植物激素

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生长素

生长素是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,包括吲哚乙酸(IAA)、4-氯-IAA、5-羟-IAA、萘乙酸等。1872年波兰园艺学家谢连斯基对根尖控制根伸长区生长作了研究;后来达尔文父子对?草胚芽鞘向光性进行了研究。1928年温特首次分离出这种引起胚芽鞘弯曲的化学信使物质,命名为生长素。1934年,凯格等确定它为吲哚乙酸,因而习惯上常把吲哚乙酸作为生长素的同义词。

生长素在扩展的幼嫩叶片和顶端分生组织中合成,通过韧皮部的长距离运输,自上而下地向基部积累。植物体内的生长素是由色氨酸通过一系列中间产物而形成的。其主要途径是通过吲哚乙醛。吲哚乙醛可以由色氨酸先氧化脱氨成为吲哚丙酮酸后脱羧而成,也可以由色氨酸先脱羧成为色胺后氧化脱氨而形成。然后吲哚乙醛再氧化成吲哚乙酸。另一条可能的合成途径是色氨酸通过吲哚乙腈转变为吲哚乙酸。

在植物体内吲哚乙酸可与其它物质结合而失去活性,如与天冬氨酸结合为吲哚乙酰天冬氨酸,与肌醇结合成吲哚乙酸肌醇,与葡萄糖结合成葡萄糖苷,与蛋白质结合成吲哚乙酸-蛋白质络合物等。结合态吲哚乙酸常可占植物体内吲哚乙酸的50~90%,可能是生长素在植物组织中的一种储藏形式,它们经水解可以产生游离吲哚乙酸。

植物组织中普遍存在的吲哚乙酸氧化酶可将吲哚乙酸氧化分解。

生长素有多方面的生理效应,这与其浓度有关。低浓度时可以促进生长,高浓度时则会抑制生长,甚至使植物死亡,这种抑制作用与其能否诱导乙烯的形成有关。生长素的生理效应表现在两个层次上。

在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。

在器官和整株水平上,生长素从幼苗到果实成熟都起作用。生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性;当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。

近年来提出激素受体的概念。激素受体是一个大分子细胞组分,能与相应的激素特异地结合,尔后发动一系列反应。吲哚乙酸与受体的复合物有两方面的效应:一是作用于膜蛋白,影响介质酸化、离子泵运输和紧张度变化,属于快反应(〈10分钟〉;二是作用于核酸,引起细胞壁变化和蛋白质合成,属于慢反应()10分钟)。介质酸化是细胞生长的重要条件。吲哚乙酸能活化质膜上ATP(腺苷三磷酸)酶,刺激氢离子流出细胞,降低介质pH值,于是有关的酶被活化,水解细胞壁的多糖,使细胞壁软化而细胞得以扩伸。

施用吲哚乙酸后导致特定信使核糖核酸(mRNA)序列的出现,从而改变了蛋白质的合成。吲哚乙酸处理还改变了细胞壁的弹性,使细胞生长得以进行。

赤霉素

赤霉素是一类属于双萜类化合物的植物激素。1926年日本病理学家黑泽在水稻恶苗病的研究中发现水稻植株发生徒长是由赤霉菌的分泌物所引起的。1935年日本薮田从水稻赤霉菌中分离出一种活性制品,并得到结晶,定名为赤霉素(GA)。第一种被分离鉴定的赤霉素称为赤霉酸(GA3),现已从高等植物和微生物中分离出70余种赤霉素。因为赤霉素都含有羧基,故呈酸性。内源赤霉素以游离和结合型两种形态存在,可以互相转化。

赤霉素pH值3~4的溶液中最稳定,pH值过高或过低都会使赤霉素变成无生理活性的伪赤霉素或赤霉烯酸。赤霉素的前体是贝壳杉烯。某些生长延缓剂,如阿莫-1618和矮壮素等能抑制贝壳杉烯的形成,福斯方-D能抑制贝壳杉烯转变为赤霉素。赤霉素在植物体内的形成部位一般是嫩叶、芽、幼根以及未成熟的种子等幼嫩组织。不同的赤霉素存在于各种植物不同的器官内。幼叶和嫩枝顶端形成的赤霉素通过韧皮部输出,根中生成的赤霉素通过木质部向上运输。

赤霉素中生理活性最强、研究最多的是GA3,它能显著地促进植物茎、叶生长,特别是对遗传型和生

理型的矮生植物有明显的促进作用;能代替某些种子萌发所需要的光照和低温条件,从而促进发芽;可使长日照植物在短日照条件下开花,缩短生活周期;能诱导开花,增加瓜类的雄花数,诱导单性结实,提高坐果率,促进果实生长,延缓果实衰老。除此之外,GA3还可用于防止果皮腐烂;在棉花盛花期喷洒能减少蕾铃脱落;马铃薯浸种可打破休眠;大麦浸种可提高麦芽糖产量等等。

