初三数学中考模拟试卷及答案

合集下载

初三数学中考模拟试卷,附详细答案【解析版】

初三数学中考模拟试卷,附详细答案【解析版】

初三数学中考模拟试卷(附详细答案)一、选择题(共16小题,1-6小题,每小题2分,7—16小题,每小题2分,满分42分,每小题只有一个选项符合题意)1.实数a在数轴上的位置如图所示,则下列说法正确的是()A.a的相反数是2 B.a的绝对值是2C.a的倒数等于2 D.a的绝对值大于22.下列图形既可看成轴对称图形又可看成中心对称图形的是()A.B.C.D.3.下列式子化简后的结果为x6的是()A.x3+x3 B.x3•x3 C.(x3)3 D.x12÷x24.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3 B.m+6 C.2m+3 D.2m+65.对一组数据:1,﹣2,4,2,5的描述正确的是()A.中位数是4 B.众数是2 C.平均数是2 D.方差是76.若关于x的一元二次方程kx2﹣4x+2=0有两个不相等的实数根,则k的取值范围是()A.k<2 B.k≠0 C.k<2且k≠0 D.k>27.如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6 B.9 C.12 D.188.如图,将△ABC绕点A按顺时针方向旋转某个角度得到△APQ,使AP平行于CB,CB,AQ 的延长线相交于点D.如果∠D=40°,则∠BAC的度数为()A.30° B.40° C.50° D.60°9.一个立方体玩具的展开图如图所示.任意掷这个玩具,上表面与底面之和为偶数的概率为()A.B.C.D.10.如图,在△ABC中,∠C=90°,∠B=32°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,则下列说法:①AD是∠BAC的平分线;②CD是△ADC的高;③点D在AB的垂直平分线上;④∠ADC=61°.其中正确的有()A.1个B.2个C.3个D.4个11.如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC 的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°12.如图,Rt△OAB的直角边OB在x轴上,反比例函数y=在第一象限的图象经过其顶点A,点D为斜边OA的中点,另一个反比例函数y1=在第一象限的图象经过点D,则k的值为()A.1 B. 2 C.D.无法确定13.如图,已知平行四边形ABCD中,AB=5,BC=8,cosB=,点E是BC边上的动点,当以CE为半径的圆C与边AD不相交时,半径CE的取值范围是()A.0<CE≤8 B.0<CE≤5C.0<CE<3或5<CE≤8 D.3<CE≤514.如图,已知在平面直角坐标系xOy中,抛物线m:y=﹣2x2﹣2x的顶点为C,与x轴两个交点为P,Q.现将抛物线m先向下平移再向右平移,使点C的对应点C′落在x轴上,点P 的对应点P′落在轴y上,则下列各点的坐标不正确的是()A.C(﹣,)B.C′(1,0)C.P(﹣1,0)D.P′(0,﹣)15.任意实数a,可用[a]表示不超过a的最大整数,如[4]=4,[]=1,现对72进行如下操作:72→[]=8→[]=2→[]=1,这样对72只需进行3次操作后变为1.类似地:对数字900进行了n次操作后变为1,那么n的值为()A.3 B. 4 C. 5 D. 616.如图,在平面直角坐标系中,A点为直线y=x上一点,过A点作AB⊥x轴于B点,若OB=4,E是OB边上的一点,且OE=3,点P为线段AO上的动点,则△BEP周长的最小值为()A.4+2 B.4+ C.6 D.4二、填空题(共4小题,每小题3分,满分12分)17.计算:=.18.若x=1是关于x的方程ax2+bx﹣1=0(a≠0)的一个解,则代数式1﹣a﹣b的值为.19.如图,A,B,C是⊙O上三点,已知∠ACB=α,则∠AOB=.(用含α的式子表示)20.在△ABC中,AH⊥BC于点H,点P从B点开始出发向C点运动,在运动过程中,设线段AP的长为y,线段BP的长为x(如图1),而y关于x的函数图象如图2所示.Q (1,)是函数图象上的最低点.小明仔细观察图1,图2两图,作出如下结论:①AB=2;②AH=;③AC=2;④x=2时,△ABP是等腰三角形;⑤若△ABP为钝角三角形,则0<x<1;其中正确的是(填写序号).三、解答题(共5小题,满分58分)22.(10分)(2015•邢台一模)如图,某城市中心的两条公路OM和ON,其中OM为东西走向,ON为南北走向,A、B是两条公路所围区域内的两个标志性建筑.已知A、B关于∠MON 的平分线OQ对称.OA=1000米,测得建筑物A在公路交叉口O的北偏东53。

2024年浙江省宁波市镇海区九年级中考一模数学试题(解析版)

2024年浙江省宁波市镇海区九年级中考一模数学试题(解析版)

镇海区2024年初三模拟考试试卷数学 学科考生须知:1.全卷共三个大题,24个小题.满分为120分,考试时间为120分钟.2.请将学校、姓名、班级填写在答题卡的规定位置上.3.请在答题卡的规定区域作答,在试卷上作答或超出答题卡的规定区域作答无效.试题卷Ⅰ一、选择题(每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1. 在实数,中,最小的数是( )A. B. C. D. 【答案】D【解析】【分析】本题考查了实数的大小比较,根据负数小于0,0小于正数,即可求解.【详解】解:∴最小,故选:D .2. 据统计,2024年春节期间,国内旅游出行474000000人次,其中数474000000用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】此题考查科学记数法表示较大的数的方法.科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.【详解】解:数474000000用科学记数法表示为.故选:C .3. 下列计算正确的是( )102-102-201-<<<2-74.7410⨯747.410⨯84.7410⨯90.47410⨯10n a ⨯1||10a ≤<n n a n 84.7410⨯A. B. C. D. 【答案】C【解析】【分析】本题考查整式的运算.利用合并同类项法则,同底数幂乘法法则,幂的乘方法则,平方差公式逐项判断即可.【详解】解:与不是同类项,无法合并,则选项A 不符合题意;,则选项B 不符合题意;,则选项C 符合题意;,则选项D 不符合题意;故选:C .4. 一城市准备选购一千株高度大约为2m 的某种风景树来进行街道绿化, 有四个苗圃生产基地投标(单株树的价格都一样). 采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:树苗平均高度(单位:m )标准差甲苗圃1.8 0.2乙苗圃1.8 0.6丙苗圃2.0 0.6丁苗圃2.0 0.2请你帮采购小组出谋划策,应选购( )A. 甲苗圃的树苗B. 乙苗圃的树苗;C. 丙苗圃的树苗D. 丁苗圃的树苗【答案】D【解析】【分析】根据标准差和方差可以反映数据的波动大小,选出合适苗圃的树苗;再比较它们的高度,进而确32a a a-=326a a a ⋅=()236a a =()()2212121a a a +-=-3a 2a 3256a a a a ⋅=≠()236a a =()()2221214121a a a a +-=-≠-定选购哪家的树苗.【详解】由于标准差和方差可以反映数据的波动大小,所以甲苗圃与丁苗圃比较合适;又因为丁苗圃树苗平均高度大于甲苗圃,所以应选丁苗圃的树苗.故选D .【点睛】考查了标准差,标准差也均称方差,方差是反映一组数据波动大小的特征数,方差越大,数据的波动性越大;方差越小,稳定性越好.5. 若点是第二象限的点,则a 的取值范围是( )A. B. C. D. 或【答案】A【解析】【分析】本题考查了象限内点的坐标特征,解不等式方程组,掌握第二象限内点的坐标特征是解题关键.根据第二象限内的点横坐标小于0,纵坐标大于0,列不等式组求解即可.【详解】解:点是第二象限的点,,解得:,故选:A .6. 如图是一架人字梯,已知米,AC 与地面BC 的夹角为,则两梯脚之间的距离BC 为( )A. 米B. 米C. 米D. 米【答案】A【解析】(),2G a a -a<02a <02a <<a<02a > (),2G a a -020a a <⎧∴⎨->⎩a<02AB AC ==α4cos α4sin α4tan α4cos α【分析】根据等腰三角形的性质得到,根据余弦的定义即可,得到答案.【详解】过点A 作,如图所示:∵,,∴,∵,∴,∴,故选:A .【点睛】本题考查的是解直角三角形的应用,明确等腰三角形的性质是解题的关键.7. 一次数学课上,老师让大家在一张长12cm ,宽5cm 的矩形纸片内,折出一个菱形;甲同学按照取两组对边中点的方法折出菱形见方案一,乙同学沿矩形的对角线AC 折出,的方法得到菱形见方案二,请你通过计算,比较这两种折法中,菱形面积较大的是( ).A. 甲B. 乙C. 甲乙相等D. 无法判断【答案】B【解析】【分析】方案一中,通过图可知四个小直角三角形全等,用矩形面积减去4个小直角三角形的面积,即可得菱形面积;方案二中,两个小直角三角形全等,设菱形边长为x ,在直角三角形中利用勾股定理可求x ,再利用底高可求菱形面积然后比较两者面积大小.12BD DC BC ==AD BC ⊥AB AC =AD BC ⊥BD DC =DC co ACα=cos 2cos DC AC αα=⋅=24cos BC DC α==(EFGH )CAE DAC ∠=∠ACF ACB ∠=∠(AECF )⨯.【详解】解:方案一中,、F 、G 、H 都是矩形ABCD 的中点,≌≌≌,,,,;方案二中,设,则,,,,≌,在中,,,,由勾股定理得,解得,,,,,,故甲乙.E HAE ∴ HDG △△FCG FBE 11111111551222222222HAE S AE AH AB AD =⋅=⨯⨯=⨯⨯⨯⨯= 4HAE ABCD EFGH S S S =- 矩形菱形1512542=⨯-⨯30=BE x =12CE AE x ==-AF EC = AB CD =AE CF =ABE ∴ CDF Rt ABE 5AB =BE x =12AE x =-222(12)5x x -=+11924x =111195955222448ABE S BE AB =⋅=⨯⨯= 2ABE ABCD EFGH S S S =- 矩形菱形595125248=⨯-⨯6025≈-3530=><故选B .【点睛】本题考查菱形的性质、勾股定理以及矩形的性质.注意掌握数形结合思想与方程思想的应用.8. 甲乙两人练习跑步,如果乙先跑10米,甲跑5秒就可追上乙;如果乙先跑2秒,甲跑4秒就可追上乙.设甲速度为x 米/秒,乙的速度为y 米/秒,则可列出的方程组为( )A. B. C. D. 【答案】B【解析】【分析】根据题意,确定等量关系即甲行驶路程等于乙的两次行驶路程的和,列出方程即可,本题考查了二元一次方程组的应用,熟练掌握方程组的应用是解题的关键.【详解】根据题意,得,故选B .9. 二次函数的图象如图所示.下列结论:①;②;③;④若图象上有两点,且,则.其中正确结论的个数为( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题主要考查了二次函数的图象与性质.依据题意,由抛物线开口向下,从而,又抛物线为,故,再结合抛物线与轴交于负半轴,可得,进而可以判断①;又,从而可以判断②;又当时,,又,故,进而可以判断的551046x y y x =+⎧⎨=⎩551046x y x y=+⎧⎨=⎩510546x y x y+=⎧⎨=⎩551046y x y x=+⎧⎨=⎩551046x y x y =+⎧⎨=⎩2(0)y ax bx c a =++≠0abc >40b a +=0b c +>()11,x y ()22,x y 1204x x <<<12y y <a<022b x a=-=40b a =->y 0c <4b a =-1x =0y a b c =++>a<00b c a +>->③;由抛物线的对称轴是直线,从而当时与当时函数值相等,进而可得当,则,故可以判断④.【详解】解:由题意,抛物线开口向下,.又抛物线为..抛物线与轴交于负半轴,.,故①正确.又,,故②正确.由题意,当时,.又,,故③正确.抛物线的对称轴是直线,当时与当时函数值相等.当,则,故④错误.综上,正确的有:①②③.故选:C .10. 如图,点E 、F 分别是正方形的边、上的点,将正方形沿折叠,使得点B 的对应点恰好落在边上,则的周长等于( )A B. C. D. 【答案】A【解析】.2x =0x =4x =1204x x <<<12y y > <0a ∴22b x a=-=40b a ∴=-> y 0c ∴<0abc ∴>4b a =-40b a ∴+=1x =0y a b c =++>a<00b c a ∴+>-> 2x =∴0x =4x =∴1204x x <<<12y y >ABCD AD BC ABCD EF B 'CD DGB '△2AB ABBF+【分析】本题考查正方形的性质,全等三角形的判定与性质,如图,作,连接,,可证,,根据全等三角形的性质可得,,等量代换即可求解.【详解】解:如图,作,连接,,∵四边形是正方形,∴,由折叠可得,∴,∵ ∴,∴,∴,在和中,∴∴,,在和中,BH A B ''⊥BG BB 'BB C BB H ''≌ BHG BAG ≌ HB CB ''=GH AG =BH A B ''⊥BG BB 'ABCD 90ABC C A ∠=∠=∠=︒BF B F '=90FB A ABC ''∠=∠=︒23∠∠=BHG ∠=90FB A ''∠=︒BH FB ∥24∠∠=3=4∠∠BCB 'V BHB ' 9034BHB C BB BB ∠=∠=︒⎧⎪∠==''∠⎨'⎪⎩()AAS BB C BB H ''≌ BC BH =HB CB ''=Rt BAG Rt BHG BG BG BH AB=⎧⎨=⎩∴,∴,∴,故选:A .试题卷Ⅱ二、填空题(每小题4分,共24分)11. 若分式的值为0,则x 的值是______.【答案】2【解析】【分析】根据分式的值为0,即分母不为0,分子为0得到x-2=0,且x+3≠0,求出x 即可.【详解】解:∵分式的值为0,∴x-2=0,且x+3≠0,∴x=2.故答案为:2.【点睛】本题考查了分式的值为0的条件:分式的值为0,要满足分母不为0,分子为0.也考查了解方程和不等式.12. 分解因式:_____.【答案】【解析】【分析】此题主要考查了提取公因式法以及公式法分解因式,首先提取公因式,进而利用平方差公式分解因式即可,正确应用平方差公式是解题关键.【详解】解:,,故答案为:.13. 在平行四边形中,,的平分线交边于点E ,则的长为______.()HL BHG BAG ≌ GH AG =2DGB C DG GH B H B D AD CD AD '''=+++=+= 23x x -+23x x -+24mx m -=()()22m x x +-m ()2244mx m m x -=-()()22m x x =+-()()22m x x +-ABCD 58AB BC ==,B ∠BE AD DE【答案】3【解析】【分析】本题考查平行四边形的性质、等腰三角形的判定和性质.根据平行四边形的性质可得,则,再由角平分线的定义可得,从而求得,则,从而求得结果.【详解】解:∵四边形是平行四边形,∴,∴,∵的平分线交于点E ,∴,∴,∴,∵,∴,故答案为:3.14. 一个圆锥的高为4,母线长为6,则这个圆锥的侧面积是______.【答案】【解析】【分析】本题考查了圆锥的计算.先利用勾股定理计算出这个圆锥的底面圆的半径,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【详解】解:这个圆锥的底面圆的半径,所以这个圆锥的侧面积.故答案为:.15. 有三面镜子如图放置,其中镜子和相交所成的角,已知入射光线经反射后,反射光线与入射光线平行,若,则镜子和相交所成的角AD BC ∥AEB CBE ∠=∠ABE CBE ∠=∠AEB ABE ∠=∠AE AB =ABCD AD BC ∥AEB CBE ∠=∠B ∠BE AD ABE CBE ∠=∠AEB ABE ∠=∠AE AB =58AB BC ==,853DE AD AE BC AB =-=-=-===1262π=⨯⨯=AB BC 110ABC ∠=︒EF ,,AB BC CD EF AEF α∠=BC CD______.(结果用含的代数式表示)【答案】【解析】【分析】本题考查了入射角和反射角、平行线以及三角形内角和等知识,解题的关键在于正确画出辅助线【详解】根据入射光线画出反射光线,交于点,同理根据入射光线画出反射光线,交于点,根据入射光线画出反射光线,过点作的平行线,使得.入射角等于反射角入射角等于反射角根据入射角等于反射角,可知:的BCD ∠=α90α︒+FE EG BC G EG GH CD H GH HK G EF GP EF HK BEG AEF α∴∠=∠=1802GEF α∴∠=︒-110ABC ∠=︒18011070BGE αα∴∠=︒-︒-=︒- 70HGC BGE α∴∠=∠=︒-()180270402EGH αα∴∠=︒-⨯︒-=︒+GP EF HK180,180GEF EGP PGH GHK ∴∠+∠=︒∠+∠=︒402EGP PGH EGH α∠+∠=∠=︒+ 360GEF EGH GHK ∴∠+∠+∠=︒()()3601802402140GHK αα∴∠=︒-︒--︒+=︒()1180140202GHC KHD ∠=∠=︒-︒=︒18090BCD CGH GHC α∴∠=︒-∠-∠=︒+故答案为:.16. 如图,已知矩形,过点A 作交的延长线于点E ,若,则______.【解析】【分析】利用矩形的性质,证明,,,变形计算,结合勾股定理,解方程,正切函数解答即可.【详解】∵矩形,∴,∴,,∵,∴,∴,,∴,∴,∴,∴,90α︒+ABCD AE AC ⊥CB AED ACB ∠=∠2tan BAE ∠=1-ADF CEF △∽△ADE FEC ∽BAE BCA △△∽ABCD ,,90,AD BC AB CD ABC BCD AD BC ==∠=∠=︒ ADF CEF △∽△ADE CEF ∠=∠AED ACB ∠=∠ADE FEC ∽AD DF EC EF=EF EC AD ED =AD ED EF EC EF-=ED EC EF AD EC =+ ()·ED EC EC AD AD EC ED=+22ED AD AD EC =+根据勾股定理,得,∴,∴,∴,∴,∵,∴,∵,∴,∴,∴,∴,解得,解得(舍去),∵∴,.【点睛】本题考查了矩形的性质,三角形相似的判定和性质,勾股定理,正切函数,直角三角形的性质,解方程,熟练掌握三角形相似的判定和性质,正切函数,勾股定理,解方程是解题的关键.三、解答题(第17-19题每小题6分,第20、21题每小题8分,第22、23题每小题10分,第24题12分,共66分)17. 计算:(1)222ED CD EC =+222CD EC AD AD EC +=+ ()()222·AB EB BC BC BC EB BC ++=++222222AB EB EB BC BC BC EB BC BC +++=++ 2220AB EB EB BC BC ++-= AE AC ⊥90BAE AEB BCA ∠︒-∠=∠=90ABE CBA ∠∠=︒=BAE BCA △△∽AB BE BC AB=2AB BE BC = 2220EB EB BC BC +-= (1EB BC ==-±1,1EB EB BC BC=-=tan BE BAE AB ∠=2222tan 1BE BE BE BAE AB BE BC BC ∠====- 102212024(3)33-+-⨯--(2)先化简,再求值:,其中【答案】(1) (2),2【解析】【分析】本题主要考查了实数的运算,整式的化简求值,对于(1),根据,,,,再根据有理数运算法则计算;对于(2),先根据整式的乘法法则及公式化简,再代入求值即可.【小问1详解】;【小问2详解】原式.当时,原式.18. 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分10分,成绩均记为整数分),并按测试成绩m (单位:分)分成四类:类,类,类,类,绘制出如图两幅不完整的统计图,请根据图中信息,解答下列问题:(1)本次抽样调查的人数为______,并补全条形统计图:(1)(1)(2)x x x x +-++12x =5312x +020241=2(93)-=2139-=1133-=02212024(3)33-+-⨯--111993=+⨯-213=+53=2212x x x=-++12x =+12x =11222=+⨯=A (10)m =B (79)m ≤≤C (46)m ≤≤D (3)m ≤(2)扇形统计图中A 类所对的圆心角是______°,测试成绩的中位数落在______类;(3)若该校九年级男生有500名,请估计该校九年级男生“引体向上”项目成绩为A 类或B 类的共有多少名?【答案】(1)50人,图见解析(2)72,B (3)估计该校九年级男生“引体向上”项目成绩为类或类的约有320名.【解析】【分析】本题考查条形统计图,扇形统计图,用样本估计总体,中位数;通过统计图之间的联系求出样本容量是解题的关键.(1)由统计图之间的联系求出样本容量,进一步求出组人数,补齐图形;(2)由组的占比求出对应圆心角;根据中位数定义,可知第25,26个数在组,故中位数在组;(3)由样本占比估计总本的人数.【小问1详解】解:本次抽样调查的人数为(人),组人数为(人),补全的条形统计图如图;故答案为:50人;【小问2详解】解:类所对的圆心角是;样本量为50,可知数据从大到小排列,第25,26个数在组,故中位数在类;故答案为:72,;小问3详解】解:类或类的共有(名),答:估计该校九年级男生“引体向上”项目成绩为类或类的共有320名.19. 如图,直线与双曲线相交于点.【A B C A B B 1020%50÷=C 501022315---=A 36020%72︒⨯=︒B B B A B 500(20%44%)320⨯+=A B y kx b =+(0)m y x x=>()()2,6,1A n B(1)求直线及双曲线对应的函数表达式;(2)直接写出关于x 的不等式的解集;(3)求的面积.【答案】(1)直线:,双曲线: (2)(3)8【解析】【分析】本题主要考查了一次函数,反比例函数的交点坐标,将点的坐标代入函数关系式是确定函数关系式的常用方法,理解交点坐标与不等式解集之间的关系是解本题的关键.(1)将代入到反比例函数解析式可得其解析式;先根据反比例函数解析式求得点的坐标,再由,坐标可得直线解析式;(2)根据图象得出不等式的解集即可;(3)设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,根据题意可得,,从而求出,和,进而求出的值.【小问1详解】把代入,得:,∴反比例函数的解析式为;把代入,得:,∴,(0)m kx b x x +>>ABO 142y x =-+6(0)y x x =>26x <<()6,1B ()2,3A A B (0)m kx b x x+>>C D A B AE y ⊥E BF x ⊥F 2,1AE BF ==48OC OD ==,AOC S BOD S COD S △AOB S ()6,1B m y x=6m =6y x=()2,A n 6y x =3n =()2,3A把、代入,得:,解得:,∴一次函数的解析式为;故答案为:;.【小问2详解】由图象可知当时,,∴不等式的解集是,【小问3详解】设一次函数的图象与坐标轴交于,两点,分别过,两点作轴于,作轴于,∵、,∴,∵一次函数的解析式为,当时,,当当时,,解得,,∴点C 的坐标是,点D 的坐标是∴.∴,,()2,3A ()6,1B y kx b =+2361k b k b +=⎧⎨+=⎩124k b ⎧=-⎪⎨⎪=⎩142y x =-+5y x =-+4y x =26x <<(0)m kx b x x+>>(0)m kx b x x+>>26x <<C D A B AE y ⊥E BF x ⊥F ()2,3A ()6,1B 2,1AE BF ==142y x =-+0x =4y =0y =1042x =-+8x =()0,4()8,048OC OD ==,114,422AOC BOD S OC AE S OD BF =⋅==⋅= 1162COD S OC OD =⋅=△∴.20. 如图,已知和均是等边三角形,F 点在上,延长交于点D ,连接.(1)求证:四边形是平行四边形;(2)当点D 在线段上什么位置时,四边形是矩形?请说明理由.【答案】(1)见解析(2)当点D 在中点时,四边形是矩形,见解析【解析】【分析】本题考查了等边三角形的性质,平行四边形的判定与性质,矩形的判定等知识.熟练掌握等边三角形的性质,平行四边形的判定与性质,矩形的判定是解题的关键.(1)由和均是等边三角形,可得,则,进而可证四边形是平行四边形;(2)由,点D 在中点,可得,则,可证四边形是平行四边形,由,可证四边形是矩形.【小问1详解】证明:∵和均是等边三角形,∴,∴,∴四边形是平行四边形;【小问2详解】解:当点D 在中点时,四边形是矩形,理由如下;∵,点D 在中点,∴,∵四边形是平行四边形,∴,∴,∵,16448AOB COD AOC BOD S S S S =--=--= ABC AEF △AC EF BC AD CE ,ABDE BC ADCE BC ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE AB AC =BC AD BC BD CD ⊥=,AE CD =ADCE AD BC ⊥ADCE ABC AEF △6060BAC AFE ACB FAE ∠=∠=︒∠=∠=︒,AB DE AE BD ∥,∥ABDE BC ADCE AB AC =BC AD BC BD CD ⊥=,ABDE AE BD =AE CD =AE CD ∥∴四边形是平行四边形,∵,∴四边形是矩形.21. 如图的正方形网格中,每个小正方形的边长均为,的各个顶点都在格点上.(1)在边上作一点,使得的面积是,并求出的值;(2)作出边上的高,并求出高的长.(说明:只能使用没有刻度尺的直尺进行作图,并保留画图痕迹)【答案】(1)画图见解析,; (2)见解析,.【解析】【分析】()根据网格特征作即可;()根据网格特征作即可,本题考查了无刻度尺的直尺作图—作垂线,熟练掌握无刻度尺的直尺作图的方法是解题的关键.【小问1详解】如图,由网格的特征可知:,∴,∴,∴面积为,∴即为所求;ADCE AD BC ⊥ADCE 1ABC BC M ABM 83BM CMAC BD BD 12BM CM =165BD =112BM CM =2BD AC ⊥BG CH ∥CHM BGM ∽12BG BM CH CM ==ABM 1118443323ABC S =⨯⨯⨯= ABM【小问2详解】如图,根据网格作垂线的方法即可,∴即为所求,由网格的特征可知:,∴,∴.22. 星期日上午,小明从家里出发步行前往离家的镇海书城参加读书会活动,他以的速度步行了后发现忘带入场券,于是他停下来.打电话给家里的爸爸寻求帮助,爸爸骑着自行车从家里出发,沿着同一路线以的速度行进,同一时刻小明继续按原速步行赶往目的地.爸爸追上小明后载上他以相同的车速前往书城(停车载人时间忽略不计),到达书城后爸爸原速返回家.爸爸和小明离家的路程与小明所用时间的函数关系如图所示.(1)求爸爸在到达镇海书城前,他离开家的路程s 关于t 的函数表达式及a 的值.(2)爸爸出发后多长时间追上小明?此时距离镇海书城还有多远?【答案】(1),(2)爸爸出发3分钟后追上小明,此时距离镇海书城1275米【解析】【分析】本题考查一次函数的应用以及路程、速度、时间之间关系的应用,关键是用待定系数法求出函数解析式.(1)根据爸爸行驶的路程和爸爸的速度,求出爸爸到达书城所用时间,再根据待定系数法求函数解析式,再求出的值;BD 5AC ==1144522ABC S BD =⨯⨯=⨯⨯ 165BD =9:00 2.4km 75m/min 12min 9:15375m/min ()m s ()min t 3755625s t =-27.8a =a(2)设爸爸出发后分钟追上小明,根据两人路程相等列出方程,解方程求出,并求出距离书城的距离.【小问1详解】解:爸爸到达达镇海书城所用时间为,设爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为,把,代入,得:,解得,爸爸在到达镇海书城前,他离开家的路程关于的函数表达式为;爸爸的速度不变,他返回家的时间和到达书城的时间均为,;【小问2详解】设爸爸出发后分钟追上小明,则,解得,此时,,答:爸爸出发后3分钟追上小明,此时距离镇海书城还有1275米.23. 根据以下素材,探索完成任务.设计跳长绳方案素材1:某校组织跳长绳比赛,要求如下:(1)每班需报名跳绳同学9人,摇绳同学2人;(2)跳绳同学需站成一路纵队,原地起跳,如图1.素材2:某班进行赛前训练,发现:(1)当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.已知摇绳同学之间水平距离为,绳子最高点为,摇绳同学的出手高度均为,如图x x 2400 6.4(min)375=s t s kt b =+(15,0)(21.4,2400)s kt b =+15021.42400k b k b +=⎧⎨+=⎩3755625k b =⎧⎨=-⎩∴s t 3755625s t =- ∴ 6.4min 152 6.427.8a ∴=+⨯=x 37575(12)x x =+3x =240037531275(m)-⨯=6m 2m 1m2;(2)9名跳绳同学身高如右表.【答案】任务1:;任务2:当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:方案可行【解析】【分析】本题考查了二次函数的应用,任务1:建立平面直角坐标系,待定系数法求解析式,即可求解;任务2,得出最右侧同学横坐标为代入解析式,结合按照排列方式可知最右(左)侧同学屈膝后身高即可求解;任务3,求得平移后的抛物线解析式,进而将代入,结合题意,即可求解.【详解】解:任务1:以两个摇绳人的中点所在直线与地面的交点为原点,地面所在直线为轴,建立直角坐标系,如图:由已知可得,在抛物线上,且抛物线顶点的坐标为,设抛物线解析式为,∴,解得:,∴抛物线的函数解析式为:任务2:∵抛物线的对称轴为直线,名同学,以轴为对称轴,分布在对称轴两侧,将同学按“中间高,两边低”的方式对称排列,同时保持的间距,则最右边侧的同学的坐标为即,当时,的21129y x =-+()1.8,1.7 1.8x =x ()()3,1,3,1-()0,222y ax =+192a =+19a =-21129y x =-+3x =9y 0.45m ()0.454,1.70⨯()1.8,1.71.8x =211.82 1.649y =-⨯+=按照排列方式可知最右(左)侧同学屈膝后身高:∴当绳子在最高点时,长绳不会触碰到位于最边侧的同学;任务3:∵当绳子摇至最高处或最低处时,可近似看作两条对称分布的抛物线.设开口向上的抛物线解析式为,对称轴为直线,则的顶点坐标为,∵,的开口大小不变,开口方向相反,∴当绳子摇至最低处时,抛物线的解析式为:∵将出手高度降低至.∴抛物线向下平移∴改变方案后的抛物线解析式为将,代入因此,方案可行24. 如图1,已知四边形内接于,且为直径.作交于点E ,交于点F .(1)证明:;(2)若,,求半径r ;(3)如图2,连接并延长交于点G ,交于点H .若,.①求;②连接,设,用含x 的式子表示的长.(直接写出答案)【答案】(1)见解析 (2) (3)①;②191.70 1.615 1.6420⨯=<2y1y =2y ()0,01y 2y 2219y x =-0.85m 10.850.15-=2310.159y x =--1.8x =223110.15 1.80.150.210.2599y x =-=⨯-=<ABCD O BD AF BC ∥CD O AF CD ⊥4cos 5DAF ∠=4AC =BE DF O AF CD =AEB BDC ∠=∠tan BDC ∠OE OE x =GH 52r =1tan 2BDC ∠=GH x =【解析】【分析】(1)根据圆周角定理得出,根据平行线的得出,即可证明结论;(2)证明,得出,根据,得出,根据,求出结果即可;(3)①过点O 作于点P ,于点Q ,证明矩形是正方形,设,,得出,,证明,得出,求出,得出;②连接,证明,得出,即,求出,证明,得出,根据,得出,证明,得出,证明,得出【小问1详解】证明:∵为直径,∴,∵,∴,即.【小问2详解】解:∵,∴,又∵,∴,90BCD ∠=︒90AED BCD ∠=∠=︒AEC DAB ∽ AC AE BD AD =4cos 5AE DAF AD ∠==45AC BD =4AC =OP DC ⊥OQ AF ⊥OPEQ OP a PE ==CE b =2BC a =()22CD PC a b ==+BEC DBC ∽ 2BC CE CD =⋅1b a =1tan 2OP a BDC DP a b ∠===+HF ODP MDE ∽OP DP ME DE ==ME x =AMN CBN ∽ 37AN AC x ==ODP MDE ∽CEB CBD ∠∠=DEG DAN ∽ AN AD EG DE ==EG AN ==ABE HFE ∽ EH AE ==BD 90BCD ∠=︒AF BC ∥90AED BCD ∠=∠=︒AF CD ⊥AF BC ∥EAC ACB ∠=∠ACB ADB Ð=ÐEAC ADB ∠=∠∵,∴,∴,∴,∴,∵,∴,即.【小问3详解】①如图2,过点O 作于点P ,于点Q ,如图所示:∵,∴四边形是矩形,∵,∴,∴矩形是正方形设,,∵,∴,∵,90AEC BAD ∠=∠=︒AEC DAB ∽ AC AE BD AD=4cos 5AE DAF AD ∠==45AC BD =4AC =5BD =52r =OP DC ⊥OQ AF ⊥90OPE PEQ OQE ∠=∠=∠=︒OPEQ AF CD =OP OQ =OPEQ OP a PE ==CE b =OP CD ⊥DP CP =DO OB =∴,,∵,∴,∵,∴,∵,∴,∴,∴,即:,解得:,∴;②如图,连接,由(3)①得,四边形为正方形,2BC a =()22CD PC a b ==+AF BC ∥AEB EBC ∠=∠AEB BDC ∠=∠EBC BDC ∠=∠BCE BCD ∠=∠BEC DBC ∽ BC EC DC BC=2BC CE CD =⋅()()222a b a b =⋅+1b a=1tan 2OP a BDC DP a b ∠===+HF OPEQ∵,∴,由,得,∴,∴,,∵,,∴为等腰直角三角形,∴,,∴,∵,,∴,∴,,解得:,∴,∵,∴,∴,∴,OE x =OP PE QE x ===1tan 2BDC ∠=DP =CP DP ==CE CP EP x =-=CD =AF CD =AF CD ⊥ADE V x AE DE ==EF CE x ==AC ==90OPD DEM ∠=∠=︒ODP MDE ∠=∠ODP MDE ∽OP DP ME DE==ME x =AM AE ME x x x =-==AF BC ∥AMN CBN ∽ 34AN AM NC BC ===37AN AC x ==∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴∴,∵,∴,∵,∴,∴∴,∴.【点睛】本题主要考查了相似三角形的判定和性质,勾股定理,圆周角定理,等腰三角形的判定和性质,ODP MDE ∽CEB CBD∠∠= CDCD =CBD CAD ∠=∠CEB DEG ∠=∠DAN DEG ∠=∠ CFCF =EDG CAE ∠=∠AF BC ∥CAE ACB ∠=∠ AB AB =ADN ACB ∠=∠ADN EDG ∠=∠DEG DAN ∽ AN AD EG DE==EG AN x == BFBF =EAB EHF ∠=∠AEB HEF ∠=∠ABE HFE ∽ EH EF AE BE ==EH AE ==GH EH EG x =-=解题的关键是熟练掌握相关的判定和性质,数形结合,作出辅助线.。

