河南省周口市川汇区2018-2019学年八年级(下)期中数学试卷
河南省周口市八年级下学期数学期中考试试卷
河南省周口市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·沧县期中) 如图所示图形中,把△ABC平移后能得到△DEF的是()A .B .C .D .2. (2分) (2017八上·东城期末) 下列图标是节水、节能、低碳和绿色食品的标志,其中是轴对称图形的是()A .B .C .D .3. (2分)若m<n,则下列各式中正确的是()A . m-3>n-3B . 3m>3nC . -3m>-3nD . -1>-14. (2分)如图所示,D,E分别是△ABC的边AC ,BC 的中点则下列说法不正确的是()A . DE是△BDC的中线B . BD是△ABC的中线C . AD=DC,BE= EC,D . 图中∠C的对边是 DE5. (2分) (2019八下·大连月考) 如图,正方形A,B,C的边长分别为直角三角形的三边长,若正方形A,B的边长分别为3和5,则正方形C的面积为()A . 4B . 15C . 16D . 186. (2分)如图,DE⊥BC,BE=EC,且AB=5,AC=8,则△ABD的周长为()A . 13B . 20C . 25D . 307. (2分)(2017·湖州模拟) 不等式组的最小整数解是()A . 1B . 2C . 3D . 48. (2分)如图,一次函数y=kx+b的图象与正比例函数y=2x的图象相交于点A,则不等式0<2x<kx+b的解集是()A . x<1B . x<0或x>1C . 0<x<1D . x>19. (2分) (2019八下·来宾期末) 如图,矩形纸片ABCD中,AB=4,AD=3,折叠纸片使AD边落在对角线BD上,折痕为DG,点A落在点A1处,则A1G的长为()A . 1B .C .D . 210. (2分)(2014·韶关) 一个等腰三角形的两边长分别是3和7,则它的周长为()A . 17B . 15C . 13D . 13或17二、填空题 (共4题;共4分)11. (1分)(2020·高邮模拟) 已知关于x的不等式(2a﹣b)x>a﹣2b的解是,则关于x的不等式ax+b<0的解为________.12. (1分) (2019八上·泰兴期中) 如图,△ABC中,D是BC上一点,AC=AD=DB,∠BAC=105°,则∠ADC=________°.13. (1分) (2019七下·江汉期末) 已知关于x的不等式组有2019个整数解,则m的取值范围是________.14. (1分) (2019九上·襄阳期末) 如图,点F是等边△ABC内一点,将△ABF绕点B按顺时针方向旋转60°得△CBG,连接FG,则△BFG的形状是________.三、解答题 (共9题;共76分)15. (5分)如图,正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D 逆时针旋转90°,得到△DCM.若AE=1,求FM的长.16. (10分)(2017·惠山模拟) 计算:解不等式和方程组(1)解不等式:5+x≥3(x﹣1);(2)解方程组:.17. (10分) (2018九上·大石桥期末) 如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度).(1)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A1B1C1;(2)求出点B旋转到点B1所经过的路径长.18. (5分)已知:如图,点C为AB中点,CD=BE,CD∥BE.求证:△ACD≌△CBE.19. (10分) (2017七上·东城期末) 某水果批发市场苹果的价格如表购买苹果(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果________千克,第二次购买________千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克?(列方程解应用题)20. (10分) (2019八上·夏津月考) 如图,,的垂直平分线交于,交于.(1)若,求的度数;(2)若,的周长17,求的周长.21. (5分)学校有6名教师和234名学生集体外出活动,准备租用45座大客车和30座小客车.若租用1辆大客车和2辆小客车共需租车费1000元;若租用2辆大客车和1辆小客车共需租车费1100元.(1)求大、小客车每辆的租车费各是多少元?(2)若要保证每位师生都有座位,每辆车上恰好分配1名教师,共有几种租车方案,各种方案需租车费多少元.22. (6分) (2019七上·徐州月考) 数轴上点对应的数分别是、,为数轴上两个动点,它们同时向右运动.点从点出发,速度为每秒个单位长度;点从点出发,速度为点的倍,点为原点.(1)当运动秒时,点对应的数分别是________、________.(2)求运动多少秒时,点中恰有一个点为另外两个点所连线段的中点?23. (15分) (2018八上·江北期末) 如图,已知∠ABC=90°,△ABE是等边三角形,点P为射线BC上任意一点(点P与点B不重合),连接AP,将线段AP绕点A逆时针旋转60°得到线段AQ,连接QE并延长交射线BC于点F.(1)如图,当BP=BA时,∠EBF=________°,猜想∠QFC =________°;(2)如图,当点P为射线BC上任意一点时,猜想∠QFC的度数,并加以证明.(3)已知线段AB=,设BP=x,点Q到射线BC的距离为y,求y关于x的函数关系式.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共4题;共4分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:三、解答题 (共9题;共76分)答案:15-1、考点:解析:答案:16-1、答案:16-2、考点:解析:答案:17-1、答案:17-2、解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
河南省周口市商水县2018-2019学年八年级下学期期中考试数学试卷(解析版)
2018-2019学年河南省周口市商水县八年级(下)期中数学试卷一、选择题1.式子中,分式共()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】在所列代数式中,分式有、、这3个.故选C.【点睛】本题考查了分式的定义,熟知分式的定义是解答此题的关键.2. 下列运算正确的是()A. (2a2)3=6a6B. -a2b2•3ab3=-3a2b5C.D.【答案】D【解析】试题解析:A、原式=8a6,错误;B、原式=-3a3b5,错误;C、原式=,错误;D、原式=,正确;故选D.考点:1.分式的乘除法;2.幂的乘方与积的乘方;.3.单项式乘单项式;4.分式的加减法.3.如图,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A. 2cmB. 4cmC. 6cmD. 8cm【答案】A【解析】试题分析:由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD=6,则BE可求BE=BC-EC=8-6=2.故选:A.考点:1、平行四边形的性质;2、等腰三角形的性质4.氢原子的半径约为0.000 000 000 05m,用科学记数法表示为()A. 5×10﹣10mB. 5×10﹣11mC. 0.5×10﹣10mD. ﹣5×10﹣11m【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000005=5×10﹣11.故选B.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.若点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,则a的整数解有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据题意可得出点P在第三象限,从而列出不等式组求解即可.【详解】∵点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,∴,由①得:a,由②得:a<2,∴<a<2.∵a为整数,∴a=1或0.故选B.【点睛】本题考查了关于原点对称的点的坐标,以及一元一次不等式组的整数解,是基础知识要熟练掌握.6.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A. 4cmB. 6cmC. 8cmD. 10cm【答案】D【解析】试题解析:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.考点:1.线段垂直平分线的性质;2.平行四边形的性质.7.若关于x的分式方程有增根,则m的值为()A. ﹣1或﹣2B. ﹣1或2C. 1或2D. 0或﹣2【答案】D【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x+1)=0,得到x=0或﹣1,然后代入化为整式方程的方程算出m的值.【详解】方程两边都乘x(x+1),得:x2﹣(m+1)=(x+1)2.∵原方程有增根,∴最简公分母x(x+1)=0,解得:x=0或﹣1,当x=0时,m=﹣2,当x=﹣1时,m=0.故m的值可能是﹣2或0.故选D.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.如图,在▱ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为( )A. 3B. 6C. 12D. 24【答案】C【解析】∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∴△OBE≌△ODH,△OAQ≌△OCG,△OPD≌△OFB,∴S阴影=S△BCD,∴S△BCD=S平行四边形ABCD=×6×4=12.故选C.9.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A. 20kgB. 25kgC. 28kgD. 30kg【答案】A【解析】根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x对应的值即可.解:设y与x的函数关系式为y=kx+b,由题意可知,所以k=30,b=﹣600,所以函数关系式为y=30x﹣600,当y=0时,即30x﹣600=0,所以x=20.故选A.“点睛”本题考查的是与一次函数图象结合用一次函数解决实际问题,本题关键是理解一次函数图象的意义以及与实际问题的结合.10.如图,反比例函数y1=和一次函数y2=k2x+b的图象交于A、B两点.A、B两点的横坐标分别为2,﹣3.通过观察图象,若y1>y2,则x的取值范围是()A. 0<x<2B. ﹣3<x<0或x>2C. 0<x<2或x<﹣3D. ﹣3<x<0【答案】C【解析】【分析】根据两函数的交点A、B的横坐标和图象得出答案即可.【详解】∵反比例函数y1和一次函数y2=k2x+b的图象交于A、B两点,A、B两点的横坐标分别为2,﹣3,∴通过观察图象,当y1>y2时x的取值范围是0<x<2或x<﹣3.故选C.【点睛】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的理解能力和观察图形的能力,用了数形结合思想.二、填空题11.计算()﹣1+()0=_____【答案】3【解析】【分析】根据负整数指数幂和零指数幂的意义计算即可.【详解】原式=2+1=3.故答案为:3.【点睛】本题考查了负整数指数幂和零指数幂.掌握负整数指数幂和零指数幂的意义是解题的关键.12.如图,在□ABCD中,CE⊥AB于E,如果∠A=125°,那么∠BCE=°.【答案】35【解析】试题分析:∵四边形平ABCD是平行四边形,∴AD∥BC,∴∠B=180°﹣∠A=55°,又∵CE⊥AB,∴∠BCE=35°.考点:1、平行四边形的性质;2、直角三角形的两个锐角互余13.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是_______.【答案】【解析】解:如图,点P的坐标为(-4,-2),所以二元一次方程组的解是。
