柱、锥、台的结构特征.
最新柱锥台的结构特征(详)
______________________________ ____________________
典型例题
例1:下列命题中正确的是( D) A、有两个面平行,其余各面都是四 边形的几何体叫棱柱。 B、有两个面平行,其余各面都是平 行四边形的几何体叫棱柱。(举例) C、有两个侧面是矩形的棱柱是直棱 柱。(举例) D、有两个相邻侧面垂直与底面的棱 柱是直棱柱。
2、按底面的边数分为:
棱柱的底面可以是三角形、四边形、 五边形、……
把这样的棱柱分别叫做三棱柱、四棱 柱、五棱柱、……
三棱柱
四棱柱
五棱柱
______________________________ ____________________
斜棱柱
棱
柱
直棱柱 正棱柱
______________________________ ____________________
思考题: 1、侧棱不垂直于底面且底面为三角形 的棱柱叫做_斜__三__棱__柱____; 2、侧棱垂直于底面且底面为四边形的 棱柱叫做___直__四__棱__柱___; 3、侧棱垂直于底面且底面为正五边形 的棱柱叫做_正__五__棱__柱_____。
______________________________ ____________________
球心
A
直径
大圆
O
C
B
______________________________ ____________________
练习:
1、下列命题是真命题的是( A) A 以直角三角形的一直角边所在的直线为轴 旋转所得的几何体为圆锥;
B 以直角梯形的一腰所在的直线为轴旋转所 得的旋转体为圆柱;
1.1.柱、锥、台、球的结构特征-人教A版必修二教案
1.1.柱、锥、台、球的结构特征-人教A版必修二教案一、柱体的结构特征柱体是一种线塑体,它具有以下结构特征:1.每个截面都是圆形,而且圆心在这个截面的中心;2.每个截面之间距离相等,所以从任意角度看上去,都是圆形。
柱体在物理世界中十分常见,例如水管、电线杆等。
由于其圆形结构,柱体具有抗弯和抗压的能力较强,因此被广泛使用。
二、锥体的结构特征锥体是一种线塑体,它具有以下结构特征:1.由一个圆锥顶点到底面任意一点的直线段为母线,锥体的结构由该直线段和底面围成;2.底面是个圆形。
锥体在构造物理学中有着广泛的应用,例如锥形漏斗、冰淇淋锥等。
锥体在制作过程中,需要注意底面的圆心和母线的长度,以确保最终产品符合需求。
三、台体的结构特征台体是一种线塑体,它具有以下结构特征:1.由一个圆台顶点到底面圆心的直线段为轴线,台体的结构由该直线段和上下两个圆台围成;2.上下两个圆台面积大小相等。
台体的结构在物理实验中被广泛使用,例如水流研究、电场模拟等。
在设计制作台体时,需注意两个圆台的形状和尺寸,以达到理想的实验效果。
四、球体的结构特征球体是一种线塑体,它具有以下结构特征:1.每个表面都是一个圆形,而且所有圆心都在同一点;2.所有体内点到同一点的距离相等。
球体在物理学、地理学、天文学等领域有着广泛的应用。
例如在天文观测中,我们所看到的星星通常是球体形状的天体。
制作球体时,通常需要注意表面的光滑度、圆心位置和直径等因素。
五、小结本文介绍了四种线塑体:柱体、锥体、台体和球体,以及它们的结构特征。
在物理世界中,这四种形态常常出现,有着广泛的应用。
熟悉这些塑体的结构特征,对于理解相关的物理现象和设计制作模型等都十分重要。
以上仅为基础知识的介绍,希望能够引起读者对这些形体结构的关注,进而领悟常见的物理现象和背后的原理。
必修2-第一章空间几何体-1.1柱、锥、台、球的结构特征
侧面、对角面都是三角形;平行于底面的截面 与底面相似,其相似比等于顶点到截面距离与高 的比的平方。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
想一想:
用一个平行于棱锥底面的平面去截棱 锥,得到怎样的两个几何体?
