:(1)证明:∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中, ∠A=∠B ,∴∠BEO=∠2. ----------------------------1分又∵∠1=∠2, ∴∠1=∠BEO ,∴∠AEC=∠BED . --------------------2分在△AEC 和△BED 中, ∴△AEC ≌△BED (ASA )------------ 4分 (2)在△EDC 中,∵EC=ED ,∠1=42°, ∴∠C=∠EDC=69°,--------6分∵△AEC ≌△BED , ∴EC=ED ,∴∠BDE=∠C=69°. -------8分24.解:根据三角形全等的判定方法可知:①当P 运动到AP=BC 时,∵∠C=∠QAP=90°,在R t △ABC 与R t △QPA 中,⎩⎨⎧==AB PQ BC AP , ∴R t △ABC ≌R t △QPA , 即AP=BC=5cm ; --------4分②当P 运动到与C 点重合时,AP=AC ,在R t △ABC 与R t △QPA 中,⎩⎨⎧==AB PQ AC AP , ∴R t △QAP ≌R t △BCA , 即AP=AC=10cm ,∴当点P 与点C 重合时,△ABC 才能和△APQ 全等综上所述,当点P 位于AC 的中点处或当点P 与点C 重合时, △ABC 才能和△APQ 全等. ------8分25.解:(1)∵M ,N 分别是点O 关于PA 、PB 的对称点,∴EM=EO ,FN=FO , -----------------2分∴△OEF 的周长=OE+OF+EF=ME+EF+FN=MN=6cm ;---------4分 (2)连接OP ,∵M ,N 分别是点O 关于PA 、PB 的对称点,∴∠MPA=∠OPA ,∠NPB=∠OPB ,------------6分∴∠MPN=2∠APB=2ɑ; --------------------------8分(3)∵∠ɑ=30°,∴∠MPN=60°, ---------------------9分∵M ,N 分别是点O 关于PA 、PB 的对称点,∴PM=PO ,PN=PO ,∴PM=PN ,------------11分又∠MPN=60°,∴△PMN 是等边三角 形.------------12分26.解:(1)∵∠A+∠ACD=90°,∠BCD+∠ACD=90°,∴∠A=∠BCD-----2分(2)〈1〉如图,当点E 在射线BC 上移动时,若E 移动5s ,则BE=2×5=10cm , ∴CE=BE-BC=10-3=7cm .∴CE=AC ,∵∠ECF=∠BCD ,∠A=∠BCD∴∠A=∠ECF在△CFE 与△ABC 中,∠A=∠ECF ,CE=AC ,∠ACB=∠CEF∴△CEF ≌△ABC ,∴CF=AB , ------------------5分〈2〉当点E 在射线CB 上移动时,若E 移动2s ,则BE′=2×2=4cm ,∴CE′=BE′+BC=4+3=7cm ,∴CE′=AC ,在EF C ''∆与△ABC 中, ∠A=∠E′CF′,CE′=AC ,∠ACB=∠CE′F′∴△CF′E′≌△ABC , ∴CF′=AB ,总之,当点E 在射线BC 上移动5s ,或2s 时,CF′=AB .----------10分。
济南市中学初二数学上学期期中试卷(含答案解析)
济南市中学2021初二数学上学期期中试卷(含答案解析)济南市中学2021初二数学上学期期中试卷(含答案解析)一、选择题(每题2分,满分20分)1.知一个Rt△的两边长分别为3和4,则第三边长的平方是()A. 25 B. 14 C. 7 D. 7或252.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3 ,4 ,5 .其中能构成直角三角形的有()组.A. 2 B. 3 C. 4 D. 53.下列说法中,正确的是()A.数轴上的点表示的都是有理数B.无理数不能比较大小C.无理数没有倒数及相反数D.实数与数轴上的点是一一对应的4.下列各式中,正确的是()A. B. C. D.5.给出下列说法:①6是36的平方根;②16的平方根是4;③ 是无理数;④ =2;⑤一个无理数不是正数就是负数.其中,正确的说法有()A.①③⑤ B.②④ C.①③ D.①6.下列各组数中互为相反数的是()A. 5和 B. 5和 C. 5和 D. |5|和(5)7.下列一次函数中,y随x增大而减小的是()A. y=3x B. y=3x2 C. y=3x+2x D. y=3x28.下列函数中,y是x的正比例函数的是()A. y=2x1 B. y= C. y=2x2 D. y=2x+19.一次函数y=5x+3的图象经过的象限是()A.一,二,三 B.二,三,四 C.一,二,四 D.一,三,四10.下列各图给出了变量x与y之间的函数是()A. B. C. D.二、填空题(每小题2分,共20分)11.的平方根是.12.比较大小: 3.13.已知一个数的平方根为a+3与2a15,则这个数是.14.若函数y=(m2)是正比例函数,则m的值是.15.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为.16.边长为1的正方形的对角线长是.17.直线y=4x8与x轴的交点坐标是,与y轴的交点坐标是.18.若将直线y=2x向上平移4个单位,则所得直线的表达式为.19.点A在x轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为20.点(5,7)关于y轴对称的点的坐标是,关于原点对称的点的坐标是.三、解答题(满分60分)21.计算题(1)(2)(2 1)2(3)(2+ )(2 )(4)(1 )0(5) 4(1+ )+(6)( 1.414)0 ()1+|1 |22.在同一平面直角坐标系内画出函数y=2x、y=2x+1、y=2x1的图象.23.如图是边长为4的正三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标.24.在弹性限度内,弹簧的长度y(cm)是所挂物体质量x (kg)的一次函数.某弹簧不挂物体时长14.5kg;当所挂物体的质量为3kg时,弹簧长16cm.(1)写出y与x之间的关系式;(2)求当所挂物体的质量为5kg时弹簧的长度.25.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?26.已知函数y=(2m+1)x+m+3(1)若函数图象经过原点,求m的值;(2)若函数图象与y轴的交点为(0,2),求m的值;(3)若函数的图象平行于直线y=3x3,求m的值.27.如图,l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,根据图象填空:(1)当销售量为2t时,销售收入是2021元,销售成本是3000元;(2)当销售量为6t时,销售收入是6000元,销售成本是5000元;(3)当销售量等于时,销售收入等于销售成本;(4)当销售量时,该公司盈利(收入大于成本);(5)当销售量时,该公司亏损(收入小于成本);(6)l1对应的函数表达式是;(7)l2对应的函数表达式是.四、附加题:(本题满分0分,本题记入总分,但总分不超过100分)28.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得()2+()2=m, = ,那么便有: = = (a>b)例如:化简解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即()2+()2=7,× = ∴ = = =2+由上述例题的方法化简:.济南市中学2021初二数学上学期期中试卷(含答案解析)参考答案与试题解析一、选择题(每题2分,满分20分)1.知一个Rt△的两边长分别为3和4,则第三边长的平方是()A. 25 B. 14 C. 7 D. 7或25考点:勾股定理的逆定理.分析:已知的这两条边可以为直角边,也可以是一条直角边一条斜边,从而分两种情况进行讨论解答.解答:解:分两种情况:(1)3、4都为直角边,由勾股定理得,斜边为5;(2)3为直角边,4为斜边,由勾股定理得,直角边为.∴第三边长的平方是25或7,故选D.点评:本题利用了分类讨论思想,是数学中常用的一种解题方法.2.分别以下列五组数为一个三角形的边长:①6,8,10 ②13,5,12 ③1,2,3 ④9,40,41 ⑤3 ,4 ,5 .其中能构成直角三角形的有()组.A. 2 B. 3 C. 4 D. 5考点:勾股定理的逆定理.分析:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.解答:解:因为①62+82=102,②132=52+122,④92+402=412,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.点评:本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.下列说法中,正确的是()A.数轴上的点表示的都是有理数B.无理数不能比较大小C.无理数没有倒数及相反数D.实数与数轴上的点是一一对应的考点:实数与数轴;无理数.专题:数形结合.分析: A、根据实数与数轴上的点的对应关系即可确定;B、根据无理数的定义即可判定;C、根据无理数的定义及性质即可判定;D、根据实数与数轴上的点的对应关系即可确定.解答:解:A、数轴上的点表示的不一定是有理数,有的是无理数,故选项错误;B、无理数可以比较大小,故选项错误;C、无理数有倒数及相反数,故选项错误;D、实数与数轴上的点是一一对应的,故选项正确.故选D.点评:本题考查了实数与数轴的对应关系,以及无理数的性质,也利用了数形结合的思想.4.下列各式中,正确的是()A. B. C. D.考点:立方根;平方根;算术平方根.分析: A、根据算术平方根的性质即可判定;B根据算术平方根的性质计算即可判定、C、根据立方根的定义即可判定;D、根据平方根的定义计算即可判定.解答:解:A、,应该=2,故选项错误;B、,应该等于3,故选项错误;C、,不能开立方,故选项错误;D、,故选项正确.故选D.点评:此题主要考查了算术平方根的性质、立方根的定义及立方根的定义,都是基础知识,比较简单.5.给出下列说法:①6是36的平方根;②16的平方根是4;③ 是无理数;④ =2;⑤一个无理数不是正数就是负数.其中,正确的说法有()A.①③⑤ B.②④ C.①③ D.①考点:实数.分析:根据开方运算,可判断①②③④,根据无理数是无限不循环小数,可判断⑤.解答:解:①6是36的平方根,故①正确;②16的平方根是±4,故②错误;③27的立方根是3,3是有理数,故③错误;④ =2,故④正确;⑤一个无理数不是正数就是负数,故⑤正确;故选:D.点评:本题考查了实数,注意一个无理数不是正数就是负数.6.下列各组数中互为相反数的是()A. 5和 B. 5和 C. 5和 D. |5|和(5)考点:实数的性质.分析:根据只有符号不同的两个数互为相反数,可得答案.解答:解:A、两个数相等,故A错误;B、两个数互为倒数,故B错误;C、两个数相等,故C错误;D、只有符号不同的两个数互为相反数,故D正确;故选:D.点评:本题考查了实数的性质,只有符号不同的两个数互为相反数.7.下列一次函数中,y随x增大而减小的是()A. y=3x B. y=3x2 C. y=3x+2x D. y=3x2考点:一次函数的性质;正比例函数的性质.分析:由一次函数的性质,在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.解答:解:在y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.A、函数y=3x中的k=3>0,故y的值随着x值的增大而增大.故本选项错误;B、函数y=3x2中的k=3>0,y的值随着x值的增大而增大.故本选项错误;C、函数y=3x+2x=5x中的k=5>0,y的值随着x值的增大而增大.故本选项错误;D、函数y=3x2中的k=3<0,y的值随着x值的增大而减小.故本选项正确;故选D.点评:本题考查了一次函数的性质,属于基础题,关键是掌握在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.8.下列函数中,y是x的正比例函数的是()A. y=2x1 B. y= C. y=2x2 D. y=2x+1考点:正比例函数的定义.分析:根据正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.解答:解:根据正比例函数的定义可知选B.故选B.点评:主要考查正比例函数的定义:一般地,两个变量x,y之间的关系式可以表示成形如y=kx(k为常数,且k≠0)的函数,那么y就叫做x的正比例函数.9.一次函数y=5x+3的图象经过的象限是()A.一,二,三 B.二,三,四 C.一,二,四 D.一,三,四考点:一次函数的性质.分析:根据直线解析式知:k<0,b>0.由一次函数的性质可得出答案.解答:解:∵y=5x+3∴k=5<0,b=3>0∴直线经过第一、二、四象限.故选C.点评:能够根据k,b的符号正确判断直线所经过的象限.10.下列各图给出了变量x与y之间的函数是()A. B. C. D.考点:函数的图象.分析:函数就是在一个变化过程中,有两个变量x,y,对于x的每一个值,y都有唯一的值与其对应,则x叫自变量,y是x的函数.在坐标系中,对于x的取值范围内的任意一点,通过这点作x轴的垂线,则垂线与图形只有一个交点.根据定义即可判断.解答:解:A、B、C中对于x的值y的值不是唯一的,因而不符合函数的定义;D、符合函数定义.故选D.点评:本题主要考查了函数的定义,在定义中特别要注意,对于x的每一个值,y都有唯一的值与其对应.二、填空题(每小题2分,共20分)11.的平方根是±3.考点:平方根;算术平方根.分析:首先化简,再根据平方根的定义计算平方根.解答:解: =9,9的平方根是±3,故答案为:±3.点评:此题主要考查了平方根,关键是掌握一个正数有两个平方根,这两个平方根互为相反数.12.比较大小:<3.考点:实数大小比较.分析:先把3变为9算术平方根的相反数,再根据比较实数大小的方法进行比较即可.解答:解:∵3= ,∴ <3.故填空答案:<.点评:此题主要考查了实数的大小比较.注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.13.(2分)(2021春? 鄂州校级期中)已知一个数的平方根为a+3与2a15,则这个数是49 .考点:平方根.分析:根据两个平方根互为相反数,即可列方程得到a的值,然后根据平方根的定义求得这个数.解答:解:根据题意得:a+3+(2a15)=0,解得:a=4,则这个数是(a+3)2=(4+3)2=49.故答案是:49.点评:本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数,正确求得a的值是关键.14.若函数y=(m2)是正比例函数,则m的值是 2 .考点:正比例函数的定义.分析:直接利用正比例函数的定义直接得出答案.解答:解:∵函数y=(m2)是正比例函数,∴m23=1,m2≠0,解得:m=±2,m≠2,故m=2.故答案为:2.点评:此题主要考查了正比例函数的定义,正确把握正比例函数的定义是解题关键.15.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为y=3x .考点:待定系数法求正比例函数解析式.专题:计算题;待定系数法.分析:直接将点的坐标代入函数关系式中,即可得到k,继而可得出解析式.解答:解:有y=kx,且点(1,3)在正比例函图象上故有:3=x.即k=3.解析式为:y=3x.点评:对已知点的坐标求一次函数的系数的简单考查,很简单.16.边长为1的正方形的对角线长是.考点:算术平方根.分析:很据勾股定理,可得答案.解答:解:边长为1的正方形的对角线长是,故答案为:.点评:本题考查了算术平方根,利用了勾股定理.17.直线y=4x8与x轴的交点坐标是(2,0),与y轴的交点坐标是(0,8).考点:一次函数图象上点的坐标特征.分析:根据一次函数直线与x轴相交时,y=0;与y轴相交时,x=0,分别进行计算即可.解答:解:当直线y=4x8与x轴相交时,y=0,因此4x8=0,解得:x=2,故与x轴的交点坐标是(2,0);当直线y=4x8与y轴相交时,x=0,因此4×08=y,解得:y=8,故与y轴的交点坐标是(0,8);故答案为:(2,0);(0,8).点评:此题主要考查了一次函数与x、y轴的交点,关键是掌握一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(,0);与y轴的交点坐标是(0,b).18.若将直线y=2x向上平移4个单位,则所得直线的表达式为y=2x+4 .考点:一次函数图象与几何变换.分析:根据“上加下减”的原则进行解答即可.解答:解:由“上加下减”的原则可知,将函数y=2x的图象向上平移4个单位所得函数的解析式为y=2x+4.故答案为:y=2x+4.点评:本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.19.点A在x轴上,位于原点的右侧,距离坐标原点5个单位长度,则此点的坐标为(5,0).考点:数轴.分析:根据点A在x轴上,位于原点的右侧,以及距离坐标原点5个单位长度,则此点的坐标纵坐标为0,横坐标为5,即可得出答案.解答:解:∵点A在x轴上,∴点A的纵坐标为0,∵位于原点的右侧,∴点A 的横坐标为正,∵距离坐标原点5个单位长度,∴横坐标为5,∴此点的坐标为:(5,0).故答案为:(5,0).点评:此题主要考查了数轴的性质,根据距离长度得出点的坐标是考查的重点内容,同学们应熟练掌握.20.点(5,7)关于y轴对称的点的坐标是(5 ,7),关于原点对称的点的坐标是(5,7).考点:关于x轴、y轴对称的点的坐标;关于原点对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.解答:解:点(5,7)关于y轴对称的点的坐标是(5,7),关于原点对称的点的坐标是(5,7),故答案为:(5,7),(5,7).点评:此题主要考查了关于x、y轴对称点的坐标,关键是掌握点的坐标的变化规律.三、解答题(满分60分)21.计算题(1)(2)(2 1)2(3)(2+ )(2 )(4)(1 )0(5) 4(1+ )+(6)( 1.414)0 ()1+|1 |考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式各项化简,合并即可得到结果;(2)原式利用完全平方公式展开即可得到结果;(3)原式利用平方差公式计算即可得到结果;(4)原式利用二次根式的性质及零指数幂法则是即可得到结果;(5)原式利用二次根式的性质化简,计算即可得到结果;(6)原式利用零指数幂、负指数幂,以及立方根,绝对值的定义计算即可得到结果.