2024年湖北省武汉市九年级中考模拟调考数学试卷(含答案)

2024年湖北省武汉市九年级中考模拟调考数学试卷(含答案)

2024年湖北省武汉市九年级中考模拟调考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.−5的相反数是( )A. −5B. 5C. 15D. −152.对下列各表情图片的变换顺序描述正确的是( )A. 轴对称,平移,旋转B. 轴对称,旋转,平移C. 旋转,轴对称,平移D. 平移,旋转,轴对称3.下列事件中,是随机事件的是( )A. 通常温度降到0℃以下,纯净的水结冰B. 随意翻到一本书的某页,这页的页码是奇数C. 明天太阳从东方升起D. 任意画一个三角形,其内角和是360°4.如图所示的正三棱柱的主视图是( )A. B. C. D.5.下列整式计算的结果为a6的是( )A. a3+a3B. (a2)3C. a12÷a2D. (a3)36.光线照射到平面镜镜面会产生反射现象,物理学中,我们知道反射光线与法线(垂直于平面镜的直线叫法线)的夹角等于入射光线与法线的夹角.如图一个平面镜斜着放在水平面上,形成∠AOB形状,∠AOB=36°,在OB上有一点E,从点E射出一束光线(入射光线),经平面镜点D处反射光线DC刚好与OB平行,则∠DEB的度数为( )A. 71°B. 72°C. 54°D. 53°7.毕业季来临,甲、乙、丙三位同学随机站成一排照合影,甲站在中间的概率为( )A. 12B. 13C. 16D. 238.“漏壶”是一种古代计时器,在一次实践活动中,某小组同学根据“漏壶”的原理制作了如图所示的液体漏壶,由一个圆锥和一个圆柱组成的,中间连通,液体可以从圆锥容器中匀速漏到圆柱容器中,实验开始时圆柱容器中已有一部分液体,下表是实验记录的圆柱体容器液面高度y cm与时间xℎ的数据:时间x/ℎ12345圆柱体容器液面高度y/cm610141822如果本次实验记录的开始时间是上午8:00,那么当圆柱体容器液面高度达到8cm时是( )A. 8:30B. 9:30C. 10:00D. 10:309.如图,△ABC内接于⊙O,∠ACB=135°,CD⊥AB于点D,若AD=4,BD=6,则CD的长为( )A. 2B. 3C. 4D. 510.如图1,点P从边长为6的等边三角形ABC的顶点A出发,沿直线运动到三角形内部一点Q,再从该点沿直线运动到顶点B.设点P运动的路程为x,PBPC=y,能反映点P运动时y随x变化关系的部分大致图象如图2,点P从点Q运动到B的路程为( )A. 6B. 3C. 23D. 3二、填空题:本题共6小题,每小题3分,共18分。

中考数学仿真模拟试卷(含答案)