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
侧棱
F A
ED
B
侧面
C
顶点
的公共边叫侧棱,侧面与底面
的公共顶点叫棱柱的顶点。
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱柱的分类:棱柱的底面可以是三角形、 四边形、五边形、 …… 我们把这样的棱柱 分别叫做三棱柱、四棱柱、五棱柱、……
三棱柱
四棱柱
五棱柱
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
D’
GG’
C’
A’
F’
F
B’
HH ’
D
E E’
C
A
B
答:都是棱柱.
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
探究4:
观察右边的棱柱,共有多少 对平行平面?能作为棱柱的 底面的有几对?
答:四对平行平面;只有一对可以作为棱 柱的底面. 棱柱的任何两个平行平面都可以作为棱柱 的底面吗?
用一个平行于棱锥底面 的平面去截棱锥,底面与截 面之间的部分是棱台。
D’
D A’
C’
B’
C
A
B
必修2-第一章空间几何体-1.1.1柱、锥、台、球的结构特征
棱台的分类:
由三棱锥、四棱锥、五棱锥…截得的棱 台,分别叫做三棱台,四棱台,五棱台…
棱台的表示方法:
柱、锥、台、球的结构特征
柱、锥、台、球的结构特征1.1教学要求:通过实物模型,观察大量的空间图形,认识台体、球体及简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.教学重点:让学生感受大量空间实物及模型,概括出台体、球体的结构特征.教学难点:的概括.教学过程:一、复习准备:结合棱柱、棱锥、圆柱、圆锥的几何图形,说出:定义、分类、表示、结合棱柱、棱锥、圆柱、圆锥的几何图形,说出各几何体的一些几何性质?二、讲授新课:教学棱台与圆台的结构特征:①讨论:用一个平行于底面的平面去截柱体和锥体,所得几何体有何特征?②定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分叫做棱台;用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台.T列举生活中的实例结合图形认识:上下底面、侧面、侧棱、顶点、高.讨论:棱台的分类及表示?圆台的表示?圆台可如何旋转而得?③讨论:棱台、圆台分别具有一些什么几何性质?棱台:两底面所在平面互相平行;两底面是对应边互相平行的相似多边形;侧面是梯形;侧棱的延长线相交于一点.圆台:两底面是两个半径不同的圆;轴截面是等腰梯形;任意两条母线的延长线交于一点;母线长都相等④讨论:棱、圆与柱、锥、台的组合得到6个几何体.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥有什么关系?.教学球体的结构特征:①定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体,叫球体.—列举生活中的实例结合图形认识:球心、半径、直径.—球的表示.②讨论:球有一些什么几何性质?③讨论:球与圆柱、圆锥、圆台有何关系?棱台与棱柱、棱锥有什么共性?教学简单组合体的结构特征:①讨论:矿泉水塑料瓶由哪些几何体构成?灯管呢?②定义:由柱、锥、台、球等几何结构特征组合的几何体叫简单组合体.T列举生活中的实例练习:圆锥底面半径为1 C,高为C,其中有一个内接正方体,求这个内接正方体的棱长.小结:学习了柱、锥、台、球的定义、表示;性质;分类.三、巩固练习:练习:书P8A组1〜4题.已知长方体的长、宽、高之比为 4 : 3 : 12,对角线长为26c,则长、宽、高分别为多少?棱台的上、下底面积分别是25和81,高为4,求截得这棱台的原棱锥的高若棱长均相等的三棱锥叫正四面体,求棱长为a的正四面体的高.。
考点03 圆柱、圆锥、圆台的结构特征-高一数学人教版(必修2)(解析版)