解答:解:(1)原式=2 = ;(2)原式=12+14 =134 ;(3)原式=43=1;(4)原式=321=0;(5)原式=4 44 +4=0;(6)原式=1+44+ 1= .点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.在同一平面直角坐标系内画出函数y=2x、y=2x+1、y=2x1的图象.考点:一次函数的图象;正比例函数的定义.分析:根据一次函数的图象是直线,而两点确定一条直线,所以经过两点(0,b)、(,0)或(1,k+b)作直线y=kx+b.画正比例函数的图象过(0,0)(1,k).根据函数关系式计算出坐标点,即可画出直线.解答:解:如图所示:点评:本题考查一次函数的图象的性质与作法,根据一次函数的图象是直线,只需确定直线上两个特殊点即可.23.如图是边长为4的正三角形ABC,建立适当的直角坐标系,写出各个顶点的坐标.考点:等边三角形的性质;坐标与图形性质.专题:开放型.分析:以BC所在的直线为x轴,以BC边上的高所在的直线为y轴,建立平面直角坐标系,则BO=CO,再根据勾股定理求出AO的长度,点A、B、C的坐标即可写出.解答:解:如图,以BC所在的直线为x轴,以BC边上的高所在的直线为y轴,建立平面直角坐标系,∵正三角形ABC的边长为4,∴BO=CO=2,∴点B、C的坐标分别为B(2,0),C(2,0),∵AO= = =2 ,∴点A的坐标为(0,2 ).点评:本题主要考查等腰三角形的性质和勾股定理的运用,建立适当的平面直角坐标系是解题的关键.24.在弹性限度内,弹簧的长度y(cm)是所挂物体质量x (kg)的一次函数.某弹簧不挂物体时长14.5kg;当所挂物体的质量为3kg时,弹簧长16cm.(1)写出y与x之间的关系式;(2)求当所挂物体的质量为5kg时弹簧的长度.考点:一次函数的应用.分析:(1)设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;(2)把x=5时代入解析式求出y的值即可.解答:解:(1)设y与x的函数关系式为y=kx+b,由题意,得解得:.故y与x之间的关系式为:y=0.5x+14.5;(2)当x=5时,y=0.5×5+14.5=17.答:当所挂物体的质量为5kg时弹簧的长度为17cm.点评:本题考查了运用待定系数法求一次函数的解析式的运用,由自变量求函数值的运用,解答时求出函数的解析式是关键.25.如图,一架云梯长25米,斜靠在一面墙上,梯子靠墙的一端距地面24米.(1)这个梯子底端离墙有多少米?(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向也滑动了4米吗?考点:勾股定理的应用.分析:(1)由题意得a=24米,c=25米,根据勾股定理a2+b2=c2,可求出梯子底端离墙有多远.(2)由题意得此时a=20米,c=25米,由勾股定理可得出此时的b,继而能和(1)的b进行比较.解答:解:(1)由题意得此时a=24米,c=25米,根据a2+b2=c2,∴可求b=7米;(2)不是.设滑动后梯子的底端到墙的距离为b米,得方程,b2+(244)2=252,解得b=15,所以梯子向后滑动了8米.综合得:如果梯子的顶端下滑了4米,那么梯子的底部在水平方向不是滑4米.点评:本题考查勾股定理的应用,有一定难度,注意两问线段的变化.26.已知函数y=(2m+1)x+m+3(1)若函数图象经过原点,求m的值;(2)若函数图象与y轴的交点为(0,2),求m的值;(3)若函数的图象平行于直线y=3x3,求m的值.考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.分析:(1)直接把(0,0)代入求出m的值即可;(2)直接把(0,2)代入求出m的值即可;(3)函数的图象平行于直线y=3x3,说明2m+1=3,由此求得m的数值即可.解答:解:(1)∵这个函数的图象经过原点,∴当x=0时,y=0,即m+3=0,解得m=3;(2)当x=0时,y=2,即m+3=2,解得m=5;(3)∵函数的图象平行于直线y=3x3,∴2m+1=3,解得m=1.点评:本题考查的是一次函数图象上点的坐标特点与两条直线平行的条件,熟知一次函数图象上各点一定适合此函数的解析式是解答此题的关键.27.如图,l1反映了某公司产品的销售收入与销售量的关系,l2反映了该公司产品的销售成本与销售量的关系,根据图象填空:(1)当销售量为2t时,销售收入是2021元,销售成本是3000元;(2)当销售量为6t时,销售收入是6000元,销售成本是5000元;(3)当销售量等于4t 时,销售收入等于销售成本;(4)当销售量大于4t 时,该公司盈利(收入大于成本);(5)当销售量小于4t 时,该公司亏损(收入小于成本);(6)l1对应的函数表达式是y=1000x ;(7)l2对应的函数表达式是y=500x+2021 .考点:一次函数的应用.分析:(3)由函数图象可以得出当销售量等于4t时,销售收入=销售成本都等于4000元;(4)由函数图象可以得出当销售量大于4t时,销售收入大于销售成本,该公司盈利;(5)由函数图象可以得出当销售量小于于4t时,销售收入小于销售成本,该公司亏损;(6)设l1的解析式为y=k1x,由待定系数法求出其解即可;(7)设l2的解析式为y=k2x+b,由待定系数法求出其解即可;解答:解:(3)由函数图象得,当销售量等于4t时,销售收入=销售成本都等于4000元.故答案为:4t;(4)由函数图象可以得出当销售量大于4t时,销售收入大于销售成本,该公司盈利.故答案为:大于4t;(5)由函数图象可以得出当销售量小于于4t时,销售收入小于销售成本,该公司亏损故答案为:小于4t;(6)设l1的解析式为y=k1x,由图象,得4000=4k1,解得:k1=1000,l1的解析式为:y=1000x.故答案为:y=1000x;(7)设l2的解析式为y=k2x+b,由题意,得解得:,∴l2的解析式为:y=500x+2021.故答案为:y=500x+2021.点评:本题考查了一次函数的图象的运用,一次函数与二元一次方程组的关系的运用,待定系数法求一次函数的解析式的运用,解答时理清函数的图象的数量含义是关键.四、附加题:(本题满分0分,本题记入总分,但总分不超过100分)28.先阅读下列的解答过程,然后再解答:形如的化简,只要我们找到两个数a、b,使a+b=m,ab=n,使得()2+()2=m, = ,那么便有: = = (a>b)例如:化简解:首先把化为,这里m=7,n=12,由于4+3=7,4×3=12即()2+()2=7,× = ∴ = = =2+由上述例题的方法化简:.考点:二次根式的性质与化简.专题:阅读型.分析:利用所给的材料的方法求解即可.解答:解:点评:本题主要考查了二次根式的性质与化简,解题的关键是理解所给的材料.。
2017-2018学年第一学期初二数学期末试题和答案
2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。
2017—2018学年部分学校八年级(上)期中考试数学试卷参考答案
G
A
B y E F O D x
(2)过 A 作 AD⊥AE 交 EF 延长线于 D
过 D 作 DK⊥x 轴于 K ∵∠FEA=45°,∴AE=AD ∴可证△AEG≌△DAK,∴D(1,3) 设 F(0,y) ∵S 梯形 EGKD=S 梯形 EGOF+S 梯形 FOKD 1 1 1 (3 4) 7 ( y 4) 6 (3 y) 2 2 2 22 y 7 22 F (0, ) 7
2017-2018 学年部分学校八年级(上)期中考试 数学参考答案
一、选择题 (30 分)
1 2 3 4 5 6 7 8 9 10
C
B
C
D
B
C
B
C
A
A
二、填空题 (18 分) 11. 14. 班 级
密
5 80
12. 15.
八 (5,0)
13. 16.
SSS 12 或 6
17、(8 分) 解:设∠A=x 度,则∠B=2x 度,∠C=x-20° 在△ABC 中,∠A+∠B+∠C=180° ∴x+2x+x-20=180° ∴x=50° 即∠A=50°
∴△ABO≌△AEO(ASA) ∴AB=AE,∵AB=AD,AC=AE,∴AC=AD,
C
(3 )
40°或 20°
E
24、(12 分)
y F O x
(1)过 E 点作 EG⊥x 轴于 G
∵B(0,-4),E(-6,4),∴OB=EG=4 在△AEG 和△ABO 中 EGA BOA 90 EAG BAO EG BO ∴△AEG≌△ABO(AAS),∴AE=AB ∴A 为 BE 中点
A D
《试卷3份集锦》济南市2017-2018年八年级上学期期末统考数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知一次函数y kx b =+的图象如图所示,则一次函数y bx k =-+的图象大致是( )A .B .C .D .【答案】C【分析】根据一次函数与系数的关系,由已知函数图象判断k 、b ,然后根据系数的正负判断函数y=-bx+k 的图象位置.【详解】∵函数y=kx+b 的图象经过第一、二、四象限,∴k <0,b>0,∴-b <0,∴函数y=-bx+k 的图象经过第二、三、四象限.故选:C .【点睛】本题考查一次函数的图象与系数,明确一次函数图象与系数之间的关系是解题关键.2.若x 2+6x+k 是完全平方式,则k=( )A .9B .﹣9C .±9D .±3【答案】A【解析】试题分析:若x 2+6x+k 是完全平方式,则k 是一次项系数6的一半的平方.解:∵x 2+6x+k 是完全平方式,∴(x+3)2=x 2+6x+k ,即x 2+6x+1=x 2+6x+k∴k=1.故选A .考点:完全平方式.3.已知,如图,在△ABC 中,OB 和OC 分别平分∠ABC 和∠ACB ,过O 作DE ∥BC ,分别交AB 、AC 于点D 、E ,若BD+CE=5,则线段DE 的长为( )A .5B .6C .7D .8【答案】A 【详解】试题分析:根据角平分线的性质可得:∠OBD=∠OBC ,∠OCB=∠OCE ,根据平行线的性质可得:∠OBC=∠DOB ,∠OCB=∠COE ,所以∠OBD=∠DOB ,∠OCE=∠COE ,则BD=DO ,CE=OE ,即DE=DO+OE=BD+CE=5.故选A【点睛】考点:等腰三角形的性质4.如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( )A .△ABC 的三条中线的交点B .△ABC 三边的中垂线的交点 C .△ABC 三条角平分线的交点D .△ABC 三条高所在直线的交点.【答案】C 【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC 三条角平分线的交点.由此即可确定凉亭位置.【详解】解:∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC 三条角平分线的交点.故选:C .【点睛】本题主要考查的是角平分线的性质在实际生活中的应用.主要利用了利用了角平分线上的点到角两边的距离相等.5.下列计算结果正确的是( )A .339a a a =B .()235a a =C .235a a a +=D .()3263a b a b =【答案】D【解析】根据幂的加减和幂的乘方计算法则判断即可.【详解】A .336a a a ⋅=,该选项错误;B . ()236a a =,该选项错误;C . 23,a a 不是同类项不可合并,该选项错误;D . ()3263a b a b =,该选项正确;故选D .【点睛】本题考查幂的加减和幂的乘方计算,关键在于熟练掌握基础运算方法.6.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD =B .BAC DAC ∠=∠ C .BCA DCA ∠=∠D .90B D ∠=∠=︒【答案】C 【分析】由图形可知AC=AC ,结合全等三角形的判定方法逐项判断即可.【详解】解:在△ABC 和△ADC 中∵AB=AD ,AC=AC ,A 、添加CB CD =,根据SSS ,能判定ABC ADC ∆∆≌,故A 选项不符合题意;B 、添加BAC DAC ∠=∠,根据SAS 能判定ABC ADC ∆∆≌,故B 选项不符合题意;C .添加BCA DCA ∠=∠时,不能判定ABC ADC ∆∆≌,故C 选项符合题意;D 、添加90B D ∠=∠=︒,根据HL ,能判定ABC ADC ∆∆≌,故D 选项不符合题意;故选:C .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法是解题关键,即SSS 、SAS 、ASA 、AAS 和HL . 7.当一个多边形的边数增加时,它的内角和与外角和的差( )A .增大B .不变C .减小D .以上都有可能【答案】A【分析】设多边形的边数为n,求出多边形的内角和与外角和的差,然后根据一次函数的增减性即可判断.【详解】解:设多边形的边数为n则多边形的内角和为180°(n -2),多边形的外角和为360°∴多边形的内角和与外角和的差为180(n -2)-360=180n -720∵180>0∴多边形的内角和与外角和的差会随着n 的增大而增大故选A .【点睛】此题考查的是多边形的内角和、外角和和一次函数的增减性,掌握多边形的内角和公式、任何多边形的外角和都等于360°和一次函数的增减性与系数的关系是解决此题的关键.8.在等腰三角形ABC 中,794937A '''∠=︒,则B 可以有几个不同值( )A .4个B .3个C .2个D .1个 【答案】B【分析】根据等腰三角形的定义,∠A 可能是底角,也可能是顶角,进行分类讨论即可.【详解】解:①当∠A 是顶角时,∠B=∠C=7949'37"18050511.52︒'︒︒-''=, ②当∠A 为底角,∠B 也为底角时, 794937B '''∠=︒,③当∠A 为底角,∠B 为顶角时,∠B=7949'37"2020610248'''︒=︒︒-⨯,故答案为:B .【点睛】本题考查了等腰三角形等边对等角的性质,涉及分类讨论问题,解题的关键是对∠A ,∠B 进行分类讨论. 9.下列运算中,结果正确的是( )A .x 3·x 3=x 6B .3x 2+2x 2=5x 4C .(x 2)3=x 5D .(x +y)2=x 2+y 2【答案】A【分析】依据完全平方公式、幂的乘方、同底数幂的乘法、合并同类项的法则即可解答.【详解】A.x 3·x 3=x 6 ,正确; B.3x 2+2x 2=5x 2,故本选项错误;C.(x 2)3=x 6,故本选项错误;D.(x+y )2=x 2+2xy+y 2,故本选项错误;故选A .【点睛】本题考查了完全平方公式、合并同类项法则、同底数幂的乘法、幂的乘方的性质,需熟练掌握且区分清楚.10.下列各组线段中,能够组成直角三角形的一组是( )A .1,2,3B .2,3,4C .4,5,6D .1【答案】D【解析】试题分析:A .222123+≠,不能组成直角三角形,故错误;B .222234+≠,不能组成直角三角形,故错误;C .222456+≠,不能组成直角三角形,故错误;D .2221(2)(3)+=,能够组成直角三角形,故正确.故选D .考点:勾股定理的逆定理.二、填空题11.若分式方程1x a x -+=a 无解,则a 的值为________. 【答案】1或-1【分析】根据分式方程无解,得到最简公分母为2求出x 的值,分式方程转化为整式方程,把x 的值代入计算即可. 【详解】解:去分母:x a ax a -=+ 即:1)2a x a -=-( . 显然a=1时,方程无解.由分式方程无解,得到x+1=2,即:x=-1.把x=-1代入整式方程:-a+1=-2a .解得:a=-1.综上:a 的值为1或者-1.【点睛】本题考查了分式方程的解,需要注意在任何时候考虑分母不能够为2.12.如图,将三角形纸板ABC 沿直线AB 平移,使点A 移到点B ,若∠CAB =60°,∠ABC =80°,则∠CBE 的度数为_____.【答案】40°【分析】根据平移的性质得出△ACB ≌△BED ,进而得出∠EBD=60°,∠BDE=80°,进而得出∠CBE 的度数.【详解】∵将△ABC 沿直线AB 向右平移到达△BDE 的位置,∴△ACB ≌△BED ,∵∠CAB =60°,∠ABC =80°,∴∠EBD =60°,∠BDE =80°,则∠CBE 的度数为:180°﹣80°﹣60°=40°.故答案为:40°.【点睛】此题主要考查了平移的性质,根据平移的性质得出∠EBD ,∠BDE 的度数是解题关键.13.将正三角形、正四边形、正五边形按如图所示的位置摆放.如果∠3=30°,那么∠1+∠2=_____°.【答案】1【分析】分别根据正三角形、正四边形、正五边形各内角的度数及平角的定义进行解答即可.【详解】解:∵∠3=30°,正三角形的内角是60°,正四边形的内角是90°,正五边形的内角是108°,∴∠4=180°﹣60°﹣30°=90°,∴∠5+∠6=180°﹣80°=90°,∴∠5=180°﹣∠2﹣108°①, ∠6=180°﹣90°﹣∠1=90°﹣∠1 ②,∴①+②得,180°﹣∠2﹣108°+90°﹣∠1=90°,即∠1+∠2=1°.故答案为1.【点睛】本题考查了三角形的内角和定理,熟知正三角形、正四边形、正五边形个内角的度数是解答本题的关键. 14.计算:()232a bab ÷=_________. 【答案】54a b【解析】()232a b ab ÷=62544a b ab a b ÷=15.我国古代数学家赵爽的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).如果大正方形的面积是13,小正方形的面积是1,直角三角形的两直角边长分别为a 、b ,那么2()a b -的值是____.【答案】1.【解析】根据勾股定理可以求得a 2+b 2等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据(a-b )2=a 2-2ab+b 2即可求解.【详解】解:根据勾股定理可得a 2+b 2=13,四个直角三角形的面积是: 12ab×4=13-1=12,即:2ab=12, 则(a-b )2=a 2-2ab+b 2=13-12=1.故答案为:1.【点睛】本题考查勾股定理,以及完全平方式,正确根据图形的关系求得a 2+b 2和ab 的值是关键.16.计算02(3)(3)--⨯-=_______.【答案】19【分析】先运用零次幂和负整数次幂化简,然后再计算即可.【详解】解:0211=1=(3)(3)99-⨯-⨯-. 故答案为:19. 【点睛】本题主要考查了零次幂和负整数次幂,运用零次幂和负整数次幂对原式化简成为解答本题的关键. 17.如图,在△ABC 中,∠C =∠ABC ,BE ⊥AC ,垂足为点E ,△BDE 是等边三角形,若AD =4,则线段BE 的长为______.