中考数学仿真模拟试卷(含答案)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________满分150分,答题时间120分钟.一、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)22.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x24.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角8.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>09.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.2110.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3二、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是.13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为.三、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?参考答案四、选择题(本题共10小题,每小题3分,共30分)1.下列算式中,计算结果是负数的是()A.3×(﹣2) B.|﹣1| C.7+(﹣2) D.(﹣1)2【解答】解:A、原式=﹣6,符合题意;B、原式=1,不符合题意;C、原式=5,不符合题意;D、原式=1,不符合题意.故选:A.2.如图是由4个相同的小正方体组成的立体图形,则它的俯视图是()A.B.C.D.【解答】解:从上面看,底层右边是一个小正方形,上层是两个小正方形.故选:B.3.下列运算中,正确的是()A.x3+x2=x5B.(x3)2=x5C.(x+y)2=x2+y2D.3x2+2x2=5x2【解答】解:A,x3+x2≠x5,故A运算错误;B,(x3)2=x3×2=x6,故B运算错误;C,(x+y)2=x2+2xy+y2,故C运算错误;D,3x2+2x2=5x2,故D运算正确.故选:D.4.矩形具有而菱形不一定具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相垂直D.对角线平分一组对角【解答】解:矩形具有而菱形不一定具有的性质是对角线相等,故选:B.5.将分别标有“停”“课”“不”“停”“学”汉字的五个小球装在一个不透明口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是()A.B.C.D.【解答】解:根据题意画图如下:共有20种等情况数,其中两次摸出的球上的汉字是“不”“停”的有4种,则随机摸出一球,两次摸出的球上的汉字是“不”“停”的概率是=;故选:D.6.如图,四边形ABCD内接于⊙O,AB=CD,A为中点,∠BDC=54°,则∠ADB等于()A.42°B.46°C.50°D.54°【解答】解:∵A为中点,∴,∵AB=CD,∴,∴,∴∠ADB=∠CBD=∠ABD,∵∠ABC+∠ADC=180°,∴∠ADB+∠CBD+ABD=180°﹣∠BDC=180°﹣54°=126°,∴3∠ADB=126°,∴∠ADB=42°.故选:A.7.如图是某组15名学生数学测试成绩的频数分布直方图,则成绩低于60分的人数是()A.3人B.6人C.10人D.14人【解答】解:由直方图可知,成绩低于60分的人数是1+2=3,故选:A.8.如图,若数轴上的两点A,B表示的数分别为a,b,则下列结论正确的是()A.b﹣a<0 B.|a|>|b﹣1| C.ab>0 D.a+b>0【解答】解:由a,b所表示的数在数轴上的位置可知,a<0且|a|>1,b>0且0<|b|<1,则ab<0,a+b<0则选项C,D不正确;∵b>0,﹣a>0,∴b﹣a=b+(﹣a)>0,则选项A不正确;∵a<0且|a|>1,b>0且0<|b|<1,∴0<|b﹣1|<1,∴|a|>1>|b﹣1,故选项B正确.故选:B.9.如图,在△ABC中,点O是边BC,AC的垂直平分线的交点,若AB=8,OB=5,则△AOB的周长是()A.13 B.15 C.18 D.21【解答】解:连接OC,∵点O是边BC,AC的垂直平分线的交点,∴OB=OC,OA=OC,∴OA=OB,∵OB=5,∴OA=OB=5,∵AB=8,∴△AOB的周长是AB+OA+OB=8+5+5=18,故选:C.10.已知二次函数y=ax2+bx+1的图象与x轴没有交点,且过点A(﹣2,y1),B(﹣3,y2),C(1,y2),D(,y3),则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y3>y2D.y1>y2>y3【解答】解:由二次函数y=ax2+bx+1知c=1,即二次函数和y轴交于点(0,1),而二次函数图象与x轴没有交点,故抛物线开口向上,点B、C的纵坐标相同,则二次函数的对称轴为直线x=(﹣3+1)=﹣1,而点离函数对称轴的距离从大到小的顺序是D、B(C)、A,故y3>y2>y1,故选:B.五、填空题(本题共5小题,每小题4分,共20分)11.分式有意义的条件是x≠0且x≠1.【解答】解:由题意得x(x﹣1)≠0,解得x≠0且x≠1,故答案为x≠0且x≠1.12.如图所示的棋盘放置在某个平面直角坐标系内,棋子①的坐标为(﹣1,﹣2),棋子②的坐标为(2,﹣3),那么棋子③的坐标是(﹣3,﹣1).【解答】解:如图所示:棋子③的坐标是(3,﹣1).故答案为:(3,﹣1).13.一个袋子中装有4个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是.【解答】解:根据题意画图如下:共有42种等情况数,其中摸出两个球为一个黑球和一个白球的有24种,则随机从这个袋子中摸出两个球为一个黑球和一个白球的概率是=;故答案为:.14.如图,PA,PB分别与⊙O相切于点A,B,⊙O的切线EF分别交PA,PB于点E,F,切点C在弧AB 上,若PA长为8,则△PEF的周长是16.【解答】解:∵PA、PB、EF分别与⊙O相切于点A、B、C,∴AE=CE,FB=CF,PA=PB=8,∴△PEF的周长=PE+EF+PF=PA+PB=16.故答案为:16.15.如图,在Rt△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=26,BG =10,则CF的长为12.【解答】解:∵AG∥BD,BD=FG,∴四边形BGFD是平行四边形,∵CF⊥BD,∴CF⊥AG,又∵BD为AC边上的中线,∠ABC=90°,∴BD=DF=AC,∴四边形BGFD是菱形,∴BD=DF=GF=BG=10,则AF=AG﹣GF=26﹣10=16,AC=2BD=20,∵在Rt△ACF中,∠CFA=90°,∴AF2+CF2=AC2,即162+CF2=202,解得:CF=12.故答案是:12.六、解答题(本题共10小题,共100分)16.在罗山县某住房小区建设中,为了提高业主的宜居环境,某小区规划修建一个广场(平面图如图所示).(1)用含m、n的代数式表示该广场的面积S;(2)若m、n满足(m﹣6)2+|n﹣8|=0,求出该广场的面积.【解答】解:(1)S=2m×2n﹣m(2n﹣n﹣0.5n)=4mn﹣0.5mn=3.5mn;(2)由题意得m﹣6=0,n﹣8=0,∴m=6,n=8,代入,可得原式=3.5×6×8=168.17.某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(为了方便记录,把a≤x<b记作:[a,b).)最高气温[10,15) [15,20) [20,25) [25,30) [30,35) [35,40)天数 2 16 36 25 7 4以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y大于零的概率.【解答】解:(1)由前三年六月份各天的最高气温数据,得到最高气温位于区间[20,25)和最高气温低于20的天数为2+16+36=54,根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶,如果最高气温位于区间[20,25),需求量为300瓶,如果最高气温低于20,需求量为200瓶,∴六月份这种酸奶一天的需求量不超过300瓶的概率p==;(2)∵当温度大于等于25℃时,需求量为500,Y=450×2=900元;当温度在[20,25)℃时,需求量为300,Y=300×2﹣(450﹣300)×2=300元;当温度低于20℃时,需求量为200,Y=400﹣(450﹣200)×2=﹣100元;∴当温度大于等于20时,Y>0,∵由前三年六月份各天的最高气温数据,得当温度大于等于20℃的天数有:90﹣(2+16)=72,∴估计Y大于零的概率P==.18.如图,在△ABC中,D,E,F分别是AB,BC,AC的中点.(1)求证:四边形ADEF是平行四边形;(2)当AB=AC时,若AB=10cm,求四边形ADEF的周长.【解答】(1)证明:∵D,E,F分别是AB,BC,AC的中点,∴DE,EF分别是△ABC 的中位线,∴DE∥AC,EF∥AB,∴DE∥AF,EF∥AD,∴四边形ADEF是平行四边形;(2)解:∵D是AB的中点,F是AC的中点,AB=10cm,AB=AC,∴AD=AF=AB=5(cm),∵四边形ADEF是平行四边形,∴四边形ADEF是菱形,∴四边形ADEF的周长为4AD=4×5=20(cm).19.亮亮刚进入初三学习感到紧张,计划元旦节到附近的几个景点旅游放松.现有四个景点供选择,其中两个景点以自然风光为主,另两个景点以人文景观为主.假设每个景点被选中的机会是等可能的.(1)任选一个景点,求选中以人文景观为主的概率;(2)任意选择三个景点制作一条旅游线路,求亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率.【解答】解:(1)任选一个景点,选中以人文景观为主的概率为=;(2)把自然风光记为A,人文景观记为B,画树状图如图:共有24个等可能的结果,亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的结果有4个,∴亮亮选择“自然风光→人文景观→自然风光”作为旅游线路的概率为=.20.疫情防控期间,某校为实现学生上下学“点对点”接送,计划组织本校全体走读生统一乘坐校园专线上下学.若单独调配36座新能源客车若干辆,则有2人没有座位;若单独调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该校共有多少名走读生?(2)若同时调配36座和22座两种客车若干辆,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【解答】解:(1)设计划调配36座新能源客车x辆,该校共有y名走读生.由题意,得,解得,答:计划调配36座新能源客车6辆,该校共有218名走读生.(2)设36座和22座两种车型各需m,n辆.由题意,得36m+22n=218,且m,n均为非负整数,经检验,只有m=3,n=5符合题意.答:需调配36座客车3辆,22座客车5辆.21.时代购物广场要修建一个地下停车场,停车场的入口设计示意图如图所示,其中斜坡的倾斜角为18°,一楼到地下停车场地面的垂直高度CD=2.8m,一楼到地平线的距离BC=1m.(1)为保证斜坡的倾斜角为18°,应在地面上距点B多远的A处开始斜坡的施工?(结果精确到0.1m)(2)如果给该购物广场送货的货车高度为2.5m,那么按这样的设计能否保证货车顺利进入地下停车场?并说明理由.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:(1)由题意可知:∠BAD=18°,在Rt△ABD中,AB=18≈≈5.6(m),答:应在地面上距点B约5.6m远的A处开始斜坡的施工;(2)能,理由如下:如图,过点C作CE⊥AD于点E,则∠ECD=∠BAD=18°,在Rt△CED中,CE=CD•cos18°≈2.8×0.95=2.66(m),∵2.66>2.5,∴能保证货车顺利进入地下停车场.22.如图,一次函数y=x+3的图象l1与x轴交于点B,与过点A(3,0)的一次函数的图象l2交于点C(1,m).(1)求m的值;(2)求一次函数图象l2相应的函数表达式;(3)求△ABC的面积.【解答】解:(1)∵点C(1,m)在一次函数y=x+3的图象上,∴m=1+3=4;(2)设一次函数图象l2相应的函数表达式为y=kx+b,把点A(3,0),C(1,4)代入得,解得,∴一次函数图象l2相应的函数表达式y=﹣2x+6;(3)∵一次函数y=x+3的图象l1与x轴交于点B,∴B(﹣3,0),∵A(3,0),C(1,4),∴AB=6,∴S△ABC=×6×4=12.23.如图,已知△ABC是⊙O的圆内接三角形,AD为⊙O的直径,DE为⊙O的切线,AE交⊙O于点F,∠C=∠E.(1)求证:AB=AF;(2)若AB=5,AD=,求线段DE的长.【解答】(1)证明:如图1,连接BF,∴∠AFB=∠C,∵∠C=∠E,∴∠AFB=∠E,∴BF∥DE,∵DE为⊙O的切线,AD为⊙O的直径,∴AD⊥DE,∴AD⊥BF,∴AD平分BF,∴AB=AF;(2)解:如图2,连接BD,∴∠C=∠ADB,∵∠C=∠E,∴∠ADB=∠E,∵AD为⊙O的直径,∴∠ABD=90°,∴∠ABD=∠ADE,∴△ABD∽△ADE,∴=,∴AE=,∴DE==.24.如图,二次函数y=mx2+(m2﹣m)x﹣2m+1的图象与x轴交于点A、B,与y轴交于点C,顶点D的横坐标为1.(1)求二次函数的表达式及A、B的坐标;(2)如图2,过B、C两点作直线BC,连接AC,点P为直线BC上方的抛物线上一点,PF∥y轴交线段BC 于F点,过点F作FE⊥AC于E点.设m=PF+FE,求m的最大值及此时P点坐标;(3)将原抛物线x轴的上方部分沿x轴翻折到x轴的下方得到新的图象G,当直线y=kx+k﹣6与新图象G 有4个公共点时,求k的取值范围.【解答】解:(1)y=mx2+(m2﹣m)x﹣2m+1顶点D的横坐标为1,∴=1,解得m=﹣1,∴二次函数的表达式为y=﹣x2+2x+3,令y=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)过B作BH⊥AC于H,过F作FG⊥y轴于G,如图:∵二次函数y=﹣x2+2x+3与y轴交点C(0,3),且A(﹣1,0),B(3,0),∴AB=4,OC=3,AC=,BC=3,∵S△ABC=AB•OC=AC•BH,∴BH=,Rt△BHC中,sin∠HCB===,Rt△EFC中,EF=CF•sin∠HCB=CF,∴FE=•CF=CF,设P(n,﹣n2+2n+3),由B(3,0),C(0,3)得BC解析式为y=﹣x+3,∴△BCO是等腰直角三角形,F(n,﹣n+3),∴△GFC是等腰直角三角形,GF=n,∴CF=GF=n,∴CF=2n,即FE=2n,∴m=PF+FE=PF+2n=(﹣n2+2n+3)﹣(﹣n+3)+2n=﹣n2+5n,∴当n==时,m最大,最大为﹣()2+5×=,此时P(,);(3)直线y=kx+k﹣6总过(﹣1,﹣6),k<0时,它和新图象G不可能有4个公共点,如图:k>0时,若二次函数的表达式为y=﹣x2+2x+3刚好经过B(3,0),由(﹣1,﹣6),B(3,0)可得直线解析式为y=x﹣,此时直线y=x﹣与新图象G有3个交点,∴直线y=kx+k﹣6与新图象G有4个公共点,需满足k<,而抛物线y=﹣x2+2x+3关于x轴对称的抛物线解析式为y=x2﹣2x﹣3,若直线y=kx+k﹣6与抛物线y=x2﹣2x﹣3有两个交点,即是有两组解,∴x2﹣(2+k)x+3﹣k=0有两个不相等的实数根,∴△>0,即[﹣(2+k)]2﹣4(3﹣k)>0,解得k>﹣4+2或k<﹣4﹣2(小于0,舍去),∴k>﹣4+2,因此,直线y=kx+k﹣6与新图象G有4个公共点,﹣4+2<k<.25.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【解答】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.。

中考模拟检测《数学试卷》含答案解析

中考模拟检测《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A. B. 3.333 C. π- D. 42. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a3. 一粒米的质量约是0.000021kg ,这个数据用科学记数法表示为( )A 40.1210-⨯ B. 5 2. 110-⨯ C. 42.110-⨯ D. 62110-⨯ 4. 下列命题是假命题的是( )A 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个6. 实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b 7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( )A. 17B. 27C. 37D. 478. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5 B. 1<y <2 C. 5<y <10 D. y >109. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43二、填空题(本大题共8小题,每小题4分,满分32分.)11. 若二次根式x 1-有意义,则x 的取值范围是 ▲ .12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.13. 钟表在12时15分时刻的时针与分针所成的角是_______°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.15. 如图,将线段AB 绕点O 顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.16. 如图,Rt △ABC 中,AB ⊥BC ,AB=6,BC=4,P 是△ABC 内部的一个动点,且满足∠PAB=∠PBC ,则线段CP 长的最小值为_____.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m 2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m 2.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD 中,∠A =∠B=∠C ,则∠A 的取值范围________.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤) 19. 计算:|1﹣3|﹣3tan30°﹣(35-)°. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.25. 已知正方形ABCD,P为射线AB上一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.26. 将抛物线C1:y=﹣2x2+3沿x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由答案与解析一、选择题(本大题共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 下列实数中,无理数是( )A.B. 3.333C. π-D. 【答案】C【解析】A. 是有理数;B. 3.333 是有理数;C. π- 是无理数;D. 2=是有理数;故选C.2. 下列计算中,结果是6a 的是A. 24a a +B. 23a a ⋅C. 122a a ÷D. 23()a【答案】D【解析】【分析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.【详解】解:A 、a 2+a 4≠a 6,不符合;B 、a 2•a 3=a 5,不符合;C 、a 12÷a 2=a 10,不符合;D 、(a 2)3=a 6,符合.故选D.【点睛】本题考查了合并同类项、同底数幂的乘法、幂的乘方.需熟练掌握且区分清楚,才不容易出错. 3. 一粒米质量约是0.000021kg ,这个数据用科学记数法表示为( )A. 40.1210-⨯B. 5 2. 110-⨯C. 42.110-⨯D. 62110-⨯ 【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000021=2.1×10−5;故选B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4. 下列命题是假命题的是( )A. 经过两点有且只有一条直线B. 三角形的中位线平行且等于第三边的一半C. 平行四边形的对角线相等D. 圆的切线垂直于经过切点的半径【答案】C【解析】【分析】【详解】选项A,经过两点有且只有一条直线,正确;选项B,三角形的中位线平行且等于第三边的一半,正确;选项C,平行四边形的对角线相等,错误.矩形的对角线相等,平行四边形的对角线不一定相等.选项D,圆的切线垂直于经过切点的半径,正确.故答案选C.5. 在线段、角、平行四边形、矩形、圆这几个图形中既是轴对称图形又是中心对称图形的个数是( )A. 2个B. 3个C. 4个D. 5个【答案】B【解析】角只是轴对称图形;平行四边形只是中心对称图形;线段、矩形、圆既是轴对称图形又是中心对称图形,故选B.6. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣2B. a <﹣3C. a >﹣bD. a <﹣b【答案】D【解析】 试题分析:A .如图所示:﹣3<a <﹣2,故此选项错误;B .如图所示:﹣3<a <﹣2,故此选项错误;C .如图所示:1<b <2,则﹣2<﹣b <﹣1,又﹣3<a <﹣2,故a <﹣b ,故此选项错误;D .由选项C 可得,此选项正确.故选D .考点:实数与数轴7. (2016广西贺州市)从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是( ) A. 17 B. 27 C. 37 D. 47【答案】D【解析】试题分析:∵标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不小于2的有4种情况,∴随机抽取一张,所抽卡片上的数的绝对值不小于2的概率是:47.故选D . 考点:1.概率公式;2.绝对值.8. 已知反比例函数10y x =,当1<x <2时,y 的取值范围是( ) A. 0<y <5B. 1<y <2C. 5<y <10D. y >10 【答案】C【解析】∵反比例函数y=10x中当x=1时y=10,当x=2时,y=5, ∴当1<x<2时,y 的取值范围是5<y<10,故选C.9. 如图,在边长为6的菱形ABCD 中,60DAB ∠=︒ ,以点为圆心,菱形的高DF 为半径画弧,交AD 于点,交CD 于点,则图中阴影部分的面积是( )A. 183π-B. 1839π-C. 9932π-D. 1833π-【答案】B【解析】【分析】 由菱形的性质得出AD=AB=6,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=6,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD•sin60°=6×3? 2=33, ∴阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积=6×32120(33)3? 360π⨯-=183-9π. 故选B .【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.10. 观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有 11颗星,图形④中共有17颗星,…,按此规律,图形⑧中星星的颗数是( )A. 53B. 51C. 45D. 43【答案】B【解析】【分析】根据给出的图示可得:我们可以将这些星星分成两部分,找出其规律即可得出解. 【详解】根据给出的图示可得:我们可以将这些星星分成两部分,最下面的一横作为一部分,规律为(2n-1),上面的就是等差数列求和,规律为:(1)2n n+,则所有的五角星的数量的和的规律为:(1)2n n++(2n-1),则图形8中的星星的个数=89(281)2⨯+⨯-=36+15=51.故选:B考点:规律题.二、填空题(本大题共8小题,每小题4分,满分32分.)11. 有意义,则x的取值范围是▲ .【答案】x1≥.【解析】【分析】根据二次根式有意义的条件:被开方数大于等于0列出不等式求解.【详解】根据二次根式被开方数必须是非负数的条件,得x10x1-≥⇒≥.【点睛】本题考查二次根式有意义条件,牢记被开方数必须是非负数.12. 在一次”爱心互助”捐款活动中,某班第一小组7名同学捐款的金额(单位:元)分别为6, 7,6,15,9,6,9.这组数据的众数和中位数分别是________.【答案】6,7【解析】∵6出现了3次,出现的次数最多,∴众数是6;∵从小到大排列后7排在中间位置,∴中位数是7;13. 钟表在12时15分时刻的时针与分针所成的角是_______°.【答案】82.5【解析】90°-30°÷4=82.5°.14. 一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为________.【答案】3【解析】试题分析:设这个圆锥的底面半径为r,根据题意得2πr=,解得r=3.故答案为3.考点:圆锥的计算.15. 如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是_________________.【答案】(5,2)【解析】【详解】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,∵∠ACO=∠A′C′O,∠AOC=∠A′OC′,AO=A′O,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故答案为(5,2).考点:坐标与图形变化-旋转.16. 如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.【答案】2【解析】分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC 即可解决问题.【详解】如图所示,以为直径作圆,圆心为,解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC∴∠BAP+∠ABP=90°,∴∠APB=90°,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,在RT△BCO中,∵∠OBC=90°,BC=4,OB=3,在中,2222=+=+=,OC OB BC345∴PC=OC-OP=5-3=2.∴PC最小值为2.故答案为2.【点睛】本题考查点与圆位置关系、圆周角定理、最短问题等知识,解题的关键是确定点P位置,学会求圆外一点到圆的最小、最大距离,属于中考常考题型.17. 某社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是_____m2.【答案】150【解析】设绿化面积与工作时间的函数解析式为,因为函数图象经过,两点,将两点坐标代入函数解析式得得,将其代入得,解得,∴一次函数解析式为,将代入得,故提高工作效率前每小时完成的绿化面积为.18. 定义:有三个内角相等的四边形叫三等角四边形.三等角四边形ABCD中,∠A =∠B=∠C,则∠A的取值范围________.【答案】60°<∠A<120°【解析】由”四边形内角和为“得,,即.因为,所以,即,即.三、解答题(本大题共8小题,满分78分,解答应写出文字说明、证明过程或演算步骤)19. 计算:|13﹣3tan30°﹣35)°.【答案】-2【解析】解:|1﹣3|﹣3tan30°﹣(35-)° =﹣=﹣2. 20. 先化简,再求值:()221111x x x ⎛⎫+⋅- ⎪-+⎝⎭,其中313x -= 【答案】3x+1;3. 【解析】 【分析】首先将括号里面的分式进行通分,然后根据分式的乘法法则进行计算. 【详解】原式=[2(1)1(1)(1)(1)(1)x x x x x x +-++-+-] (x+1)(x -1)=221(1)(1)x x x x ++-+- (x+1)(x -1)=3x+1当x=313-时,原式=3x+1=3×313-+1=3-1+1=3. 考点:分式的化简求值.21. 如图,某学校在”国学经典”中新建了一座吴玉章雕塑,小林站在距离雕塑3米的A 处自B 点看雕塑头顶D 的仰角为45°,看雕塑底部C 的仰角为30°,求塑像CD 的高度.(最后结果精确到0.1米,参考数据:3 1.732≈)【答案】1.2米 【解析】试题分析:根据锐角三角函数,在Rt △DEB 中,求得DE 的长,在Rt △CEB 中,求得CE 的长,再根据CD=DE-CE 即可求出塑像CD 的高度.试题解析:解:在Rt△DEB中,DE=BE•tan45°=2.7米,在Rt△CEB中,CE=BE•tan30°=0.93米,则CD=DE-CE=2.7-0.93≈1.2米.故塑像CD的高度大约为1.2米.考点:解直角三角形的应用.22. 今年我县中考的体育测试成绩改为等级制,即把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格.我县5月份举行了全县九年级学生体育测试.现从中随机抽取了部分学生的体育成绩,并将其绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)该县九年级有学生9000名,如果全部参加这次中考体育科目测试,请估算不及格的人数是多少?【答案】(1)40;(2)54°,补全条形图见解析;(3)这次不及格的人数约是1800人.【解析】解:(1)本次抽样测试的学生人数是:12÷30%=40(人).(2)54°(3)89000180040⨯=,∴这次不及格的人数约是1800人.23. 某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各多少万元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元. 则有哪几种购车方案?【答案】(1)18,26;(2)两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆.【解析】【分析】(1)方程组的应用解题关键是设出未知数,找出等量关系,列出方程组求解.本题设每辆A型车的售价为x 万元,每辆B型车的售价为y万元,等量关系为:售1辆A型车和3辆B型车,销售额为96万元;售2辆A型车和1辆B型车,销售额为62万元.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解.本题不等量关系为:购车费不少于130万元,且不超过140万元.【详解】(1)设每辆A型车的售价为x万元,每辆B型车的售价为y万元,根据题意,得396{262x yx y+=+=,解得18{26xy==.答;每辆A型车的售价为18万元,每辆B型车的售价为26万元.(2)设购买A型车a辆,则购买B型车(6-a)辆,根据题意,得1826(6)130{1826(6)140a aa a+-≥+-≤,解得1234a≤≤.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案1:购买A型车2辆,购买B型车4辆;方案2:购买A型车3辆,购买B型车3辆考点:二元一次方程组的应用;一元一次不等式的应用.24. 如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.(1)求证:BC=CD;(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=22,求圆O的半径.【答案】(1)证明见解析;(2)⊙O的半径为4.【解析】试题分析:(1)、根据题意得出△CAD和△CDE相似,从而得出∠CAD=∠CDE,结合∠CAD=∠CBD得出∠CDB=∠CBD,从而得出答案;(2)、连接OC,根据OC∥AD得出PC=2CD,根据题意得出△PCB和△PAD相似,即PC PBPA PD,从而得出r的值.试题解析:(1)、∵DC2=CE•CA,∴=,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CB D,∴BC=DC;(2)、连结OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴===2,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴=,即=,∴r=4,即⊙O的半径为4.25. 已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.①如图2,连接AC,当P为AB中点时,判断△ACE的形状,并说明理由;②如图3,设AB=a,BP=b,当EP平分∠AEC时,求a:b及∠AEC的度数.【答案】(1)详见解析;(2)△ACE为直角三角形,理由见解析;(3)∠AEC=45°.【解析】试题分析:(1)根据正方形的性质和全等三角形的判定定理易证△APE≌△CFE,由全等三角形的性质即可得结论;(2)①根据正方形的性质、等腰直角三角形的性质即可判定△ACE为直角三角形;②根据PE∥CF,得到,代入a、b的值计算求出a:b,根据角平分线的判定定理得到∠HCG=∠BCG,证明∠AEC=∠ACB,即可求出∠AEC的度数.试题解析:(1)证明:∵四边形ABCD为正方形∴AB=AC∵四边形BPEF为正方形∴∠P=∠F=90°,PE=EF=FB=BP∵AP=AB+BP,CF=BC+BF∴CF=AP在△APE和△CFE中:EP="EF," ∠P="∠F=90°," AP= CF∴△APE≌△CFE∴EA=EC(2)①∵P为AB的中点,∴PA=PB,又PB=PE,∴PA=PE,∴∠PAE=45°,又∠DAC=45°,∴∠CAE=90°,即△ACE是直角三角形;②∵EP平分∠AEC,EP⊥AG,∴AP=PG=a﹣b,BG=a﹣(2a﹣2b)=2b﹣a∵PE∥CF,∴,即,解得,a=b;作GH⊥AC于H,∵∠CAB=45°,∴HG=AG=×(2b﹣2b)=(2﹣)b,又BG=2b﹣a=(2﹣)b,∴GH=GB,GH⊥AC,GB⊥BC,∴∠HCG=∠BCG,∵PE∥CF,∴∠PEG=∠BCG,∴∠AEC=∠ACB=45°.∴a:b=:1;∴∠AEC=45°.考点:四边形综合题.26. 将抛物线C1:y=2x23x轴翻折,得到抛物线C2,如图所示(1)请直接写出抛物线C2的解析式(2)现将抛物线C1向左平移m个单位长度,平移后得到新抛物线顶点为M,与x轴的交点从左到右依次为A、B;将抛物线C2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由【答案】(1)233y x =-(2)①2,1/2,②是矩形,m =1 【解析】试题分析:因为二次函数的图像关于x 轴对称时,函数中的a,c,互为相反数,b 值不变,函数向左平移时,纵坐标不变,横坐标均减少平移个单位,可假定成立,由直角三角形性质得到验证.解:(1)抛物线c 2的表达式是; 2分;(2)①点A 的坐标是(1m --,0), 3分; 点E 的坐标是(1m +,0). 4分;②假设在平移过程中,存在以点A ,M ,E 为顶点的三角形是直角三角形. 由题意得只能是90AME ∠=. 过点M 作MG ⊥x 轴于点G . 由平移得:点M 的坐标是(m -3, 5分; ∴点G 的坐标是(m -,0), ∴1GA =,3MG =,21EG m =+,在Rt △AGM 中, ∵ tan 3MG MAG AG ∠==,∴60MAG ∠=, 6分;∵ 90AME ∠=,∴30MEA ∠=,∴tan MG MEG EG ∠==,=, 7分; ∴1m =. 8分.所以在平移过程中,当1m =时,存在以点A ,M ,E 为顶点的三角形是直角三角形.考点:二次函数的图像与性质,直角三角形的性质.函数图像翻折时,解析式的系数的变换.点评:要熟练掌握以上各种性质,在解题时要掌握正确的方法,本题由一定的难度有三问需认真的思考一一作答,属于中档题.。