1.圆柱、圆锥、圆台可以分别看作以矩形一边、直角三角形的一直角边、直角梯形中垂直于底边的腰所在的直线为旋转轴,将矩形、直角三角形、直角梯形分别旋转一周而形成的曲面所围成的几何体,旋转轴叫做所围成的几何体的轴;在轴上的这条边(或它的长度)叫做这个几何体的高;垂直于轴的边旋转而成的圆面叫做这个几何体的底面;不垂直于轴的边旋转而成的曲面叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫做侧面的母线.2.圆柱、圆锥、圆台、球等几何体,都是由一个平面图形绕着一条直线旋转产生的曲面所围成的几何体,这类几何体叫做旋转体,这条直线叫做旋转体的轴.【例】若边长为5 cm的正方形EFGH是圆柱的轴截面,则从点E沿圆柱的侧面到相对顶点G的最短距离是()A.10 cm B.5 2 cmC.5π2+1 cm D.52π2+4 cm【答案】D【规律总结】解决旋转体中的距离最值问题,用侧面展开图,将问题平面化.要点阐述典型例题小试牛刀1.如果圆锥的侧面展开图是半圆,那么这个圆锥的顶角(圆锥轴截面中两条母线的夹角)是()A.30°B.45°C.60°D.90°【答案】C【解析】设圆锥底面半径为r,母线长为l,则有2πr=12·2πl.∴2r=l,即△ABC为等边三角形,故顶角为60°.2.下列说法:①以直角三角形的一边所在的直线为旋转轴,旋转一周得到的旋转体为圆锥;②以直角梯形的一腰所在的直线为旋转轴,旋转一周得到的旋转体为圆台;③圆柱、圆锥、圆台的底面都是圆;④分别以矩形两条不相等的边所在直线为旋转轴,将矩形旋转一周,所得的两个圆柱是不同的圆柱.其中正确的有()A.1个B.2个C.3个D.4个【答案】B【秒杀技】处理台体问题常采用还台为锥的补体思想.学科&网3.一个圆锥的母线长为5,底面半径为3,则该圆锥的轴截面的面积为( )A .10B .12C .20D .15【答案】B【解析】圆锥的轴截面是等腰三角形,两腰为圆锥的母线,底边为圆锥的底面圆的直径,所以轴截面的面积S =12×2×3×52-32=12,故选B .4.下列说法不正确的是( )A .圆柱的侧面展开图是一个矩形B .圆锥过轴的截面是一个等腰三角形C .直角三角形绕它的一条边旋转一周形成的曲面围成的几何体是圆锥D .圆台平行于底面的截面是圆面 【答案】C【解析】由圆锥的概念知直角三角形绕它的一条直角边所在直角旋转一周所围成的几何体是圆锥,即旋转轴为直角三角形的一条直角边所在的直线,因而C 错.5.给出下列命题:①圆柱的底面是圆;②经过圆柱任意两条母线的截面是一个矩形;③连接圆柱上、下底面圆周上两点的线段是圆柱的母线;④圆柱的任意两条母线互相平行;⑤圆柱的侧面沿母线展开的图形是矩形;⑥圆柱的母线有且只有一条.其中正确的为 .(只填序号) 【答案】②④⑤【规律方法】圆柱、圆锥、圆台的关系如图所示.6.如图所示,用一个平行于圆锥SO底面的平面截这个圆锥,截得圆台上、下底面的半径分别为2 cm和5 cm,圆台的母线长是12 cm,求圆锥SO的母线长.【解析】如图,过圆台的轴作截面,截面为等腰梯形ABCD,由已知可得上底半径O1A=2 cm,下底半径OB=5 cm,且腰长AB=12 cm.设截得此圆台的圆锥的母线长为l,则由△SAO1∽△SBO,可得l-12l =25,所以l=20 cm,即截得此圆台的圆锥的母线长为20 cm.1.如上、下底面面积分别为36π和49π,母线长为5的圆台,其两底面之间的距离为() A.4 B.3 2C.2 3 D.2 6【答案】D2.圆台轴截面的两条对角线互相垂直,且上下底面半径的比为3:4,又其高为142,则圆台的母线长是__________.考题速递【答案】20【解析】如图所示,由已知有rR=34=O1OOO2,因为OB⊥OC,所以△AOB,△DOC均为等腰直角三角形.又O1O2=142,所以O1O=r=62,OO2=R=82,在Rt△BOC中,OB2+OC2=l2,所以r2+OO21+R2+OO22=l2,代入数据得l=20.3.已一个等边圆柱(底面直径等于高)的轴截面面积是S,则它的底面面积是________.