【答案】1【解析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C ,推出AD=DE,于是得到结论.【详解】∵△BDE是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.三、解答题18.A、B两车从相距360千米的甲、乙两地相向匀速行驶,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图所示,1l表示的是B车,2l表示的是A车.(1)汽车B的速度是多少?(2)求1l、2l分别表示的两辆汽车的s与t的关系式.(3)行驶多长时间后,A、B两车相遇?(4)什么时刻两车相距120千米?【答案】(1)120千米/时;(2)1l 对应的函数解析式为2360s t ,2l 对应的函数解析式为s t =;(3)120分钟;(4)当行驶43小时或83小时后,A ,B 两车相距120千米. 【分析】(1)根据函数图象可以得到汽车B 的速度;(2)根据图象可以设出1l 、2l 的解析式,由函数图象上的点可以求得它们的解析式;(3)根据函数关系式列方程解答即可;(4)分两种情况讨论,相遇前和相遇后,然后列方程解答即可.【详解】解:(1)由图象可得, 60(360240)12060(千米 /时);答:汽车B 的速度为120千米/时;(2)设1l 对应的函数解析式为s kt b =+,36060240b k b, 解得2360k b ,即1l 对应的函数解析式为2360s t ,∵2l 经过原点,则设2l 对应的函数解析式为smt , 6060m ,得1m =,即2l 对应的函数解析式为s t =;(3)当两车相遇时,可得方程,2360t t =-+解之得:120t =; (4)由图象可得,汽车A 的速度为:6060=6060千米/时; 设两车相距120千米时的时间是x ,则当两车没有相遇前,相距120千米时 12060360120x 解之得:43x =; 当两车相遇后,再相距120千米时 12060360120x ,解得83x =, 当83x =时,汽车B 行驶的距离是12032036830, 即B 汽车还没有达到终点,符合题意,答:当行驶43小时或83小时后,A ,B 两车相距120千米. 【点睛】 本题考查一次函数的应用和余元一次方程的应用,解题的关键是明确题意,找出所求问题需要的条件是解题的关键.19.某校为了丰富学生的校园生活,准备购进一批篮球和足球.其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相等.(1)篮球和足球的单价各是多少元?(2)该校打算用1000元购买篮球和足球,问恰好用完1000元,并且篮球、足球都买有的购买方案有哪几种?【答案】详见解析【分析】(1)首先设足球单价为x 元,则篮球单价为(x+40)元,根据题意可得等量关系:1500元购进的篮球个数=900元购进的足球个数,由等量关系可得方程150090040x x=+,再解方程可得答案; (2)设恰好用完1000元,可购买篮球m 个和购买足球n 个,根据题意可得篮球的单价×篮球的个数m+足球的单价×足球的个数n=1000,再求出整数解即可.【详解】(1)设足球单价为x 元,则篮球单价为(x+40)元,由题意得:150090040x x=+, 解得:x=60,经检验:x=60是原分式方程的解,则x+40=100,答:篮球和足球的单价各是100元,60元;(2)设恰好用完1000元,可购买篮球m 个和购买足球n 个,由题意得:100m+60n=1000,整理得:m=10-35n , ∵m 、n 都是正整数,∴①n=5时,m=7,②n=10时,m=4,③n=15,m=1;∴有三种方案:①购买篮球7个,购买足球5个;②购买篮球4个,购买足球10个;③购买篮球1个,购买足球15个.【点睛】1.分式方程的应用;2.二元一次方程的应用.20.先化简,再求值.(1﹣32x +)÷212x x -+的值,其中x=1. 【答案】13. 【解析】试题分析:先按分式的相关运算法则将原式化简,再代值计算即可.试题解析:原式=()()232211x x x x x +-+⋅++- =11x + 当x=1时,原式=13. 21.请你先化简:2344111x x x x x ⎛⎫-+⎛⎫-+÷ ⎪ ⎪++⎝⎭⎝⎭,然后从12x -≤≤中选一个合适的整数作为x 的值代入求值. 【答案】22x x+- ,当0x =时,原式1=. 【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x 的值(使分式的分母和除式不为0)代入进行计算即可(答案不唯一). 【详解】2344111x x x x x ⎛⎫-+⎛⎫-+÷ ⎪ ⎪++⎝⎭⎝⎭ =()22231111x x x x x -⎛⎫--÷ ⎪+++⎝⎭=()()()222112x x x x x +-++- =22x x +-, 当0x =时,原式1=.22.(11)2017﹣|1|(2)如图,在平面直角坐标系中,A (4,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的负半轴于点C ,求点C 坐标.【答案】(1)1﹣2;(2)C 坐标为(﹣1,0)【分析】(1)根据实数的混合运算法则计算;(2)根据勾股定理求出AB ,根据坐标与图形性质解答.【详解】解:(1)4﹣(﹣1)2017+327-﹣12-=21321+--+=1﹣2;(2)由勾股定理得,AB =2200A B +=2234+=5,则OC =AC ﹣OA =1,则点C 坐标为(﹣1,0).【点睛】本题考查的是实数的混合运算、勾股定理,掌握实数的混合运算法则、勾股定理是解题的关键. 23.如图,在平面直角坐标系中,△ABC 各顶点的坐标分别为:A (﹣2,4),B (﹣4,2),C (﹣3,1),按下列要求作图,保留作图痕迹.(1)画出△ABC 关于x 轴对称的图形△A 1B 1C 1(点A 、C 分布对应A 1、C 1);(2)请在y 轴上找出一点P ,满足线段AP+B 1P 的值最小.【答案】(1)作图见解析;(2)作图见解析.【分析】(1)利用关于x 轴对称点的性质得出对应点位置进而得出答案;(2)利用轴对称求最短路线的方法得出答案.【点睛】此题主要考查了轴对称变换,正确得出对应点位置是解题关键.24.(阅读材料)数学活动课上,李老师准备了若干张如图1的三种纸片,A 种纸片是边长为a 的正方形,B 种纸片是边长为b 的正方形,C 种纸片是长为a ,宽为b 的长方形.并用A 种纸片一张,B 种纸片一张,C 种纸片两张拼成如图2的大正方形.(理解应用)(1)用两种不同的方法计算出大正方形(图2)的面积,从而可以验证一个等式.这个等式为 ; (2)根据(1)题中的等量关系,解决如下问题:①已知:a +b =5,a 2+b 2=11,求ab 的值;②已知:(2019-a ) 2+( a -2018) 2=5,求(2019-a )( a -2018)的值.【答案】(1)()2a b +=222b+b a a +;(2)①7ab =;②()()20192018=2a a --- 【分析】(1)根据图2中,大正方形的面积的两种求法即可得出结论;(2)①根据完全平方公式的变形计算即可;②设2019-=a x ,2018a y -=,则1x y +=,然后完全平方公式的变形计算即可.【详解】解:(1)图2大正方形的边长为a +b ,面积为()2a b +;也可以看作两个正方形和两个长方形构成,其面积为222b+b a a +.∴这个等式为()2a b +=222b+b a a +(2)①∵5a b +=,∴()2=25a b +.∵22+b =11a ,∴7ab =.②设2019-=a x ,2018a y -=,则1x y +=.∵()()222019+2018=5a a --,∴225x y +=.∵()2222x y x xy y +=++, ∴xy =()()22222x y x y +-+=-.即()()20192018=2a a ---.【点睛】此题考查的是完全平方公式的几何意义和应用,掌握正方形面积的求法和完全平方公式的变形是解决此题的关键.25.如图,在平面直角坐标系中,点M 为x 正半轴上一点,过点M 的直线//l y 轴,且直线l 分别与反比例函数()80y x x =>和()0k y x x =>的图像交于P Q 、两点,14POQ S =.()1求k 的值;()2当45QOM ∠=︒时,求直线OQ 的解析式;()3在()2的条件下,若x 轴上有一点N ,使得NOQ 为等腰三角形,请直接写出所有满足条件的N 点的坐标.【答案】(1)k=﹣20;(2)y=﹣x ;(3)点N 的坐标为(50)或(10,0)或(﹣10,0)或(50).【分析】(1)由14POQ POM MOQ SS S +==结合反比例函数k 的几何意义可得1k +4=14,进一步即可求(2)由题意可得MO=MQ ,于是可设点Q (a ,﹣a ),再利用待定系数法解答即可;(3)先求出点Q 的坐标和OQ 的长,然后分三种情况:①若OQ=ON ,可直接写出点N 的坐标;②若QO=QN ,根据等腰三角形的性质解答;③若NO=NQ ,根据两点间的距离解答.【详解】解:(1)∵14POQ POM MOQ SS S +==,S △POM =1842⨯=,S △QOM =12k , ∴12k +4=14,解得20k ,∵k <0,∴k=﹣20;(2)∵45QOM ∠=︒,//l y 轴,∴45QOM OQM ∠=∠=︒,∴MO=MQ ,设点Q (a ,﹣a ),直线OQ 的解析式为y=mx ,把点Q 的坐标代入得:﹣a=ma ,解得:m=﹣1,∴直线OQ 的解析式为y=﹣x ;(3)∵点Q (a ,﹣a )在20y x=-上,∴220a -=-,解得a =,∴点Q 的坐标为(-,则OQ == 若NOQ 为等腰三角形,可分三种情况:①若OQ=ON=,则点N 的坐标是(,0)或(﹣,0);②若QO=QN ,则NO=2OM=N 的坐标是(0);③若NO=NQ ,设点N 坐标为(n ,0),则((222n n =-+,解得n =∴点N 的坐标是(0);综上,满足条件的点N 的坐标为(0)或(0)或(﹣,0)或(0).【点睛】本题考查了反比例函数系数k 的几何意义、等腰三角形的性质、勾股定理以及两点间的距离等知识,具有一定的综合性,熟练掌握相关知识是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.等腰三角形的底角等于50︒,则该等腰三角形的顶角度数为()A.50︒B.80︒C.65︒或50︒D.50︒或80︒【答案】B【分析】根据等腰三角形的性质及三角形的内角和直接求出顶角即可.【详解】解:∵三角形为等腰三角形,且底角为50°,∴顶角=180°﹣50°×2=80°.故选:B.【点睛】本题考查等腰三角形的性质,三角形内角和定理,题目比较简单,理解等腰三角形两个底角相等是解题关键.2.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180B.220C.240D.300【答案】C【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【详解】∵等边三角形的顶角为60°,∴两底角和=180°-60°=120°;∴∠α+∠β=360°-120°=240°;故选C.【点睛】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题.3.如图,△ABC中,AC=BC,AC的垂直平分线分别交AC,BC于点E,F.点D为AB边的中点,点M为EF上一动点,若AB=4,△ABC的面积是16,则△ADM周长的最小值为()A.20 B.16 C.12 D.10【答案】D【分析】连接CD,CM,由于△ABC是等腰三角形,点D是BA边的中点,故CD⊥BA,再根据三角形的面积公式求出CD的长,再再根据EF是线段AC的垂直平分线可知,点A关于直线EF的对称点为点C,故CD的长为AM+MD的最小值,由此即可得出结论.【详解】解:连接CD,CM.∵△ABC是等腰三角形,点D是BA边的中点,∴CD⊥BA,∴S△ABC=12BA•CD=12×4×CD=16,解得CD=8,∵EF是线段AC的垂直平分线,∴点A关于直线EF的对称点为点C,∴MA=MC,∵CD≤CM+MD,∴CD的长为AM+MD的最小值,∴△ADM的周长最短=(AM+MD)+AD=CD+12BA=8+12×4=8+2=1.故选:D.【点睛】本题考查的是轴对称−最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.4.若直角三角形两直角边长分别为5和12,则斜边的长为()A.17 B.7 C.14 D.13【答案】D【分析】利用勾股定理求出斜边即可.2251213+=,本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.5.命题“邻补角的和为180︒”的条件是()A.两个角的和是180︒B.和为180︒的两角为邻补角C.两个角是邻补角D.邻补角的和是180︒【答案】C【分析】根据命题“邻补角的和为180︒”的条件是:两个角是邻补角,即可得到答案.【详解】命题“邻补角的和为180︒”的条件是:两个角是邻补角,故选C.【点睛】本题主要考查命题的条件和结论,学会区分命题的条件与结论,是解题的关键.6.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是()A.8 B.6 C.4 D.2【答案】C【解析】过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=1,7.已知当2x =时,分式2x a x b +-的值为0,当1x =时,分式2x a x b +-无意义,则a -b 的值为( ) A .4B .-4C .0D .14 【答案】B【分析】根据题意可得,当2x =时,分子0x a +=,当1x =时,分母20x b -=,从而可以求得a 、b 的值,本题得以解决.【详解】解:当2x =时,分式2x a x b+-的值为0,当1x =时,分式无意义, ∴20210a b +=⎧⎨⨯-=⎩, 解得,22a b =-⎧⎨=⎩, 224a b ∴-=--=-,故选B .【点睛】本题考查分式的值为零的条件、分式有意义的条件,解答本题的关键是明确题意,求出a 、b 的值. 8.如图,Rt △ABC 中,CD 是斜边AB 上的高,∠A=30°,BD=2cm ,则AB 的长度是( )A .2cmB .4cmC .8cmD .16cm【答案】C 【分析】根据题意易得:∠BCD=30°,然后根据30°角的直角三角形的性质先在直角△BCD 中求出BC ,再在直角△ABC 中即可求出AB .【详解】解:Rt △ABC 中,∵∠A=30°,∠ACB=90°,∴∠B=60°,∵CD 是斜边AB 上的高,∴∠BCD=30°,∵BD=2cm ,∴BC=2BD=4cm ,∵∠ACB=90°,∠A=30°,∴AB=2BC=8cm .【点睛】本题考查的是直角三角形的性质,属于基本题型,熟练掌握30°角所对的直角边等于斜边的一半是解题关键.【答案】C【分析】要确定等腰三角形的另外两条边长,可以根据已知的边长,结合周长公式求解,由于长为8的边没有明确是腰还是底边,要进行分类讨论.【详解】解:等腰三角形的周长是22.∴当8为腰时,它的底边长=22-8-8=6,8+6>8,能构成等腰三角形.当8为底时,它的腰长=(22-8)2=7÷,7+7>8,能构成等腰三角形.即它两边的长度分别是6和8或7和7.故选:C.【点睛】本题考查了等腰三角形的性质和三角形的三边关系,注意检验三角形三边长是否构成三角形.10.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的百分比是( )A .10%B .20%C .30%D .40%【答案】A【解析】根据第1~4组的频数,求出第5组的频数,即可确定出其百分比.【详解】根据题意得:40-(12+10+6+8)=40-36=4,则第5组所占的百分比为4÷40=0.1=10%,故选A .【点睛】此题考查了频数与频率,弄清题中的数据是解本题的关键.二、填空题11.在等腰ABC 中,AB 为腰,AD 为中线,5AB =,3AD =,则ABD △的周长为________.【答案】12或10.1.【分析】如图1,根据等腰三角形的性质得到AD ⊥BC ,由勾股定理得到BD =4,于是得到△ABD 的周长为12,如图2,在等腰△ABC 中,AB =BC ,求得BD =2.1,于是得到△ABD 的周长为10.1.【详解】解:如图1,在等腰△ABC 中,AB =AC ,∵AD 为中线,∴AD ⊥BC ,∴BD 2222534AD ,∴△ABD 的周长=1+4+3=12,如图2,在等腰△ABC 中,AB =BC ,∵AD 为中线,∴BD =12BC =2.1,∴△ABD 的周长=1+3+2.1=10.1,综上所述,△ABD 的周长为12或10.1,故答案为:12或10.1.【点睛】本题考查了等腰三角形的性质以及勾股定理的应用,正确的分情况讨论是解题的关键.12.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =14,则该等腰三角形的顶角为_____.【答案】20°.【分析】依据题意,设出顶角度数,根据“特征值”可知底角度数,再由三角形内角和定理即可求得.【详解】如图.∵△ABC 中,AB =AC ,∴∠B =∠C ,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k ,若k =14, ∴∠A :∠B =1:4,∵∠A+∠B+∠C =180°,∴∠A+4∠A+4∠A =180°,即9∠A =180°,∴∠A =20°,故答案为:20°. 【点睛】本题主要考查了等腰三角形的性质以及三角形内角和定理的知识,灵活运用这部分知识是解决本题的关键.13.如图,四边形ABCD 中,90BCD ∠=︒,,4,5ABD DBC AB DC ∠=∠==,则ABD ∆的面积为__________.【答案】10【分析】过点D作DE⊥AB与点E,根据角平分线的性质可得CD=DE,再用三角形面积公式求解. 【详解】解:如图,过点D作DE⊥AB与点E,∵ABD DBC∠=∠,∴BD平分∠ABC,∵∠BCD=90°,∴CD=DE=5,∵AB=4,∴△ABD的面积=12×AB×DE=12×4×5=10.故答案为:10.【点睛】本题考查了角平分线的性质和三角形面积求法,角平分线上的点到角两边距离相等,根据题意作出三角形的高,从而求出面积.14.如图,已知∠A=47°,∠B=38°,∠C=25°,则∠BDC的度数是______.【答案】110°【分析】连接AD,并延长,根据三角殂的外角性质分别表示出∠3和∠4,因为∠BDC是∠3和∠4的和,从而不难求得∠BDC的度数.【详解】解:连接AD,并延长.∵∠3=∠1+∠B ,∠4=∠2+∠C .