河南省周口市八年级下学期期中数学试卷
河南省周口市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2017·贺州) 下列图形中,既是中心对称图形又是轴对称图形的是()A . 正五边形B . 平行四边形C . 矩形D . 等边三角形2. (2分)(2019·天宁模拟) 在平面直角坐标系中,点P(–2,3)关于原点对称的点Q的坐标为()A . (2,–3)B . (2,3)C . (3,–2)D . (–2,–3)3. (2分)下列各分式中,与分式的值相等的是()A .B .C . ﹣D . ﹣4. (2分)如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数(x>0)的图象经过顶点B,则k的值为()A . 12B . 20C . 24D . 325. (2分)(2017·山西) 化简﹣的结果是()A . ﹣x2+2xB . ﹣x2+6xC . ﹣D .6. (2分) (2019九上·新兴期中) 下列说法中,错误的是()A . 菱形的对角线互相垂直平分B . 正方形的对角线互相垂直平分且相等C . 矩形的对角线相等且平分D . 平行四边形的对角线相等且垂直7. (2分)下列函数中,当x>0时,y值随x值增大而减小的是()A . y=x2B . y=x﹣1C .D . y=8. (2分) (2017八下·东台期中) 若顺次连接一个四边形的各边的中点所得的四边形是矩形,则原来的四边形的两条对角线()A . 互相垂直且相等B . 相等C . 互相平分且相等D . 互相垂直9. (2分)在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失。
现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以进行以下哪项操作()A . 先逆时针旋转90°,再向左平移B . 先顺时针旋转90°,再向左平移C . 先逆时针旋转90°,再向右平移D . 先顺时针旋转90°,再向右平移10. (2分)(2017·盘锦) 十一期间,几名同学共同包租一辆中巴车去红海滩游玩,中巴车的租价为480元,出发时又有4名学生参加进来,结果每位同学比原来少分摊4元车费.设原来游玩的同学有x名,则可得方程()A . ﹣ =4B . ﹣ =4C . ﹣ =4D . ﹣ =4二、填空题 (共13题;共14分)11. (2分)(2011·杭州) 已知分式,当x=2时,分式无意义,则a=________;当a为a<6的一个整数时,使分式无意义的x的值共有________个.12. (1分) (2016九下·苏州期中) 如图,点A在反比例函数y= (x>0)图象上,且OA=4,过A作AC⊥x 轴,垂足为C,OA的垂直平分线交OC于B.则△ABC的周长为________.13. (1分) (2018八上·江海期末) 若分式的值为0,则x的值为 ________14. (1分) (2018八上·兴义期末) 已知关于x的分式方程无解,则a=________15. (1分)如图,在边长为+1的菱形ABCD中,∠A=60°,点E,F分别在AB,AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EG⊥BD于点M,则EG的长为________.16. (1分)已知反比例函数的图象上有两点A(x1 , y1),B(x2 , y2),且x1<x2<0,则y1﹣y2________0(填写“<”或“>”).17. (1分) (2017九上·泰州开学考) 如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为________度.18. (1分)如图,在平面直角坐标系xOy中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y= (x>0)与AB相交于点D,与BC相交于点E,若BE=4EC,且△ODE的面积是5,则k的值为________.19. (1分)(2019·遵义) 如图,平行四边形纸片ABCD的边AB,BC的长分别是10cm和7.5cm,将其四个角向内对折后,点B与点C重合于点C',点A与点D重合于点A′.四条折痕围成一个“信封四边形”EHFG,其顶点分别在平行四边形ABCD的四条边上,则EF=________cm.20. (1分)在矩形ABCD中,AB=4cm,AD=3cm,则AC=________cm.21. (1分) (2016八上·宁海月考) 不等式2x-1≤3的非负整数解是________22. (1分) (2017·青山模拟) 如图,直线AB经过原点O,与双曲线y= 交于A、B两点,AC⊥y轴于点C,且△ABC的面积是8,则k的值是________.23. (1分)(2017·揭西模拟) 如图,在正方形ABCD中,E为BC边上一点,连结AE.已知AB=8,CE=2,F 是线段AE上一动点.若BF的延长线交正方形ABCD的一边于点G,且满足AE=BG,则的值为________.三、解答题 (共9题;共92分)24. (10分)(2017·宜兴模拟) 计算:(1) |﹣2|﹣(1+ )0+ ;(2)(a﹣)÷ .25. (10分) (2015八上·阿拉善左旗期末) 解方程(1)﹣1=(2)= +1.26. (5分)(2020·郑州模拟) 先化简,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.27. (5分) (2016八下·周口期中) 如图,在▱ABCD中,∠ADC的平分线交AB于点E,∠ABC的平分线交CD 于点F,求证:四边形EBFD是平行四边形.28. (15分)如图,反比例函数的图像与一次函数的图像交于A、B两点.已知A (2,n),B().(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)请结合图像直接写出当y1≥y2时自变量x的取值范围.29. (10分) (2017八下·海安期中) 如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.30. (7分)(2018·镇江模拟) 如图,一次函数与反比例函数的图像交于点和点,与x轴、y轴交于点A、B.(1) ________, ________;(2)将线段AB沿x轴的正方向平移,使得点B的对应点恰好落在反比例函数的图像上,求平移的距离.31. (10分)(2012·来宾) 如图,在▱ABCD中,BE交对角线AC于点E,DF∥BE交AC于点F.(1)写出图中所有的全等三角形(不得添加辅助线);(2)求证:BE=DF.32. (20分)(2019·长春模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,动点D从点A出发,沿线段AC以每秒1个单位的速度向终点C运动,动点E同时从点B出发,以每秒2个单位的速度沿射线BC方向运动,当点D停止时,点E也随之停止,连结DE,当C.D.E三点不在同一直线上时,以ED、EC我邻边作▱ECFD,设点D运动的时间为t(秒).(1)用含t的代数式表示CE的长度。
河南省周口市八年级下学期期中数学试卷
河南省周口市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)(2018·海陵模拟) 在下列平面图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分) (2019七下·红河期末) 下列调查中,调查方式采用最合理的是()A . 为了了解某一批飞机零件的合格情况,采用抽样调査B . 为了了解某一批袋装食品是否含有防腐剂,采用全面调查C . 为了了解全国中学生的视力和用眼卫生情况,采用全面调查D . 为了了解某水库的水质情况,采用抽样调查3. (2分) (2016九上·岳池期末) 下列成语故事中所描述的事件为必然发生事件的是()A . 水中捞月B . 瓮中捉鳖C . 拔苗助长D . 守株待兔4. (2分) (2018九上·海口月考) 计算( - 2 )( + 2 )的结果是()A . -1B . 1C . 3D . 25. (2分)已知=,则的值是()A .B .C .D .6. (2分)菱形的周长为40,它的一条对角线长为12,则菱形的面积为()A . 24B . 48C . 96D . 192二、填空题 (共10题;共10分)7. (1分) (2017八下·海安期中) 已知函数y=,则x的取值范围是________8. (1分) (2016八上·仙游期末) 当x=________时,分式的值为零.9. (1分)某学习小组设计了一个摸球试验,在袋中装有黑,白两种颜色的球,这些球的形状大小质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋中摸出一个球,记下颜色,再把它放回,不断重复.下表是由试验得到的一组统计数据:摸球的次数100200300400500600摸到白球的次数58118189237302359摸到白球的频率0.580.590.630.5930.6040.598从这个袋中随机摸出一个球,是白球的概率约为________ .(结果精确到0.1)10. (1分)三角形的三边长分别为 cm, cm, cm,则这个三角形的周长为________cm.11. (1分)(2017·永州) 某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x元,根据题意可列方程为________.12. (1分)某同学期中考试数学考了100分,则他期末考试数学________考100分.(选填“不可能”“可能'或“必然”)13. (1分)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标________14. (1分)(2011·成都) 已知x=1是分式方程的根,则实数k=________.15. (1分)(2017·娄底模拟) 若一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是________(写出一个即可).16. (1分)如图,已知四边形ABCD是边长为1的正方形,以正方形ABCD的对角线AC为边作第2个正方形ACEF,再以第2个正方形的对角线AE为边作第3个正方形AEGH,如此下去,则第n个正方形的面积Sn=________.三、解答题 (共10题;共102分)17. (15分)计算(1)(2)(3)18. (10分) (2017八下·长春期末) 解下列方程:(1).(2).19. (5分) (2017七上·闵行期末) 先化简,后求值:(x+1﹣)÷ ,其中x= .20. (12分) (2016九上·扬州期末) 在“爱满扬州”慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成统计图.(1)这50名同学捐款的众数为________元,中位数为________元;(2)求这50名同学捐款的平均数;(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数.21. (5分)为了“绿色出行”,减少雾霾,家住番禺在广州中心城区上班的王经理,上班出行由自驾车改为乘坐地铁出行,已知王经理家距上班地点21千米,他用地铁方式平均每小时出行的路程,比他用自驾车平均每小时行驶的路程的2倍还多5千米,他从家出发到达上班地点,地铁出行所用时间是自驾车方式所用时间的.求王经理地铁出行方式上班的平均速度.22. (15分) (2019九上·江北期末) 一个四边形被一条对角线分割成两个三角形,如果分割所得的两个三角形相似,我们就把这条对角线称为相似对角线.(1)如图,正方形的边长为4,为的中点,点,分别在边和上,且,线段与交于点,求证:为四边形的相似对角线;(2)在四边形中,是四边形的相似对角线,,,,求的长;(3)如图,已知四边形是圆的内接四边形,,,,点是的中点,点是射线上的动点,若是四边形的相似对角线,请直接写出线段的长度(写出3个即可).23. (10分)(2017·平房模拟) 在哈市地铁一号线施工建设中,安排甲、乙两个工程队完成大连北路至新疆大街路段的铁轨铺设任务,该路段全长3600米.已知甲队每天铺设铁轨的米数是乙队每天铺设铁轨米数的1.5倍,并且甲、乙两队分别单独完成600米长度路段时,甲队比乙队少用10天.