2024年中考数学模拟测试试卷(带有答案)

2024年中考数学模拟测试试卷(带有答案)
A. B. C. D.
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:

∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数

∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)

中考数学模拟试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)如图所示的几何体中主视图是()A.B.C.D.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×1035.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣26.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.210.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=b=c=(2)你认为服装店应选择哪个供应商供应服装?为什么?19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BE AC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为(2)当男女相遇时求此时男女同学距离终点的距离.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.参考答案与试题解析一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.故选:B.【点评】本题考查了绝对值的定义掌握一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是0是解题的关键.2.(3分)如图所示的几何体中主视图是()A.B.C.D.【分析】找到从正面看所得到的图形得出主视图即可.【解答】解:如图所示的几何体中主视图是B选项故选:B.【点评】此题主要考查了几何体的三视图关键是掌握主视图和左视图所看的位置.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°【分析】由平行线的性质可得∠ABE=∠BCD从而求出∠DCE再根据三角形的内角和即可求解.【解答】解:∵AB∥CD∴∠ABE=∠BCD=45°∴∠DCE=135°由三角形的内角和可得∠E=180°﹣135°﹣20°=25°.故选:B.【点评】本题考查平行线的性质和三角形的内角和定理熟练掌握性质是解题关键.4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×103【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:17000=1.7×104.故选:C.【点评】此题主要考查了科学记数法﹣表示较大的数一般形式为a×10n其中1≤|a|<10 确定a与n的值是解题的关键.5.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣2【分析】先根据零指数幂二次根式的加法法则二次根式的性质二次根式的乘法法则进行计算再得出选项即可.【解答】解:A.()0=1 故本选项不符合题意B.2+3=5故本选项不符合题意C.=2故本选项不符合题意D.(2﹣2)=﹣2=6﹣2故本选项符合题意故选:D.【点评】本题考查了二次根式的混合运算和零指数幂能灵活运用二次根式的运算法则进行计算是解此题的关键.6.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x【分析】分式方程变形后去分母得到结果即可做出判断.【解答】解:分式方程去分母得:1+3(x﹣1)=﹣3x.故选:B.【点评】此题考查了解分式方程解分式方程的基本思想是“转化思想”把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω【分析】设I=则U=IR=40 得出R=计算即可.【解答】解:设I=则U=IR=40∴R===8故选:B.【点评】本题考查反比例函数的应用解题的关键是掌握欧姆定律.8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π【分析】根据弧长公式计算即可.【解答】解:l==π∴该扇形的弧长为π.故选:C.【点评】本题考查弧长的计算关键是掌握弧长的计算公式.9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.2【分析】根据抛物线的解析式求得对称轴为直线x=1 根据二次函数的性质即可得到结论.【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2∴对称轴为直线x=1∵a=1>0∴抛物线的开口向上∴当0≤x<1时y随x的增大而减小∴当x=0时y=﹣1当1≤x≤3时y随x的增大而增大∴当x=3时y=9﹣6﹣1=2∴当0≤x≤3时函数的最大值为2故选:D.【点评】本题考查了二次函数的性质二次函数的最值熟练掌握二次函数的性质是解题的关键.10.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°【分析】利用扇形图可得喜欢排球的占10% 喜欢篮球的人数占被调查人数的30% 最喜欢足球的学生为100×40%=40人用360°×喜欢排球的所占百分比可得圆心角.【解答】解:A本次调查的样本容量为100 故此选项不合题意B最喜欢篮球的人数占被调查人数的30% 故此选项不合题意C最喜欢足球的学生为100×40%=40(人)故此选项不合题意D根据扇形图可得喜欢排球的占10% “排球”对应扇形的圆心角为360°×10%=36°故此选项符合题意故选:D.【点评】本题考查的是扇形统计图读懂统计图从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为x>﹣3.【分析】按照解一元一次不等式的步骤进行计算即可解答.【解答】解:9>﹣3x3x>﹣9x>﹣3故答案为:x>﹣3.【点评】本题考查了解一元一次不等式熟练掌握解一元一次不等式的步骤是解题的关键.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.【分析】根据题意画出相应的树状图然后即可求得两次标号之和为3的概率.【解答】解:树状图如图所示由上可得一共存在4种等可能性其中两次标号之和为3的可能性有2种∴两次标号之和为3的概率为=故答案为:.【点评】本题考查列表法与树状图法解答本题的关键是明确题意画出相应的树状图求出相应的概率.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为5.【分析】由四边形ABCD是菱形可得BC=DC AC⊥BD∠BEC=90°又∠DBC=60°知△BDC是等边三角形BC=BD=10 而点F为BC中点故EF=BC=5.【解答】解:∵四边形ABCD是菱形∴BC=DC AC⊥BD∴∠BEC=90°∵∠DBC=60°∴△BDC是等边三角形∴BC=BD=10∵点F为BC中点∴EF=BC=5故答案为:5.【点评】本题考查菱形的性质及应用涉及等边三角形的判定与性质解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为1+.【分析】在Rt△AOB中利用勾股定理求出AB=则AB=BC=进而求得OC =1+据此即可求解.【解答】解:∵OA⊥OB∴∠AOB=90°在Rt△AOB中AB===∵以点B为圆心AB为半径作弧交直线OB于点C∴AB=BC=∴OC=OB+BC=1+∴点C的横坐标为1+.故答案为:1+【点评】本题主要考查勾股定理实数与数轴利用勾股定理正确求出AB的长是解题关键.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:8x﹣3=7x+4.【分析】根据货物的价格不变即可得出关于x的一元一次方程此题得解.【解答】解:依题意得:8x﹣3=7x+4.故答案为:8x﹣3=7x+4.【点评】本题考查了由实际问题抽象出一元一次方程找准等量关系正确列出一元一次方程是解题的关键.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.【分析】过点F作FM⊥CE于M作FN⊥CD于点N首先证四边形CMFN为正方形再设CM=a则FM=FN=CM=CN=a BE=5 EM=2﹣a然后证△EFM和△EAB相似由相似三角形的性质求出a进而在Rt△AFN中由勾股定理即可求出DF.【解答】解:过点F作FM⊥CE于M作FN⊥CD于点N∵四边形ABCD为正方形AB=3∴∠ACB=90°BC=AB=CD=3∵FM⊥CE FN⊥CD∠ACB=∠B=90°∴四边形CMFN为矩形又∵CF平分∠DCE FM⊥CE FN⊥CD∴FM=FN∴四边形CMFN为正方形∴FM=FN=CM=CN设CM=a则FM=FN=CM=CN=a∵CE=2∴BE=BC+CE=5 EM=CE﹣CM=2﹣a∵∠B=90°FM⊥CE∴FM∥AB∴△EFM∽△EAB∴FM:AB=EM:BE即:a:3=(2﹣a):5解得:∴∴在Rt△AFN中由勾股定理得:.故答案为:.【点评】此题主要考查了正方形的判定及性质相似三角形的判定和性质勾股定理等解答此题的关键是熟练掌握相似三角形的判定方法理解相似三角形的对应边成比例.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.【分析】先利用异分母分式加减法法则计算括号里再算括号外然后进行计算即可解答.【解答】解:原式=[+]•=•=.【点评】本题考查了分式的混合运算准确熟练地进行计算是解题的关键.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=75b=75c=6(2)你认为服装店应选择哪个供应商供应服装?为什么?【分析】(1)根据平均数众数和方差的计算公式分别进行解答即可(2)根据方差的定义方差越小数据越稳定即可得出答案.【解答】解:(1)B供应商供应材料纯度的平均数为a=×(72+75+72+75+78+77+73+75+76+77+71+78+79+72+75)=7575出现的次数最多故众数b=75方差c=×[3×(72﹣75)2+4×(75﹣75)2+2×(78﹣75)2+2×(77﹣75)2+(73﹣75)2+(76﹣75)2+(71﹣75)2+(79﹣75)2]=6故答案为:75 75 6(2)选A供应商供应服装理由如下:∵A B平均值一样B的方差比A的大A更稳定∴选A供应商供应服装.【点评】本题考查了方差平均数中位数众数熟悉相关统计量的计算公式和意义是解题的关键.19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.【分析】由“SAS”可证△ABC≌△ADE可得结论.【解答】证明:∵∠ACB+∠ACF=∠ACF+∠AED=180°∴∠ACB=∠AED在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴AB=AD.【点评】本题考查了全等三角形的判定和性质证明三角形全等是解题的关键.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.【分析】设2020﹣2022年买书资金的平均增长率为x利用2022年用于购买图书的费用=2020年用于购买图书的费用×(1+2020﹣2022年买书资金的平均增长率)2可列出关于x的一元二次方程解之取其符合题意的值即可得出结论.【解答】解:设2020﹣2022年买书资金的平均增长率为x根据题意得:5000(1+x)2=7200解得:x1=0.2=20% x2=﹣2.2(不符合题意舍去).答:2020﹣2022年买书资金的平均增长率为20%.【点评】本题考查了一元二次方程的应用找准等量关系正确列出一元二次方程是解题的关键.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BEAC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)【分析】延长CD交AE于H于是得到CH=BE EH=BC=1.26m解直角三角形即可得到结论.【解答】解:延长CD交AE于H则CH=BE EH=BC=1.26m在Rt△ACH中AC=10.4m∠ACH=70°∴AH=AC•sin70°=10.4×0.94≈9.78(m)∴AE=AH+CH=9.78+1.26≈11(m)答:楼AE的高度约为11m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题正确地作出辅助线是解题的关键.22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为1000m(2)当男女相遇时求此时男女同学距离终点的距离.【分析】(1)根据男女同学跑步的路程相等即可求解(2)求出女生跑步的速度列方程求解即可.【解答】解:(1)男生匀速跑步的路程为4.5×100=450(m)450+50=500(m)则男女跑步的总路程为500×2=1000(m)故答案为:1000m(2)设从开始匀速跑步到男女相遇时的时间为xs女生跑步的速度为(500﹣80)÷120=3.5(m/s)根据题意得:80+3.5x=50+4.5x解得x=30∴此时男女同学距离终点的距离为4.5×(100﹣30)=315(m)答:此时男女同学距离终点的距离为315m.【点评】此题主要考查了一元一次方程的应用关键是正确理解题意找出题目中的等量关系然后设出未知数列出方程.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.【分析】(1)根据圆周角定理证得两直线平行再根据平行线的性质即可得到结论(2)由勾股定理得到边的关系求出线段的长再利用等面积法求解即可.【解答】解:(1)∵AB为⊙O的直径∴∠ACB=90°∵AD为∠CAB的平分线∴∠BAC=2∠BAD∵OA=OD∴∠BAD=∠ODA∴∠BOD=∠BAD+∠ODA=2∠BAD∴∠BOD=∠BAC∴OD∥AC∴∠OEB=∠ACB=90°∴∠BED=90°(2)连接BD设OA=OB=OD=r则OE=r﹣4 AC=2OE=2r﹣8 AB=2r∵AB为⊙O的直径∴∠ADB=90°在Rt△ADB中BD2=AB2﹣AD2由(1)得∠BED=90°∴∠BED=∠BEO=90°∴BE2=OB2﹣OE2BE2=BD2﹣DE2∴BD2=AB2﹣AD2=BE2+DE2=OB2﹣OE2+DE2∴=r2﹣(r﹣4)2+42解得r=7或r=﹣5(不合题意舍去)∴AB=2r=14∴∵AF是⊙O的切线∴AF⊥AB∵DG⊥AF∴DG⊥AB∴∴.【点评】本题考查了圆周角定理勾股定理切线的性质解一元二次方程熟练掌握圆周角定理和勾股定理是解题的关键.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为4△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.【分析】(1)由t=0时P与O重合得S=t=4时P与B重合得OB=4 (2)设A(a a)由×4a=得a=A()分两种情况:当0≤t≤时设OA交PD于E可得PE=PO=t S△POE=t2故S=﹣S△POE=﹣t2当<t<4时求出直线AB解析式为y=﹣x+2 可得C(0 2)由tan∠CBO====得DP=PB=(4﹣t)=2﹣t故S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=t2﹣2t+4.【解答】解:(1)t=0时P与O重合此时S=S△ABO=t=4时S=0 P与B重合∴OB=4 B(4 0)故答案为:4(2)∵A在直线y=x上∴∠AOB=45°设A(a a)∴S△ABO=OB•a即×4a=∴a=∴A()当0≤t≤时设OA交PD于E如图:∵∠AOB=45°PD⊥OB∴△PEO是等腰直角三角形∴PE=PO=t∴S△POE=t2∴S=﹣S△POE=﹣t2当<t<4时如图:由A()B(4 0)得直线AB解析式为y=﹣x+2 当x=0时y=2∴C(0 2)∴OC=2∵tan∠CBO====∴DP=PB=(4﹣t)=2﹣t∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4综上所述S=.【点评】本题考查动点问题的函数图象涉及锐角三角函数待定系数法等腰直角三角形等知识解题的关键是从函数图象中获取有用的信息.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.【分析】问题1:(1)由等腰三角形的性质可得∠ABC=∠ACB由折叠的性质和三角形内角和定理可得∠A=∠BDE=180°﹣2∠C由邻补角的性质可得结论(2)由三角形中位线定理可得CD=2EF由勾股定理可求AF BF即可求解问题2:先证四边形CGMD是矩形由勾股定理可求AD由等腰三角形的性质可求MD CG即可求解.【解答】问题1:(1)证明:∵AB=AC∴∠ABC=∠ACB∵△BDE由△ABE翻折得到∴∠A=∠BDE=180°﹣2∠C∵∠EDC+∠BDE=180°∴∠EDC=2∠ACB(2)解:如图连接AD交BE于点F∵△BDE由△ABE翻折得到∴AE=DE AF=DF∴CD=2EF=3∴EF=∵点E是AC的中点∴AE=EC=AC=2在Rt△AEF中AF===在Rt△ABF中BF===∴BE=BF+EF=问题2:解:连接AD过点B作BM⊥AD于M过点C作CG⊥BM于G∵AB=BD BM⊥AD∴AM=DM∠ABM=∠DBM=∠ABD∵2∠BDC=∠ABD∴∠BDC=∠DBM∴BM∥CD∴CD⊥AD又∵CG⊥BM∴四边形CGMD是矩形∴CD=GM在Rt△ACD中CD=1 AD=4 AD===∴AM=MD=CG=MD=在Rt△BDM中BM===∴BG=BM﹣GM=BM﹣CD==在Rt△BCG中BC===.【点评】本题是几何变换综合题考查了等腰三角形的性质折叠的性质勾股定理矩形的性质和判定灵活运用这些性质解决问题是解题的关键.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.【分析】(1)根据题意得出点A(﹣2 4)B(1 1)利用待定系数法求解析式即可求解.(2)①根据平移的性质得出C′(2﹣m4﹣n)根据点C的对应点C′落在抛物线C1上可得(2﹣m)2=4﹣n即可求解.②根据题意得出P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)求得中点坐标根据题意即可求解.③作辅助线利用勾股定理求得MG=设出N点M点坐标将M点代入y=﹣x2﹣2x+4 求得N点坐标进而根据点C的对应点C′落在抛物线C1上即可求解.【解答】(1)根据题意点A的横坐标为﹣2 点B的横坐标为1 代入抛物线C1:y=x2∴当x=﹣2时y=(﹣2)2=4 则A(﹣2 4)当x=1时y=1 则B(1 1)将点A(﹣2 4)B(1 1)代入抛物线C2:y=﹣x2+bx+c∴解得∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C当y=4时x=±2∴C(2 4)∵矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.∴C′(2﹣m4﹣n)(2﹣m)2=4﹣n整理得n=﹣m2+4m∵m>0 n>0∴0<m<4∴n=﹣m2+4m(0<m<4)②如图∵A(﹣2 4)C(2 4)∴AC=4∵∴E(﹣2 6)由①可得A′(﹣2﹣m m2﹣4m+4)E′(﹣2﹣m m2﹣4m+6)∴P Q的横坐标为﹣2﹣m分别代入C1C2∴P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)∴∴PQ的中点坐标为(﹣2﹣m m+4)∵点E′为线段PQ的中点∴m2﹣4m+6=m+4解得m=或m=(大于4 舍去).③如图连接MN过点N作NG⊥E′D′于点G则NG=2∵∴设N(a﹣a2﹣2a+4)则M(a﹣﹣a2﹣2a+6)将M点代入y=﹣x2﹣2x+4得解得a=当a=∴将y =代入y=x2解得∴或.【点评】本题考查了二次函数的综合应用解题的关键是作辅助线掌握二次函数的性质.第31 页共31 页。