∴∠BDC=∠3+∠4=(∠1+∠B )+(∠2+∠C )=∠B+∠BAC+∠C .∵∠A =47°,∠B =38°,∠C =25°.∴∠BDC=47°+38°+25°=110°,故答案为 :110°.【点睛】本题考查了三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和.15.如图,在正方形ABCD 中,E 为DC 边上的点,连接BE ,将△BCE 绕点C 顺时针方向旋转90°得到△DCF ,连接EF ,若∠BEC=60°,则∠EFD 的度数为_______度.【答案】15【分析】根据旋转的性质知∠DFC=60°,再根据EF=CF ,EC ⊥CF 知∠EFC=45°,故∠EFD=∠DFC-∠EFC=15°.【详解】∵△DCF 是△BCE 旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE .又∵∠ECF=90°,∴∠EFC=∠FEC=12(180°﹣∠ECF )=12(180°﹣90°)=45°, 故∠EFD=∠DFC ﹣∠EFC=60°﹣45°=15°.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰直角三角形与正方形的性质.16.在Rt △ABC 中,90︒∠=C ,13AB =,12AC =,则BC =_____.【答案】1【分析】在Rt △ABC 中,∠C=90°,则AB 2=AC 2+BC 2,根据题目给出的AB ,AC 的长,则根据勾股定理可以求BC 的长.【详解】∵AB=13,AC=12,∠C=90°,∴22221312AB AC -=-=1.故答案为:1.【点睛】本题考查了勾股定理在直角三角形中的运用,本题中正确的根据勾股定理求值是解题的关键. 17.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为_______.【答案】13【解析】试题分析:已知DE 是AB 的垂直平分线,根据线段的垂直平分线的性质得到EA=EB ,所以△BCE 的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.三、解答题18.如图1,某容器外形可看作由,,A B C 三个长方体组成,其中,,A B C 的底面积分别为22225,10,5,cm cm cm C 的容积是容器容积的14(容器各面的厚度忽略不计).现以速度v (单位:3/cm s )均匀地向容器注水,直至注满为止.图2是注水全过程中容器的水面高度h (单位:cm )与注水时间t (单位:s )的函数图象.()1在注水过程中,注满A 所用时间为______________s ,再注满B 又用了______________s ; ()2注满整个容器所需时间为_____________s ;()3容器的总高度为____________cm .【答案】(1)10,8;(2)1;(3)1【分析】(1)根据函数图象可直接得出答案;(2)设容器A 的高度为h A cm ,注水速度为vcm 3/s ,根据题意和函数图象可列出一个含有h A 及v 的二元一次方程组,求出v 后即可求出C 的容积,进一步即可求出注满C 的时间,从而可得答案;(3)根据B 、C 的容积可求出B 、C 的高度,进一步即可求出容器的高度.【详解】解:(1)根据函数图象可知,注满A 所用时间为10s ,再注满B 又用了18-10=8(s );故答案为:10,8;(2)设容器A的高度为h A cm,注水速度为vcm3/s,根据题意和函数图象得:102581210AAvhvh⎧=⎪⎪⎨⎪-=⎪⎩,解得:410Ahv=⎧⎨=⎩;设C的容积为ycm3,则有4y=10v+8v+y,将v=10代入计算得y=60,∴注满C的时间是:60÷v=60÷10=6(s),故注满这个容器的时间为:10+8+6=1(s).故答案为:1;(3)∵B的注水时间为8s,底面积为10cm2,v=10cm3/s,∴B的高度=8×10÷10=8(cm),∵C的容积为60cm3,∴容器C的高度为:60÷5=12(cm),故这个容器的高度是:4+8+12=1(cm);故答案为:1.【点睛】本题考查了函数图象和二元一次方程组的应用,读懂图象提供的信息、弄清题目中各量的关系是解题的关键.19.在ABC∆中,AB AC=,在ABC∆的外部作等边三角形ACD,E为AC的中点,连接DE并延长交BC于点F,连接BD.(1)如图1,若96BAC∠=︒,求BDF∠的度数;(2)如图2,ACB∠的平分线交AB于点M,交EF于点N,连接BN.①补全图2;②若BN DN=,求证:MB MN=.【答案】(1)18BDF ∠=︒;(2)①补全图形,如图所示.见解析;②见解析.【解析】(1)分别求出∠ADF ,∠ADB ,根据∠BDF=∠ADF-∠ADB 计算即可;(2)①根据要求画出图形即可;②设∠ACM=∠BCM=α,由AB=AC ,推出∠ABC=∠ACB=2α,可得∠NAC=∠NCA=α,∠DAN=60°+α,由△ABN ≌△ADN (SSS ),推出∠ABN=∠ADN=30°,∠BAN=∠DAN=60°+α,∠BAC=60°+2α,在△ABC 中,根据∠BAC+∠ACB+∠ABC=180°,构建方程求出α,再证明∠MNB=∠MBN 即可解决问题;【详解】(1)解:如图1中,在等边三角形ACD ∆中,60CAD ADC ∠=∠=︒,AD AC =.∵E 为AC 的中点, ∴1302ADE ADC ∠=∠=︒, ∵AB AC =,∴AD AB =,∵BAD BAC CAD ∠=∠+∠,96BAC ∠=︒,60CAD ∠=︒,∴156BAD BAC CAD ∠=∠+∠=︒,∴12ADB ABD ∠=∠=︒,∴18BDF ADF ADB ∠=∠-∠=︒.(2)①补全图形,如图所示.②证明:连接AN .∵CM 平分ACB ∠,∴设AOM BCM a ∠=∠=,∵AB AC =,∴2ABC ACB a ∠=∠=.在等边三角形ACD ∆中,∵E 为AC 的中点,∴DN AC ⊥,∴NA NC =,∴NAC NCA a ∠=∠=,∴60DAN a ∠=︒+,在ABN ∆和ADN ∆中,AB AD BN DN AN AN =⎧⎪=⎨⎪=⎩∴()ABN ADN SSS ∆∆≌,∴30ABN ADN ∠=∠=︒,60BAN DAN a ∠=∠=︒+,∴602BAC a ∠=︒+,在ABC ∆中,180BAC ACB ABC ∠+∠+∠=︒∴60222180a a a ︒+++=︒,∴20a =︒,∴10NBC ABC ABN ∠=∠-∠=︒,∴30MNB NBC NCB ∠=∠+∠=︒,∴MNB MBN ∠=∠,∴MB MN =.【点睛】本题考查全等三角形的判定和性质,等边三角形的性质,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.如图,AC 和BD 相交于点O ,并且AB DC =,AC DB =.(1)求证:OB OC =.证明思路现在有以下两种:思路一:把OB 和OC 看成两个三角形的边,用三角形全等证明,即用∆_____∆≌______证明; 思路二:把OB 和OC 看成一个三角形的边,用等角对等边证明,即用∠____=∠____证明; (2)选择(1)题中的思路一或思路二证明:OB OC =.。
2017-2018学年八年级数学上学期期末考试试题 (含答案)
2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
2017-2018学年度第一学期期末教学质量检测八年级数学试题(含答案)
2017-2018学年度第一学期期末教学质量检测八年级数学试题(时间:120分钟)友情提示:亲爱的同学,你好!今天是你展示才能的时候,只要你仔细审题,认真答题,你就会有出色的表现!1.考生务必将姓名、班级、座号、准考证号填写在答题卡规定的位置上。
2.本试题分第Ⅰ卷和第Ⅱ卷,共25道小题。
3.第Ⅰ卷是选择题,共8道小题,每小题选出的答案后,用2B铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试卷上。
4.第Ⅱ卷是填空题和解答题,共17小题,答案必须用0.5毫米黑色签字笔写在答题卡题目指定区域内相应的位置,不能写在试题上;如需改动,先划掉原来的答案,然后再写上新的答案。
不按以上要求作答的答案无效。
5.考试结束只上交答题卡。
第Ⅰ卷一、选择题:下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的,请将所选答案的字母标号涂在答题卡的相应位置。
1.3的相反数是()A、3B、-3C、3D、-32.在平面直角坐标系中,点P(-2,3)关于x轴的对称点坐标为()A、(-2,3)B、(2,-3)C、(-2,-3)D、(3,-2)3.下列语句:①三角形的内角和是180°;②作为一个角等于一个已知角;③两条直线被第三条直线所截,同位角相等;④延长线段AB到C,使BC=AB,其中是命题的有()A、①②B、②③C、①④D、①③4.方程组的解是()A、 B、 C、 D 、5.若一次函数y=kx+b,(k,b为常熟,且k≠0)的图像经过点(1,2)且y随x的增大而减小,则这个函数的表达式可能是()A、y=2x+4B、y=3x-1C、y=-3x-1D、y=-2x+46.如图,∠AOB的边OA为平面反光镜,一束光线从OB上的C点射出,经OA上的D点反射后,反射光线DE恰好与OB平行,若∠AOB=40°,则∠BCD的度数是()A、60°B、80°C、100°D、120°x +|y-2|=0,则(x+y)2017的值为()7.若3A、-1B、1C、±1D、08.若一组数据10,9.a,12,9的平均数是10,则这组数的方差是()A、0.9B、1C、1.2D、1.4第Ⅱ卷二、填空题:请把正确答案填写在答题卡的相应位置9.实数7的整数部分是_______10.命题“对顶角相等”的条件是_______________ ,结论是___________ 。
2017-2018学年第一学期期中考试八年级数学试题及答案
2017-2018学年第一学期八年级 数学(上) 参考答案及评分标准一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)二、填空题(本大题共4个小题,每小题3分,共12分,把答案写在题中横线上)17.> 18.3 19.2 20.8三、解答题(本大题共6个小题,共56分.解答应写出相应的文字说明或解题步骤)21.(1)解:原式=yx 2- ……………(4分) 21.(2)解:原式=2)1()1()111(a a a a a a +-∙++-+ ……………(2分) =2)1()1(11a a a +-∙+- =21-a ……………(4分) 21.(3)解:据题意得:x ﹣2=22=4,∴ x =6, ……………(1分)2y ﹣11=(﹣3)3=﹣27,∴ y =﹣8, ……………(2分)则x 2+y 2=62+(﹣8)2=36+64=100, ………………(3分)∴ x 2+y 2的平方根为±10. …………………(4分)22.解:(1)二, …………………(2分)a-24; …………………(4分) (2)由题意得,aa a -++222=2, 即a-24=2, …………………(5分) 解得:a =0, …………………(7分)经检验,a =0是原方程的解,∴ 当a =0时,原代数式的值等于2. …………………(8分)23.如图1,作出∠B =∠β得3分;作出边BC =a 得2分;作出边AC =b 和A ′C =b 共得3分,少一种情况扣1分.24.(1)命题一,命题二; …………………(4分) (2)命题一: 条件是①AB=AC ,②AD=AE ,③∠1=∠2,结论是④BD=CE .证明:∵∠1=∠2∴∠BAD=∠CAE ,又AB=AC ,AD=AE ,∴△ABD ≌△ACE (SAS ) …………………(8分)∴BD=CE .…………………(9分)或:命题二:条件是①AB=AC ,②AD=AE ,④BD=CE ,结论是③∠1=∠2.证明:∵AB=AC ,AD=AE ,BD=CE ,∴△ABD ≌△ACE (SSS ),…………………(8分)∴∠BAD=∠CAE ,∴∠1=∠2.…………………(9分)25.解:(1)设第一次购进衬衫x 件. 根据题意得:48000217600=-xx .…………………(4分) 解得:x =200.…………………(6分)经检验:x =200是原方程的解.答:该服装店第一次购进衬衫一共200件.…………………(7分)(2)盈利;…………………(8分)盈利=58×(200+400)﹣(17600+8000)=9200(元)…………………(9分) 答:该服装店这笔生意一共盈利9200元.26.(1)△ABE ≌△ACE ,△ADF ≌△CDB ………………(2分)(2)CEAF =2 …………………(3分) 证明:如图2,∵AE 平分∠DAC ,图2 A′ β b图1 A C B ba∴∠CAE =∠BAE ,∵AE ⊥CE ,∴∠AEC =∠AEB =90°,在△AEC 和△AEB 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BAECAE AE AE AEBAEC∴△AEC ≌△AEB (ASA ),∴CE =BE ,即CB =2CE ,…………………(5分)∵∠ADC =90°,∴∠ADF=∠CDB =90°,∴∠B +∠DCB =90°,∵∠B +∠DAF =90°,∴∠DAF =∠DCB ,在△ADF 和△CDB 中,⎪⎩⎪⎨⎧∠=∠=∠︒=∠=∠DCBDAF CD AD CDB ADF 90,∴△ADF ≌△CDB (ASA ),∴AF =CB =2CE ,即CE AF=2. …………………(7分)(3)等于; ……………(8分)辅助线如图3, …………………(9分)作法:过点P 作PG ⊥DC 交CE 的延长线于点G ,交DC 于点B . ………………(10分) 或:过点P 作PG ∥AD 交CE 的延长线于点G ,交DC 于点B . 或:延长CE 到点G ,使CE =GE ,连接PG 交DC 于点B . (说明:其它作法正确均给分)D CE 图3 G。
2017-2018学年山东省德州五中八年级(上)期中数学试卷(解析版)
2017-2018 学年山东省德州五中八年级(上)期中数学试卷一、选择题(每题4 分,共48 分)1.(4 分)下列图形中不是轴对称图形的是()A.B.C.D.2.(4分)三角形两边的长分别是4 和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.(4 分)等腰三角形的两边长分别为4cm 和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm 或20cm4.(4 分)如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8 厘米,AB=10 厘米,则△EBC 的周长为()厘米.A.16 B.18 C.26 D.285.(4 分)一个多边形的内角和是900°,则这个多边形的边数是()A.4 B.5 C.6 D.76.(4 分)已知:如图,AD 是△ABC 的角平分线,且AB:AC=3:2,则△ABD 与△ACD 的面积之比为()A.3:2 B.9:4 C.2:3 D.4:97.(4 分)△ABC 中,∠ABC 与∠ACB 的平分线相交于I,且∠BIC=130°,则∠A 的度数是()A.40° B.50° C.65°D.80°8.(4 分)如图∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.540°B.550° C.650° D.180°9.(4 分)如图,在△ABC 和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′ B.∠A=∠A′ C.AC=A′C′D.∠C=∠C′10.(4 分)如图,是三个等边三角形随意摆放的图形,则∠1+∠2+∠3 等于()A.90° B.120° C.150°D.180°11.(4 分)如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若A E=2,当EF+CF 取得最小值时,则∠ECF 的度数为()A.15° B.22.5° C.30° D.45°12.(4 分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON 上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7 的边长为()A.6 B.12 C.32 D.64二、填空题(每题4 分,共24 分)13.(4 分)从长度为2cm,3cm,4cm,5cm 四条线段中任意取三条组成三角形,则组成三角形的个数为.14.(4 分)如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入号球袋.15.(4 分)如图,点P 是∠AOB 外一点,点M、N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在线段MN 的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR 的长为.16.(4 分)点P(3a+6,3﹣a)关于x 轴的对称点在第四象限内,则a 的取值范围为.17.(4 分)在△ABC 中AB=AC,中线BD 将△ABC 的周长分为12cm 和15cm,则三角形底边长.18.(4 分)如图,C 为线段AE 上一动点(不与点A、E 重合),在AE 同侧分别作正△ABC 和正△CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有.(把你认为正确的序号都填上)三、解答题:(共78 分)19.(8 分)已知一个多边形的内角和与外角和的差为1440°,求这个多边形的边数.20.(10 分)如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC 关于直线DE 对称的对称的△A1B1C1;(2)在直线DE 上画出点P,使△PAC 周长最小.21.(10 分)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.22.(12 分)如图,O 为码头,A、B 两个灯塔与码头O 的距离相等,OA,OB 为海岸线,一轮船P 离开码头,计划沿∠AOB 的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P 始终保持与灯塔A、B 的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.23.