【答案】π4S【解析】设底面半径为r,则4r2=S,故底面面积为πr2=π·S4=π4S.4.如圆台的上底周长是下底周长的13,轴截面面积等于392,母线与底面的夹角为45°,求此圆台的高、母线长及两底面的半径.【答案】R=21,r=7,h=14,l=142.数学文化圜丘坛圜丘坛是我国明朝建立的一个地点,在天坛南部,为皇帝冬至日祭天大典的场所,又称祭天坛.坛面为艾叶青石,汉白玉栏板、栏柱雕成,两道外方里圆的围墙象征着“天圆地方”.由于是祭天坛,圜丘的整个结构是对数学的巧妙运用,坛面、台阶、栏杆的石制构件,都取九或九的倍数,即阳数,用以象征天.坛中心的圆形石板,叫天心石,站在上面高喊或发出敲击声,周围即起回音,自己听起来声音很大,好似一呼百应.。
高中数学知识点总结:柱、锥、台、球的结构特征
高中数学知识点总结:柱、锥、台、球的结构特征柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱'''''EDCBAABCDE-或用对角线的端点字母,如五棱柱'AD几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥'''''EDCBAP-几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台'''''EDCBAP-几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
1.1.柱、锥、台、球的结构特征-人教A版必修二教案
1.1.柱、锥、台、球的结构特征-人教A版必修二教案本文将介绍柱、锥、台、球这四种常见结构的特征和相关知识点,帮助读者更好地理解和掌握这些知识。
1. 柱的结构特征1.1 基本结构柱是一种直线向上延伸的立方体,底面为正方形或长方形,底面和顶面平行。
1.2 相关知识点•底面积和侧面积:柱的底面积为底面的面积,侧面积为侧面的面积,总面积等于底面积加上侧面积。
•体积:柱的体积等于底面积乘以高度。
•直径和半径:柱的底面为圆形时,可以用直径和半径来表示。
2. 锥的结构特征2.1 基本结构锥是一种底面为圆形的立体,顶点在圆心上方的一种立体图形。
2.2 相关知识点•底面积和侧面积:锥的底面积为底面的面积,侧面积为底面到顶点的直线段所包含的表面积,总面积等于底面积加上侧面积。
•体积:锥的体积等于底面积乘以高度再除以3。
•直径和半径:锥的底面为圆形时,可以用直径和半径来表示。
3. 台的结构特征3.1 基本结构台是一种上下底面均为平行四边形的立体,上下底面相等,侧面为梯形或矩形。
3.2 相关知识点•底面积和侧面积:台的底面积为下底面的面积,顶面积为上底面的面积,侧面积为侧面的面积,总面积等于底面面积加上顶面面积再加上侧面面积。
•体积:台的体积等于上下底面积之和再乘以高度再除以2。
4. 球的结构特征4.1 基本结构球是一种没有尖角、底面和顶面相等、关于任何一条直径对称的立体图形。
4.2 相关知识点•表面积:球的表面积等于4倍半径的平方。
•体积:球的体积等于4/3乘以半径的立方。
总结通过本文的介绍,我们了解了柱、锥、台、球这四种常见结构的特征和相关知识点。
掌握这些知识有助于更好地理解和应用于实际生活中。
柱锥台球的结构特征
违例处理
• 犯规,需要被罚分或者 对手得到一个短杆
• 没有犯规,但没有打进 目标球,需要由对手发 球
边角球和中袋球的投掷技巧
边角球技巧
轻微的调整发力方式、杆的角度和击球位置,就能 够轻松打入边袋。
中袋球技巧
需要将目标点放在中心牵引点上,在左右两侧分别 安放辅助杆。
柱锥台球的比赛形式
1
单人比赛模式
杆尖
杆尖的材质、种类和不同用途。
其他附件
杆袋、伸缩杆等其他的辅助器材。
球杆材质的选择
1 木质球杆
传统的材质,手感好,重量适中,适合一般玩家。
2 碳素球杆
3 合金球杆
轻便,强度高,适合职业选手或高手。
重量大,手感独特,适合力量型玩家。
球杆的长度和重量
1
长度
标准长度为57英寸,适合普通玩家。职业选手会根据自己的身高和姿势适当调整。
大师赛的历史和名人堂介绍
年份 1963 1975 1985 1993