(1)求甲、乙两个工程队每天各能铺设铁轨多少米?(2)若甲队每天施工的费用为4万元,乙队每天施工的费用为3万元,要使甲、乙两队合作完成大连北路至新疆大街全长3600米的总费用不超过520万元,则至少应安排甲队施工多少天?24. (10分)(2014·镇江)(1)计算:()﹣1+ cos45°﹣;(2)化简:(x+ )÷ .25. (10分)在菱形ABCD中,P、Q分别是边BC、CD的中点,连接AP、AQ(1)如图(1),求证:AP=AQ;(2)如图(2),连接PQ,若∠B=60°,在不添加任何辅助线的情况下,请直接写出图中所有余弦值为的角.26. (10分)(2017·石景山模拟) 在正方形ABCD中,点E是对角线AC上的动点(与点A,C不重合),连接BE.(1)将射线BE绕点B顺时针旋转45°,交直线AC于点F.①依题意补全图1;②小研通过观察、实验,发现线段AE,FC,EF存在以下数量关系:AE与FC的平方和等于EF的平方.小研把这个猜想与同学们进行交流,通过讨论,形成证明该猜想的几种想法:想法1:将线段BF绕点B逆时针旋转90°,得到线段BM,要证AE,FC,EF的关系,只需证AE,AM,EM的关系.想法2:将△ABE沿BE翻折,得到△NBE,要证AE,FC,EF的关系,只需证EN,FN,EF的关系.…请你参考上面的想法,用等式表示线段AE,FC,EF的数量关系并证明;(一种方法即可)(2)如图2,若将直线BE绕点B顺时针旋转135°,交直线AC于点F.小研完成作图后,发现直线AC上存在三条线段(不添加辅助线)满足:其中两条线段的平方和等于第三条线段的平方,请直接用等式表示这三条线段的数量关系.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共10题;共10分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共102分)17-1、17-2、17-3、18-1、18-2、19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、。
河南省周口市八年级下学期期中数学试卷
河南省周口市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·香洲模拟) 如果是二次根式,那么x的取值范围()A . x>﹣1B . x≥﹣1C . x≥0D . x>02. (2分) (2019八下·北京期末) 下列根式中,是最简二次根式的是()A .B .C .D .3. (2分) (2016八下·广州期中) 适合下列条件的△ABC中,直角三角形的个数为()①a= ,b= ,c= ;②a=6,∠A=45°;③∠A=32°,∠B=58°;④a=7,b=24,c=25.A . 2个B . 3个C . 4个D . 5个4. (2分)当a<0,b<0时,把化为最简二次根式,得()A .B . -C . -D .5. (2分)如图,在平行四边形ABCD中,AB=3cm,BC=5cm,对角线AC,BD相交于点O,则OA的取值范围是()A . 2cm<OA<5cmB . 2cm<OA<8cmC . 1cm<OA<4cmD . 3cm<OA<8cm6. (2分) (2018八上·镇平期末) 如图,在△ABC中,AB=8,AC=6,BC边的垂直平分线交AB于E,交BC 于点D,若CD=5,则AE的长为()A .B . 2C .D . 47. (2分) (2017八下·新野期末) 在菱形ABCD中,若AB=2,则菱形的周长为()A . 4B . 6C . 8D . 108. (2分)已知实数a,b在数轴上的位置如图所示,下列结论错误的是()A . |a|<1<|b lB . 1<-a<bC . 1<|al<bD . -b<a<-19. (2分)下列根式中,与3是同类二次根式的是()A .B .C .D .10. (2分)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT 的面积分别为S1,S2,S3.若S1+S2+S3=10,则S2的值是()A . 5B .C . 3D . 411. (2分)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此作法便可得△MOC≌△NOC,其依据是()A . SSSB . SASC . ASAD . AAS12. (2分)如图,在直角三角形ABC中,∠B=90°,以下式子成立的是()A . a2+b2=c2B . a2+c2=b2C . b2+c2=a2D . (a+c)2=b2二、填空题 (共6题;共6分)13. (1分) (2016八下·费县期中) 计算的结果是________.14. (1分) (2019八下·平潭期末) 直角三角形的两直角边长分别为6和8,则斜边中线的长是________.15. (1分)如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE。
河南省周口市八年级下学期数学期中考试试卷
河南省周口市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)在式子中,分式的个数为()A . 2个B . 3个C . 4个D . 5个2. (2分) (2019七下·仁寿期中) 下列解方程过程中,变形正确的是()A . 由5x-1=3,得5x=3-1B . 由,得C . 由3- =0,得6-x+1=0D . 由 =1,得2x-3x=13. (2分) (2018八上·大连期末) 点(-2,1)关于轴对称点的坐标为()A . (-2,-1)B . (2,1)C . (-1,-2)D . (-1,2)4. (2分) (2019七下·富宁期中) 若一种DNA分子的直径只有 cm,则这个数用科学记数法表示为()A .B .C .D . 85. (2分) (2017八上·深圳月考) 若函数y = ,则当函数值y = 8时,自变量x的值是()A .B . 4C . 或4D . 4或6. (2分) (2019九上·钦州港期末) 已知反比函数,下列结论中不正确的是()A . 图象必经过点B . 图象位于第二、四象限C . 若则D . 在每一个象限内,随值的增大而减小7. (2分)已知一次函数y=﹣3x+4,则下列说法中不正确的是()A . 该函数的图象经过点(1,1)B . 该函数的图象不经过第三象限C . y的值随x的值的增大而减小D . 该函数的图象与x轴的交点坐标为(﹣,0)8. (2分) (2017八下·南召期中) 如图,在平行四边形ABCD中,对角线AC,BD交于点O,下列结论中错误的是()A . ∠1=∠2B . ∠BAD=∠BCDC . AB=CDD . AO=BO9. (2分) (2019八下·大连月考) 如图,在平行四边形ABCD中,∠A:∠B=3:2,则∠D的度数为()A . 60B . 72°C . 80°D . 108°10. (2分) (2019九上·郑州期中) 若A(-3,y1)、B(-1,y2)、C(1,y3)三点都在反比例函数y= (k >0)的图象上,则y1、y2、y3的大小关系是()A . y1>y2>y3B . y3>y1>y2C . y3>y2>y1D . y2>y1>y311. (2分) (2019八下·南关期中) 如图,直线与交于点,点的横坐标是1,则关于的不等式>的解集是()A . <0B . <1C . 0<<1D . >112. (2分) (2016九上·宁海月考) 如图,矩形ABOC的面积为3,反比例函数y= 的图象过点A,则k等于()A . 3B . ﹣1.5C . ﹣6D . ﹣3二、填空题 (共8题;共10分)13. (1分) (2020八上·大洼期末) 分式有意义,则x的取值范围是________。
2019年周口市初二数学下期中模拟试卷(含答案)
2019年周口市初二数学下期中模拟试卷(含答案)一、选择题1.如右图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,如果点B的横坐标为x,点C的纵坐标为y,那么表示y与x 的函数关系的图像大致是()A.B.C.D.2.如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )A.3B.5C.6D.73.如图,由四个全等的直角三角形拼成的图形,设CE=a,HG=b,则斜边BD的长是()A .a+bB .a ﹣bC .222a b +D .222a b - 4.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .3105C .105D .3555.平行四边形的对角线长为x 、y ,一边长为12,则x 、y 的值可能是( )A .8和14B .10和14C .18和20D .10和346.正方形具有而菱形不具有的性质是( )A .四边相等B .四角相等C .对角线互相平分D .对角线互相垂直7.函数y =11x x +-中,自变量x 的取值范围是( ) A .x >-1 B .x >-1且x ≠1 C .x ≥一1 D .x ≥-1且x ≠18.如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .63C .93D .15 9.下列各式正确的是( ) A .()255-=- B .()20.50.5-=- C .()2255-= D .()20.50.5-= 10.如图,已知圆柱底面的周长为4dm ,圆柱的高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .42dmB .22dmC .25dmD .45dm11.下列各组数据中,不可以构成直角三角形的是( )A .7,24,25B .2223,4,5C .53,1,44D .1.5,2,2.5 12.如图,点EFGH 、、、分别是四边形ABCD 边AB 、BC 、CD 、DA 的中点.则下列说法:①若AC BD =,则四边形EFGH 为矩形;②若AC BD ⊥,则四边形EFGH 为菱形;③若四边形EFGH 是平行四边形,则AC 与BD 互相平分;④若四边形EFGH 是正方形,则AC 与BD 互相垂直且相等.其中正确的个数是( )A .1B .2C .3D .4二、填空题13.菱形ABCD 中,边长为10,对角线AC =12.则菱形的面积为__________.14.如图,已知在Rt △ABC 中,AB =AC =3,在△ABC 内作第1个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第2个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.15.小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分.16.如图,平面直角坐标系中,点A 、B 分别是x 、y 轴上的动点,以AB 为边作边长为2的正方形ABCD ,则OC 的最大值为_____.17.482x x 可取的最小正整数为________.18.在Rt ABC ∆中,a ,b ,c 分别为A ∠,B Ð,C ∠的对边,90C ∠=︒,若:2:3a b =,52c =,则a 的长为_______.19.在平面直角坐标系中,(1,0)(4,0)(0,3),A B C -、、若以A B C D 、、、为顶点的四边形是平行四边形,则D 点坐标是________________.20.如图,点P 是矩形ABCD 的对角线AC 上一点,过点P 作EF ∥BC ,分别交AB ,CD 于点E ,F ,连接PB ,PD .若AE =2,PF =8.则图中阴影部分的面积为___.三、解答题 21.已知长方形的长1322a =1183b =. (1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.22.二次根式中也有这种相辅相成的“对子”.如:(23)(23)1+-=,52)(52)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:333333==⨯23(23)(23)74323(23)(23)+++==+-+-母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化. 