(12 分)如图,已知△ABC 中,AB>AC,BE、CF 都是△ABC 的高,P 是BE 上一点且BP=AC,Q 是CF 延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ 的形状.24.(12 分)在△ABC 中,∠ACB=90°,AC=BC,直线MN 经过点C,且AD⊥MN 于D,BE⊥MN 于E.(1)当直线MN 绕点C 旋转到图1 的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN 绕点C 旋转到图2 的位置时,直接写出DE、AD、BE 的关系为:(3)当直线MN 绕点C 旋转到图3 的位置时,试问DE、AD、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.25.(14 分)如图,已知△ABC 中,AB=AC=10cm,BC=8cm,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?2017-2018 学年山东省德州五中八年级(上)期中数学试卷参考答案与试题解析一、选择题(每题4 分,共48 分)1.(4 分)下列图形中不是轴对称图形的是()A.B.C.D.【解答】解:根据轴对称图形的概念可知:A,B,D 是轴对称图形,C 不是轴对称图形,故选:C.2.(4分)三角形两边的长分别是4 和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【解答】解:设此三角形第三边的长为a,则10﹣4<a<10+4,即6<a<14.故选:C.3.(4 分)等腰三角形的两边长分别为4cm 和8cm,则它的周长为()A.16cm B.17cm C.20cm D.16cm 或20cm【解答】解:等腰三角形的两边长分别为4cm 和8cm,当腰长是4cm 时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm 不满足三角形的三边关系;当腰长是8cm 时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故选:C.4.(4 分)如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8 厘米,AB=10 厘米,则△EBC 的周长为()厘米.A.16 B.18 C.26 D.28【解答】解:∵DE 是△ABC 中AC 边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC 的周长=BC+BE+CE=10 厘米+8 厘米=18 厘米,故选:B.5.(4 分)一个多边形的内角和是900°,则这个多边形的边数是()A.4 B.5 C.6 D.7【解答】解:设该多边形的边数为n则:(n﹣2)•180°=900°,解得:n=7.故选:D.6.(4 分)已知:如图,AD 是△ABC 的角平分线,且AB:AC=3:2,则△ABD 与△ACD 的面积之比为()A.3:2 B.9:4 C.2:3 D.4:9【解答】解:过点D 作DE⊥AB 于E,DF⊥AC 于F.∵AD 为∠BAC 的平分线,∴DE=DF,又AB:AC=3:2,∴S△ABD:S△ACD=(AB•DE):(AC•DF)=AB:AC=3:2.故选:A.7.(4 分)△ABC 中,∠ABC 与∠ACB 的平分线相交于I,且∠BIC=130°,则∠A 的度数是()A.40° B.50° C.65°D.80°【解答】解:∵∠BIC=130°,∴∠EBC+∠FCB=180°﹣∠BIC=180°﹣130°=50°,∵BE、CF 是△ABC 的角平分线,∴∠ABC+∠ACB=2(∠EBC+∠FCB)=2×50°=100°,∴∠A=180°﹣100°=80°.故选:D.8.(4 分)如图∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.540°B.550° C.650° D.180°【解答】解:如图,∠6+∠7=∠8+∠9,由五边形内角和定理得:∠1+∠2+∠3+∠8+∠9+∠4+∠5=540°,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=540°.故选:A.9.(4 分)如图,在△ABC 和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′ B.∠A=∠A′C.AC=A′C′ D.∠C=∠C′【解答】解:A、若添加BC=BˊCˊ,可利用SAS 进行全等的判定,故本选项错误;B、若添加∠A=∠A',可利用ASA 进行全等的判定,故本选项错误;C、若添加AC=A'C',不能进行全等的判定,故本选项正确;D、若添加∠C=∠Cˊ,可利用AAS 进行全等的判定,故本选项错误;故选:C.10.(4 分)如图,是三个等边三角形随意摆放的图形,则∠1+∠2+ ∠3 等于()A.90° B.120° C.150°D.180°【解答】解:∵图中是三个等边三角形,∴∠1=180°﹣60°﹣∠ABC=120°﹣∠ABC,∠2=180°﹣60°﹣∠ACB=120°﹣∠ACB,∠3=180°﹣60°﹣∠BAC=120°﹣∠BAC,∵∠ABC+∠ACB+∠BAC=180°,∴∠1+∠2+∠3=360°﹣180°=180°,故选:D.11.(4 分)如图,等边△ABC 的边长为4,AD 是BC 边上的中线,F 是AD 边上的动点,E 是AC 边上一点,若AE=2,当EF+CF 取得最小值时,则∠ECF 的度数为()A.15° B.22.5° C.30° D.45°【解答】解:过E 作EM∥BC,交AD 于N,∵AC=4,AE=2,∴EC=2=AE,∴AM=BM=2,∴AM=AE,∵AD 是BC 边上的中线,△ABC 是等边三角形,∴AD⊥BC,∵EM∥BC,∴AD⊥EM,∵AM=AE,∴E 和M 关于AD 对称,连接CM 交AD 于F,连接EF,则此时EF+CF 的值最小,∵△ABC 是等边三角形,∴∠ACB=60°,AC=BC,∵AM=BM,∴∠ECF= ∠ACB=30°,故选:C.12.(4 分)如图,已知:∠MON=30°,点A1、A2、A3…在射线ON 上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1 ,则△A6B6A7 的边长为()A.6 B.12 C.32 D.64【解答】解:∵△A1B1A2 是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3 、△A3B3A4 是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二、填空题(每题4 分,共24 分)13.(4 分)从长度为2cm,3cm,4cm,5cm 四条线段中任意取三条组成三角形,则组成三角形的个数为 3 个.【解答】解:任意三条线段组合有:2cm,3cm,4cm;2cm,3cm,5cm;2cm,4cm,5cm;3cm,4cm,5cm.根据三角形的三边关系,可知2cm,3cm,5cm 不能组成三角形.故答案为:3 个14.(4 分)如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过多次反射),那么该球最后将落入 1 号球袋.【解答】解:如图,该球最后将落入1 号球袋.15.(4 分)如图,点P 是∠AOB 外一点,点M、N 分别是∠AOB 两边上的点,点P 关于OA 的对称点Q 恰好落在线段MN 上,点P 关于OB 的对称点R 落在线段MN 的延长线上.若PM=2.5cm,PN=3cm,MN=4cm,则线段QR 的长为4.5cm .【解答】解:由轴对称的性质可知:PM=MQ=2.5cm,PN=RN=3cm,QN=MN﹣QM=4﹣2.5=1.5cm,QR=QN+NR=1.5+3=4.5cm.故答案为:4.5cm.16.(4 分)点P(3a+6,3﹣a)关于x 轴的对称点在第四象限内,则a 的取值范围为﹣2<a<3 .【解答】解:∵P 关于x 轴的对称点在第四象限内,∴点P 位于第一象限.∴3a+6>0①,3﹣a>0②.解不等式①得:a>﹣2,解不等式②得:a<3,所以a 的取值范围是:﹣2<a<3.故答案为:﹣2<a<3.17.(4 分)在△ABC 中AB=AC,中线BD 将△ABC 的周长分为12cm 和15cm,则三角形底边长 11cm 或7cm .【解答】解:如图,∵DB 为△ABC 的中线,∴AD=CD.设AD=CD=x,则AB=2x,当x+2x=12,解得x=4,BC+x=15,解得BC=11,此时△ABC 的底边长为11cm;当x+2x=15,BC+x=12,解得x=5,BC=7,此时△ABC 的底边长为7cm.故答案为11cm 或7cm.18.(4 分)如图,C 为线段AE 上一动点(不与点A、E 重合),在AE 同侧分别作正△ABC 和正△CDE,AD 与BE 交于点O,AD 与BC 交于点P,BE 与CD 交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.恒成立的结论有①②③⑤.(把你认为正确的序号都填上)【解答】解:①∵正△ABC 和正△CDE,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),∴AD=BE,∠ADC=∠BEC,(故①正确);②又∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,(故②正确);③∵△CDP≌△CEQ,∴DP=QE,∵△ADC≌△BEC∴AD=BE,∴AD﹣DP=BE﹣QE,∴AP=BQ,(故③正确);④∵DE>QE,且DP=QE,∴DE>DP,(故④错误);⑤∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,(故⑤正确).∴正确的有:①②③⑤.故答案为:①②③⑤.三、解答题:(共78 分)19.(8 分)已知一个多边形的内角和与外角和的差为1440°,求这个多边形的边数.【解答】解:设此多边形的边数为n,则:(n﹣2)•180=1440+360,解得:n=12.答:这个多边形的边数为12.20.(10 分)如图,在所给的网格图中,完成下列各题(用直尺画图,否则不给分)(1)画出格点△ABC 关于直线DE 对称的对称的△A1B1C1;(2)在直线DE 上画出点P,使△PAC 周长最小.【解答】解:(1)如图所示:从△ABC 各顶点向DE 引垂线并延长相同的长度,找到对应点,顺次连接即可得△A1B1C1;(2)如图所示:利用轴对称图形的性质可得点C 关于直线DE 的对称点C1,连接C1A,交直线DE 于点P 点,P 即为所求,此时△PAC 的周长最小.21.(10 分)如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【解答】证明:∵AB∥DE,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC 和△DEF 中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.22.(12 分)如图,O 为码头,A、B 两个灯塔与码头O 的距离相等,OA,OB 为海岸线,一轮船P 离开码头,计划沿∠AOB 的平分线航行.(1)用尺规作出轮船的预定航线OC;(2)在航行途中,轮船P 始终保持与灯塔A、B 的距离相等,试问轮船航行时是否偏离了预定航线?请说明理由.【解答】解:(1)如图所示:OC 即为所求.(2)没有偏离预定航行,理由如下:在△AOP 与△BOP 中,,∴△AOP≌△BOP(SSS).∴∠AOC=∠BOC,即点C 在∠AOB 的平分线上.23.(12 分)如图,已知△ABC 中,AB>AC,BE、CF 都是△ABC 的高,P 是BE 上一点且BP=AC,Q 是CF 延长线上一点且CQ=AB,连接AP、AQ、QP,判断△APQ 的形状.【解答】解:△APQ 是等腰直角三角形.∵BE、CF 都是△ABC 的高,∴∠1+∠BAE=90°,∠2+∠CAF=90°(同角(可等角)的余角相等)∴∠1=∠2 又∵AC=BP,CQ=AB,在△ACQ 和△PBA 中,∴△ACQ≌△PBA∴AQ=AP,∴∠CAQ=∠BPA=∠3+90°∴∠QAP=∠CAQ﹣∠3=90°∴AQ⊥AP∴△APQ 是等腰直角三角形24.(12 分)在△ABC 中,∠ACB=90°,AC=BC,直线MN 经过点C,且AD⊥MN 于D,BE⊥MN 于E.(1)当直线MN 绕点C 旋转到图1 的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN 绕点C 旋转到图2 的位置时,直接写出DE、AD、BE 的关系为:DE=AD﹣BE(3)当直线MN 绕点C 旋转到图3 的位置时,试问DE、AD、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【解答】(1)证明:∵∠ACB=90°,∴∠ACD+∠BCE=90°,而AD⊥MN 于D,BE⊥MN 于E,∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,∴∠ACD=∠CBE.在△ADC 和△CEB 中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=DC+CE=BE+AD;(2)DE=AD﹣BE,在△ADC 和△CEB 中,,∴△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CE﹣CD=AD﹣BE;故答案为:DE=AD﹣BE(3)DE=BE﹣AD.易证得△ADC≌△CEB,∴AD=CE,DC=BE,∴DE=CD﹣CE=BE﹣AD.25.(14 分)如图,已知△ABC 中,AB=AC=10cm,BC=8cm,点D 为AB 的中点.(1)如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次在△ABC 的哪条边上相遇?【解答】解:(1)①∵t=1s,∴BP=CQ=3×1=3cm,∵AB=10cm,点D 为AB 的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,在△BPD 和△CQP 中,∴△BPD≌△CQP(SAS).②∵v P≠v Q,∴BP≠CQ,若△BPD≌△CPQ,∠B=∠C,则BP=PC=4cm,CQ=BD=5cm,∴点P,点Q 运动的时间s,∴cm/s;(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得x=3x+2×10,解得.∴点P 共运动了×3=80cm.△ABC 周长为:10+10+8=28cm,若是运动了三圈即为:28×3=84cm,∵84﹣80=4cm<AB 的长度,∴点P、点Q 在AB 边上相遇,∴经过s 点P 与点Q 第一次在边AB 上相遇.。
2017-2018学年八年级(上)期中数学试卷(含解析)
2017-2018学年八年级(上)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分)1.在平面直角坐标系中,点(﹣1,2)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列语句中,不是命题的是()A.直角都等于90°B.对顶角相等C.互补的两个角不相等D.作线段AB3.一个三角形的三个外角之比为3:4:5,则这个三角形内角之比是()A.5:4:3 B.4:3:2 C.3:2:1 D.5:3:14.在如图所示的象棋盘上,若“帅”和“相”所在的坐标分别是(1,﹣2)和(3,﹣2)上,则“炮”的坐标是()A.(﹣1,1)B.(﹣1,2)C.(﹣2,1)D.(﹣2,2)5.已知一次函数y=kx+b﹣x的图象与x轴的正半轴相交,且函数值y随自变量x的增大而增大,则k,b的取值情况为()A.k>1,b<0 B.k>1,b>0 C.k>0,b>0 D.k>0,b<06.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定△ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个7.直线l1:y=k1x+b与直线l2:y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于x的不等式k1x+b<k2x+c的解集为()A.x>1 B.x<1 C.x>﹣2 D.x<﹣28.在长方形ABCD中,AB=2,BC=1,动点P从点B出发,沿路线B→C→D做匀速运动,那么△ABP的面积S与点P运动的路程x之间的函数图象大致为()A. B.C.D.9.如图,∠MAN=100°,点B、C是射线AM、AN上的动点,∠ACB的平分线和∠MBC 的平分线所在直线相交于点D,则∠BDC的大小()A.40°B.50°C.80°D.随点B、C的移动而变化10.如图,△ABC顶点坐标分别为A(1,0)、B(4,0)、C(1,4),将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4 B.8 C. D.16二.填空题(本大题共8小题,每小题3分,共24分)11.点M(3,﹣1)到x轴距离是,到y轴距离是.12.如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=.13.已知直线y=kx+b经过点(﹣2,2),并且与直线y=2x+1平行,那么b=.14.已知:点A(x1,y1),B(x2,y2)是一次函数y=﹣2x+5图象上的两点,当x1>x2时,y1y2.(填“>”、“=”或“<”)15.如图,已知一次函数y=kx+3和y=﹣x+b的图象交于点P(2,4),则关于x的方程kx+3=﹣x+b的解是.16.如图,已知在△ABC中,∠B与∠C的平分线交于点P.当∠A=70°时,则∠BPC的度数为.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是米.。