地点 纽约 东京 伦敦 谢菲尔德
冠军 莱斯利 卡尔·弗金 史蒂夫·戴维斯 斯蒂芬·亨德利
大师赛名人堂入选人员包括史蒂夫·戴维斯、亨德利、特里·格里芬、约翰·帕勒特等杰出选手。
柱锥台பைடு நூலகம்的结构特征
柱锥台球是一项极富技巧性的运动,需要掌握诸多技巧和规则才能获得成功, 让我们一起了解并探讨它的结构特征。
柱锥台球的基本结构
球桌
球桌的尺寸和标准
球
球的大小和重量,不同类型的球
球架
球架和球的排列方式
粉盒
粉盒和粉的作用
球杆的组成与结构
杆身
杆身的长短、粗细和形状。
杆柄
杆柄的材质、杆柄上的特殊材质和不同握法。
《柱、锥、台、球的结构特征》的教学反思
《柱、锥、台、球的结构特征》的教学反思任何课堂教学的效果都必须通过调控学生的学习状态才能得以实现,课堂教学是否以学生发展为本,学生有最深切的感受和体验。
因此,新课程提倡通过了解学生在课堂上如何讨论、如何交流、如何合作、如何思考、如何获得结论及其过程等等学生的行为表现,来评价课堂教学的成败。
即便关注教师的行为,也应从关注教师如何组织并促进学生的讨论、如何评价和激励学生的学习、如何激发学生学习的热情和探究的兴趣等,来评价教师课堂行为表现对学生的“学”的价值,即“以学论教、教是为了促进学”。
一、问题提出——课题引入这堂课的教学设计是从学生的实际出发,遵从“思维最近发展区”原则,以学生熟知的生活实物为入手点,创设问题情境:问题1:引导学生观察生活中有关棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?其目的是让学生学会:(1)观察:借助实物的图像,研究棱柱的结构特征;(2)联想:比较不同棱柱间的密切联系;(3)把握问题本质:棱柱的主要结构特征。
(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。
概括出棱柱的概念。
问题(1)设计价值在于:一是让学生体会数学中一些重要的研究方法:观察、类比与联想……;二是使学生进入问题趋动的第一水平:感悟创设实物观察情境的意义.问题2:请列举身边的棱柱并对它们进行分类?”其目的是让学生:一是提高学生的观察能力。
二是培养学生的空间想象能力和抽象括能力。
三是使学生进入问题趋动的更高水平——产生问题链:①究竟什么是棱柱?②棱柱有哪些主要的结构特征?③通过棱柱的那些结构特征最终来确定棱柱?问题3:引导学生观察生活中有关棱锥、棱台的几何物体以及棱锥、棱台的图片,说出它们各自的特点是什么?它们的共同特点是什么?其目的是使学生学会类比,用类比的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。
2-1.1.2圆柱、圆锥、圆台的结构特征
B
思考:用一个平面去截一个球,截面是什么?
用一个截面去截
一个球,截面是
圆面。
O
球面被经过球心的平面截得的圆叫做大圆。 球面被不过球心的平面截得的圆叫做小圆。
ห้องสมุดไป่ตู้
想一想: 球、圆柱、圆锥、圆台过轴的截面分别 是什么图形?
五、多面体
凸多面体和凹多面体
三、圆台的结构特征:
1、定义:用一个平行于圆 锥底面的平面去截圆锥, 底面与截面之间的部分, 这样的几何体叫做圆台。
O'
O
O' 轴 O
上底面 母线 侧面 下底面
2、圆台的表示法:用表示它的轴的字母 ′ 表示,如圆台OO 。
四、球的结构特征:
1、定义:以半圆的直径所在直线为旋转轴, 半圆面旋转一周形成的几何体,叫做球体。 A O 半径
V
C
D A B
E 把多面体的任何一个面伸展为平面,如果 所有其他各面都在这个平面的同侧,这样的多 面体叫做凸多面体。
正多面体
正四面体
正六面体
正八面体
正十二面体
正二十面体
多面体
六、简单组合体的结构特征:
日常生活中常用到的日用品,比如:消毒液、 暖瓶、洗洁精等的主要几何结构特征是什么?
圆柱 圆台
圆柱
1、定义:由柱、锥、台、球等简单几何 体组合而成的几何体叫简单组合体。
2、简单几何体的构成有两种形式: (1)由简单几何体拼接而成的;
(2)简单几何体截去或挖 去一部分而成的.