解决问题:(1)37的有理化因式是_________25-的分母有理化得__________; (2)计算: ①已知:331x =-,331y =+22x y +的值; (12233420192020)++++++. 23.定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.已知:在Rt ABC V 中,90BAC ∠=︒,斜边5BC =,直角边3AB Rt ABC =V ,的准外心P 在AC 边上,试求PA 的长.24.一辆汽车行驶时的耗油量为0.1升/千米,如图是油箱剩余油量y (升)关于加满油后已行驶的路程x (千米)的函数图象.(1)根据图象,直接写出汽车行驶400千米时,油箱内的剩余油量,并计算加满油时油箱的油量;(2)求y关于x的函数关系式,并计算该汽车在剩余油量5升时,已行驶的路程.25.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有,A B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165立方米;4台A型和7台B型挖掘机同时施工一小时挖土225立方米.每台A型挖掘机一小时的施工费用为300元,每台B型挖掘机一小时的施工费用为180元.(1)分别求每台A型, B型挖掘机一小时挖土多少立方米?(2)若不同数量的A型和B型挖掘机共12台同时施工4小时,至少完成1080立方米的挖土量,且总费用不超过12960元.问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】先做出合适的辅助线,再证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而确定函数图像.【详解】解:由题意可得:OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,作AD∥x轴,作CD⊥AD于点D,如图所示:∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC ,在△OAB 和△DAC 中,∠AOB=∠ADC,∠OAB=∠DAC ,AB=AC∴△OAB ≌△DAC (AAS ),∴OB=CD ,∴CD=x ,∵点C 到x 轴的距离为y ,点D 到x 轴的距离等于点A 到x 的距离1,∴y=x+1(x >0).故选A .【点睛】本题考查动点问题的函数图象,明确题意、建立相应的函数关系式是解答本题的关键.2.B解析:B【解析】【分析】先依据勾股定理可求得OC 的长,从而得到OM 的长,于是可得到点M 对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:22OB BC +5. ∴5故选:B .【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.3.C解析:C【解析】【分析】解:设CD=x ,则DE=a-x ,求得AH=CD=AG-HG=DE-HG=a-x-b=x ,求得CD=2a b - ,得到BC=DE=22a b a b a -+-=,根据勾股定理即可得到结论. 【详解】 设CD =x ,则DE =a ﹣x ,∵HG =b ,∴AH =CD =AG ﹣HG =DE ﹣HG =a ﹣x ﹣b =x ,∴x =2a b -, ∴BC =DE =a ﹣2a b -=2a b +, ∴BD 2=BC 2+CD 2=(2a b +)2+(2a b -)2=222a b +, ∴BD =222a b +, 故选:C .【点睛】本题考查了勾股定理,全等三角形的性质,正确的识别图形,用含,a b 的式子表示各个线段是解题的关键.4.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22AD DE +2231+10, ∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310.故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.5.C解析:C【解析】【分析】【详解】解:平行四边形的两条对角线的一半,和平行四边形的一边能够构成三角形, ∴2x 、y 2、6能组成三角形,令x>y ∴x-y<6<x+y20-18<6<20+18 故选C .【点睛】本题考查平行四边形的性质.6.B解析:B【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选B .7.D解析:D【解析】根据题意得:1010x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠1.故选D .8.C解析:C【解析】【分析】证明30BAEEAC ACE ????,求出BC 即可解决问题.【详解】解:Q 四边形ABCD 是矩形,90B ∴∠=︒, EA=EC Q ,EAC ECA ∴∠=∠,EACBAE ??Q , 又∵将纸片沿AE 折叠,点B 恰好落在AC 上,30BAE EAC ACE \????, 3AB =Q , 333BC AB \==,∴矩形ABCD 的面积是33393AB BC =?g .故选:C .【点睛】本题考查矩形的性质,翻折变换,直角三角形30°角性质等知识,解题的关键是灵活运用所学知识解决问题.9.D解析:D【解析】【分析】 【详解】解:因为()()222550.50.50.5-=-==,,所以A ,B ,C 选项均错, 故选D 10.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度,Q 圆柱底面的周长为4dm ,圆柱高为2dm ,2AB dm \=,2BC BC dm =?,22222448AC \=+=+=,22AC dm \=,∴这圈金属丝的周长最小为242AC dm =.故选:A .【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.11.B解析:B【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.【详解】解:A 、72+242=625=252,故是直角三角形,不符合题意;B 、222222(3)(4)81256337(5)+=+=≠,故不是直角三角形,符合题意;C 、12+(34)2=2516=(54)2,故是直角三角形,不符合题意; D 、1.52+22=6.25=2.52,故是直角三角形,不符合题意;故选:B .【点睛】 本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.12.A解析:A【解析】【分析】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.【详解】因为一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形,故④选项正确,故选A .【点睛】本题考查中点四边形、平行四边形、矩形、菱形的判定等知识,解题的关键是记住一般四边形的中点四边形是平行四边形,当对角线BD=AC 时,中点四边形是菱形,当对角线AC ⊥BD 时,中点四边形是矩形,当对角线AC=BD ,且AC ⊥BD 时,中点四边形是正方形.二、填空题13.96【解析】【分析】已知ABAC根据勾股定理即可求得AO的值根据对角线长即可计算菱形ABCD的面积【详解】解:∵四边形ABCD是菱形AC=12∴AO=AC=6∵菱形对角线互相垂直∴△ABO为直角三角解析:96【解析】【分析】已知AB,AC,根据勾股定理即可求得AO的值,根据对角线长即可计算菱形ABCD的面积.【详解】解:∵四边形ABCD是菱形,AC=12,∴AO=12AC=6,∵菱形对角线互相垂直,∴△ABO为直角三角形,∴BO=22AB OA=8,BD=2BO=16,∴菱形ABCD的面积=12AC•BD=12×12×16=96.故答案为:96.【点睛】本题考查了菱形对角线互相垂直平分的性质,菱形各边长相等的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理求AO的值是解题的关键.14.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【解析:【解析】【分析】首先根据勾股定理得出BC的长,进而利用等腰直角三角形的性质得出DE的长,再利用锐角三角函数的关系得出,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在Rt△ABC中,AB=AC=3,∴∠B=∠C=45°,BC=AB=6,∵在△ABC内作第一个内接正方形DEFG;∴EF=EC=DG=BD,∴DE=BC=2,∵取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,∴,∴EI=KI=HI,∵DH=EI,∴HI=DE=()2﹣1×3,则第n个内接正方形的边长为:3×()n﹣1.故第2019个内接正方形的边长为:3×()2018.故答案是:3×()2018.【点睛】考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.15.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少解析:82【解析】【分析】设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.【详解】设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴7286803x++≥,解得:82x≥,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.16.【解析】如图取AB的中点E连接OECE则BE=×2=1在Rt△BCE中由勾股定理得CE=∵∠AOB=90°点E是AB的中点∴OE=BE=1由两点之间线段最短可知点OEC三点共线时OC最大∴OC的最大【解析】如图,取AB的中点E,连接OE、CE,则BE=12×2=1,在Rt△BCE中,由勾股定理得,=∵∠AOB=90°,点E是AB的中点,∴OE=BE=1,由两点之间线段最短可知,点O、E、C三点共线时OC最大,∴OC的最大值..【点睛】运用了正方形的性质,直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,熟记各性质并确定出OC最大时的情况是解题的关键.17.6【解析】【分析】直接利用二次根式的性质化简再利用二次根式乘法运算法则求出答案【详解】解:∵是一个整数∴∴是一个整数∴x可取的最小正整数的值为:6故答案为:6【点睛】此题主要考查了二次根式的乘除正确解析:6【解析】【分析】直接利用二次根式的性质化简,再利用二次根式乘法运算法则求出答案.【详解】==∴∴x可取的最小正整数的值为:6.故答案为:6.【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.18.4【解析】【分析】设每份为x 则根据勾股定理即可求出x 的值然后求出a 的长【详解】解:根据题意设每份为x∵∴在中由勾股定理得解得:(负值已舍去)∴;故答案为:4【点睛】本题考查了勾股定理解直角三角形解题 解析:4【解析】【分析】设每份为x ,则2a x =,3=b x ,根据勾股定理,即可求出x 的值,然后求出a 的长.【详解】解:根据题意,设每份为x ,∵:2:3a b =,∴2a x =,3=b x ,在Rt ABC ∆中,由勾股定理,得222(2)(3)x x +=,解得:2x =(负值已舍去),∴4a =;故答案为:4.【点睛】本题考查了勾股定理解直角三角形,解题的关键是熟练掌握勾股定理求出三角形的边长.19.(-53)(53)(3−3)【解析】【分析】作出图形分ABBCAC 为对角线三种情况进行求解【详解】如图所示①AC 为对角线时AB=5∴点D 的坐标为(-53)②BC 为对角线时AB=5∴点D 的坐标为(53解析:(-5,3)、(5,3)、(3,−3)【解析】【分析】作出图形,分AB 、BC 、AC 为对角线三种情况进行求解.【详解】如图所示,①AC 为对角线时,AB=5,∴点D 的坐标为(-5,3),②BC 为对角线时,AB=5,∴点D 的坐标为(5,3),③AB 为对角线时,C 平移至A 的方式为向左平移1个单位,向下平移3个单位,∴点B 向左平移1个单位,向下平移3个单位得到点D 的坐标为(3,−3),综上所述,点D 的坐标是(-5,3)、(5,3)、(3,−3).