2017-2018学年人教版八年级(下)期中数学试卷(有答案和解析)(3)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=84.正方形面积为36,则对角线的长为()A.6B.C.9D.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.66.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.39.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称.13.一个多边形的内角和与外角和的比是4:1,则它的边数是.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为.16.如图,已知A1(1,0)、A2(1,1)、A3(﹣1,1)、A4(﹣1,﹣1)、A5(2,﹣1)、….则点A2019的坐标为.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?20.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】根据最简二次根式的定义逐一判断即可得.【解答】解:A、==,此选项不符合题意;B、是最简二次根式,符合题意;C、==,此选项不符合题意;D、=3,次选县不符合题意;故选:B.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.下列各数中,最小的数是()A.0B.﹣2C.1D.﹣【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,进行比较.【解答】解:最小的数是﹣2,故选:B.【点评】此题主要考查了比较实数的大小,要熟练掌握任意两个实数比较大小的方法.(1)正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.3.下列计算错误的是()A.+=B.×=C.÷=3D.(2)2=8【分析】根据二次根式的运算法则逐一计算即可得出答案.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、×==,此选项正确;C、÷===3,此选项正确;D、(2)2=8,此选项正确;故选:A.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.正方形面积为36,则对角线的长为()A.6B.C.9D.【分析】根据对角线互相垂直的四边形的面积等于对角线乘积的一半,且正方形对角线相等,列方程解答即可.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.【点评】本题考查了正方形的性质,注意结论:对角线互相垂直的四边形的面积等于对角线乘积的一半.此题也可首先根据面积求得正方形的边长,再根据勾股定理进行求解.5.直角三角形两条直角边长分别是6和8,则斜边上的中线长为()A.3B.4C.5D.6【分析】利用勾股定理求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵直角三角形两条直角边长分别是6和8,∴斜边==10,∴斜边上的中线长=×10=5.故选:C.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记性质是解题的关键.6.下列条件中,不能判断△ABC是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=3:4:5C.∠A+∠B=∠C D.a:b:c=1:2:【分析】根据勾股定理的逆定理、三角形的内角和为180度进行判定即可.【解答】解:A、正确,因为a:b:c=3:4:5,所以设a=3x,b=4x,c=5x,则(3x)2+(4x)2=(5x)2,故为直角三角形;B、错误,因为∠A:∠B:∠C=3:4:5,所以设∠A=3x,则∠B=4x,∠C=5x,故3x+4x+5x=180°,解得x=15°,3x=15×3=45°,4x=15×4=60°,5x=15×5=75°,故此三角形是锐角三角形.C、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;D、正确,12+()2=22符合勾股定理的逆定理,故成立;故选:B.【点评】此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.7.矩形具有而平行四边形不一定具有的性质是()A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角相等【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:B.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.8.如图,在底边BC为2,腰AB为2的等腰三角形ABC中,DE垂直平分AB于点D,交BC于点E,则△ACE的周长为()A.2+B.2+2C.4D.3【分析】根据线段垂直平分线的性质得到BE=AE,可得AE+EC=BC=2,即可得到结论【解答】解:∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:B.【点评】本题考查了线段垂直平分线性质,等腰三角形的性质等知识点,主要考查运用性质进行推理的能力.9.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是()A.135°B.120°C.60°D.45°【分析】易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【解答】解:∵四边形ABCD是正方形.∴AB=AD,∠BAF=∠DAF.∴△ABF与△ADF全等.∴∠AFD=∠AFB.∵CB=CE,∴∠CBE=∠CEB.∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°.∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选:B.【点评】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.10.如图,在Rt△ABC中,AC=3,BC=4,D为斜边AB上一动点,DE⊥BC,DF⊥AC,垂足分别为E、F.则线段EF的最小值为()A.B.C.D.【分析】连接CD,判断出四边形CEDF是矩形,再根据矩形的对角线相等可得EF=CD,然后根据垂线段最短可得CD⊥AB时线段EF的长最小,进而解答即可.【解答】解:如图,连接CD,∵DE⊥BC,DF⊥AC,∠ACB=90°,∴四边形CEDF是矩形,∴EF=CD,由垂线段最短可得CD⊥AB时线段EF的长最小,∵AC=3,BC=4,∴AB=,∵四边形CEDF是矩形,∴CD=EF=,故选:D.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,熟记性质与判定方法并确定出EF 最短时的位置是解题的关键.二.填空题(共6小题,满分24分,每小题4分)11.若式子有意义,则x的取值范围是1≤x≤2.【分析】直接根据二次根式的意义建立不等式组即可得出结论.【解答】解:根据二次根式的意义,得,∴1≤x≤2,故答案为1≤x≤2.【点评】此题主要考查了二次根式的意义,解不等式组,建立不等式组是解本题的关键.12.将一张等腰直角三角形纸片沿如图所示的中位线剪开,两块纸片可以拼出不同形状的四边形,请你写出其中两种不同的四边形名称矩形,平行四边形,等腰梯形等.【分析】根据题意画出图形便可直观解答.【解答】解:如图:可拼成以上三种图形:等腰梯形、矩形、平行四边形或等腰梯形、平行四边形.【点评】解答此类题目的关键是根据题意画出图形再解答.13.一个多边形的内角和与外角和的比是4:1,则它的边数是10.【分析】多边形的外角和是360度,内角和与外角和的比是4:1,则内角和是1440度.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:根据题意,得(n﹣2)•180=1440,解得:n=10.则此多边形的边数是10.故答案为:10.【点评】本题考查了多边形内角和定理和外角和定理:多边形内角和为(n﹣2)•180°,外角和为360°.14.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是S1+S2=S3.【分析】分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r 1)2+(2r 2)2的关系,可以求得S 1+S 2=S 3.【解答】解:设大圆的半径是r 3,则S 3=πr 32;设两个小圆的半径分别是r 1和r 2,则S 1=πr 12,S 2=πr 22.由勾股定理,知(2r 3)2=(2r 1)2+(2r 2)2,得r 32=r 12+r 22.所以S 1+S 2=S 3.故答案为S 1+S 2=S 3.【点评】本题考查了勾股定理的正确运算,在直角三角形中直角边与斜边的关系,本题中巧妙地运用勾股定理求得:(2r 3)2=(2r 1)2+(2r 2)2是解题的关键.15.已知一个菱形的两条对角线的长分别为10和24,则这个菱形的周长为 52 .【分析】根据菱形的对角线互相垂直平分,可知AO 和BO 的长,再根据勾股定理即可求得AB 的值,由菱形的四个边相等,继而求出菱形的周长.【解答】解:已知AC =10,BD =24,菱形对角线互相垂直平分,∴AO =5,BO =12cm ,∴AB ==13,∴BC =CD =AD =AB =13,∴菱形的周长为4×13=52.故答案是:52.【点评】本题考查了菱形对角线互相垂直平分的性质,考查了菱形各边长相等的性质,考查了勾股定理在直角三角形中的运用,根据勾股定理求AB 的值是解题的关键.16.如图,已知A 1(1,0)、A 2(1,1)、A 3(﹣1,1)、A 4(﹣1,﹣1)、A 5(2,﹣1)、….则点A 2019的坐标为 (﹣505,505) .的坐标为(﹣n,n)(n为正【分析】观察图形,由第二象限点的坐标的变化可得出“点A4n﹣1整数)”,再结合2019=4×505﹣1,即可求出点A2019的坐标.【解答】解:观察图形,可知:点A3的坐标为(﹣1,1),点A7的坐标为(﹣2,2),点A11的坐标为(﹣3,3),…,的坐标为(﹣n,n)(n为正整数).∴点A4n﹣1又∵2019=4×505﹣1,∴点A2019的坐标为(﹣505,505).故答案为:(﹣505,505).的坐标【点评】本题考查了规律型:点的坐标,根据点的坐标的变化,找出变化规律“点A4n﹣1为(﹣n,n)(n为正整数)”是解题的关键.三.解答题(共9小题,满分86分)17.计算(1)先化简,再求值+÷,其中a=+1.(2)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.【分析】(1)先根据分式的混合运算顺序和运算法则计算可得;(2)根据x的值,可以求得题目中所求式子的值.【解答】解:(1)原式=+•=+=,当a=+1时,原式==1+;(2)∵x=2﹣,∴x2=(2﹣)2=7﹣4,∴(7+4)x2+(2+)x+=(7+4)(7﹣4)+(2+)(2﹣)+=1+1+=2+.【点评】本题考查分式与二次根式的化简求值,解答本题的关键是明确分式与二次根式化简求值的方法.18.如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD 交于点G、H.求证:AG=CH.【分析】利用平行四边形的性质得出AF=EC,再利用全等三角形的判定与性质得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,正确掌握平行线的性质是解题关键.19.如图,某中学有一块四边形的空地ABCD,学校计划在空地上种植草皮,经测量∠A=90°,AB =3m,BC=12m,CD=13m,DA=4m,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?【分析】仔细分析题目,需要求得四边形的面积才能求得结果.连接BD ,在直角三角形ABD 中可求得BD 的长,由BD 、CD 、BC 的长度关系可得三角形DBC 为一直角三角形,DC 为斜边;由此看,四边形ABCD 由Rt △ABD 和Rt △DBC 构成,则容易求解.【解答】解:连接BD ,在Rt △ABD 中,BD 2=AB 2+AD 2=32+42=52,在△CBD 中,CD 2=132,BC 2=122,而122+52=132,即BC 2+BD 2=CD 2,∴∠DBC =90°,S 四边形ABCD =S △BAD +S △DBC =•AD •AB +DB •BC ,=×4×3+×12×5=36.所以需费用36×200=7200(元).【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.20.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,BE ∥AC ,CE ∥DB .求证:四边形OBEC 是矩形.【分析】先证四边形OCED 是平行四边形,然后根据菱形的对角线互相垂直,得到∠BOC =90°,根据矩形的定义即可判定四边形OCDE是矩形.【解答】证明:∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,且AC、BD是对角线,∴AC⊥BD,∴∠BOC=90°,∴平行四边形OBEC是矩形.【点评】此题综合考查了菱形的性质与矩形的判定方法.矩形的判定定理有:(1)有一个角是直角的平行四边形是矩形;(2)有三个角是直角的四边形是矩形;(3)对角线互相平分且相等的四边形是矩形.21.(1)定义:直角三角形两直角边的平方和等于斜边的平方.如:直角三角形的直角边分别为3、4,则斜边的平方=32+42=25.已知:Rt△ABC中,∠C=90°,AC=8,AB=10,直接写出BC2=36.(2)应用:已知正方形ABCD的边长为4,点P为AD边上的一点,AP=AD,请利用“两点之间线段最短”这一原理,在线段AC上画出一点M,使MP+MD最小,并直接写出最小值的平方为17.【分析】(1)根据直角三角形两直角边的平方和等于斜边的平方计算即可;(2)如图,连接BM,PB.因为PM+MD=PM+BM≥PB,推出PM+DM的最小值为PB的长,由此即可解决问题;【解答】解:(1)在Rt△ABC中,∵∠ACB=90°,AC=8,AB=10,∴BC2=AB2﹣AC2=100﹣64=36,故答案为36(2)如图,连接BM,PB.∵四边形ABCD是正方形,∴∠BAP=90°,B、D关于AC对称,∴MD=MB,∴PM+MD=PM+BM≥PB,∴PM+DM的最小值为PB的长,在Rt△ABP中,PB2=AB2+PA2=42+12=17,故答案为17.【点评】本题考查轴对称、正方形的性质、直角三角形的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.22.在学习了二次根式的相关运算后,我们发现一些含有根号的式子可以表示成另一个式子的平方,如:3+2=2+2+1=()2+2+1=(+1)2;5+2=2+2+3=()2+2××+()2=(+)2(1)请仿照上面式子的变化过程,把下列各式化成另一个式子的平方的形式:①4+2;②6+4(2)若a+4=(m+n)2,且a,m,n都是正整数,试求a的值.【分析】(1)根据完全平方公式求出即可;(2)先根据完全平方公式展开,再求出m、n的值,再求出a即可.【解答】解:(1)4+2=3+2+1=()2+2×+12=(+1)2;6+4=4+4+2=22+2×2×+()2=(2+)2;(2)∵a+4=(m+n)2,∴a+4=m2+2mn+3n2,∴a=m2+3n2,2mn=4,∴mn=2,∵m,n都是正整数,∴m=2,n=1或m=1,n=2;当m=2,n=1时,a=22+3×12=7;当m=1,n=2时,a=12+3×22=13;即a的值是7或13.【点评】本题考查了完全平方公式和求代数式的值、二次根式的混合运算,能熟记完全平方公式是解此题的关键,还培养了学生的阅读能力和计算能力.23.正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.【分析】(1)根据正方形的面积为10可得正方形边长为,画一个边长为正方形即可;(2)①画一个边长为,2,的直角三角形即可;②画一个边长为,,的直角三角形即可;【解答】解:(1)如图①所示:(2)如图②③所示.【点评】此题主要考查了利用勾股定理画图,关键是计算出所画图形的边长是直角边长为多少的直角三角形的斜边长.24.如图,已知矩形纸片ABCD,AD=2,AB=4,将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB、CD交于点G、F,AE与FG交于点O.(1)如图1,求证:A、G、E、F四点围成的四边形是菱形;(2)如图2,点N是线段BC的中点,且ON=OD,求折痕FG的长.【分析】(1)根据折叠的性质判断出AG=GE,∠AGF=∠EGF,再由CD∥AB得出∠EFG=∠AGF,从而判断出EF=AG,得出四边形AGEF是平行四边形,继而结合AG=GE,可得出结论.(2)连接ON,得出ON是梯形ABCE的中位线,在RT△ADE中,利用勾股定理可解出x,继而可得出折痕FG的长度.【解答】(1)证明:由折叠的性质可得,GA=GE,∠AGF=∠EGF,∵DC∥AB,∴∠EFG=∠AGF,∴∠EFG=∠EGF,∴EF=EG=AG,∴四边形AGEF是平行四边形(EF∥AG,EF=AG),又∵AG=GE,∴四边形AGEF是菱形.(2)解:连接ON,∵O,N分别是AE,CB的中点,故ON是梯形ABCE的中位线,设CE=x,则ED=4﹣x,2ON=CE+AB=x+4,在Rt△AED中,AE=2OE=2ON=x+4,AD2+DE2=AE2,∴22+(4﹣x)2=(4+x)2,得x=,OE==,∵△FEO∽△AED,∴=,解得:FO=,∴FG=2FO=.故折痕FG的长是.【点评】此题考查了翻折变换的知识,涉及了菱形的判定、含30°角的直角三角形的性质,关键在于得出△FEO∽△AED,求出=.25.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG=BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.【分析】(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.(2)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【解答】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=2∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(2)结论:IH=FH.理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=120°,∴∠MIJ+∠BIF=120°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG2=AG2+CE2.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC2+CM2=EM2,∵EG=EM,AG=CM,∴GE2=AG2+CE2.【点评】本题考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题,属于中考压轴题.。