赤霉素很多生理效应与它调节植物组织内的核酸和蛋白质有关,它不仅能激活种子中的多种水解酶,还能促进新酶合成。研究最多的是GA3诱导大麦粒中α-淀粉酶生成的显著作用。另外还诱导蛋白酶、β-1,3-葡萄糖苷酶、核糖核酸酶的合成。赤霉素刺激茎伸长与核酸代谢有关,它首先作用于脱氧核糖核酸(DNA),使DNA活化,然后转录成信使核糖核酸(mRNA),从mRNA翻译成特定的蛋白质。

细胞分裂素

细胞分裂素是一类具有腺嘌呤环结构的植物激素。其共同特点是在腺嘌呤环的第6位置上有特定的取代物。它们的生理功能突出地表现在促进细胞分裂和诱导芽形成。

1948年美国斯科格和中国崔?在烟草组织培养中发现腺嘌呤能诱导烟草髓组织分化出芽。1955年米勒等以酵母脱氧核糖核酸的降解物和鲱精子的脱氧核糖核酸中分离纯化得到促进细胞分裂的物质,定名为激动素(KT),其化学结构为6-呋喃甲基腺嘌呤,又称糠基腺嘌呤。1963年莱瑟姆从受精11~16天的玉米嫩籽中分离出第一种存在于高等植物中的天然细胞分裂素,定名为玉米素(Z)。目前已从高等植物中得到20几种腺嘌呤衍生物。如二氢玉米素、玉米素核苷(ZR)和异戊烯基腺嘌呤。近代人工合成了多种类似物质,如6-苄基腺嘌呤(BA)、四氢吡喃苄基腺嘌呤(PBA)等。它们通称为细胞分裂素(CTK)。

根部分生组织(根尖)合成细胞分裂素最活跃,通过木质部的长距离运输从根到茎。幼叶、芽、幼果和正在发育的种子中也能形成细胞分裂素,玉米素最早就是从未成熟的玉米籽中获得的。细胞分裂素可通过转移核糖核酸(tRNA)的裂解产生,也可以由甲羟戊酸盐和腺嘌呤为前体合成。

细胞分裂素有多种生理效应。一为细胞分裂。细胞分裂有两个过程,一个是核分裂过程,另一个是胞质分裂过程,细胞分裂素促进胞质分裂。缺乏细胞分裂素则细胞不能正常分裂形成多核细胞。二是诱导芽形成。有些离体叶经激动素处理后主脉基部和叶缘都能产生芽。三是防衰老。用激动素处理后的离体叶片可以逆转处理区域内的蛋白质和叶绿素降解过程。四是克服顶端优势。将激动素施于受茎顶端极性运输的生长素抑制的侧芽上,可使侧芽萌发生长。细胞分裂素可抑制侧根和不定根的形成。细胞分裂素可使遗传上雄性葡萄品种变为雌雄同花植株。

细胞分裂素与生长素以适当比例配合使用能促使组织分化出芽和根,长成完整植株。

脱落酸

脱落酸是一种具有倍半萜结构的植物激素。1963年美国艾迪科特等从棉铃中提纯了一种物质能显著促进棉苗外植体叶柄脱落,称为脱落素II。英国韦尔林等也从短日照条件下的槭树叶片提纯一种物质,能控制落叶树木的休眠,称为休眠素。1965年证实,脱落素II和休眠素为同一种物质,统一命名为脱落酸。

脱落酸在衰老的叶片组织、成熟的果实、种子及茎、根部等许多部位形成。水分亏缺可以促进脱落酸形成。脱落酸在植物体内才再分配速度很快,在韧皮部和木质部液流中存在。合成脱落酸的前体是甲瓦龙酸,在它生成法尼基焦磷酸后有两条去路。一是真菌中常见的C15直接途径。一是高等植物中的C40间接途径。后者先形成类胡萝卜素(紫黄质),经光或生物氧化而裂解为C15的黄氧化素,再转化为脱落酸。

脱落酸可由氧化作用和结合作用被代谢。

脱落酸可以刺激乙烯的产生,催促果实成熟,它抑制脱氧核糖核酸和蛋白质的合成。脱落酸的生理功能有以下几种:

1. 抑制与促进生长。外施脱落酸浓度大时抑制茎、下胚轴、根、胚芽鞘或叶片的生长。浓度低时却促进离体黄瓜子叶生根与下胚轴伸长,加速浮萍的繁殖,刺激单性结实种子发育。

2. 维持芽与种子休眠。休眠与体内赤霉素与脱落酸的平衡有关。

相关文档
最新文档