(3)平行于轴的边旋转而成的 曲面叫做圆柱的侧面。 (4)无论旋转到什么位置,不垂直 于轴的边都叫做圆柱的母线。
1 柱锥台球的结构特征
形,并且每相邻两个四边形的公共边都互相平
行,由这些面所围成的几何体叫做棱柱。
顶点
D′
C′
A′
侧面
B′
底面
D
C
侧棱 A
B
用表示底面各顶点表示,棱柱ABCD-A′B′C′D′ .还可以用对角线的两端点表
示,棱柱AC′.
棱柱的概念复习 有两个面互相平行,其余各面
都是四边形,并且每相邻两个
四边形的公共边都互相平行,
·H ·
· B
C
底
DH ·
用表示底面各顶点表示,棱柱ABCD-A′B′C′D′ .还可以用对角线的两端点表
示,棱柱AC′.
棱柱的性质
(1)侧棱都相等,侧面都是平行四边形。 直棱柱的各个侧面都是矩形; 正棱柱的各个侧面都是全等的矩形。
(2)两个底面与平行于底面的平面的截面是全等的多边形。 〔3)过不相邻的两条侧棱的截面是平行四边形。
1、由简单几何体组合而成的几何体叫简单组合体。
2、简单组合体构成的两种基本形式: A、由简单几何体拼接而成 B、由简单几何体截去或挖去一部分而成
七、简单组合体的结构特征
A
B
棱锥S-ABCD
棱锥的结构特征
圆柱:以矩形的一边所在的直线为旋
圆
转轴,其余三边旋转形成的曲面所围
成的几何体叫做圆柱。
柱
底面
的
o′
结 母线
轴 A′
侧面
构
特 征
圆柱和棱柱统称为柱体。
o
A
圆柱用表示它的轴的字母表示,圆柱oo′。
圆锥:以直角三角形的一条直角边所在的直线
为旋转轴,其余两边旋转形成的曲面所围成的
B 以直角梯形的一腰所在的直线为轴旋转所 得的旋转体为圆柱;
高一数学知识点整理
高一数学知识点整理高一下册数学必修一知识点梳理立体几何初步柱、锥、台、球的结构特征棱柱定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
棱台定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点圆柱定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
圆锥定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
圆台定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
球体定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
NO.2空间几何体的三视图定义三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
全品数学高一必修一人教版
全品数学高一必修一人教版1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
圆柱,圆锥,圆台,球的结构特征
圆柱,圆锥,圆台,球的结构特征圆柱、圆锥、圆台和球作为常见的基本几何体,它们在我们日常生活以及工程建设中都有着很广泛的应用。
下面我们将从它们的结构特征、性质及应用等方面,来一一介绍。
首先,圆柱的结构特征主要表现为:底面为圆形,顶面也为圆形,并且底面和顶面之间的部分是由直线“母线”沿着底面一圈一圈绕而成的。
圆柱的体积公式为V=πr²h,而表面积公式为S=2πrh+2πr²。
其特点是在数值比较大的情况下,其体积和面积都会相对比较大。
其次,圆锥的结构特征主要表现为:底面为圆形,顶点在底面上方,并且从底面至顶点的长度正好是圆锥的高。
圆锥的体积公式为V=1/3πr²h,表面积公式为S=πr(r+√(r²+h²))。
圆锥的特点是其顶点聚焦,靠近锥顶的部分空间比较小,因此在设计制图中应该注意其空间的利用。
再次,圆台的结构特征主要表现为:底面和顶面都是圆形,而其母线是两个圆之间的连接线。
圆台的体积公式为V=1/3πh(r1²+r2²+r1r2),表面积公式为S=π(r1+r2)√((r1-r2)²+h²)。
圆台的特点是底面和顶面大小相似,但高度相对比较小,因此在工程设计制图中,在保证空间利用的基础上,可根据实际要求,灵活选择底面和顶面的大小。