故答案为:(-5,3)、(5,3)、(3,−3).【点睛】本题考查了坐标与图形的性质,平行四边形的判定,根据题意作出图形,注意要分情况进行讨论.20.16【解析】【分析】作PM⊥AD于M交BC于N则有四边形AEPM四边形DFPM四边形CFPN四边形BEPN都是矩形可得S△PEB=S△PFD=8则可得出S阴【详解】作PM⊥AD于M交BC于N则有四边解析:16【解析】【分析】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,可得S△PEB=S△PFD=8,则可得出S阴.【详解】作PM⊥AD于M,交BC于N,则有四边形AEPM、四边形DFPM、四边形CFPN、四边形BEPN都是矩形,∴S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP=S△PBE=12×2×8=8,∴S阴=8+8=16.故答案是:16.【点睛】考查矩形的性质、三角形的面积等知识,解题的关键是证明S△PEB=S△PFD.三、解答题21.(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯= 正方形的面积也为4.2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.22.(1)(或-3),-6-2)①14,②1【解析】【分析】(1)找出各式的分母有理化因式即可;(2)①将x 与y 分母有理化后代入原式计算即可得到结果.②原式各项分母有理化,合并即可得到结果.【详解】(1)∵(3)(=9-7=2,(3)(-3)=7-9=-2∴3的有理化因式是(或-3)32+=故答案为:(或-3);(2)①当21422x +===+212y ==== x 2+y 2=(x +y )2−2xy=(2+2−2×(2=16−2×1=14.②...12233420192020++++++++ =213243...20202019-+-+-++-=20201-.=2505-1【点睛】此题考查了分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.23.2PA =或78 【解析】【分析】先利用勾股定理计算出AC=4,根据准外心分类讨论:当PA=PC 时,易得PA=12AC=2;当PB=PC 时,设PA=x ,则PC=PB=4-x ,利用勾股定理得x 2+32=(4-x )2,解得x=78;当PA=PB 时,此情况不成立,然后解方程求出x 即可.【详解】如图:3,5,BC AB ==Q224AC AB BC ∴=-,若,PB PC =设PA x =,则()22243,x x -=+ 78x ∴=,即78PA =, 若,PA PC =则2,PA =若,PA PB =此情况不成立;综上,2PA =或78【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.也考查了阅读理解能力.24.(1)汽车行驶400千米,剩余油量30升,加满油时,油量为70升;(2)已行驶的路程为650千米.【解析】【分析】(1)观察图象,即可得到油箱内的剩余油量,根据耗油量计算出加满油时油箱的油量; ()2用待定系数法求出一次函数解析式,再代入进行运算即可.【详解】(1)汽车行驶400千米,剩余油量30升,304000.170.+⨯=即加满油时,油量为70升.(2)设()0y kx b k =+≠,把点()0,70,()400,30坐标分别代入得70b =,0.1k =-,∴0.170y x =-+,当5y =时,650x =,即已行驶的路程为650千米.【点睛】本题主要考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征等,关键是掌握待定系数法求函数解析式.25.(1)每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米; (2)共有三种调配方案.方案一: A 型挖据机7台,B 型挖掘机5台;方案二: A 型挖掘机8台,B 型挖掘机4台;方案三: A 型挖掘机9台,B 型挖掘机3台.当A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.【解析】分析:(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用. 详解:(1)设每台A 型,B 型挖掘机一小时分别挖土x 立方米和y 立方米,根据题意,得 35165,47225,x y x y +=⎧⎨+=⎩解得30,15.x y =⎧⎨=⎩ 所以,每台A 型挖掘机一小时挖土30立方米,每台B 型挖据机一小时挖土15立方米.(2)设A 型挖掘机有m 台,总费用为W 元,则B 型挖据机有()12m -台.根据题意,得 43004180W m =⨯+⨯ ()124808640m m -=+,因为()()430415121080430041801212960m m m m ⎧⨯+⨯-≥⎪⎨⨯+⨯-≤⎪⎩,解得69m m ≥⎧⎨≤⎩, 又因为12m m ≠-,解得6m ≠,所以79m ≤≤.所以,共有三种调配方案.方案一:当7m =时,125m -= ,即A 型挖据机7台,B 型挖掘机5台;方案二:当8m =时,124m -= ,即A 型挖掘机8台,B 型挖掘机4台;方案三:当9m =时,123m -= ,即A 型挖掘机9台,B 型挖掘机3台.4800Q >,由一次函数的性质可知,W 随m 的减小而减小,当7m =时,=4807+8640=12000W ⨯最小,此时A 型挖掘机7台, B 型挖掘机5台的施工费用最低,最低费用为12000元.点睛:本题考查了二元一次方程组和一次函数增减性,解答时先根据题意确定自变量取值范围,再应用一次函数性质解答问题.。
2018-2019学年河南省周口市商水县八年级(下)期中数学模拟试卷-含答案解析
2018-2019学年河南省周口市商水县八年级(下)期中数学模拟试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.)1.式子、﹣、、、﹣a+b、﹣中,分式共()A.1个B.2个C.3个D.4个2.下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D. +=﹣13.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm4.氢原子的半径约为0.000 000 000 05m,用科学记数法表示为()A.5×10﹣10m B.5×10﹣11m C.0.5×10﹣10m D.﹣5×10﹣11m5.若点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,则a的整数解有()A.1个B.2个C.3个D.4个6.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm7.若关于x的分式方程有增根,则m的值为()A.﹣1或﹣2 B.﹣1或2 C.1或2 D.0或﹣28.如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A .3B .6C .12D .249.某航空公司规定,旅客乘机所携带行李的质量x (kg )与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量( )A .20kgB .25kgC .28kgD .30kg10.如图,反比例函数y 1=和一次函数y 2=k 2x +b 的图象交于A 、B 两点.A 、B 两点的横坐标分别为2,﹣3.通过观察图象,若y 1>y 2,则x 的取值范围是( )A .0<x <2B .﹣3<x <0或x >2C .0<x <2或x <﹣3D .﹣3<x <0二、填空题(每小题3分,共15分)11.计算()﹣1+()0= 12.如图,在▱ABCD 中,CE ⊥AB 于E ,如果∠A =125°,那么∠BCE = °.13.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组的解是.14.已知关于x的方程﹣2=有一个正数解,则m的取值范围.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为.三、解答题(本大题共8个小题,满分75分16.(8分)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(3﹣y)2=0.17.(8分)计算与化简(1)a﹣2b2•(﹣2a2b﹣2)﹣2÷(a﹣4b2)(2)18.(9分)如图,已知:平行四边形ABCD中,∠BCD的平分线CE交边AD于E,∠ABC的平分线BG交CE于F,交AD于G.求证:AE=DG.19.(9分)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.20.(10分)如图,直线y=2x+3与x轴交于点A,与y轴于点B.(1)求A,B两点的坐标;(2)过点B过直线BP与x轴交于点P,且OP=2OA,求△ABP的面积.21.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?22.(10分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?23.(11分)已知反比例函数y 1=的图象与一次函数y 2=ax +b 的图象交于点A (1,4)和点B (m ,﹣2)(1)求这两个函数的表达式;(2)观察图象,当x >0时,直接写出y 1>y 2时自变量x 的取值范围;(3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.参考答案与试题解析一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.)1.式子、﹣、、、﹣a+b、﹣中,分式共()A.1个B.2个C.3个D.4个【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在所列代数式中,分式有、、﹣这3个,故选:C.【点评】本题考查的是分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子A/B叫做分式是解答此题的关键.2.下列运算正确的是()A.(2a2)3=6a6B.﹣a2b2•3ab3=﹣3a2b5C.•=﹣1 D. +=﹣1【分析】A、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断;B、原式利用单项式乘以单项式法则计算得到结果,即可做出判断;C、原式约分得到结果,即可做出判断;D、原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:A、原式=8a6,错误;B、原式=﹣3a3b5,错误;C、原式=,错误;D、原式===﹣1,正确;故选:D.【点评】此题考查了分式的乘除法,幂的乘方与积的乘方,单项式乘单项式,以及分式的加减法,熟练掌握运算法则是解本题的关键.3.如图,在▱ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cm B.4cm C.6cm D.8cm【分析】由平行四边形对边平行根据两直线平行,内错角相等可得∠EDA=∠DEC,而DE平分∠ADC,进一步推出∠EDC=∠DEC,在同一三角形中,根据等角对等边得CE=CD,则BE可求解.【解答】解:根据平行四边形的性质得AD∥BC,∴∠EDA=∠DEC,又∵DE平分∠ADC,∴∠EDC=∠ADE,∴∠EDC=∠DEC,∴CD=CE=AB=6,即BE=BC﹣EC=8﹣6=2.故选:A.【点评】本题直接通过平行四边形性质的应用,及等腰三角形的判定,属于基础题.4.氢原子的半径约为0.000 000 000 05m,用科学记数法表示为()A.5×10﹣10m B.5×10﹣11m C.0.5×10﹣10m D.﹣5×10﹣11m【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 05=5×10﹣11,故选:B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.