初三数学中考模拟试题(含答案)

初三数学中考模拟试题(含答案)

初三年级数学中考模拟试题题次 一 二三 总分1—10 11-15 16 17 18 19 20 21 22 得分一、选择题:(本大题共10题,每小题3分,共30分;每小题只有一个正确答案,请 题号 1 2 3 4 5 6 7 8 9 10 答案1. 下列各数(-2)0, - (-2), (-2)2, (-2)3中, 负数的个数为 ( ) A .1 B. 2 C. 3 D. 42.下列图形既是轴对称图形, 又是中心对称图形的是:( )3. 资料显示, 2005年“十 一”黄金周全国实现旅游收入 约463亿元,用科学记数法表示463亿这个数是:( )A. 463×108B. 4.63×108C. 4.63×1010D . 0.463×10114.“圆柱与球的组合体”如左图所示,则它的三视图是( )A. B. C. D5. 10名学生的平均成绩是x ,如果另外5名学生每人得84分,那么整个组的平均成绩是()A .284+x B .542010+x C .158410+x D.1542010+x 6. 二次函数y = ax 2+ bx +c 的图象如图所示, 则下列结论正确的是: ( )A . a>0,b<0,c >0 B. a<0,b<0,c >0 C . a<0,b>0,c<0 D. a<0,b>0,c >07.一个均匀的立方体六个面上分别标有数字1,2,3,4,5,6,如图是这个立方体表面主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图13题图O B A C y xOC B A的展开图,抛掷这个立方体,则朝上一面的数字恰好等于朝下一面数字的21的概率是( ) A.61 B.31 C.21 D.326题图 8题图 9题图8.如图所示, ABCD 中∠C=108°BE 平分∠ABC ,则∠AEB 等于 ( ) A. 180° B.36° C . 72° D. 108°9.如图,在△A BC 中,∠C =90°,A C>BC ,若以AC 为底面圆的半径,BC 为高的圆锥的侧面积为S 1,若以BC 为底面圆的半径,AC 为高的圆锥的侧面积为S 2 , 则( )A .S1 =S2 B.S 1 >S 2 C.S 1 <S2 D.S 1 ,S2的大小大小不能确定10.在直角坐标系中,⊙O 的圆心在原点,半径为3,⊙A的圆心A 的坐标为(-3,1),半径为1,那么⊙O 与⊙A 的位置关系为( )A 、外离 B、外切 C 、内切 D 、相交(本大题共5题,每小题3分,共15分;请把答案填在下表内相应的题号下,否则不给分)题号 11 12 13 14 15 答案11.为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计湖里有鱼 ________条.12. 如图,D在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列一个条件 ,使△ABE ≌△ACD12题图 15题图1 23 45 6 y x O E DC B A B C A13.如图同心圆,大⊙O 的弦AB 切小⊙O于P ,且AB=6,则圆环的面积为 。

中考模拟测试《数学试题》含答案解析

中考模拟测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -172.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A 主视图不变B. 俯视图不变C 左视图不变D. 三种视图都不变3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B. 59C. 62D. 644.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 235.下列运算正确是() A. 428a a a ⋅= B. 221a a -= C. 2222a a a -+= D. ()325x x =6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 23C. 33D.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C. 60D. 709.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A. B. C. D. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11.5_.12.如图,在正六边形ABCDEF 中,CAD ∠的度数为____.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC 交于,E F 两点,且,A C 两点在轴上,点的坐标为()2,4,则点的坐标为_____.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()1082 3.146012cos π-⎛⎫+⎭- ⎪⎝︒. 16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.20.如图1所示的是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.2 1.414,31(.732≈≈,最后结果取整数)21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -17【答案】A【解析】【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】|﹣7|=7.故选A.【点睛】本题考查了绝对值的性质①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A. 主视图不变B. 俯视图不变C. 左视图不变D. 三种视图都不变【答案】C【解析】【分析】分别得到将正方体A移动前后的三视图,依次即可作出判断.【详解】将正方体放到正方体的上面后,主视图改变,左视图不变,俯视图改变.故选:C .【点睛】此题主要考查立体组合体的三视图,熟练画立体图形的三视图是解题关键.3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B 59C. 62D. 64【答案】B【解析】【分析】先根据平行线的性质求出62,BOE ∠=︒再根据邻补角求得118,COE ∠=︒然后根据角平分线即可求解.【详解】解:∵DE AB∴62,BOE B ∠=∠=︒∴118,COE ∠=︒∵OF 是COE ∠的角平分线∴1∠=59︒故选:B【点睛】此题主要考查平行线的性质、邻补角的性质和角平分线的定义,熟练掌握性质定理是解题关键. 4.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 23【答案】C直接把()2,3-代入(0)y kx k =≠即可求解.【详解】解:把()2,3-代入(0)y kx k =≠ 解得:3k 2=-故选:C【点睛】此题主要考查待定系数法求正比例函数解析式中的参数k ,正确理解函数的图象和性质是解题关键. 5.下列运算正确的是()A. 428a a a ⋅=B. 221a a -=C. 2222a a a -+=D. ()325x x =【答案】C【解析】【分析】直接根据同底数幂的乘法法则、合并同类项法则和幂的乘方法则即可求解.【详解】解:A. 426a a a ⋅=,此选项错误B. 22a a -=-,此选项错误C. 2222a a a -+=,此选项正确D. ()326x x =,此选项错误 故选:C【点睛】此题主要考查同底数幂的乘法法则、合并同类项法则和幂的乘方法则,熟练掌握法则是解题关键. 6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 3C. 33D.【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键. 8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C 60D. 70【答案】C【解析】【分析】根据同弧所对的圆心角等于圆周角的2倍,可得出∠B=25︒,然后根据三角形的内角和为180︒即可求解.【详解】解:∵50AOC ∠=︒,∴∠B=25︒,∵35C ∠=︒,∠ADB=∠CDO ,∴A ∠+∠B=∠C+∠AOC ,即∠A=355025︒+︒-︒=60︒,故选:C .【点睛】此题主要考查同弧所对的圆心角与圆周角之间的关系及三角形的内角和,熟练掌握性质是解题关键.9.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF Sx =,求出x 即可解答. 【详解】解:∵AD ∥BC ,是矩形ABCD 中AD 边的中点,∴AEF ~CBF ,设AEF S x =△,那么4BCF Sx =, ∵2ABF S =, ∴()1x 2422x +=+, 解得:x 1=,∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键. 10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A.B. C. D. 【答案】B【解析】【分析】由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =,根据当3x ≥时,随的增大而增大,得到0,a >且1x ≤时,随的增大而减小,再根据当20x -≤≤时,的最大值为,得到当2x =-时,28110a a ++=,求出1a =,那么2(1)1y x =-+关于轴对称的抛物线为()211y x =++,即可求解. 【详解】解:由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =.当3x ≥时,随的增大而增大,0,a ∴>且1x ≤时,随的增大而减小.当20x -≤≤时,的最大值为10,当2x =-时,28110,a a ++= 1a 或9a =-(舍去),2222()11y x x x ∴=-+=-+关于轴对称的抛物线为()211,y x =++函数()211y x =++在23x -≤≤内的最大值在3x =处取得,最大值为17,y =故选.【点睛】此题主要考查二次函数的性质,熟练掌握二次函数的图象和性质是解题关键. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11._.【答案】2【解析】【分析】估算得出所求即可.【详解】解:∵459,∴23<<,2,故答案为:2.【点睛】此题主要考查无理数的估算,熟练掌握估算方法是解题关键.12.如图,在正六边形ABCDEF中,CAD∠的度数为____.【答案】30【解析】【分析】根据正六边形得到∠ABC=∠BCD=∠CDE=120︒,AB=BC=CD,进而得到∠ACB=30,∠ACD=90︒,∠ADC=60︒,即可求解.【详解】解:在正六边形ABCDEF中,∠ABC=∠BCD=∠CDE=120︒,AB=BC,∴∠ACB=30,∠ACD=90︒,∠ADC=60︒,∴∠CAD=30,故答案为:30.【点睛】此题主要考查正六边形的性质,灵活运用性质是解题关键.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于,E F两点,且,A C两点在轴上,点的坐标为()2,4,则点的坐标为_____.【答案】4 6,3⎛⎫ ⎪⎝⎭【解析】【分析】先根据待定系数法求得8y x =,再根据OA=6即可求解. 【详解】解:令y k x =,E (2,4), ∴k=8,即8y x=, ∵OA =OC+AC =2+4=6,∴F(6,43), 故答案为:46,3⎛⎫ ⎪⎝⎭.【点睛】此题主要考查待定系数法求反比例函数解析式,然后根据函数解析式确定点的坐标,熟练掌握待定系数法是解题关键.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.【答案】2212+【解析】【分析】BFA'的周长=FA'+BF+BA'=AF+BF+BA'=AB+BA'=10+BA',推出当BA'最小时,BFA'的周长最小,由此即可求解.【详解】解:如图,作BH AD ⊥于点,连接BP ,∵10,16,60AB AD A ==∠=︒,8,5PA AH ==,853PH ∴=-=, 5BH =PB ∴===由翻折可知'8,'PA PA FA FA ===,'BFA ∴的周长''''10'FA BF BA AF BF BA AB BA BA =++=++=+=+, 当'BA 的长度最小时,'BFA 的周长最小,''BA PB PA ∴≥-,'8BA ∴≥,'BA ∴的最小值为8,'BFA ∴的周长的最小值为1082+=.故答案为:2.【点睛】此题主要考查平行四边形的性质,翻折不变性,勾股定理,含30度直角三角形的性质等,灵活运用性质是解题关键.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒. 【答案】12-【解析】【分析】 根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++ 12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 【答案】a【解析】【分析】 根据分式的加减乘除混合运算法则即可求解.【详解】解:原式()()()()()22211122111111a a a a a a a a a a a a a -+--+-÷=⋅=-++--. 【点睛】此题主要考查分式的加减乘除运算,熟练掌握运算法则是解题关键.17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)【答案】见解析【解析】【分析】作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【详解】解:如图,作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【点睛】此题主要考查旋转的性质,尺规作图,正确理解作图依据是解题关键.18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .【答案】见解析【解析】【分析】根据//FD AC ,得到ACB DFE ∠=∠,再根据BF CE =,得到BC EF =,加上AC FD =,得到ACB DFE △≌△,进而得到B E ∠=∠,即可证明.【详解】证明://FD AC ,ACB DFE ∴∠=∠,BF CE =,BF FC CE FC ∴+=+BC EF ∴=.,AC FD =,ACB DFE ∴≌,B E ∴∠=∠//∴.AB DE【点睛】此题主要考查全等三角形的判定和性质、平行线的性质和判定,灵活运用判定定理和性质定理是解题关键.19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.【答案】(1)见解析;(2)5天,6天;(3)600人【解析】【分析】(1)根据9天和9天以上的3人,占5,可求得总人数为60人,求出8天的人数即可补全条形统计图;(2)根据众数和中位数的概念即可求解.(3)先求出7天、8天、9天和9天以上的人数的比例,再用样本估计总体即可求解.÷=(人),【详解】解:()135%60----=(人),6024121536补全统计图如图所示:()2参加”网络自习室”自主学习天的人数最多,所以众数是天;60人中,按照参加”网络自习室”自主学习的天数从少到多排列,第人和人都是天,所以中位数是天; ()15633150060060++⨯=(人) 答:估计全校初三可能有600名学生参加”网络的自习室”自主学习的天数不少于天.【点睛】此题主要考查条形统计图与扇形统计图的综合应用,众数、中位数和用样本估计总体,正确理解概念是解题关键.20.如图1所示是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.231.732≈≈,最后结果取整数)【答案】37米【解析】【分析】根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米,在'Rt PO B 中,'90,'60PO B PBO ∠=︒∠=︒,得到3''3O B P =,在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,得到''O D O P =,进而得到3''1'15BD O D O B O P ⎛=-== ⎝⎭米,'35.4931O P =≈-米,最后根据''OP OO O P =+即可求解.【详解】解:根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米.在'Rt PO B 中,'90,'60,PO B PBO ∠=︒∠=︒3''3O B P ∴= 在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,''O D O P ∴=, 3''1'153BD O D O B O P ⎛∴=-=-= ⎝⎭米,'35.49O P ∴=≈米,''37.09OP OO O P ∴=+=米37≈米,答:”天下第一灯”的高度约为37米.【点睛】此题主要考查解直角三角形的应用,正确地构造直角三角形和解直角三角形是解题关键. 21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.【答案】(1) 4.65137.7y x =-;(2)3300m【解析】【分析】(1)根据实际问题列出函数表达式即可.(2)先判断用水量在哪一阶梯,再计算.详解】解:()()1 3.80162 4.65162y x =⨯+-,即 4.65137.7y x =-.()2由()1知,当162275x <≤时, 4.65137.7,y x =-当275x =时,1141.05y =.1141.051320.55y =<,该户居民2019年的年用水量在3275m 以上,终端水价为7.18元/3m .当275x >时,()1141.057.18275,y x =+-即7.18 833.45,y x =-7.18 833.451320.55,x∴-=解得300x=.答:该户居民2019年的年用水量为3300m.【点睛】此题主要考查根据实际问题列函数解析式,找出实际问题中的等量关系是解题关键.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.【答案】(1)图表见解析,14;(2)不公平,理由见解析【解析】【分析】(1)先用列表法列出所有可能的结果,再求概率.(2)比较两种结果的概率即可求解.【详解】解:()1列表如下从表格可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有种,所以两人抽取相同数字的概率为1 4()2不公平.从()1中表格可以看出,两人抽取数字和为的倍数的结果有种,两人抽取数字和为的倍数的结果有种, 所以甲获胜的概率为38,乙获胜的概率为31633816> 甲获胜的概率大,游戏不公平.【点睛】此题主要考查列表法或画树状图法求概率,正确理解概率的概念是解题关键.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 【答案】(1)相切,理由见解析;(2)35【解析】【分析】(1)连接BD ,根据90BAD ∠=︒,得出点在BD 上,即BD 是直径,进而得到90BCD ∠=︒,90DEC CDE ∠+∠=︒,再根据DEC BAC ∠=∠,得出90BAC CDE ∠+∠=︒,由同弧所对的圆周角相等,得到90BDC CDE ∠+∠=︒,即可求证.(2)根据90BAF BDE ∠=∠=︒,得到90F ABC FDE ADB ∠+∠=∠+∠=,由AB AC =,得到A ABC CB =∠∠,再根据ADB ACB ∠=∠,得到,ABC ADB F EDF ∠=∠∠=∠,进而得到6DE EF ==,再根据4,90CE BCD =∠=︒,得到2290,25DCE CD DE CE ∠=︒=-=90,BDE CD BE ∠=︒⊥,得到CDECBD ,最后根据对应边成比例即可求解. 【详解】解:()1DE 与O 相切.理由:如图,连接BD .90,BAD ∠=︒点在BD 上,即BD 是直径,90BCD ∴∠=︒,90DEC CDE ∴∠+∠=︒.,DEC BAC ∠=∠90BAC CDE ∴∠+∠=︒.,BAC BDC ∠=∠90,BDC CDE ∴∠+∠=︒90,BDE ∴∠=︒即BD DE ⊥.点在O 上,DE ∴是O 的切线.()290BAF BDE ∠=∠=︒.90F ABC FDE ADB ∴∠+∠=∠+∠=.,AB AC =ABC ACB ∴∠=∠.,ADB ACB ∠=∠,,ABC ADB F EDF ∴∠=∠∠=∠6.DE EF ∴==4,90CE BCD =∠=︒,2290,2 5.DCE CD DE CE ∴∠=︒=-=90,BDE CD BE ∠=︒⊥,,CDE CBD ∴ CD BD CE DE ∴= O ∴的直径256354BD ⨯== 【点睛】此题主要考查圆周角定理,勾股定理,切线的判定和相似三角形的判定及性质,熟练掌握判定定理和性质定理是解题关键.24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.【答案】(1)2y x 2x 3=-++;(2)点M 的坐标为17,24⎛⎫-⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭【解析】【分析】(1)利用待定系数法即可解决问题; (2)根据223tan 3m m MG MBA BG m-++∠==-,1tan 2BE BDE DE ∠==,由∠MBA=∠BDE ,构建方程即可解决问题.【详解】解:()1把点()()3,0,0,3B C 代入2,y x bx c =-++ 得到930,3,b c c -++=⎧⎨=⎩解得2,3,b c =⎧⎨=⎩抛物线的解析式为2y x 2x 3=-++.()2如图,作MG x ⊥轴于点,G 连接,BM 则90MGB ∠=︒.()2,23,M m m m -++223,3,MG m m BG m ∴=-++=-2233m m MG tan MBA BG m-++∴∠==- ()222314y x x x =-++=--+,顶点的坐标为()1,4 DE x ⊥∵轴,90,4,1DEB DE OE ∴∠=︒==()3,0B ,2BE ∴=12BE tan BDE DE ∴∠== ,MBA BDE ∠=∠223132m m m -++∴=-当点M 在轴上方时223132m m m -++=- 解得112m =-,23m =(舍弃), 17,24M ⎛⎫∴- ⎪⎝⎭当点M 在轴下方时,223132m m m -++=-- 解得123,32m m ==-(舍弃),点39,24M ⎛⎫-- ⎪⎝⎭综上所述,满足条件的点M 的坐标为17,24⎛⎫- ⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭ 【点睛】此题主要考查待定系数法求二次函数解析式和利用三角函数解直角三角形,熟练掌握二次函数的性质是解题关键.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.【答案】[问题发现]25;[问题解决]①出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②总造价的最小值为160010元,出口距直线OB 的距离为36665-米 【解析】【分析】 [问题发现]PAB 的底边一定,面积最大也就是P 点到AB 的距离最大,故当OP AB ⊥时底边AB 上的高最大,再计算此时PAB 面积即可.[问题解决]①根据四边形CODE 面积=CDO CDE S S +,求出CDE S △最大时即可,然后作'E H OB ⊥,证明COD OHE ',利用相似三角形的性质求出E H '即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE ,求CE+QE 的最小值问题,然后利用相似三角形性质和勾股定理求解即可.【详解】解:[问题发现]:如图1,点运动至半圆中点时,底边AB 上的高最大,即' 5.P O r ==此时PAB △的面积最大,最大值为1105252⨯⨯=; [问题解决]①如图2,连接,CD 作OG CD ⊥,垂足为,G 延长OG 交AB 于点,则此时CDE △的面积最大.12,4,OA OB AC D ===为OB 的中点,8,6OC OD ∴==,在Rt COD 中,10, 4.8CD OG ==,'12 4.87.2GE ∴=-=,四边形CODE 面积的最大值为1168107.26022CDO CDE SS '+=⨯⨯+⨯⨯=, 作',E H OB ⊥垂足为, ''90,'90,E OH OE H E OH ODC ∠+∠=︒∠+∠='OE H ODC ∴∠=∠.又'90COD E HO ∠=∠=︒,CODOHE '∴, ''OD E H CD OE ∴= 6'1012E H ∴= '7.2E H ∴=,出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②铺设小路CE 和DE 的总造价为()2004002002.CE DE CE DE +=+如图3,连接,OE 延长OB 到点,Q 使12BQ OB ==,连接EQ在EOD △与QOE 中,EOD QOE =∠,且12OD OE OE OQ ==, ,EOD QOE ∴故2,QE DE =2CE DE CE QE ∴+=+,问题转化为求CE QE +的最小值,连接,CQ 交AB 于点,此时CE QE +取得最小值为CQ .在Rt COQ 中,8,24CO OQ ==,810CQ ∴= 故总造价的最小值为10作',E H OB ⊥垂足为,连接'OE .设',E H x =则3QH x =.在'Rt E OH 中,222'OH HE OE '+=,()22224312,x x ∴-+= 解得13666x -=,23666x +=舍去), 总造价的最小值为10OB 的距离为36665-米. 【点睛】此题考查圆的综合问题,涉及圆的基本性质,相似三角形的判定和性质,勾股定理等知识,综合程度较高,需要灵活运用知识,解题关键是:利用对称或相似灵活地将折线和转化为线段长,从而求折线段的最值.。