2017-2018年山东省济南市天桥区八年级(上)数学期中试卷及参考答案
2017-2018学年山东省济南市天桥区八年级(上)期中数学试卷一、选择题(本大题共15小题,每题4分,共60分)1.(4分)在下列各数:0.51525354…、、、、、、中,无理数的个数是()A.2 B.3 C.4 D.52.(4分)以下列各组数据为边长作三角形,其中能组成直角三角形的是()A.2,3,4 B.4,5,6 C.1,,D.2,,43.(4分)估算的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间4.(4分)若|x+y﹣3|+=0,则x﹣y的值为()A.﹣1 B.1 C.2 D.﹣25.(4分)如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0) D.(0,1)6.(4分)直角三角形两直角边分别为5cm和12cm,则其斜边的高为()A.6cm B.8cm C.cm D.cm7.(4分)如果一个正比例函数的图象经过点(2,﹣1),那么这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.8.(4分)若m<0,n>0,则一次函数y=mx﹣n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.(4分)点(x1,y1)、(x2,y2)在直线y=﹣x+b上,若x1<x2,则y1与y2大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定10.(4分)已知正比例函数y=kx(k≠0)中,y随x的增大而减小,那么一次函数y=kx﹣k的图象大致是如图中的()A.B.C.D.11.(4分)已知三点A、B、C,A点关于原点对称点是B,B关于x轴的对称点是C,若C点(﹣7,4),则A的坐标是()A.(7,4) B.(7,﹣4)C.(﹣7,﹣4)D.无法确定12.(4分)已知变量y与x的关系满足下表,那么能反映y与x之间的函数关系的解析式是()A.y=﹣2x B.y=x+4 C.y=﹣x+2 D.y=2x﹣213.(4分)已知直线y=kx+b经过点A(x1,y1)和点B(x2,y2),若k>0,且x1<x2,则()A.y1<y2B.y1>y2C.y1=y2D.y1与y2的大小关系不能确定14.(4分)如图,一系列等腰直角三角形(编号分别为①、②、③、④、…)组成了一个螺旋形,其中第1个三角形的直角边长为1,则第n个等腰直角三角形的面积为()A.2n﹣3 B.2n﹣2 C.2n﹣1 D.2n15.(4分)如图,与①中的三角形相比,②中的三角形发生的变化是()A.向左平移3个单位B.向左平移1个单位C.向上平移3个单位D.向下平移1个单位二、填空题(本大题共6小题,每小题3分,共18分,把答案填在题中的横线上)16.(3分)已知a,b为两个连续整数,且,则a+b=.17.(3分)已知函数y=kx+b的图象与y轴交点的纵坐标为﹣5,且当x=1,y=﹣2时,则此函数的解析式是.18.(3分)若x,y为实数,且|x+2|+=0,则(x+y)2014的值为.19.(3分)在平面直角坐标系中,等边△AOB的位置如图,若OB=3,则点A的坐标为.20.(3分)已知一次函数y=kx+b(k≠0)与y=kx(k≠0)的图象交于A(﹣1,2),且与y轴分别交于B、C两点,若点C的纵坐标为3,则△AOB的面积为.21.(3分)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,在点A处有一栋居民楼,AO=200m,如果火车行驶时,周围200m以内会受到噪音的影响,那么火车在铁路MN上沿ON方向行驶时,居民楼是否会受到噪音的影响?如果火车行驶的速度为72km/h,居民楼受噪音影响的时间约为多少秒(精确到0.1s)?三、解答题(本大题共7小题,共72分,解答应写出文字说明,证明过程或演算步骤)22.(16分)(1)﹣﹣4(2)(+)(﹣)﹣(﹣)2(3)(4).23.(8分)如图,平面直角坐标系中,点A的坐标是(﹣4,4),点B的坐标是(2,5).(1)写出点A关于x轴对称的对称点A′的坐标;(2)求出过A′,B两点直线的一次函数的解析式;(3)在x轴上有一动点P,要使PA+PB最小,求点P的坐标.24.(8分)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,(1)求BF与FC的长;(2)求EC的长.25.(10分)如图,一次函数的图象经过平面直角坐标系中A,B两点.(1)求一次函数解析式;(2)当x=5时,求y的值;(3)求一次函数图象与坐标轴围成的△BOC的面积.26.(8分)已知直线l1:y=kx﹣4的图象与直线l2:y=x+1的图象平行.(1)求直线l1的图象与x轴,y轴所围成图形的面积;(2)求原点到直线l1的距离.27.(10分)体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元,求商店购进篮球,排球各多少个?28.(12分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C 站,货车由B地经过C地驶往A地,两车同时出发,匀速行驶,图2是客车、货车离C站的路程y1,y2(km)与行驶时间x(h)之间的函数关系图象.(1)填空:A,B两地相距km;(2)求货车离C站的路程y2与行驶时间x之间的函数表达式;(3)两车出发后几小时相遇?(4)两车出发几小时后相差20km的路程?2017-2018学年山东省济南市天桥区八年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共15小题,每题4分,共60分)1.(4分)在下列各数:0.51525354…、、、、、、中,无理数的个数是()A.2 B.3 C.4 D.5【解答】解:无理数有:0.51525354…、,共3个.故选:B.2.(4分)以下列各组数据为边长作三角形,其中能组成直角三角形的是()A.2,3,4 B.4,5,6 C.1,,D.2,,4【解答】解:A、22+32≠42,故不是直角三角形;B、42+52≠62,故不是直角三角形;C、12+()2=()2,故是直角三角形;D、22+()2≠42,故不是直角三角形.故选:C.3.(4分)估算的值在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解答】解:∵,∴5<<6,故选:C.4.(4分)若|x+y﹣3|+=0,则x﹣y的值为()A.﹣1 B.1 C.2 D.﹣2【解答】解:由题意,得,解得,x﹣y=1﹣2=﹣1,故选:A.5.(4分)如果P(m+3,2m+4)在y轴上,那么点P的坐标是()A.(﹣2,0)B.(0,﹣2)C.(1,0) D.(0,1)【解答】解:∵P(m+3,2m+4)在y轴上,∴m+3=0,解得m=﹣3,2m+4=﹣2,∴点P的坐标是(0,﹣2).故选:B.6.(4分)直角三角形两直角边分别为5cm和12cm,则其斜边的高为()A.6cm B.8cm C.cm D.cm【解答】解:∵直角三角形的两条直角边分别为5cm,12cm,∴斜边为:=13cm,设斜边上的高为hcm,则×5×12=×13•h,解得h=.故选:D.7.(4分)如果一个正比例函数的图象经过点(2,﹣1),那么这个正比例函数的解析式为()A.y=2x B.y=﹣2x C.D.【解答】解:设正比例函数解析式为y=kx,∵正比例函数的图象经过点(2,﹣1),∴2k=﹣1,解得k=﹣,所以,函数解析式为y=﹣x.故选:D.8.(4分)若m<0,n>0,则一次函数y=mx﹣n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:根据题意,在一次函数y=mx﹣n中,m<0,n>0,则函数的图象过二、三、四象限,不过第一象限,故选:A.9.(4分)点(x1,y1)、(x2,y2)在直线y=﹣x+b上,若x1<x2,则y1与y2大小关系是()A.y1<y2B.y1=y2C.y1>y2D.无法确定【解答】解:∵直线y=﹣x+b中k=﹣1<0,∴y随x的增大而减小,∵x1<x2,∴y1>y2.故选:C.10.(4分)已知正比例函数y=kx(k≠0)中,y随x的增大而减小,那么一次函数y=kx﹣k的图象大致是如图中的()A.B.C.D.【解答】解:∵正比例函数y=kx(k≠0)中,y随x的增大而减小,∴k<0,∴﹣k>0,∴一次函数y=kx﹣k的图象经过第一、二、四象限.故选:D.11.(4分)已知三点A、B、C,A点关于原点对称点是B,B关于x轴的对称点是C,若C点(﹣7,4),则A的坐标是()A.(7,4) B.(7,﹣4)C.(﹣7,﹣4)D.无法确定【解答】解:∵B关于x轴的对称点是C,点C的坐标是(﹣7,4),∴B点坐标为:(﹣7,﹣4),∵A点关于原点的对称点是B,∴A(7,4),故选:A.12.(4分)已知变量y与x的关系满足下表,那么能反映y与x之间的函数关系的解析式是()A.y=﹣2x B.y=x+4 C.y=﹣x+2 D.y=2x﹣2【解答】解:设y与x之间的函数关系的解析式是y=kx+b(k≠0),则,解得,所以,y与x之间的函数关系的解析式是y=﹣x+2.故选:C.13.(4分)已知直线y=kx+b经过点A(x1,y1)和点B(x2,y2),若k>0,且x1<x2,则()A.y1<y2B.y1>y2C.y1=y2D.y1与y2的大小关系不能确定【解答】解:∵k>0,∴y随x的增大而增大,∵x1<x2,∴y1<y2,故选:A.14.(4分)如图,一系列等腰直角三角形(编号分别为①、②、③、④、…)组成了一个螺旋形,其中第1个三角形的直角边长为1,则第n个等腰直角三角形的面积为()A.2n﹣3 B.2n﹣2 C.2n﹣1 D.2n【解答】解:第①个直角三角形的边长为1=()0,第②个直角三角形的边长为=()1,第③个直角三角形的边长为2=()2,第④个直角三角形的边长为2=()3,…第n个直角三角形的边长为()n﹣1,面积为:×()n﹣1×()n﹣1=2n﹣2.故选:B.15.(4分)如图,与①中的三角形相比,②中的三角形发生的变化是()A.向左平移3个单位B.向左平移1个单位C.向上平移3个单位D.向下平移1个单位【解答】解:由图可知,①中顶点(1,1)平移得到②中顶点(﹣2,1),向左平移3个单位.故选:A.二、填空题(本大题共6小题,每小题3分,共18分,把答案填在题中的横线上)16.(3分)已知a,b为两个连续整数,且,则a+b=7.【解答】解:∵32<13<42,∴3<<4,即a=3,b=b,所以a+b=7.故答案为:7.17.(3分)已知函数y=kx+b的图象与y轴交点的纵坐标为﹣5,且当x=1,y=﹣2时,则此函数的解析式是y=3x﹣5.【解答】解:∵函数y=kx+b的图象与y轴交点的纵坐标为﹣5,且当x=1时,y=﹣2,∴函数的图象过点(0,﹣5),(1,﹣2),∴,解得,故此函数的解析式为:y=3x﹣5.故答案为:y=3x﹣5.18.(3分)若x,y为实数,且|x+2|+=0,则(x+y)2014的值为1.【解答】解:由题意,得:,解得;∴(x+y)2014=(﹣2+3)2014=1;故答案为1.19.(3分)在平面直角坐标系中,等边△AOB的位置如图,若OB=3,则点A的坐标为(,).【解答】解:过点A作AC⊥OB于点C,∵△AOB是等边三角形,OB=2,∴OC=BC=3,∠OAC=∠OAB=30°,在Rt△AOC中,∵∠OAC=30°,OA=3,∴OC=,AC=OA•cos30°=3×=,∴A(,).故答案为A(,).20.(3分)已知一次函数y=kx+b(k≠0)与y=kx(k≠0)的图象交于A(﹣1,2),且与y轴分别交于B、C两点,若点C的纵坐标为3,则△AOB的面积为3.【解答】解:将A(﹣1,2)、C(0,3)代入y=kx+b中,,解得:,∴直线BC的解析式为y=x+3.当y=x+3=0时,x=﹣3,∴点B的坐标为(﹣3,0),∴OB=3.=OB•|y A|=×3×2=3.∴S△AOB故答案为:3.21.(3分)如图,铁路MN和公路PQ在点O处交汇,∠QON=30°,在点A处有一栋居民楼,AO=200m,如果火车行驶时,周围200m以内会受到噪音的影响,那么火车在铁路MN上沿ON方向行驶时,居民楼是否会受到噪音的影响?如果火车行驶的速度为72km/h,居民楼受噪音影响的时间约为多少秒(精确到0.1s)?【解答】解:过点A作AB⊥MN,AB是火车在行驶的过程中,距离居民楼最近的地方,∵∠QON=30°,AO=200m,∴AB=OA•sin30°=200×=100m<200m,∴居民楼会受到噪音的影响;过点A作OA=AD=200m,∵AB⊥OD,∴OB=BD,∵在Rt△AOB中,OB===100m,∴OD=2BO=200m,∵火车行驶的速度为72km/h=20m/s,∴=10≈17.3s.答:居民楼受噪音影响的时间为17.3秒.三、解答题(本大题共7小题,共72分,解答应写出文字说明,证明过程或演算步骤)22.(16分)(1)﹣﹣4(2)(+)(﹣)﹣(﹣)2(3)(4).【解答】解:(1)原式=4﹣5﹣4×=﹣2;(2)原式=2﹣6﹣()2=﹣4﹣=﹣4;(3),①+②×3得:x=2,则y=3,故方程组的解为:;(4),①×2+②×3得:19x=95,解得:x=5,则y=﹣2,故方程组的解为:.23.(8分)如图,平面直角坐标系中,点A的坐标是(﹣4,4),点B的坐标是(2,5).(1)写出点A关于x轴对称的对称点A′的坐标;(2)求出过A′,B两点直线的一次函数的解析式;(3)在x轴上有一动点P,要使PA+PB最小,求点P的坐标.【解答】解:(1)∵点A的坐标是(﹣4,4),∴点A关于x轴对称的对称点A′的坐标为(﹣4,﹣4);(2)设过A′,B两点直线的一次函数的解析式为:y=kx+b,∴,解得:,∴过A′,B两点直线的一次函数的解析式为:y=x+2;(3)作点A关于x轴的对称点A′(﹣4,﹣4),连接A′B交x轴于P,∵直线A′B的函数解析式为y=x+2,把P点的坐标(n,0)代入解析式可得n=﹣.∴点P的坐标是(﹣,0).24.(8分)如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,(1)求BF与FC的长;(2)求EC的长.【解答】解:(1)∵四边形ABCD是长方形,∴AD=BC=10cm,∵折叠长方形一边AD,点D落在BC边的点F处,∴AF=AD=10cm,在Rt△ABF中,根据勾股定理得,BF===6cm,所以,FC=BC﹣BF=10﹣6=4cm;(2)∵折叠长方形一边AD,点D落在BC边的点F处,∴EF=DE,设EC=x,则EF=DE=8﹣x,在Rt△CEF中,根据勾股定理得,FC2+EC2=EF2,即42+x2=(8﹣x)2,解得x=3,即EC=3cm.25.(10分)如图,一次函数的图象经过平面直角坐标系中A,B两点.(1)求一次函数解析式;(2)当x=5时,求y的值;(3)求一次函数图象与坐标轴围成的△BOC的面积.【解答】解:(1)设一次函数的解析式为y=kx+b,把(﹣1,2)和(0,4)代入,可得:,解得:,所以解析式为:y=2x+4,(2)把x=5代入得:y=2x+4=14,(3)把y=0代入y=2x+4,解得:x=﹣2,所以△BOC的面积=×2×4=4.26.(8分)已知直线l1:y=kx﹣4的图象与直线l2:y=x+1的图象平行.(1)求直线l1的图象与x轴,y轴所围成图形的面积;(2)求原点到直线l1的距离.【解答】解:(1)∵直线l1:y=kx﹣4的图象与直线l2:y=x+1的图象平行,∴k=,即直线l1:y=x﹣4,当x=0时,y=﹣4,当y=0时,x=3,所以直线l1的图象与x轴,y轴所围成图形的面积是=6;(2)设过原点且垂直于直线l1的直线的解析式为y=ax,则a•=﹣1,解得:a=﹣,即y=﹣x,解方程组得:,=,即原点到直线l1的距离是.27.(10分)体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元,求商店购进篮球,排球各多少个?【解答】解:设购进篮球x个,购进排球y个,由题意得:,解得:,答:购进篮球12个,购进排球8个.28.(12分)如图1所示,在A,B两地之间有汽车站C站,客车由A地驶往C 站,货车由B地经过C地驶往A地,两车同时出发,匀速行驶,图2是客车、货车离C站的路程y1,y2(km)与行驶时间x(h)之间的函数关系图象.(1)填空:A,B两地相距520km;(2)求货车离C站的路程y2与行驶时间x之间的函数表达式;(3)两车出发后几小时相遇?(4)两车出发几小时后相差20km的路程?【解答】解:(1)观察函数图象可知:A、C两地相距400km,B、C两地相距120km,∴A、B两地的距离为:400+120=520(km).故答案为:520.(2)设货车离C站的路程y2与行驶时间x之间的函数表达式为y2=k2x+b2,观察函数图象可知:当0≤x≤1.5时,函数图象过点(0,120)和点(1.5,0),∴,解得:,∴当0≤x≤1.5时,y2=﹣80x+120;∵货车匀速运动,∴当1.5<x时,y2=80(x﹣1.5)=80x﹣120,令y2=400时,80x﹣120=400,解得:x=6.5,∴y2=80x﹣120(1.5<x≤6.5).综上可知:货车离C站的路程y2与行驶时间x之间的函数表达式为y2=.(3)设客车离C站的路程y1与行驶时间x之间的函数表达式为y1=k1x+b1,观察函数图象可知:y1=k1x+b1的函数图象过点(0,400)和点(4,0),∴,解得:,∴客车离C站的路程y1与行驶时间x之间的函数表达式为y1=﹣100x+400.观察函数图象可知:当x>1.5时,两车相遇,令80x﹣120=﹣100x+400,解得:x=.答:两车出发小时相遇.(4)观察图2可知:当x>1.5时,两车可能相距20km,由题意得:|﹣100x+400﹣(80x﹣120)|=20,解得:x1=,x2=3.答:两车出发小时或3小时后相差20km的路程.。
【真题】2017-2018学年山东省济南市历城区八年级(上)期中数学试卷带答案PDF
A. (﹣3,0) B. (﹣6,0) C. (﹣ ,0) D. (﹣ ,0)
二、填空题(每题 4 分,共 24 分) 13. (4 分)化简:| |= . y2
14. (4 分) 若 (1, y1) , (2, y2) 是正比例函数 y=﹣x 图象上的两点, 则 y1 (填“>”“<”或“=”) .