若点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,则a的整数解有()A.1个B.2个C.3个D.4个【分析】根据题意可得出点P在第三象限,从而列出不等式组求解即可.【解答】解:∵点P(﹣1﹣2a,2a﹣4)关于原点对称的点在第一象限内,∴,由①得,a>﹣,由②得,a<2,∴a=1或0.故选:B.【点评】本题考查了关于原点对称的点的坐标,以及一元一次不等式组的整数解,是基础知识要熟练掌握.6.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm【分析】根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.【解答】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.【点评】此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.7.若关于x的分式方程有增根,则m的值为()A.﹣1或﹣2 B.﹣1或2 C.1或2 D.0或﹣2【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x(x+1)=0,得到x=0或﹣1,然后代入化为整式方程的方程算出m的值.【解答】解:方程两边都乘x(x+1),得x2﹣(m+1)=(x+1)2∵原方程有增根,∴最简公分母x(x+1)=0,解得x=0或﹣1,当x=0时,m=﹣2,当x=﹣1时,m=0,故m的值可能是﹣2或0.故选:D.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.8.如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为()A.3 B.6 C.12 D.24【分析】由于在平行四边形中,对边分别平行且相等,对角线相互平分,图中的线条把平行四边形分成5组全等三角形,通过仔细观察分析图中阴影部分,可得出每组全等三角形中有一个带阴影,所以阴影部分的面积是平行四边形的面积的一半.=×6×4=12.【解答】解:通过观察结合平行四边形性质得:S阴影故选:C.【点评】本题考查的是平行四边形的性质,平行四边形的对角线相互平分.9.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A .20kgB .25kgC .28kgD .30kg【分析】根据图中数据,用待定系数法求出直线解析式,然后求y =0时,x 对应的值即可.【解答】解:设y 与x 的函数关系式为y =kx +b ,由题意可知,所以k =30,b =﹣600,所以函数关系式为y =30x ﹣600, 当y =0时,即30x ﹣600=0,所以x =20.故选:A .【点评】本题重点考查了一次函数的图象及一次函数的应用,是一道难度中等的题目.10.如图,反比例函数y 1=和一次函数y 2=k 2x +b 的图象交于A 、B 两点.A 、B 两点的横坐标分别为2,﹣3.通过观察图象,若y 1>y 2,则x 的取值范围是( )A .0<x <2B .﹣3<x <0或x >2C .0<x <2或x <﹣3D .﹣3<x <0【分析】根据两函数的交点A 、B 的横坐标和图象得出答案即可.【解答】解:∵反比例函数y 1=和一次函数y 2=k 2x +b 的图象交于A 、B 两点,A 、B 两点的横坐标分别为2,﹣3,∴通过观察图象,当y 1>y 2时x 的取值范围是0<x <2或x <﹣3,故选:C .【点评】本题考查了一次函数和反比例函数的交点问题的应用,主要考查学生的理解能力和观察图形的能力,用了数形结合思想.二、填空题(每小题3分,共15分)11.计算()﹣1+()0= 3【分析】根据负整数指数幂和零指数幂的意义计算.【解答】解:原式=2+1=3.故答案为3.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.12.如图,在▱ABCD中,CE⊥AB于E,如果∠A=125°,那么∠BCE=35 °.【分析】根据平行四边形性质及直角三角形的角的关系,即可求解.【解答】解:∵四边形平ABCD是平行四边形,∴AD∥BC,∴∠B=180°﹣∠A=55°,又∵CE⊥AB,∴∠BCE=35°.故答案为:35.【点评】本题考查了平行四边形的性质,用的知识点有:平行四边形的对边互相平行、平行线的性质以及直角三角形的两个锐角互余.13.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.【分析】由图可知:两个一次函数的交点坐标为(﹣4,﹣2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),即x=﹣4,y=﹣2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【点评】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.14.已知关于x的方程﹣2=有一个正数解,则m的取值范围m<6且m≠3 .【分析】分式方程去分母转化为整式方程,由分式方程有正数解,确定出m的范围即可.【解答】解:去分母得:x﹣2x+6=m,解得:x=6﹣m,由分式方程有一个正数解,得到6﹣m>0,且6﹣m≠3,解得:m<6且m≠3,故答案为:m<6且m≠3【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B.若OA2﹣AB2=12,则k的值为 6 .【分析】设B点坐标为(a,b),根据等腰直角三角形的性质得OA=AC,AB=AD,OC=AC,AD=BD,则OA2﹣AB2=12变形为AC2﹣AD2=6,利用平方差公式得到(AC+AD)(AC﹣AD)=6,所以(OC+BD)•CD=6,则有a•b=6,根据反比例函数图象上点的坐标特征易得k=6.【解答】解:设B点坐标为(a,b),∵△OAC和△BAD都是等腰直角三角形,∴OA=AC,AB=AD,OC=AC,AD=BD,∵OA2﹣AB2=12,∴2AC2﹣2AD2=12,即AC2﹣AD2=6,∴(AC+AD)(AC﹣AD)=6,∴(OC+BD)•CD=6,∴a•b=6,∴k=6.故答案为:6.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.三、解答题(本大题共8个小题,满分75分16.(8分)先化简,再求值:1﹣,其中x、y满足|x﹣2|+(3﹣y)2=0.【分析】根据分式的除法和减法可以化简题目中的式子,再根据|x﹣2|+(3﹣y)2=0可以求得x、y的值,然后代入化简后的式子即可解答本题.【解答】解:1﹣=1﹣=1﹣==,∵|x﹣2|+(3﹣y)2=0,∴x﹣2=0,3﹣y=0,解得,x=2,y=3,∴原式=﹣=﹣3.【点评】本题考查分式的化简求值、非负数的性质,解答本题的关键是明确分式化简求值的方法.17.(8分)计算与化简(1)a﹣2b2•(﹣2a2b﹣2)﹣2÷(a﹣4b2)(2)【分析】(1)根据积的乘方、同底数幂的乘除法可以解答本题;(2)根据分式除法和减法可以解答本题.【解答】解:(1)a﹣2b2•(﹣2a2b﹣2)﹣2÷(a﹣4b2)=a﹣2b2•2﹣2a﹣4b4÷(a﹣4b2)=;(2)===0.【点评】本题考查分式的混合运算、整式的混合运算、负整数指数幂,解答本题的关键是明确它们各自的计算方法.18.(9分)如图,已知:平行四边形ABCD中,∠BCD的平分线CE交边AD于E,∠ABC的平分线BG交CE于F,交AD于G.求证:AE=DG.【分析】由角的等量关系可分别得出△ABG和△DCE是等腰三角形,得出AB=AG,DC=DE,则有AG=DE,从而证得AE=DG.【解答】证明:∵四边形ABCD是平行四边形(已知),∴AD∥BC,AB=CD(平行四边形的对边平行,对边相等)∴∠GBC=∠BGA,∠BCE=∠CED(两直线平行,内错角相等)又∵BG平分∠ABC,CE平分∠BCD(已知),∴∠ABG=∠GBC,∠BCE=∠ECD(角平分线定义)∴∠ABG=∠AGB,∠ECD=∠CED.∴AB=AG,CD=DE(在同一个三角形中,等角对等边)∴AG=DE,∴AG﹣EG=DE﹣EG,即AE=DG.【点评】本题考查平行四边形的性质、等腰三角形判定等知识.由等腰三角形的判定和等量代换推出AG=DE是关键.运用平行四边形的性质和等腰三角形的知识解答.19.(9分)已知反比例函数y=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.【分析】(1)根据反比例函数的图象是双曲线.当k>0时,则图象在一、三象限,且双曲线是关于原点对称的;(2)由对称性得到△OAC的面积为3.设A(x、),则利用三角形的面积公式得到关于m 的方程,借助于方程来求m的值.【解答】解:(1)根据反比例函数的图象关于原点对称知,该函数图象的另一支在第三象限,且m﹣7>0,则m>7;(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A(x,),则x•=3,解得m=13.【点评】本题考查了反比例函数的性质、图象,反比例函数图象上点的坐标特征等知识点.根据题意得到△OAC 的面积是解题的关键.20.(10分)如图,直线y =2x +3与x 轴交于点A ,与y 轴于点B .(1)求A ,B 两点的坐标;(2)过点B 过直线BP 与x 轴交于点P ,且OP =2OA ,求△ABP 的面积.【分析】(1)由函数解析式y =2x +3,令y =0求得A 点坐标,x =0求得B 点坐标;(2)有两种情况,若BP 与x 轴正方向相交于P 点,则AP =3OA ;若BP 与x 轴负方向相交于P 点,则AP =OA ,由此求得△ABP 的面积.【解答】解:(1)令y =0,得x =﹣1.5,∴A 点坐标为(﹣1.5,0),令x =0,得y =3,∴B 点坐标为(0,3);(2)设P 点坐标为(x ,0),∵OP =2OA ,A (﹣1.5,0),∴x =±3,∴P 点坐标分别为P 1(3,0)或P 2(﹣3,0).∴S △ABP 1=×(1.5+3)×3=6.75,S △ABP 2=×(3﹣1.5)×3=2.25,∴△ABP 的面积为6.75或2.25.【点评】本题考查了一次函数图象上点的坐标特征,三角形的面积,关键是能求出符合条件的两种情况.21.(10分)在我市某一城市美化工程招标时,有甲、乙两个工程队投标,经测算:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.若该工程计划在70天内完成,在不超过计划天数的前提下,是由甲队或乙队单独完成工程省钱?还是由甲乙两队全程合作完成该工程省钱?【分析】(1)求的是乙的工效,工作时间明显.一定是根据工作总量来列等量关系.等量关系为:甲20天的工作量+甲乙合作24天的工作总量=1.(2)把在工期内的情况进行比较.【解答】解:(1)设乙队单独完成需x天.根据题意,得:×20+(+)×24=1.解这个方程得:x=90.经检验,x=90是原方程的解.∴乙队单独完成需90天.答:乙队单独完成需90天.(2)设甲、乙合作完成需y天,则有(+)×y=1.解得,y=36,①甲单独完成需付工程款为60×3.5=210(万元).②乙单独完成超过计划天数不符题意,③甲、乙合作完成需付工程款为36×(3.5+2)=198(万元).答:在不超过计划天数的前提下,由甲、乙合作完成最省钱.【点评】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.(10分)昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB 所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?【分析】(1)可设线段AB 所表示的函数关系式为:y =kx +b ,根据待定系数法列方程组求解即可;(2)先根据速度=路程÷时间求出小明回家的速度,再根据时间=路程÷速度,列出算式计算即可求解.【解答】解:(1)设线段AB 所表示的函数关系式为:y =kx +b ,依题意有,解得. 