人教版中考模拟考试数学试卷及答案(共七套)

人教版中考模拟考试数学试卷及答案(共七套)
∴ME=MC+EC= 。
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号

√ቤተ መጻሕፍቲ ባይዱ

由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,

2024年中考数学模拟考试试卷(附含答案)

2024年中考数学模拟考试试卷(附含答案)
【点睛】本题考查了二次函数的综合问题综合性较强难度较大扎实的知识基础是关键.
三解答题:本大题共7个小题共78分解答应写出文字说明证明过程或演算步骤
19.计算
(1)计算: .
(2)化简: .
【答案】(1)
(2)
【解析】
【分析】(1)根据特殊角的锐角三角函数零指数幂绝对值化简计算即可;
(2)根据分式化简运算规则计算即可.
【小问1详解】
解:原式

【小问2详解】
解:原式
【点睛】本题考查了实数的混合运算与分式化简以及特殊角三角函数熟记运算法则是关键.
【详解】解:∵ 和 是以点 为直角顶点的等腰直角三角形



∴ 故①正确;



∴ 故②正确;
当点 在 的延长线上时如图所示



∵ .


∴ 故③正确;
④如图所示以 为圆心 为半径画圆

∴当 在 的下方与 相切时 的值最小
∴四边形 是矩形

∴四边形 是正方形



在 中
∴ 取得最小值时

故④正确
故选:D.
【答案】
【解析】
【分析】连接 将 以 中心逆时针旋转 点的对应点为 由 的运动轨迹是以 为圆心 为半径的半圆可得: 的运动轨迹是以 为圆心 为半径的半圆再根据“圆外一定点到圆上任一点的距离在圆心定点动点三点共线时定点与动点之间的距离最短”所以当 三点共线时 的值最小可求 从而可求解.
【详解】解如图连接 将 以 中心逆时针旋转 点的对应点为
故选:C.
【点睛】本题考查科学记数法,按照定义,确定 与 的值是解决问题的关键.

中考模拟考试 数学试卷 附答案解析

中考模拟考试 数学试卷 附答案解析
C.线段EF的长不变D.线段EF的长不能确定
二、空题(本大题共8个小题,每小题3分,满分24分)
11.点P(a,a-3)在第四象限,则a的取值范围是_____.
12.已知函数y=(m﹣1)x+m2﹣1 正比例函数,则m=_____.
13.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()
一、选择题.(本大题共10个小题,每小题3分,满分30分)
1.有一直角三角形 两边长分别为3和4,则第三边长是()
A.5B.5或 C. D.
2.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()
A.33B.-33C.-7D.7
3. 在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P′的坐标是()
根据平行四边形的判定方法逐项判断即可.
【详解】解:A、AB∥CD,AD=BC,如等腰梯形,不能判断是平行四边形,故本选项错误;
B、∠B=∠C,∠A=∠D,不能判断是平行四边形,如等腰梯形,故本选项错误;
C、AB=CD,CB=AD,两组对边分别相等,可判断是平行四边形,正确;
D、AB=AD,CD=BC,两组邻边分别相等,不能判断是平行四边形;
考点:点的平移.
4.函数 中自变量x的取值范围是()
A. B. C. D.
【答案】B
【解析】
【分析】
根据二次根式中的被开方数非负数的性质进行计算,即可得到答案.
【详解】由二次根式中的被开方数非负数的性质可得 ,则 ,故选择B.
【点睛】本题考查函数自变量的取值范围,解题的关键是知道二次根式中的被开方数非负数.
∴线段EF的长不改变.

中考仿真模拟检测《数学试卷》含答案解析

中考仿真模拟检测《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:(本大题共10个小题,每小题3分,共30分)1. 3-的倒数是( )A. B. 13C.13- D. 3-2. 在函数y=1x-中,x的取值范围是()A. x≥1B. x≤1C. x≠1D. x<03. 下列运算正确的是( )A. x3·x3=2x6B. (-2x2)2=-4x4C. (x3)2=x6D. x5÷x=x54. 下列图形中,既轴对称图形又是中心对称图形有()A. 1个B. 2个C. 3个D. 4个5. 下列各式中,计算正确的是( )A. -2-3=-1B. -2m²+m²=-m²C. 3÷5445⨯=3÷1=3 D. 3a+b=3a6. 一组数据2,x,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )A. 3,3,0.4B. 2,3,2C. 3,2,0.4D. 3,3,27. 某商品原价100元,连续两次涨价x%后售价为120元,下面所列方程正确是( )A. 100(1+2x%)2=120B. 100(1+x2)2=120C. 100(1-x%)2=120D. 100(1+x%)2=1208. 命题:①对顶角相等;②相等的角是对顶角;③在同一平面,垂直于同一条直线的两条直线平行;④平行于同一条直线的两条直线垂直.其中真命题有A. 1个B. 2个C. 3个D. 4个9. 如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于( )A. 5B. 6C. 2D. 310. 如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A. 2B. 54C.53D.75二、填空题(共8小题;共24分)11. 计算(2+1)(2-1)的结果为_____.12. 分解因式:2a2﹣8b2=________.13. 已知某水库容量约为112000立方米,将112000用科学记数法表示为.14. 如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15. 如图,在平面直角坐标系中,函数y=kx(x>0,常数k>0)的图象经过点A(1,2),B(m,n),(m>1),过点B作y轴的垂线,垂足为C.若△ABC的面积为2,则点B的坐标为____________.16. 已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是cm2.17. 如图,在矩形ABCD 中,AB=5,BC=103,一圆弧过点B 和点C ,且与AD 相切,则图中阴影部分面积________.18. 如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2.则 cos ∠MCN=________.三、解答题(共9小题;共72分)19. 计算:(1)|﹣6|+(﹣2)3+(7)0;(2)(a+b)(a ﹣b)﹣a(a ﹣b)20. (1)解分式方程: 2216124x x x --=+- (2)先化简,再求值: 222111x x x x x ++---,其中x 满足不等式组 1030x x -≥⎧⎨-<⎩且x 整数. 21. 已知:如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .求证:DC=CF .22. 萧山北干初中组织外国教师(外教)进班上英语课,王明同学为了解全校学生对外教的喜爱程度,在全校随机抽取了若干名学生进行问卷调查.问卷将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,根据调查结果绘制成了两幅不完整的统计图,请结合统计图信息解答下列问题:(1)这次调查中,一共调查了名学生,图1中C类所对应的圆心角度数为 ;(2)请补全条形统计图;(3)在非常喜欢外教的5位同学(三男两女)中任意抽取两位同学作为交换生,请用列表法或画树状图求出恰好抽到一名男生和一名女生作为交换生的概率.23. 如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.24. 小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?25. (2011贵州安顺,23,10分)如图,已知反比例函数图像经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2).⑴求直线y=ax+b的解析式;⑵设直线y=ax+b与x轴交于点M,求AM的长.26. 如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB=22,BC=2,求⊙O的半径.27. 已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.(1)求证:四边形ABCD是矩形;(2)如果AE=EG,求证:AC2=BC•BG.答案与解析一、选择题:(本大题共10个小题,每小题3分,共30分)1. 3-的倒数是( )A. B. 13 C. 13- D. 3- 【答案】C【解析】【分析】由互为倒数的两数之积为1,即可求解. 【详解】∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-.故选C2. 在函数中,x 的取值范围是( )A. x≥1B. x≤1C. x≠1D. x <0【答案】A【解析】分析:要使二次根式有意义,则必须满足二次根式的被开方数为非负数.详解:根据题意可得:x -1≥0, 解得:x≥1, 故选A .点睛:本题主要考查的是二次根式的性质,属于基础题型.明确二次根式的性质是解决这个问题的关键. 3. 下列运算正确的是( )A. x 3·x 3=2x 6B. (-2x 2)2=-4x 4C. (x 3)2=x 6D. x 5÷x =x 5 【答案】C【解析】试题分析:A.333+36x x =x =x ⋅,故A 错误;B.()()()222224-2x =-2x =4x ⋅,故B 错误;C.()23326x =x =x ⨯,故C 正确;D.55-14x x=x =x ÷,故D 错误.考点:幂的运算4. 下列图形中,既是轴对称图形又是中心对称图形有 ( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】 中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解: 只有图2和图3既是轴对称又是中心对称图形.故,选B【点睛】本题考查中心对称图形和轴对称图形,本题属于基础应用题,只需学生熟练掌握中心对称图形和轴对称图形的定义,即可完成.5. 下列各式中,计算正确的是( )A. -2-3=-1B. -2m²+m²=-m²C. 3÷5445⨯=3÷1=3 D. 3a+b=3a 【答案】B【解析】分析:根据有理数的计算法则以及合并同类项的法则即可得出正确答案.详解:A 、-2-3=-5,故错误;B 、原式=2m -,故正确;C 、原式=444835525⨯⨯=,故错误;D 、不是同类项,无法进行加法计算, 故本题选B .点睛:本题主要考查的是有理数的计算法则和合并同类项的法则,属于基础题型.明确计算法则是解决这个问题的关键.6. 一组数据2,x ,4,3,3的平均数是3,则这组数据的中位数、众数、方差分别是( )A. 3,3,0.4B. 2,3,2C. 3,2,0.4D. 3,3,2 【答案】A【解析】 试题分析:依题意得:1(2433)35x ++++=,解得:x =3,把原数据由小到大排列为:2,3,3,3,4,所以中位数为3,众数为3,方差为:15(1+0+1+0+0)=0.4,故答案选A.考点:中位数;众数;方差.7. 某商品原价100元,连续两次涨价x%后售价为120元,下面所列方程正确是( )A. 100(1+2x%)2=120B. 100(1+x 2)2=120C. 100(1-x%)2=120D. 100(1+x%)2=120【答案】D【解析】分析:根据涨价前的价格×(1+涨价率)涨价次数=涨价后的数量得出方程.详解:根据题意可得:()21001x%120+=,故选D .点睛:本题主要考查的是一元二次方程的应用,属于基础题型.根据题意得出等量关系是解决这个问题的关键.8. 命题:①对顶角相等;②相等角是对顶角;③在同一平面,垂直于同一条直线的两条直线平行;④平行于同一条直线的两条直线垂直.其中真命题有A. 1个B. 2个C. 3个D. 4个 【答案】B【解析】试题分析:①③正确;②相等的角不一定就是对顶角,也有可能是内错角、同位角等,④平行于同一条直线的两条直线互相平行考点:概念的掌握点评:本题难度不大,考查的是学生对于知识概念的一些掌握程度9. 如图,菱形ABCD 的边AB=20,面积为320,∠BAD <90°,⊙O 与边AB ,AD 都相切,AO=10,则⊙O 的半径长等于( )A. 5B. 6C. 2D. 3【答案】C【解析】 【详解】试题解析:如图作DH ⊥AB 于H ,连接BD ,延长AO 交BD 于E .∵菱形ABCD 的边AB=20,面积为320,∴AB•DH=32O ,∴DH=16,在Rt △ADH 中,AH=22AD DH -=12, ∴HB=AB ﹣AH=8,在Rt △BDH 中,BD=2285+=DH BH ,设⊙O 与AB 相切于F ,连接AF .∵AD=AB ,OA 平分∠DAB ,∴AE ⊥BD ,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH ,∵∠AFO=∠DHB=90°,∴△AOF ∽△DBH ,∴=OA OF BD BH, ∴100885=F , ∴OF=25.故选C .考点:1.切线的性质;2.菱形的性质.10. 如图,△ABC 中,∠BAC=90°,AB=3,AC=4,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED ,连CE ,则线段CE 的长等于( )A. 2B. 54C. 53D. 75【答案】D【解析】【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【详解】如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴2234+,∵CD=DB,∴AD=DC=DB=52,∵12•BC•AH=12•AB•AC,∴AH=125,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵12•AD•BO=12•BD•AH,∴OB=125,∴BE=2OB=245,在Rt△BCE中,2222247555 BC BE⎛⎫-=-=⎪⎝⎭.故选D.点睛:本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.二、填空题(共8小题;共24分)11. 计算22-1)的结果为_____.【答案】1【解析】利用平方差公式进行计算即可. 【详解】原式=(2)2﹣1 =2﹣1 =1, 故答案为1.【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式. 12. 分解因式:2a 2﹣8b 2=________. 【答案】2(2)(2)a b a b -+ 【解析】 【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解即可. 【详解】2a 2﹣8b 2=2(a 2﹣4b 2)=2(a +2b )(a ﹣2b ). 故答案为2(a +2b )(a ﹣2b ).【点睛】本题考查了提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.13. 已知某水库容量约为112000立方米,将112000用科学记数法表示为 . 【答案】1.12×105. 【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数且为这个数的整数位数减1,,由于112000亿有6位,所以可以确定n=6﹣1=5.即112000=1.12×105. 考点:科学记数法.14. 如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是 ℃.【答案】11.试题解析:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃. 考点:1.有理数大小比较;2.有理数的减法. 15. 如图,在平面直角坐标系中,函数y=kx(x >0,常数k >0)的图象经过点A (1,2),B (m ,n ),(m >1),过点B 作y 轴的垂线,垂足为C .若△ABC 的面积为2,则点B 的坐标为____________.【答案】1(4,)2B 【解析】考点:反比例函数综合题. 分析:由于函数ky x(x >0常数k >0)的图象经过点A(1,2),把(1,2)代入解析式即可确定k=2,依题意BC=m ,BC 边上的高是2-n="2-"2m,根据三角形的面积公式得到关于m 的方程,解方程即可求出m ,然后把m 的值代入y=2x,即可求得B 的纵坐标,最后就求出点B 的坐标. 解:∵函数y=kx(x >0常数k >0)的图象经过点A(1,2), ∴把(1,2)代入解析式得2=1k , ∴k=2,∵B(m ,n)(m >1), ∴BC=m ,当x=m 时,n=2m,∴BC边上的高是2-n=2-2m,而S△ABC=12m(2-2m)=2,∴m=3,∴把m=3代入y=2x,∴n=23,∴点B的坐标是(3,23).故填空答案:(3,23 ).16. 已知圆锥的母线长为8cm,底面圆的半径为3cm,则圆锥的侧面展开图的面积是cm2.【答案】24π.【解析】底面半径为3cm,则底面周长=6πcm,侧面面积=12×6π×8=24πcm2.17. 如图,在矩形ABCD中,AB=5,BC=103,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为________.【答案】753﹣100 3【解析】设圆弧圆心为O,与AD切于E,连接OE交BC于F,连接OB、OC,设圆的半径为x,则OF=x-5,由勾股定理得,OB2=OF2+BF2,即x 2=(x-5)2+(53 )2解得,x=10, 则∠BOF=60°,∠BOC=120°, 则阴影部分面积为:矩形ABCD 的面积-(扇形BOCE 的面积-△BOC 的面积)2120101103510353602π⨯⨯=⨯-+⨯⨯1007533π=-故答案是:1007533π-. 18. 如图,在四边形ABCD 中,AB=AD=6,AB ⊥BC ,AD ⊥CD ,∠BAD=60°,点M 、N 分别在AB 、AD 边上,若AM :MB=AN :ND=1:2.则 cos ∠MCN=________.【答案】1314【解析】 【分析】连接AC ,通过三角形全等,求得∠BAC=30°,从而求得BC 的长,然后根据勾股定理求得CM 的长,连接MN ,过M 点作ME ⊥CN 于E ,则△MNA 是等边三角形求得MN=2,设NE=x ,表示出CE ,根据勾股定理即可求得ME ,然后求得tan ∠MCN .【详解】∵AB=AD=6,AM :MB=AN :ND=1:2, ∴AM=AN=2,BM=DN=4, 连接MN ,连接AC ,∵AB ⊥BC ,AD ⊥CD ,∠BAD=60° 在Rt △ABC 与Rt △ADC 中,AB ADAC AC =⎧⎨=⎩, ∴Rt △ABC ≌Rt △ADC (HL ) ∴∠BAC=∠DAC=12∠BAD=30°,MC=NC , ∴BC=12AC , ∴AC 2=BC 2+AB 2,即(2BC )2=BC 2+AB 2, 3BC 2=AB 2, ∴BC=23,在Rt △BMC 中,CM=22224(23)27BM BC +=+=∵AN=AM ,∠MAN=60°, ∴△MAN 是等边三角形, ∴MN=AM=AN=2,过M 点作ME ⊥CN 于E ,设NE=x ,则CE=27-x ,∴MN 2-NE 2=MC 2-EC 2,即4-x 2=(7)2-(7-x )2, 解得:7, ∴7-7137 ∴223217MN NE -=,∴cos ∠MCN=1377131427CECM==.考点:1.全等三角形的判定与性质;2.三角形的面积;3.角平分线的性质;4.含30度角的直角三角形;勾股定理.三、解答题(共9小题;共72分)19. 计算:(1)|﹣6|+(﹣2)37)0; (2)(a+b)(a ﹣b)﹣a(a ﹣b) 【答案】(1)-1;(2)ab ﹣b 2.【解析】分析:(1)、根据绝对值、立方和零次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据平方差公式和多项式的乘法计算法则将括号去掉,然后进行合并同类项. 详解:(1)、原式=6﹣8+1=﹣1; (2)、原式=a 2﹣b 2﹣a 2+ab=ab ﹣b 2.点睛:本题主要考查的是实数的计算以及整式的乘法,属于基础题型.在去括号的时候,如果括号前面为负号,则去掉括号后括号里面的每一项都要变号. 20. (1)解分式方程:2216124x x x --=+- (2)先化简,再求值: 222111x x xx x ++---,其中x 满足不等式组 1030x x -≥⎧⎨-<⎩且x 为整数. 【答案】(1) 原方程无解;(2)11x -,1. 【解析】分析:(1)、首先进行去分母将分式方程转化为整式方程,从而求出整式方程的解,然后对解进行检验,看是否使分式的分母为零;(2)、将分式进行通分,然后根据减法的计算法则将分式进行化简;求出不等式组的解,然后选择出合适的x 的值代入化简后的分式进行计算得出答案. 详解:(1)、解:去分母得: , 解方程得:检验:当 时,∴是原方程增根, ∴ 原方程无解(2)、解:==解不等式组得: 1≤x <3 .∵x 为整数, ∴x =1或x =2. 当x =1时,原式无意义, ∴ 当x =2时,原式=1.点睛:本题主要考查的是分式的化简和解分式方程,属于基础题型.求出分式的公分母是解题的前提条件. 21. 已知:如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F .求证:DC=CF .【答案】见解析 【解析】分析:根据平行四边形的性质、中点的性质以及对顶角证明出△ABE和△FCE全等,从而得出AB=CF,根据平行四边形的性质得出AB=CD,从而得出答案.详解:证明:∵四边形ABCD是平行四边形,∴CD∥AB,AB=CD,∴∠DFA=∠FAB;∵E为BC中点,∴EC=EB,∴在△ABE与△FCE中,,∴△ABE≌△FCE(AAS),∴AB=CF,∴DC=CF.点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于基础题型.证明出三角形全等是解题的关键.22. 萧山北干初中组织外国教师(外教)进班上英语课,王明同学为了解全校学生对外教的喜爱程度,在全校随机抽取了若干名学生进行问卷调查.问卷将喜爱程度分为A(非常喜欢)、B(喜欢)、C(不太喜欢)、D(很不喜欢)四种类型,根据调查结果绘制成了两幅不完整的统计图,请结合统计图信息解答下列问题:(1)这次调查中,一共调查了名学生,图1中C类所对应的圆心角度数为 ;(2)请补全条形统计图;(3)在非常喜欢外教5位同学(三男两女)中任意抽取两位同学作为交换生,请用列表法或画树状图求出恰好抽到一名男生和一名女生作为交换生的概率.【答案】(1)40;54°;(2)补全条形统计图见解析;(3)树状图或列表见解析,P(一男一女)=3 5【解析】试题分析:(1)通过D类型有4人占比10%即可得到调查的人数;然后根据条形图得到C类的人数,通过占比求得相应圆心角的度数;(2)用调查的总人数减去A、B、D类的人数得到C类的人数,补全图形即可;(3)通过列表法即可求得概率.试题解析:(1)一共调查了4÷10%=40人,40-8-22-4=6,360°×640=54°,故填:40;54°;(2)补全条形统计图,如图所示:(3)列表:男1 男2 男3 女1 女2 男1 √√男2 √√男3 √√女1 √√√女2 √√√所有等可能的情况有20种情况,其中一男一女的情况有12种,则P(一男一女)=35.23.如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【答案】(1)作图见解析;(2)作图见解析.【解析】试题分析:(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)过D点作DI∥BC交AC于I,分别以D,I为圆心,DI长为半径作圆弧交AB于E,交AC于H,过E点作EF∥AC交BC于F,过H点作HG∥AB交BC于G,六边形DEFGHI即为所求正六边形.试题解析:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.考点:1.作图—复杂作图;2.等边三角形的性质;3.三角形的外接圆与外心.24. 小明所在的学校加强学生的体育锻炼,准备从某体育用品商店一次购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据实际情况,需从该商店一次性购买篮球和足球功60个,要求购买篮球和足球的总费用不超过4000元,那么最多可以购买多少个篮球?【答案】(1)每个篮球80元,每个足球50元;(2)最多可以买33个篮球.【解析】试题分析:(1)设每个篮球x元,每个足球y元,根据买2个篮球和3个足球共需310元,购买5个篮球和2个足球共需500元,列出方程组,求解即可;(2)设买m个篮球,则购买(60-m)个足球,根据总价钱不超过4000元,列不等式求出x的最大整数解即可.试题解析:(1)设每个篮球x元,每个足球y元,由题意得,23310 {52500 x yx y+-+=,解得:80 {50xy==,答:每个篮球80元,每个足球50元; (2)设买m个篮球,则购买(60-m)个足球,由题意得,80,m+50(60-m)≤4000,解得:m≤3313,∵m为整数,∴m最大取33,答:最多可以买33个篮球.考点:1.一元一次不等式的应用;2.二元一次方程组的应用.25. (2011贵州安顺,23,10分)如图,已知反比例函数的图像经过第二象限内的点A(-1,m),AB⊥x 轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数的图象上另一点C(n,一2).⑴求直线y=ax+b的解析式;⑵设直线y=ax+b与x轴交于点M,求AM的长.【答案】(1)∵点A(-1,m)在第二象限内,∴AB = m,OB = 1,∴即:,解得,∴A (-1,4),∵点A (-1,4),在反比例函数的图像上,∴4 =,解得,∵反比例函数为,又∵反比例函数的图像经过C(n,)∴,解得,∴C (2,-2),∵直线过点A (-14),C (2,-2)∴解方程组得 ∴直线的解析式为; (2)当y = 0时,即解得,即点M (1,0) 在中,∵AB = 4,BM = BO +OM =" 1+1" = 2,由勾股定理得AM =. 【解析】试题分析:(1)根据点A 的横坐标与△AOB 的面积求出AB 的长度,从而得到点A 的坐标,然后利用待定系数法求出反比例函数解析式,再利用反比例函数解析式求出点C 的坐标,根据点A 与点C 的坐标利用待定系数法即可求出直线y=ax+b 的解析式;(2)根据直线y=ax+b 的解析式,取y=0,求出对应的x 的值,得到点M 的坐标,然后求出BM 的长度,在△ABM 中利用勾股定理即可求出AM 的长度.试题解析:(1)∵点A(-1,m )在第二象限内,∴AB=m ,OB=1,∴S △ABO =12AB•BO=2, 即:12×m×1=2, 解得m=4,∴A (-1,4),∵点A (-1,4),在反比例函数y =k x 的图象上, ∴4=1k , 解得k=-4,∴反比例函数为y=-4x又∵反比例函数y=-4x的图象经过C(n ,-2) ∴-2=4-n , 解得n=2,∴C (2,-2),∵直线y=ax+b 过点A (-1,4),C (2,-2)∴4{22a b a b-+-+==, 解方程组得2{2a b -==, ∴直线y=ax+b 的解析式为y=-2x+2;(2)当y=0时,即-2x+2=0,解得x=1,∴点M 的坐标是M(1,0),在Rt △ABM 中,∵AB=4,BM=BO+OM=1+1=2,由勾股定理得AM=2222=42=25AB BM ++.26. 如图,在矩形ABCD 中,点O 在对角线AC 上,以OA 的长为半径的圆O 与AD 、AC 分别交于点E 、F ,且∠ACB =∠DCE .(1)判断直线CE 与⊙O 的位置关系,并证明你的结论;(2)若tan ∠ACB 2,BC =2,求⊙O 的半径. 【答案】(1)相切(2)64【解析】【分析】(1)连接OE .欲证直线CE 与⊙O 相切,只需证明∠CEO =90°,即OE ⊥CE 即可;(2)在直角三角形ABC 中,根据三角函数的定义可以求得AB 2,然后根据勾股定理求得AC 6同理知DE =1;在Rt △COE 中,利用勾股定理可以求得CO 2=OE 2+CE 2,即6-r) 2=r 2+3,从而易得r 的值;【详解】解:(1)直线CE与⊙O相切理由如下:∵四边形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;连接OE,则∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AEO+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半径,∴直线CE与⊙O相切.(2)∵tan∠ACB=22ABBC=,BC=2,∴AB=BC•tan∠ACB2,∴AC6;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB 2,∴DE=DC•tan∠DCE=1;在Rt△CDE中,CE223CD DE+=连接OE,设⊙O的半径为r,则在Rt△COE中,CO2=OE2+CE2,即6-r) 2=r2+3解得:r=6 427. 已知:如图,在平行四边形ABCD中,AC为对角线,E是边AD上一点,BE⊥AC交AC于点F,BE、CD的延长线交于点G,且∠ABE=∠CAD.(1)求证:四边形ABCD是矩形;(2)如果AE=EG,求证:AC2=BC•BG.【答案】(1)见解析;(2)见解析.【解析】【详解】分析:(1)、因为四边形ABCD是平行四边形,所以只要证明∠BAD=90°,即可得到四边形ABCD 是矩形;(2)、连接AG,由平行四边形的性质和矩形的性质以及结合已知条件可证明△BCG∽△ABC,再由相似三角形的性质:对应边的比值相等即可证明AC2=BC•BG.详解:(1)、解:证明:∵BE⊥AC,∴∠AFB=90°.∴∠ABE+∠BAF=90°.∵∠ABE=∠CAD.∴∠CAD+∠BAF=90°.即∠BAD=90°.∵四边形ABCD是平行四边形,∴四边形ABCD是矩形;(2)、解:连接AG.∵AE=EG,∴∠EAG=∠EGA,∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠ABG=∠BGC,∴∠CAD=∠BGC,∴∠AGC=∠GAC,∴CA=CG,∵AD∥BC,∴∠CAD=∠ACB,∴∠ACB=∠BGC,∵四边形ABCD是矩形,∴∠BCG=90°,∴∠BCG=∠ABC,∴△BCG∽△ABC,∴AC BCBG CG,∴AC2=BC•BG.点睛:本题考查了平行四边形的性质、矩形的判断和性质、等腰三角形的判断和性质以及相似三角形的判断和性质,题目的综合性较强,难度中等,熟记相似三角形的各种判断方法是解题的关键.。