22. (7 分)如图,5 个大小形状完全相同的长方形纸片,在直角坐标系中摆成以 下图案,已知 A(﹣2,6) ,求长方形纸片的长和宽各是多少,并求点 B 的坐标.
23. (11 分)如图,过点 A(2,0)的两条直线 l1,l2 分别交 y 轴于点 B,C,其 中点 B 在原点上方,点 C 在原点下方,已知 AB= (1)求点 B 的坐标; (2)若△ABC 的面积为 4,求直线 l2 的解析式. .
24. (12 分)小颖和小亮上山游玩,小颖乘坐缆车,小亮步行,两人相约在山顶 的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的 2 倍.小颖在小亮出发后 50min 才乘上缆车,缆车的平均速度为 180m/min.设小 亮出发 x min 后行走的路程为 y m,图中的折线表示小亮在整个行走过程中 y 与 x 的函数关系. (1)小亮行走的总路程是 m,他途中休息了 min;
11. (4 分)如图,在同一平面直角坐标系中,表示一次函数 y=mx+n 与正比例函 数 y=mnx(m,n 是常数,且 mn≠0)图象的是( )
A.
B.
C.
D.
12. (4 分)如图,直线 y= x+4 与 x 轴、y 轴分别交于点 A 和点 B,点 C、D 分 别为线段 AB、OB 的中点,点 P 为 OA 上一动点,当 PC+PD 最小时,点 P 的坐标 为( )
山东省济南市槐荫区2017-2018学年八年级数学上学期期中试题.
山东省济南市槐荫区2017-2018学年八年级数学上学期期中试题第I卷(选择题共48分)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、实数,,,中,无理数是A、B、C、D、2、下列各组数中不是勾股数的是A、,,B、,,C、,,D、,,3、实数的算术平方根是A、B、C、D、4、如图,分别以直角三角形的三边为边向外作正方形,,.已知,,那么正方形的边长是A、B、C、D、5、有一组数据:,,,,,这组数据的平均数为A、B、C、D、6、估算的值在A、和之间B、和之间C、和之间D、和之间7、甲和乙一起练习射击,第一轮枪打完后两人的成绩如图所示.设他们这次射击成绩的方差为,,下列关系正确的是A、B、C、D、无法确定4题图 7题图8、马小虎同学在做因式分解习题时,不慎弄洒墨汁,将等式中的两个数字盖住了,那么式子中的、处对应的两个数字分别是A、,B、,C、,D、,A 、B 、C 、D 、10、 有一个数值转换器,原理如图所示:当输入 的值为 时,输出 的值等于A B 、 C 、 D 、11、 某教师统计了全班 名学生每天上学路上所花时间、情况如下表、则下列结论正确的是(注:“极差”是指一组数据中最大数与最小数的差)A 、 众数是B 、 平均数是C 、 极差是D 、 中位数是12、 如图,是一个三级台阶,它的每一级的长、宽、高分别为 ,,, 和 是这个台阶两个相对的端点, 点有一只蚂蚁,想到 点去吃可口的食物,则蚂蚁沿着台阶面爬到 点的最短路程是A 、B 、C 、D 、第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6个小题.每小题4分,共24分.把答案填在横线上、)13、 计算: .14、 因式分解: .15、 如果 有意义,那么实数 的取值范围是 .16、 某舞蹈队 名队员的年龄分布如表所示:则这 名队员年龄的众数是 .17、 以下列各组数为三角形的边长:① ,,;② ,,;③ ,,;④ ,,;⑤ ,,.其中能构成直角三角形的有(填序号) .18、 如图,在矩形 中,,,点 为 上一动点,把 沿 折叠.当点 的对应点 落在 的平分线上时,点18题图三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤、)19、 (本小题满分6分)(1)计算:(2)计算:20、 (本小题满分6分)(1)因式分解:(2)因式分解:21、 (本小题满分6分)(1)因式分解:(2)因式分解:23、 (本小题满分8分)大正方体的体积为,小正方体的体积为,如图那样叠放在一起,这个物体的最高点离地面的距离是多少?24、 (本小题满分8分)如图,正方形格中,每个小正方形的边长均为,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画两条线段,使,;(2)在图②中画一个,使其三边长分别为,,.25、 (本小题满分10分)如图,用一张如图甲的正方形纸片、三张如图乙的长方形纸片、两张如图丙的正方形纸片拼成一个长方形(如图丁).(1)用一个多项式表示图丁的总面积.(2)用两个整式的积表示图丁的面积.(3)根据(1)(2)所得的结果,写一个表示因式分解的等式.26、 (本小题满分10分)某校学生参加植树活动,要求每人植棵,活动结束后随机抽查了名学生每人的植树量,并分为四种类型:A:棵;B:棵;C:棵;D:棵.将各类的人数绘制成扇形图(如图 1)和条形图(如图 2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这名学生每人植树量的众数、中位数;(3)求这名学生每人植树量的平均数、27、 (本小题满分12分)如图,在中,,,,按图中所示方法将沿折叠,使点落在边的点.(1)求AB的长;(2)求的长;(3)求的面积.28(本小题满分12分)1.为了求关于二次三项式的值,我们必须知道的值.若,则这个代数式的值为;若,则这个代数式的值为,,可见,这个代数式的值因的取值不同而(填“变化”或“不变”).尽管如此,我们还是有办法来求这个代数式的最大(或最小)值.2.完全平方公式及的值恒为非负数的特点在数学可以用来求一个多项式的最大(或最小)值问题.比如探求多项式的最大(小)值时,我们可以这样解决:因为无论取什么数,的值都为非负数,所以的最小值是0,此时,所以,这个代数式的(填“最大”或“最小”)值是,这时相应的的值是.二、尝试探究并解答:1.求关于二次三项式的最大(或最小)值,并写出相应的的值.2.求关于二次三项式的最大(或最小)值,并写出相应的的值.2017~2018学年度第一学期期中测试题八年级数学答案(2017、11)一、选择题1、 B2、 B3、 A4、 C5、 C6、 D7、 A8、 C9、 A 10、 C 11、 D 12、 D二、填空题13、14、15、.16、17、③④⑤18、三、解答题19、(1)(2)20、(1)(2)21、(1)(2 .23、大正方体的体积为,大正方体的棱长为.小正方体的体积为,小正方体的棱长为.这个物体的最高点离地面的距离是.24、(1)如图①所示(答案不唯一),……………………………………每条2分,共4分结论:EF、MN为所求作……………………………………………………5分(2)如图②所示(答案不唯一),……………………………………………………7分结论:为所求三角形.……………………………………………………8分25、(1).……………………………………………………3分(2).……………………………………………………6分(3).…………………………………………………10分26、(1) D有错.……………………………………………………2分理由:.……………………………………………………4分(2)众数为;……………………………………………………6分中位数为.……………………………………………………8分(3).……………………………………………………10分27、(1),,,,……………………………………………………4分(2)由翻折变换的性质得,,,,,…………………………………………5分,设,则,,……………………………………………………………………………………6分在中,由勾股定理得,,即,……………………………………………………8分解得,即.……………………………………………………10分(3),.…………………………………………12分28、(1);;变化;…………………………………………………………3分(2)最小,;…………………………………………………………………………6分(3)①,……………………………………8分最小值为 -17,此时.………………………………………………9分②,…………………………………11分最大值为,此时.……………………………………………12分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学试题
(时间:120分钟,总分120分)
一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项
是符合题目要求的.)
1.25的平方根是()
A.±5 B.5 C D.-5
2. 下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()
A.,,B.1,,C.6,7,8 D.2,3,4
3. ,0,
1
-
2
,,﹣,0.3131131113…(相邻两个3之间依次多一个1),其中无理
数的个数是()
A.4 B.2 C.1 D. 3
4. 若第二象限内的点P(x,y)满足|x|=3,y2=25,则点P的坐标是( ).
A.(3,5)B.(3,-5 )C.(-3,5)D.(-3,-5)
5. 与1+最接近的整数是()
A.4 B.3 C.2 D. 1
6. 若x轴上的点P到y轴的距离为3,则点P的坐标为()
A.(3,0)B.(3,0)或(–3,0)
C.(0,3)D.(0,3)或(0,–3)
7. 下列函数中,y随x的增大而减小的函数是()
A.y=2x+8 B.y=-2+4x C.y=-2x+8 D.y
8. 陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气
球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()
A. 16
B. 18
C. 19
D. 15
9. 点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且
x 1<x 2,则y 1与y 2的大小关系是( ). A.y 1>y 2
B.y 1>y 2 >0
C.y 1<y 2
D.y 1=y 2
10. 正方形ABCD 在直角坐标系中如图放置,B 点的坐标
是(-2,0),C 点的坐标是(2,0),则A 点的坐标是( ) A. (4,-2) B. (-2,1)
C. (2,4)
D. (-2,4)
11. 一次函数y=﹣2x+1的图象不经过( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
12. 若方程组45ax by bx ay +=⎧⎨+=⎩的解是21x y =⎧⎨=⎩
,则a +b 的值为( )
A .3
B .-3
C .﹣2
D . 2
13. 如图,已知直线3
34
y x =-+与x 轴、y 轴分别交于A 、B
两点,点C (0,n )是y 轴正半轴上一点.把坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,则n 的值是( )
A .
3
4 B .1 C .4
3
D .1.5
14. 若直角三角形的两边长为a 、b ,且满足
,则该直角三角形的斜边长为
( ).
A .5
B
C .4
D .5或4
15. 甲、乙两车从A 城出发匀速行驶至B 城.在整个
行驶过程中,甲、乙两车离开A 城的距离y (千米) 与甲车行驶的时间t (小时)之间的函数关系如图所
示.则下列结论:①A ,B 两城相距300千米; ②乙车比甲车晚出发1小时,却早到1小时;
第15题图
③乙车出发后1.5小时追上甲车; ④当甲、乙两 车相距50千米时,t =54或154
.其中正确的结论 有( )
A .1个
B .2个
C .3个
D .4个
二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上) 16. 绝对值等于2的数是
17. 已知点P (3,a )关于y 轴的对称点为Q (b ,2),则ab= . 18. 将直线y=2x-1向上平移3个单位,得到的函数关系式是 19. 若﹣2x
m ﹣n y 2
与3x 4y
2m+n
是同类项,则m ﹣3n 的立方根是 .
20. 一个实数的两个平方根分别是a +2和2a -5,则a= .
21. 在直角坐标系中,直线y=x+2与y 轴交于点A 1,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、
A 3
B 3
C 1C 2…,A 1、A 2、A 3…在直线y=x+2上,点C 1、C 2、C 3…在x 轴上,图中阴影部分 三角形的面积从左到右依次记为S 1、S 2、S 3、…S n ,则S n 的值为 (用含n 的代数 式表示,n 为正整数).
三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤)
22. 计算:(每小题4分,共16分) (1)
25
520-+
第21题图
(3) 02
4(1
⨯+-
(4).如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,
延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=CG;③AG//CF;
④S△EFC=
12
5.其中正确结论的是____________(只填序号)
.
23.(6分)如图,每个小正方形的边长为1个单位
(1)写出格点△ABC各顶点的坐标,
(2)求△ABC的面积.
24. (7分)联通公司手机话费收费有A 套餐(月租费15元,通话费每分钟0.1元)和B 套餐(月租费0元,通话费每分钟0.15元)两种.设A 套餐每月话费为y 1(元),B 套餐每月话费为y 2(元),月通话时间为x 分钟.
(1)分别表示出y 1与x ,y 2与x 的函数关系式. (2)月通话时间为多长时,A 、B 两种套餐收费一样?
(3)什么情况下A 套餐更省钱?
25. (7分)一架云梯AB 长25米,如图那样斜靠在一面墙AC 上,这时云梯底端B 离墙底C 的距离BC 为7米.
(1) 求云梯的顶端与地面的距离AC 的长;
(2) 如果云梯的顶端A 下滑了4米,那么它的底部B 在水平方向向右滑动了多少米?
26.(8分)(1)已知a+2b+1的平方根为±3,3a+2b 的算术平方根为4,求a+2b 的平方根.
(2)已知13的整数部分为a ,小数部分为b ,试求
1
)4
b a 的值.
27.(8分)如图,直线y=kx-2与x 轴、y 轴分别交于B 、C 两点, 其中OB=1. (1)求k 的值;
(2)若点A (x ,y )是第一象限内的直线y=kx-2上的一个动点.当点A 运动过程中,试 写出△AOB 的面积S 与x 的函数关系式; (3)探索:
①当点A 运动到什么位置时,△AOB 的面积是1;
②在①成立的情况下,x 轴上是否存在一点P ,使△POA 是等腰三角形.若存在,请写出满足条件的所有P 点的坐标;若不存在,请说明理由.
y=kx-2
28.(5分)如图,C 为线段BD 上一动点,分别过点B 、D 作AB⊥BD,ED⊥BD,
连接AC 、EC .已知AB=5,DE=1,BD=8,设CD= x . (1)用含x 的代数式表示AC+CE 的长;
(2)求AC+CE 的最小值;
(3)根据(2)中的规律和结论,构图求出代数式()912422+-++x x 的最小值是
.。