故线段AB 所表示的函数关系式为:y =﹣96x +192(0≤x ≤2);(2)12+3﹣(7+6.6)=15﹣13.6=1.4(小时),112÷1.4=80(千米/时),(192﹣112)÷80=80÷80=1(小时),3+1=4(时).答:他下午4时到家.【点评】本题主要考查一次函数的应用,解决本题的关键是利用待定系数法求一次函数的解析式.同时考查了速度、路程和时间之间的关系.23.(11分)已知反比例函数y 1=的图象与一次函数y 2=ax +b 的图象交于点A (1,4)和点B (m ,﹣2)(1)求这两个函数的表达式;(2)观察图象,当x >0时,直接写出y 1>y 2时自变量x 的取值范围;(3)如果点C 与点A 关于x 轴对称,求△ABC 的面积.【分析】(1)由A 在反比例函数图象上,把A 的坐标代入反比例解析式,确定出k 的值,从而得出反比例函数解析式,又B 也在反比例函数图象上,把B 的坐标代入确定出的反比例解析式即可确定出m 的值,从而得到B 的坐标,由A 和B 都在一次函数图象上,故把A 和B 都代入到一次函数解析式中,得到关于a 与b 的方程组,求出方程组的解得到a 与b 的值,从而确定出一次函数解析式;(2)根据图象结合交点坐标即可求得;(3)由点C 与点A 关于x 轴对称可得AC ,AC 边上的高为A ,B 两点横坐标绝对值的和,代入三角形的面积公式即可.【解答】解:(1)∵函数y =的图象过点A (1,4),即4=,∴k =4,即y 1=,又∵点B (m ,﹣2)在y 1=上,∴m =﹣2,∴B (﹣2,﹣2),又∵一次函数y 2=ax +b 过A 、B 两点,即,解得.∴y 2=2x +2,综上可得y 1=,y 2=2x +2;(2)要使y 1>y 2,即函数y 1的图象总在函数y 2的图象上方,∴0<x <1;(3)过B 作BD ⊥AC 于D ,由图形及题意可得:AC =4+4=8,BD =|﹣2|+1=3,∴s △ABC =AC •BD =×8×3=12.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.。
河南省周口市八年级下学期数学期中考试试卷
河南省周口市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2017·东光模拟) 若代数式在实数范围内有意义,则实数x的取值范围是()A . x≥﹣1B . x>2C . x≠2D . x≥﹣1且x≠22. (2分) (2020八下·江岸期中) 下列根式中是最简二次根式的是()A .B .C .D .3. (2分) (2019八上·四川月考) 的三边长分别为,下列条件:① ;②;③ ;④ .其中能判断是直角三角形的个数有()A . 1个B . 2个C . 3个D . 4个4. (2分)如图,直线l1∥l2 ,∠1=55°,∠2=65°,则∠3为()A . 50°B . 55°C . 60°D . 65°5. (2分) (2019九下·瑞安月考) 某市5月份连续7天的最高气温如下(单位:℃):32,30,34,36,36,33,37.这组数据的中位数、众数分别为()A . 34℃,36℃B . 34℃,34℃C . 36℃,36℃D . 32℃,37℃6. (2分)有理数a、b、c满足a+b+c=0,abc=-9,则a、b、c中负数的个数是()A . 0 ;B . 1 ;C . 2 ;D . 3 ;7. (2分)下列等式一定成立的是()A . =B . =C .D . =8. (2分)(2016·竞秀模拟) 如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴相切于点Q,与y 轴交于M(0,2),N(0,8)两点,则点P的坐标是()A . (5,3)B . (3,5)C . (5,4)D . (4,5)9. (2分)如图,设正方体ABCD-A1B1C1D1的棱长为1,黑、白两个甲壳虫同时从A点出发,以相同的速度分别沿棱向前爬行,黑甲壳虫爬行的路线是AA1→A1D1→…,白甲壳虫爬行的路线是AB→BB1→…,并且都遵循如下规则:所爬行的第n+2与第n条棱所在的直线必须是既不平行也不相交(其中n是正整数).那么当黑、白两个甲壳虫各爬行完第2008条棱分别停止在所到的正方体顶点处时,它们之间的距离是()A . 0B . 1C .D .10. (2分)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A . 第24天的销售量为200件B . 第10天销售一件产品的利润是15元C . 第12天与第30天这两天的日销售利润相等D . 第30天的日销售利润是750元二、填空题 (共6题;共6分)11. (1分) (2018八上·建湖月考) 将一次函数y=2x+3的图象平移后过点(1,4),则平移后得到的函数关系式为________.12. (1分) (2019八下·北京期末) 如图,某港口P位于南北延伸的海岸线上,东面是大海.“远洋”号、“长峰”号两艘轮船同时离开港口P,各自沿固定方向航行,“远洋”号每小时航行12n mile,“长峰”号每小时航行16n mile,它们离开港东口1小时后,分别到达A,B两个位置,且AB=20n mile,已知“远洋”号沿着北偏东60°方向航行,那么“长峰”号航行的方向是________.13. (1分) (2017七下·南通期中) 与最接近的整数是________.14. (1分) (2017八下·西华期末) 如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=3,则斜边AB=________.15. (1分)(2020·西安模拟) 如图,已知平行四边形ABCD中,∠B=60°,AB=12,BC=5,P为AB上任意一点(可以与A、B重合),延长PD到F,使得DF=PD,以PF、PC为边作平行四边形PCEF,则PE长度的最小值________.16. (1分)如图,直线OD与x轴所夹的锐角为30°,OA1的长为1,△A1A2B1、△A2A3B2、△A3A4B3…△AnAn+1Bn 均为等边三角形,点A1、A2、A3…An+1在x轴的正半轴上依次排列,点B1、B2、B3…Bn在直线OD上依次排列,那么点Bn的坐标为________ .三、解答题 (共8题;共61分)17. (10分) (2020八下·温州期中) 计算:(1)(2)18. (5分) (2017八下·盐都期中) 先化简:•(x ),然后x在﹣1,0,1,2四个数中选一个你认为合适的数代入求值.19. (6分)(2013·遵义) 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B出发,以每秒2cm的速度沿BA向终点A 移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.20. (10分) (2020七下·松北期末) 为预防新型冠状病毒,某中学积极进行校园环境消毒,若用 870 元购进甲种消毒液 70 瓶,乙种消毒液 50 瓶;也可用 870 元购进甲种消毒液 100 瓶,乙种消毒液 30 瓶.(1)求甲、乙两种消毒液每瓶各多少钱?(2)若学校准备再次购买这两种消毒液,乙种消毒液的瓶数比甲种瓶数的2 倍还多 1 瓶,且所需费用不超过1929 元,求甲种消毒液最多能再购买多少瓶?21. (5分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.22. (5分)如图,直线y=kx-1与x轴、y轴分别交与B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx-1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形.若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.23. (10分) (2015八上·谯城期末) 一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设慢车离乙地的距离为y1(km),快车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为S(km),y1 , y2与x的函数关系图象如图(1)所示,S与x的函数关系图象如图(2)所示:(1)图中的a=________,b=________.(2)求S关于x的函数关系式.(3)甲、乙两地间依次有E、F两个加油站,相距200km,若慢车进入E站加油时,快车恰好进入F站加油.求E加油站到甲地的距离.24. (10分) (2019八下·北京期末) 将一矩形纸片OABC 放在平面直角坐标系中, O(0,0) , A(6,0) ,C(0,3) .动点Q 从点O 出发以每秒 1 个单位长的速度沿OC 向终点C 运动,运动秒时,动点 P 从点A 出发以相等的速度沿 AO 向终点O 运动。
河南省周口市八年级下学期数学期中考试试卷
河南省周口市八年级下学期数学期中考试试卷姓名:________班级:________成绩:________一、 选择题 (共 16 题;共 26 分)1. (2 分) 一等腰三角形的两边长是方程 x2-5x+6=0 的两根,则这等腰三角形的周长为( )A.7B.8C . 7或8D . 不能确定2.(2 分)(2019·宁夏) 如图,在中,点 和 分别在 和 上,且.连接,过点 的直线与平行,若,则的度数为( )A.B.C.D.3. (2 分) (2020 七下·贵州期末) 已知 a<b,下列四个不等式中,不正确的是( )A . 2a<2bB . ﹣2a<﹣2bC . a+2<b+2D . a﹣2<b﹣24. (2 分) (2020 八下·建平期末) 多项式各项的公因式是( )A.B.C.D.5. (2 分) 在△ABC 中,∠A︰∠B︰∠C=1︰2︰3,CD⊥AB 于点 D,AB=a,则 BD 的长为( )A.B.第 1 页 共 14 页C. D . 以上都不对6. (2 分) 不等式组的解集在数轴上表示正确的是( )A.B.C.D. 7. (2 分) (2018 八上·龙岗期中) 在平面直角坐标系中,点 A(﹣1,2)关于 y 轴的对称点在( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限8. (2 分) (2020 八下·临朐期末) 关于 x 的不等式组 k 的和是( )有且仅有三个整数解,则所有正确的整数A.B.C.D.9. (1 分) (2020 七下·哈尔滨月考) 若△ABC 的三个内角之比为 1:5:3,那么△ABC 中最大角的度数为________.10. (2 分) (2020 七下·黄石期中) 如图:已知,AB∥CD,∠1=50°,那么∠2=________°,∠3=________°11. (1 分) (2018·泸县模拟) 分解因式:2m2-8=________. 12. (1 分) (2011·泰州) 分解因式:2a2﹣4a=________.13. (1 分) (2017 八下·罗平期末) 要使有意义,x 的取值范围为________第 2 页 共 14 页14. (1 分) (2020 七下·内江期中) 若关于 x 的不等式组 范围是________.的所有整数解的和是 15,则 m 的取值15. (2 分) (2017·峄城模拟) 如图,在已知的△ABC 中,按以下步骤作图:①分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;②作直线 MN 交 AB 于点 D,连接 CD.若 CD=AC,∠B=25°,则∠ACB 的度数为________.16. (1 分) (2018 八上·九台期末) 如图,OC 平分∠AOB,点 P 是 OC 上一点,PM⊥OB 于点 M,点 N 是射线 OA 上的一个动点,若 PM=5,则 PN 的最小值为________.二、 解答题 (共 8 题;共 62 分)17. (15 分) (2017·历下模拟) 计算下列各题(1) 计算:| |+( ) ﹣1﹣2cos45°(2) 解不等式组,并把解集在数轴上表示出来.18. (20 分) (2019 八上·周口月考) 分解因式:①②③ 19. (5 分) 如图,点 D、E 在△ABC 的 BC 边上,AB=AC,AD=AE.求证:BD=CE.20. (5 分) 已知 y(2x+1)-x(2y+1)=-3,求 6x2+6y2-12xy 的值.21. (2 分) 如图所示,顺次延长正方形 ABCD 的各边 AB,BC,CD,DA 至 E,F,G,H,且使 BE=CF=DG=AH.第 3 页 共 14 页求证:四边形 EFGH 是正方形.22. (5 分) (2019 八上·南浔月考) 证明命题“等腰三角形两腰上的中线相等”。