中考数学模拟试卷(含有答案)

中考数学模拟试卷(含有答案)

中考数学模拟试卷(含有答案)一.单选题。

(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×107 4.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx -1的图象向上平移2个单位长度后经过点(2,3),则k 的值是( )A.1B.﹣1C.﹣2D.29.如图,在△ABC 中,AB=AC=2BC=4,以点B 为圆心,BC 长为半径画弧,与AC 交于点D ,则线段CD 的长为( )A.12B.1C.43 D.210.二次函数y=﹣x 2+2x+8的图像与x 轴交于B ,C 两点,点D 平分BC ,若在x 轴上侧的A 点为抛物线的动点,且∠BAC 为锐角,则AD 的取值范围是( )A.3<AD ≤9B.3≤AD ≤9C.4<AD ≤10D.3≤AD ≤8 二.填空题。

(共24分)11.因式分解:m 2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是 .(第12题图) (第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为 .14.已知m 是关于x 的方程x 2-2x -3=0的一个根,则m 2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x 表示餐桌的张数,y 表示椅子的把数,请你写出椅子数y (把)与餐桌数x (张)之间的函数关系式 .(第15题图) (第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。

2024年中考数学模拟考试试卷-附答案(北师大版)

2024年中考数学模拟考试试卷-附答案(北师大版)