最后,球的结构特征主要体现为:球体的表面处处与它的内部半径相等,即球体从内到外半径处处相等。
球的体积公式为V=4/3πr³,表面积公式为S=4πr²。
由于球形的几何特征具有对称性和向心性,因此常被应用于建筑物的圆形设计、机械制造中的球面旋转等方面。
在实际生产制造和设计过程中,掌握圆柱、圆锥、圆台和球的结构特征、性质及应用等方面,可更好地发挥其应用价值和优势。
同时,在园艺、建筑设计、机械制造等领域中的当代工程设计和生产制造中,借鉴和应用这些几何体的空间特性,也能够创造出更加美观且实用的产品设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
棱柱:有两个面互相平行,其余各面都是四边 形,并且每相邻两个四边形的公共边都互相平 行,由这些面所围成的几何体叫做棱柱。
顶点
侧面 底面
侧棱
用表示底面各顶点表示棱柱。
棱锥:有一个面是多边形,其余各面都是有 一个公共顶点的三角形,由这些面所围成的 几何体叫做棱锥。
顶点 侧面 D S 侧棱
底面 A
C
B
棱锥也用表 示顶点和底 面各顶点的 字母表示。
棱锥的结构特征
圆 柱 的 结 构 特 征
圆柱:以矩形的一边所在的直线为旋 转轴,其余三边旋转形成的曲面所围 成的几何体叫做圆柱。
底面
轴
母线
侧面
圆柱和棱柱统称为柱体。
圆柱用表示它的轴的字母表示。
圆锥:以直角三角形的一条直角边所在的直线 为旋转轴,其余两边旋转形成的曲面所围成的 几何体叫做圆锥。 A
圆 锥 的 结 构 特 征
母线
轴 侧面 C B 底面
圆锥用表示它的轴的字母表示
圆锥和棱锥统称为锥体
棱台与圆台的结构特征
棱台:用一个平行于棱锥底面的平面去截棱锥, 底面与截面之间的部分叫做棱台。 圆台:用一个平行于圆锥底面的平面去截圆 锥,底面与截面之间的部分叫做圆台。
上底面
下底面
棱台和圆台统称为台体。
O`
2r
O
例2 如下图, 一个圆台形花盆直径为 20cm, 盆底 直径为 15cm, 底部渗水圆孔直径为 1.5cm, 盆壁长 15cm.那么花盆的表面积约是 多少平方厘米(取 3.14, 结果精确到 1cm) ?
10cm
15cm
7.5cm
练习: 一圆锥的轴截面(过圆锥顶点与底面 直径的截面)是面积为 3 的等边三角 形,求该圆锥的表面积.
2
O`
O
圆锥的展开图是一个扇形:
如果圆柱的底面半径为 r ,母线为 l ,那么它 的表面积为
S r rl r (r l )
2
S
2r
O
圆台的展开图是一个扇环,它的表面积等于上、 下两个底面和加上侧面的面积,即
S (r r r l rl )
'2 2 '
2r `
例3 有一堆规格相同的铁制 (铁的密度是7.8 g / cm ) 六角螺帽(如下图)共重5.8kg,已知底面是正六边形 , 边长为 12m m,内孔直径 10m m, 高为10m m,问这堆螺帽 大约有多少个(取3.14) ?
3
例1、已知棱长为 a, 各面均为等边三角形的 四 面体S ABC(如下图), 求它的表面积 .
S
A B D C
圆柱的展开图是一个矩形:
如果圆柱的底面半径为 r ,母线为 l ,那么圆柱 2 r 的底面积为 ,侧面积为 2rl 。因此圆柱的 表面积为
S 2r 2rl 2r (r l )
S S
O
A
O
B
棱柱(圆柱)的高:
两底面之间的距离,即从一底面上任意一 点向另垂线,顶点与垂足之间的距离
柱体、锥体、台体的体积
练习: 1.已知棱台的上下底面面积分别为4与16 , 高为3,则该棱台体积为_______ 2.已知圆锥的底面直径为8,母线长为5,则该 圆锥的体积为______ 3.已知正六棱柱的底面正六边行的边长为2 且该棱柱的高为3,则该棱柱体积为______
1、 3
空间几何体的表面积与体积
1. 柱体、锥体、台体的表面积
正方体、长方体的表面积就是各个面的面积之和。
探究
棱柱、棱锥、棱台也是由多个平面图形围成的 几何体,它们的展开图是什么?如何计算它们的 表面积?
棱柱的侧面展开图是由平行四边形组成的平面图 形,棱锥的侧面展开图是由三角形组成的平面图 形,棱台的侧面展开图是由梯形组成的平面图形。 这样,求它们的表面积的问题就可转化为求平行 四边形、三角形、梯形的面积问题。