2024年中考数学模拟考试试卷-附答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图所示的几何体是由5个大小相同的小立方块搭成,此几何体的俯视图是( )2.万里长城是世界文化遗产之一,其总长大约为21 200 000 m ,将21 200 000用科学记数法表示为( )A.2.12x106B.2.12x107C.0.212x108D.212x1073.如图,AB∥CD,直线l与AB,CD分别交于点E和F,CD上有一点G且GE=GF,∠1=122°,则∠2的度数为( )A.54°B.64°C.58°D.68°4.实数a,b在数轴上的位置如图所示,则下列结论不正确的是( )A.ab<0B.a+b>0-bl=a-bD.√a2=-a5.下列图形中,既是轴对称图形又是中心对称图形的是()6.下列运算正确的是()A.(m﹣1)2=m2﹣1B.(2m)³=6m³C.m7-m3=m4D.m2+m5=m77.用如图所示的两个可自由转动的转盘进行"配紫色"游戏(红色和蓝色配成紫色),两个转盘分别被分成面积相等的几个扇形,同时转动两个转盘一次,转盘停止时指针所指扇形的颜色即为转出的颜色(若指针停在分界线上,则重转),则配得紫色的概率为( )A.16B.14C.13D.128.已知点A(x1,y1),B(x2,y2)在反比例函数y=-2x的图象上,且x1<0<x2,则下列结论一定正确的是( )A.y1+y2<0B.y1+y2>0C.y1﹣y2<0D.y1-y2>09.如图,在矩形ABCD 中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E和F,大于12EF为半径画弧,两弧交于点P,作射线BP,过点C作BP的垂线分别交BP,AD于点M和N,则CN的长为()A.√10B.√11C.2√3D.410.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点,已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(32,32),且当0≤x≤m时,函数y’=ax2+4x+c-34(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是( )A.-1≤m≤0B.2≤m≤4C.2≤m<72D.2-<m≤72二.填空题:本题共6小题,每小题4分,共24分..11.因式分解:xy2-4x= .12.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为.13.若关于x的一元二次方程x2+2x+h=0无实数根,则k的取值范围是.14.如图,正方形的边AB=2,弧BD和弧AC都是以2为半径的圆弧,则图中空白两部分的面之差为.15.为了增强学生身体素质,学校要求学生练习跑步.开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s,当到达终点时男、女均停止跑步,男、女生从开始匀速跑步到停止跑步分别用时100s,120s.已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则当男、女相遇时,此时男、女同学距离终点的距离为.16.如图,在矩形ABCD 中,AB=8,AD=10,点M 是BC 的中点,E 是BM 上的一点,连接AE ,作点B 关于直线AE 的对称点B',连接DB'并延长交BC 于点F .当BF 最大时,点B'到BC 的距离为 .三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:|﹣12|+(-1)2024﹣sin30°﹣(√3-√2)018.(6分)解不等式组{2(x -1)+1>﹣3①x -1≤1+x3②,并把它的解集在数轴上表示出来.19.(6分)如图,四边形ABCD 是平行四边形,点E ,F ,G ,H 分别在边AD 、AB 、BC 、CD 上,且DE=BG ,AF=CH .求证:EF=GH.20.(8分)植物园是当地人民喜爱的休闲场所之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最小和最大高度分别为多少?(结果精确到0.1m,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)21.(8分)"小手拉大手,共创文明城".某校为了解学生对所在城市创建全国文明城市相关知识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x表示.单位:分):94,83,90,86,94,88,96,100,89,82,94,82,84,89,88,93,98,94,93,92.整理上面的数据,得到频数分布表和扇形统计图.根据以上信息,解答下列问题:(1)填空:a= ,b= .(2)若成绩不低于90分为优秀,请估计该校1600名学生中,达到优秀等级的人数;(3)已知A等级中有2名男生,现从A等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.22.(8分)如图,AB是⊙O的直径,点E,C在⊙O上,点C是弧BE的中点,AE垂直于过点C 的直线CD,垂足为D,AB的延长线交直线CD于点F.(1)求证:CD是⊙O的切线;(2)若AE=2,sin∠AFD=13①求⊙O的半径;②求线段DE的长.23.(10分)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A粽子能够畅销.根据预测,每千克A粽子节前的进价比节后多2元,节前用240元购进A 粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:(1)该商场节后每千克A粽子的进价为多少元?(2)如果该商场在节前和节后共购进A粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A粽子获得利润最大?最大利润为多少?24.(10分)当k 值相同时,我们把正比例函数y=1k x 和反比例函数y=kx 叫做"关联函数".小亮根 据学习函数的经验,以函数y=﹣12x 和y=﹣2x 为例对"关联函数"进行了探究,下面是小亮的探 究过程,请你将它补充完整(1)如图,在同一平面直角坐系中画出这两个函数的图象,两个函数图象在第二、四象限分别 交于点A 、B ,则点A 、B 的坐标分别是A 、B .(2)点P 是函数y=﹣12x 在第二象限内的图象上的一个动点(不与点A 重合),作直线PA 、PB ,分别与x 轴交于点C 、D .设点P 的横坐标为t .小亮通过分析得到:在点P 运动的过程中,总有PC=PD.证明PC=PD 的过程如下(不完整): 易知点P 的坐标为(t ,﹣2t ) 设直线AP 的表达式为y=ax+b -2a+ b =1将点A 、P 的坐标分别代人,得{﹣2a +b =1ta +b =﹣2t解得{a =﹣1tb =﹣2-tt∴直线AP 的表达式为y=﹣1t x -2-t t令y=0,得x=t -2,则点C 的坐标为(t -2,0) 同理可得直线BP 的表达式为y=1t x -2+t t.....请你补充剩余的证明过程;(3)当△PCD 是等边三角形时,t= .(4)随着点P 的运动,△ABP 的面积S 与点P 的横坐标t 之间存在一定的函数关系,当t>﹣2时,请你求出S 关于t 的函数表达式.25.(12分)如图,抛物线y=ax2+bx+3与x轴交于点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,点Q是x轴上方抛物线上一点,射线QM⊥x轴于点N,若QM=BM,且tan∠MBN=43,请直接写出点Q的坐标;(3)如图2,点E是第一象限内一点,连接AE交y轴于点D,AE的延长线交抛物线于点P点F在线段CD上,且CF=OD,连接AF,EF,BE,BP,若S△AFE =S△ABE,求△PAB的面积.26.(12分)原题再现:小强特别喜欢探究数学问题,一天李老师给他这样一个几何问题:△ABC 和△BDE都是等边三角形,将△BDE绕着点B旋转到图1位置,求证:AE=CD.小强很快就通过△ABE△CBD,论证了AE=CD.(1)请你写出小强的证明过程;迁移应用:小强想,把等边△ABC和等边△BDE都换成等腰直角三角形,将△BDE绕着点B 旋转到图2位置,其中∠ACB=∠EDB=90°,那么AE和CD有什么数量关系呢?(2)请你帮助小强写出结论,并给出证明;(3)如图3,如果把等腰直角三角形换成正方形,将正方形AFEG绕点A旋转α°,若AB=6√2,AG=4,在旋转过程中,当C,G,E三点共线时,请求出DG的长度.答案一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图所示的几何体是由5个大小相同的小立方块搭成,此几何体的俯视图是( C )2.万里长城是世界文化遗产之一,其总长大约为21 200 000 m ,将21 200 000用科学记数法表示为( B )A.2.12x106B.2.12x107C.0.212x108D.212x1073.如图,AB∥CD,直线l与AB,CD分别交于点E和F,CD上有一点G且GE=GF,∠1=122°,则∠2的度数为( B )A.54°B.64°C.58°D.68°4.实数a,b在数轴上的位置如图所示,则下列结论不正确的是( C )A.ab<0B.a+b>0-bl=a-bD.√a2=-a5.下列图形中,既是轴对称图形又是中心对称图形的是( D )6.下列运算正确的是( C )A.(m﹣1)2=m2﹣1B.(2m)³=6m³C.m7-m3=m4D.m2+m5=m77.用如图所示的两个可自由转动的转盘进行"配紫色"游戏(红色和蓝色配成紫色),两个转盘分别被分成面积相等的几个扇形,同时转动两个转盘一次,转盘停止时指针所指扇形的颜色即为转出的颜色(若指针停在分界线上,则重转),则配得紫色的概率为( B )A.16B.14C.13D.128.已知点A(x1,y1),B(x2,y2)在反比例函数y=-2x的图象上,且x1<0<x2,则下列结论一定正确的是( D )A.y1+y2<0B.y1+y2>0C.y1﹣y2<0D.y1-y2>09.如图,在矩形ABCD 中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E和F,大于12EF为半径画弧,两弧交于点P,作射线BP,过点C作BP的垂线分别交BP,AD于点M和N,则CN的长为( A )A.√10B.√11C.2√3D.410.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点,已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(32,32),且当0≤x≤m时,函数y’=ax2+4x+c-34(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是( B )A.-1≤m≤0B.2≤m≤4C.2≤m<72D.2-<m≤72二.填空题:本题共6小题,每小题4分,共24分..11.因式分解:xy2-4x= x(y+2)(y-2) .12.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为1350.13.若关于x的一元二次方程x2+2x+h=0无实数根,则k的取值范围是k>1 .14.如图,正方形的边AB=2,弧BD和弧AC都是以2为半径的圆弧,则图中空白两部分的面之差为2π-4 .15.为了增强学生身体素质,学校要求学生练习跑步.开始时男生跑了50m,女生跑了80m,然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s,当到达终点时男、女均停止跑步,男、女生从开始匀速跑步到停止跑步分别用时100s,120s.已知x轴表示从开始匀速跑步到停止跑步的时间,y轴代表跑过的路程,则当男、女相遇时,此时男、女同学距离终点的距离为315m .16.如图,在矩形ABCD 中,AB=8,AD=10,点M 是BC 的中点,E 是BM 上的一点,连接AE ,作点B 关于直线AE 的对称点B',连接DB'并延长交BC 于点F .当BF 最大时,点B'到BC 的距离为165.三.解答题:本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤. 17.(6分)计算:|﹣12|+(-1)2024﹣sin30°﹣(√3-√2)0 =12+1-12-1 =018.(6分)解不等式组{2(x -1)+1>﹣3①x -1≤1+x3②,并把它的解集在数轴上表示出来. 解不等式①,得x>-1 解不等式②,得x ≤2原不等式组的解集为﹣1<x ≤219.(6分)如图,四边形ABCD 是平行四边形,点E ,F ,G ,H 分别在边AD 、AB 、BC 、CD 上,且DE=BG ,AF=CH .求证:EF=GH.证明:四边形ABCD 是平行四边形 ∴AD=BC ,∠A=∠C又∵DE=BG∴AE=CG在△EAF和△GCH中,{AE=CG ∠A=∠C AF=CH∴△EAF≌△GCH(SAS)∴EF=GH20.(8分)植物园是当地人民喜爱的休闲场所之一,里面的秋千深受孩子们喜爱.如图所示,秋千链子的长度为3m,当摆角∠BOC恰为26°时,座板离地面的高度BM为0.9m,当摆动至最高位置时,摆角∠AOC为50°,求座板距地面的最小和最大高度分别为多少?(结果精确到0.1m,参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)解:如图过点B作BT⊥ON于点T,过点A作AK⊥ON于点K在Rt△OBT中,OT=OB·cos26°=3x0.90=2.7(m)∵∠BMN=∠MNT=∠BTN=90°∴四边形BMNT是矩形∴TN=BM=0.9m∴ON=OT+TN=3.6(m)∴CN=ON﹣OC=3.6-3=0.6(m)在Rt△AOK中,OK=OA·cos50°=3x0.64=1.92(m)∴KN=ON﹣OK=3.6-1.92=1.7(m)答:座板距地面的最小高度约为0.6m,最大高度约为1.7m.21.(8分)"小手拉大手,共创文明城".某校为了解学生对所在城市创建全国文明城市相关知 识的知晓情况,通过发放问卷进行测评,从中随机抽取20份答卷,并统计成绩(成绩得分用x 表示.单位:分):94,83,90,86,94,88,96,100,89,82,94,82,84,89,88,93,98,94,93,92.整理上面的数据,得到频数分布表和扇形统计图.根据以上信息,解答下列问题:(1)填空:a= ,b= .(2)若成绩不低于90分为优秀,请估计该校1600名学生中,达到优秀等级的人数;(3)已知A 等级中有2名男生,现从A 等级中随机抽取2名同学,试用列表或画树状图的方法求出恰好抽到一男一女的概率.解:(1)a=20-8-5-4=3.∵b%=8+20x100%=40%∴b=40故答案为3,40(2)1600×1120=880(名)即估计该校1600名学生中,达到优秀等级的人数为880.(3)A 等级中有2名男生,则有1名女生.画树状图如下:共有6种等可能的结果,恰好抽到一男一女的结果∴恰好抽到一男一女的概率为46=2322.(8分)如图,AB 是⊙O 的直径,点E ,C 在⊙O 上,点C 是弧BE 的中点,AE 垂直于过点C 的直线CD ,垂足为D ,AB 的延长线交直线CD 于点F.(1)求证:CD 是⊙O 的切线;(2)若AE=2,sin ∠AFD=13①求⊙O的半径;②求线段DE的长.22.(1)证明:如图,连接OC∵AD⊥DF∴∠D=90°∵点C是弧BE的中点∴弧CE=弧CB∴∠DAC=∠CAB∵OA = OC∴∠CAB=∠OCA∴∠DAC=∠OCA∴AD∥OC∴∠OCF=∠D=90°∵OC是⊙O的半径∴DC是⊙O的切线.(2)解:①如图,过点O作OG⊥AE,垂足为GAE=1∴AG=EG=12∵OG⊥AD∴∠AGO=∠DGO=90°∵∠D=∠AGO=90°∴OG∥DF∴∠AFD=∠AOG∵sin∠AFD=13∴sin∠AOG=sin∠AFD=13在Rt △AGO 中,AO=1÷13=3∴⊙0的半径为3②∵∠OCF=90°∴∠OCD=180°∠OCF=90°∵∠OGE=∠D=90°∴四边形OGDC 是矩形∴OC=DG=3∵GE=1∴DE=DG -GE=3-1=2∴线段DE 的长为223.(10分)端午节是中国传统节日,人们有吃粽子的习俗.今年端午节来临之际,某商场预测A 粽子能够畅销.根据预测,每千克A 粽子节前的进价比节后多2元,节前用240元购进A 粽子的数量比节后用相同金额购进的数量少4千克.根据以上信息,解答下列问题:(1)该商场节后每千克A 粽子的进价为多少元?(2)如果该商场在节前和节后共购进A 粽子400千克,且总费用不超过4600元,并按照节前每千克20元,节后每千克16元全部售出,那么该商场节前购进多少千克A 粽子获得利润最大?最大利润为多少?解:(1)设该商场节后每千克A 粽子的进价为x 元240x -4=240x+2 解得x=10或x=﹣12(舍去)经检验,x=10是原分式方程的根,且符合题意.答:该商场节后每千克A 粽子的进价为10元.(2)设该商场节前购进m 千克A 粽子,总利润为w 元根据题意,得(10+2)m+10(400-m)≤4600解得m ≤300w=(20-12)m+(16-10)(400-m)=2m+2400.∵2>0∴w 随着m 增大而增大当m=300时,w 取得最大值,最大利润为2x300+2400=3000(元)答:该商场节前购进300千克A 粽子获得利润最大24.(10分)当k 值相同时,我们把正比例函数y=1k x 和反比例函数y=k x 叫做"关联函数".小亮根 据学习函数的经验,以函数y=﹣12x 和y=﹣2x 为例对"关联函数"进行了探究,下面是小亮的探 究过程,请你将它补充完整(1)如图,在同一平面直角坐系中画出这两个函数的图象,两个函数图象在第二、四象限分别 交于点A 、B ,则点A 、B 的坐标分别是A 、B .(2)点P 是函数y=﹣12x 在第二象限内的图象上的一个动点(不与点A 重合),作直线PA 、PB ,分别与x 轴交于点C 、D .设点P 的横坐标为t .小亮通过分析得到:在点P 运动的过程中,总有PC=PD.证明PC=PD 的过程如下(不完整):易知点P 的坐标为(t ,﹣2t )设直线AP 的表达式为y=ax+b-2a+ b =1将点A 、P 的坐标分别代人,得{﹣2a +b =1ta +b =﹣2t 解得{a =﹣1t b =﹣2-t t∴直线AP 的表达式为y=﹣1t x -2-t t令y=0,得x=t -2,则点C 的坐标为(t -2,0) 同理可得直线BP 的表达式为y=1t x -2+t t.....请你补充剩余的证明过程;(3)当△PCD 是等边三角形时,t= .(4)随着点P 的运动,△ABP 的面积S 与点P 的横坐标t 之间存在一定的函数关系,当t>﹣2时,请你求出S 关于t 的函数表达式.解:(1)令﹣12x=﹣2x ,则x 2=4 ∴x 1=-2,x 2=2分别代入关系式,得y 1=1,y 2=-1.∴A(-2,1),B(2,-1)(2)令1t x -t+2t =0,得x=1+2则点D 的坐标为(t+2,0)如图,过点P 作PH ⊥x 轴于点H ,则H(t ,0).又:C(t -2,0),D(t+2,0)∴CH=DH∴PH是线段CD的中垂线∴PC=PD(3)﹣√33(4)S=t﹣4t25.(12分)如图,抛物线y=ax2+bx+3与x轴交于点A(-1,0),B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)如图1,点Q是x轴上方抛物线上一点,射线QM⊥x轴于点N,若QM=BM,且tan∠MBN=43,请直接写出点Q的坐标;(3)如图2,点E是第一象限内一点,连接AE交y轴于点D,AE的延长线交抛物线于点P点F在线段CD上,且CF=OD,连接AF,EF,BE,BP,若S△AFE =S△ABE,求△PAB的面积.(1)设抛物线的表达式为y=a(x+1)(x-3)=a(x2-2x-3),当x=0时,y=3∴-3a=3,解得a=-1.故抛物线的表达式为y=-x2+2x+3(2)Q(2,3)(3)面积=3.526.(12分)原题再现:小强特别喜欢探究数学问题,一天李老师给他这样一个几何问题:△ABC 和△BDE都是等边三角形,将△BDE绕着点B旋转到图1位置,求证:AE=CD.小强很快就通过△ABE△CBD,论证了AE=CD.(1)请你写出小强的证明过程;迁移应用:小强想,把等边△ABC和等边△BDE都换成等腰直角三角形,将△BDE绕着点B 旋转到图2位置,其中∠ACB=∠EDB=90°,那么AE和CD有什么数量关系呢?(2)请你帮助小强写出结论,并给出证明;(3)如图3,如果把等腰直角三角形换成正方形,将正方形AFEG绕点A旋转α°,若AB=6√2,AG=4,在旋转过程中,当C,G,E三点共线时,请求出DG的长度.(1)证明:△ABC 和△BDE 分别是等边三角形 ∴AB=CB ,BE=BD∴∠ABC=∠DBE=60°∴∠DBE ﹣∠DBA=∠ABC ﹣∠DBA ,即∠ABE=∠CBD 在△ABE 和△CBD 中{AB =CB ∠ABE =∠CBD BE =BD∴△ABE ≌△CBD(SAS )∴AE=CD(2)解:AE=√2CD .理由如下∵△ABC ,△BDE 都是等腰直角三角形∴BA=√2BC ,BE=√2BD∴AB CB =BE BD =√2∵∠ABC=∠DBE=45°∴∠ABE=∠CBD∴△ABE ∽△CBD∴AE CD =AB CB =√2∴AE=√2CD(3)解:①如图1,连接AE. 由(2)知△ADG ∽△ACE∴DG CE =AD AC =√22∴DG=√22CE∵四边形ABCD是正方形∴AD=AB=6√2,AC=√2AB=12∵四边形AFEG是正方形∴∠AGE=90°,GE=AG=4∵C,G,E三点共线∴CG=8√2∴CE=CG﹣EG=8√2-4∴DG=8-2√2②如图2,连接AE由(2)知△ADG∽△ACE∴DGCE =ADAC=√22∴DG=√22CE∵四边形ABCD是正方形∴AD=AB=6√2,AC=√2AB=12∵四边形AFEG是正方形∴∠AGE=90°,GE=AG=4∵C,G,E三点共线∴CG==8√2∴CE=CG+EG=8√2+4.∴DG=√22CE=8+2√2综上,当C,G,E三点共线时,DG的长度为8-2√2或8+2√2.。

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案

初三中考数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax^3 + bx^2 + cx + dC. y = ax^2 + bx + c + dD. y = ax^2 + bx + c + dx2. 已知一个直角三角形的两条直角边长分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 83. 以下哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/104. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 65. 一个等腰三角形的底角是45度,求顶角的度数。

A. 45度B. 60度C. 90度D. 135度6. 圆的半径是5厘米,求圆的面积。

A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米7. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 08. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^29. 一个长方体的长、宽、高分别是2cm、3cm、4cm,求其体积。

A. 8立方厘米B. 12立方厘米C. 24立方厘米D. 36立方厘米10. 一个多项式的最高次项系数是-1,且次数为3,这个多项式可能是?A. -x^3 + 2x^2 - 3x + 4B. -x^3 + 2x^2 + 3x - 4C. x^3 + 2x^2 - 3x + 4D. x^3 + 2x^2 + 3x - 4二、填空题(每题3分,共15分)1. 一个数的立方根是2,那么这个数是______。

2. 一个数的平方是9,那么这个数是______或______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学中考模拟试卷及答案考生注意:1.本卷总分为120分,考试时量为120分钟;2.全卷共有25道题. 一、填空题(本题共有8个小题,每小题3分,共计24分) 1.13-= .2这个班学生年龄的众数是 .3.我国南方一些地区的农民戴的斗笠是圆锥形.已知圆锥的母线长为30cm ,底面圆的半径为24cm ,则圆锥的侧面积为2cm .(结果用π表示)4.如图,AE AD =,要使ABD ACE △≌△,请你增加一个..条件是.(只需要填一个..你认为合适的条件) 5.若双曲线ky x=过点(32)P ,,则k 的值是 . 6.因季节变换,某商场决定将一服装按标价的8折销售,此时售价为24元,则该服装的标价为元.7.按下列规律排列的一列数对:(21),,(54),,(87),,,则第5个数对中的两个数之和是.8.已知a b ,是关于x 的方程2(21)(1)0x k x k k -+++=的两个实数根,则22a b +的最小值是 .二、选择题(每小题有且只有一个正确答案,请将正确答案的选项代号填入下面表格中,每A.110-+=B.110--=C.1313÷=D.236=10.(3)(3)a y a y -+是下列哪一个多项式因式分解的结果( ) A.229a y +B.229a y -+C.229a y -D.229a y --11.已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( ) A.24cm2C.2D.23cm第4题图12.左图是一几何体,某同学画出它的三视图如下(不考虑尺寸),你认为正确的是( )A.①② B.①③ C.②③ D.③ 13.不等式组24010x x -<⎧⎨+⎩≥的解集在数轴上表示正确的是( )14.下列图形中,既是轴对称图形又是中心对称图形的是( )15.某单位购买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元;乙种水的桶数是甲种水桶数的75%.设买甲种水x 桶,买乙种水y 桶,则所列方程组中正确的是( ) A.8625075%x y y x+=⎧⎨=⎩B.8625075%x y x y+=⎧⎨=⎩C.6825075%x y y x +=⎧⎨=⎩D.6825075%x y x y +=⎧⎨=⎩16.将一张矩形纸片ABCD 如图所示折叠,使顶点C 落在C '点.已知2AB =,30DEC '∠=,则折痕DE 的长为( )1- 0 1 2 A. 1- 0 1 2 B. 1- 0 1 2 C. 1- 0 1 2D. A. B. C. D. ①正视图 ②俯视图 ③左视图 正面A.2B.23C.4D.117.2014年6月,世界杯足球赛决赛在巴西拉开战幕,6月5日,某班40名学生就哪支队伍将夺冠进行竞猜,统计结果如图.若把认为巴西队将夺冠的这组学生人数作为一组的频数,则这一组的频率为( ) A.0.1 B.0.15 C.0.25 D.0.318.一个装有进出水管的水池,单位时间内进、出水量都是一定的.已知水池的容积为800升,又知单开进水管20分钟可把空水池注满;若同时打开进、出水管,20分钟可把满水池的水放完,现已知水池内有水200升,先打开进水管3分钟,再打开出水管,两管同时开放,直至把水池中的水放完,则能确定反映这一过程中水池的水量Q (升)随时间t (分钟)变化的函数图象是( )三、解答题(本大题共7个小题,要求写出详细的演算过程或推理过程,否则不予给分,共计66分) 19.(本题满分10分,每小题5分)(1)计算:0124sin 60(51)-++第16题图 第17题图 320 200 O 3 8 Q (升) t (分钟) A. 320 200 O 3 11 Q (升)t (分钟) B.200 O 3 11 Q (升) t (分钟) C320 200 O 3 11 Q (升) t (分钟) D(2)解方程:5311x x =-+ 20.(本题满分7分)先化简,再求值:262933mm m m ÷---+ 其中2m =21.(本题满分7分)如图,是从一副扑克牌中取出的两组牌,分别是红桃1,2,3和方块1,2,3,将它们的背面朝上分别重新洗牌后,再从两组牌中各摸出一张. (1)用列举法列举所有可能出现的结果;(2)求摸出的两张牌的牌面数字之和不小于5的概率. 22.(本题满分9分)如图甲,四边形ABCD 是等腰梯形,AB DC ∥.由4个这样的等腰梯形可以拼出图乙所示的平行四边形. (1)求梯形ABCD 四个内角的度数;(2)试探梯形ABCD 四条边之间存在的数量关系,并说明理由.23.(本题满分9分)如图,小鹏准备测量学校旗杆的高度.他发现当斜坡正对着太阳时,旗杆AB 的影子恰好落在水平地面BC 和斜坡坡面CD 上,测得旗杆在水平地面上的影长20BC =米,在斜坡坡面上的影长8CD =米,太阳光线AD 与水平地面成30角,且太阳光线AD 与斜坡坡面CD 互相垂直.请你帮小鹏求出旗杆AB 的高度(精确到1米). (可供选用数据:取2 1.4=,3 1.7=)D CB A 图甲 图乙 BCDA24.(本题满分12分)如图,在直角坐标系中,点O '的坐标为(20)-,,O '与x 轴相交于原点O 和点A ,又B C ,两点的坐标分别为(0)b ,,(10),. (1)当3b =时,求经过B C ,两点的直线的解析式; (2)当B 点在y 轴上运动时,直线BC 与O '有哪几种位置关系?并求每种位置关系时b 的取值范围.25.(本题满分12分)如图:已知抛物线213442y x x =+-与x 轴交于A ,B 两点,与y 轴 交于点C ,O 为坐标原点. (1)求A B C ,,三点的坐标;(2)已知矩形DEFG 的一条边DE 在AB 上,顶点F G ,分别在BC ,AC 上,设OD m =,矩形DEFG 的面积为S ,求S 与m 的函数关系式,并指出m 的取值范围; (3)当矩形DEFG 的面积S 取最大值时,连结对角线DF 并延长至点M ,使25FM DF =.试探究此时点M 是否在抛物线上,请说明理由.初三数学中考模拟试卷及答案参考答案及评分标准一、填空题 1.132.15 3.720π 4.B C ∠=∠5.66.307.278.12二、选择题 题次 9 10 11 12 13 14 15 16 17 18 答案ACCABDACDB三、解答题19.(1)解:原式23221=-+ 1=(2)解:去分母得:5(1)3(1)x x +=- 解之得4x =- 经检验,4x =-是原方程的根 20.(1)所有可能出现的结果可用下表表示:1231 (11),(12),(13),2 (21), (22), (23), 3(31), (32), (33),(2)由上表可知牌面的数字之和不小于5的概率为:3193=. 22.解:(1)如图123∠=∠=∠,123360∠+∠+∠=,即1120∠=,所以图甲中梯形的上底角均为120,下底角均为60.(2)由EF 既是梯形的腰,又是梯形的上底可知,梯形的腰等于上底.连结MN ,则30FMN FNM ∠=∠=,从而30HMN ∠=,90HNM ∠=,所以12NH MH =,因此梯形的上底等于下底长的一半,且等于腰长.23.解:延长AD ,BC 相交于点E ,则30E ∠=,,16CE =∴.红桃方块在ABE △A中,36BE BC CE =+=,由tan AB AEB BE∠=,得3612 1.720AB ===⨯≈ 24.解:(1)经过B C ,两点的直线的解析式为:33y x =-+ (2)点B 在y 轴上运动时,直线BC 与O '的位置关系有相离、相切、相交三种.当点B 在y 轴上运动到点E 时,恰好使直线BC 切O '于点M ,连结O M ',则O M MC '⊥.在Rt CMO '△中,3CO '=,2O M '=,CM =∴由Rt Rt CMO COE '△∽△,可得OE COO M CM=',OE =∴ 由圆的对称性可知,当b =±时,直线BC 与圆相切;当b >或5b <-BC与圆相离;当55b -<<时,直线BC 与圆相交. 25.解:(1)(20)A ,,(80)B -,,(04)C -,(2)由ADG AOC △∽△,可得AD OGAO OC=,2(2)DG m =-∴ 由BEF BOC △∽△得EF BEOC BO=,又2(2)EF DG m ==-,4(2)BE m =-∴,5DE m =∴22(2)52010S DG DE m m m m =⨯=-=-∴S ∴与m 的函数关系式为21020S m m =-+,且02m <<.(3)由21020S m m =-+可知1m =时,S 有最大值10,此时(10)D ,,5DE =,2EF =.过点M 作MN AB ⊥,垂足为N ,则有MN FE ∥,DE EF DFDN MN DM==∴,又有57DFDM=,得7DN=,145MN=(60)N-,∴,14(6)5M--,在二次函数213442y x x=+-中,当6x=-时,1445y=-≠-,∴点M不在抛物线上.。

相关文档
最新文档