周口市八年级下学期期中联考数学试卷
周口市八年级下学期期中联考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共13题;共25分)1. (2分) (2017七上·西湖期中) 若,,则与的大小关系是().A .B .C .D . 无法确定2. (2分)(2015·宁波模拟) 下列图形中,既是轴对称图形又是中心对称图形的有()A . 4个B . 3个C . 2个D . 1个3. (2分) (2017八下·宁波期中) 某篮球队12名队员的年龄如下表所示,则这12名队员年龄的众数和平均数是()A . 19,19.5B . 19,19C . 18,19.5D . 18,194. (2分) (2017八下·宁波期中) 若关于x的一元二次方程(k+2)x2+3x+k2-k-6=0必有一根为0,则k 的值是()A . 3 或-2B . -3或2C . 3D . -25. (2分) (2017八下·宁波期中) 如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B 为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求。
连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是()A . 矩形B . 菱形C . 正方形D . 等腰梯形6. (2分) (2017八下·宁波期中) 如图,矩形ABCD的两条对角线相交于点O,∠AOB=120°,AD=2,点E 是BC的中点,连结OE,则OE的长是()A .B . 2C . 2D . 47. (2分) (2017八下·宁波期中) 用反证法证明“在直角三角形中,至少有一个锐角不大于45º”,应先假设这个直角三角形中()A . 有一个锐角小于45ºB . 每一个锐角都小于45ºC . 有一个锐角大于45ºD . 每一个锐角都大于45º8. (2分) (2017八下·宁波期中) 关于x的一元二次方程(其中a为常数)的根的情况是()A . 有两个不相等的实数根B . 可能有实数根,也可能没有实数根C . 有两个相等的实数根D . 没有实数根9. (2分)(2017·全椒模拟) 如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为()A . 78°B . 75°C . 60°D . 45°10. (2分) (2017八下·宁波期中) 如图,△ACE是以□ABCD的对角线AC为边的等边三角形,点C与点E 关于x轴对称.若E点的坐标是(7,-3 ),则D点的坐标是()A . (4,0)B . ( ,0)C . (5,0)D . ( ,0)11. (2分) (2017八下·宁波期中) 如图,①②③④⑤五个平行四边形拼成一个含30度内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为26cm2 ,四边形ABCD面积是19cm2 ,则①②③④四个平行四边形周长的总和为()A . 96cmB . 64cmC . 48cmD . 36cm12. (1分) (2017八下·宁波期中) 我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“等积线”,等积线被这个平面图形截得的线段叫做该图形的“等积线段”(例如三角形的中线就是三角形的等积线段).已知菱形的边长为4,且有一个内角为60°,设它的等积线段长为m,则m的取值范围是________.13. (2分) (2017八下·宁波期中) 下列属于一元二次方程的是()A .B .C .D .二、填空题 (共5题;共5分)14. (1分)(2017·江汉模拟) 绝对值不大于4.5的所有整数的和为________.15. (1分) (2018八上·东台月考) 如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC 的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是________。
河南省周口市2018-2019学年八年级数学下册期中试题
河南省周口市周口港区第九中学2018-2019学年八年级数学下学期期中试题2018—2018学年度下期期中考试试卷 八年级数学参考答案一、选择题:1.(D )2.(B )3.(B )4.(D )5.(B )6.(D )7.(D )8.(C ) 二、填空题: 9.【】10.【0】11.【在同一个三角形中,等边对等角】12.13.【22或42】14.【15.【2或4】三、解答题: 16.【⑴原式=(12=】【(2)原式76-17.【⑴∵1m =,1n =,∴2m n +=,m n -=,2mn =-。
∴222m mn n +-=()()222(2)4m n m n mn +-+=⨯-=】【⑵∵1x x+,∴2218x x+=。
∴222112826x x x x ⎛⎫-=+-=-= ⎪⎝⎭。
∴1x x-=。
】 18.【⑴连接AC ,∵CD AD =,90D ∠=︒,∴∠DAC =45°,222A C D A D C =+ 2212=⨯=。
在△ABC 中,∵222221216BA BC AC +=+==,∴∠BAC =90°。
∵2BC AC =,∴30ACB ∠=︒。
∴BAD ∠=BAC ∠+CAD ∠=90°+45°=135°,BCD ∠=BCA ∠+ACD ∠=30°+45°=75°.】【⑵3ABC ACD ABCD S S S =+=△△四边形.】19.【如图,在△ABC 中,AD DB =,AE EC =。
】【DE ∥BC ,12DE BC =。
】【∵DF DE =,AD BD =,∴四边形AEBF 是平行四边形。
∴BF ∥AE ,FB AE =,12DE EF =。
∵AE CE =,∴BF ∥CE ,BF CE =。
∴四边形BCEF 是平行四边形。
∴DE ∥BC ,1122DE EF BC ==。
】20.【在□ABCD 中,DC =AB ,AD =BC ,DC ∥AB ,∴∠CDE =∠DEA . ∵DE 平分ADC ∠,∴∠ADE =∠CDE .在□ABCD 中,∵DC ∥AB ,∴∠CDE =∠DEA . ∴∠ADE =∠DEA .∴AD =AE .同理可得CB CF =. ∴DF =BE ,∴四边形EBFD 是平行四边形.】21.【证明:连接BE ,∵∠ACD =∠DCE ,∴∠BCE =∠ACD . 又∵,AC BC DC EC ==,∴△BCE ≌△ACD .∴BE =AD ,∠BEC =∠D =45°.∴∠BEA =45°+45°=90°. 在Rt △ABE 中,由勾股定理,22222BE AE AB AC +==. 即2222AE AD AC +=。
河南省周口市八年级下学期期中数学试卷
河南省周口市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)如图,⊙O的半径为2,点A的坐标为(),直线AB为⊙O的切线,B为切点。
则B点的坐标为()A .B .C .D .2. (2分)(2020·宿州模拟) 如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1 ,边B1C1与CD交于点O ,则图中阴影部分的面积是()A .B .C .D .3. (2分) (2017八下·凉山期末) 满足下列条件的三角形是直角三角形的有()个.⑴在△ABC中,∠A=15°,∠B=75°;⑵在△ABC中,AB=12,BC=16,AC=20;⑶一个三角形三边长之比为5:12:13;⑷一个三角形三边长a、b、c满足a2﹣b2=c2 .A . 1B . 2C . 3D . 44. (2分)(2012·泰州) 下列四个命题:①一组对边平行且一组对角相等的四边形是平行四边形;②对角线互相垂直且相等的四边形是正方形;③顺次连接矩形四边中点得到的四边形是菱形;④正五边形既是轴对称图形又是中心对称图形.其中真命题共有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2017八上·兴化期末) 将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A .B . 2C .D . 26. (2分)一个多边形的边数每增加一条,这个多边形的()A . 内角和增加360°B . 外角和增加360°C . 对角线增加一条D . 内角和增加180°7. (2分)若一直角三角形两边的长为12和5,则第三边的长为()A . 13B . 13或C . 13或15D . 158. (2分)如图,由于台风的影响,一棵树在离地面5m处折断,树顶落在离树干底部12m处,则这棵树在折断前(不包括树根)长度是()A . 8mB . 10mC . 16mD . 18m9. (2分)如图,已知AD是等腰△ABC底边上的高,且sinB=.点E在AC上且AE:EC=2:3.则tan∠ADE 等于()A .B .C .D .10. (2分) (2017八下·庆云期末) 如图,平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,AB=1,则EF的长是()A . 1.5B .C .D . 211. (2分)平行四边形ABCD中对角线AC和BD交于点O,AC=6,BD=8,平行四边形ABCD较大的边长是m,则m取值范围是()A . 2<m<14B . 1<m<7C . 5<m<7D . 2<m<712. (2分)如图,在中,∠C=90°,∠B=30°.AB的垂直平分线DE交AB于点D,交BC于点E,则下列结论不正确的是()A . AE=BEB . AC=BEC . CE=DED . ∠CAE=∠B二、填空题 (共6题;共6分)13. (1分)如图所示,△ABC和△DCB有公共边BC,且AB=DC,作AE⊥BC,DF⊥BC,垂足分别为E、F,AE=DF,那么求证AC=BD时,需要证明三角形全等的三角形是________14. (1分) (2019九上·长葛期末) 如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动.若△POE为等腰三角形,请写出所有符合要求的点P的坐标________.15. (1分) (2017八下·长泰期中) 如图,在平行四边形ABCD中,BC=8cm,AB=6cm,BE平分∠ABC交AD边于点E,则线段DE的长度为________.16. (1分)(2019·徽县模拟) 在△ABC中,点E,F分别是边AB,AC的中点,点D在BC边上,连接DE,DF,EF,请你添加一个条件________,使△BED与△FDE全等.17. (1分) (2019八下·大庆期中) 在平行四边形ABCD中,AB=10,AD=6,E是AD的中点,在直线AB上取一点F,使△CBF与△CDE相似,则BF的长为________18. (1分) (2016八上·仙游期中) 如图,点P在∠AOB的内部,点M、N分别是点P关于直线OA、OB的对称点,线段MN交OA、OB于点E、F,若△PEF的周长是30cm,则线段MN的长是________.三、解答题 (共8题;共75分)19. (10分)如图,在▱ABCD中,E为BC边上的一点,将△ABE沿AE翻折得到△AFE,点F恰好落在线段DE 上.(1)求证:∠FAD=∠CDE(2)当AB=5,AD=6,且tan∠ABC=2时,求线段EC的长.20. (5分) (2016八下·平武月考) 如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=3 米.求点B到地面的垂直距离BC.21. (5分)如图,AD是直角三角形△ABC斜边上的高(1)若AD=6cm,CD=12cm,求BD的长;(2)若AB=15cm,BC=25cm,求BD的长.22. (10分)(2018·呼和浩特) 如图,已知A、F、C、D四点在同一条直线上,AF=CD,AB∥DE,且AB=DE.(1)求证:△ABC≌△DEF;(2)若EF=3,DE=4,∠DEF=90°,请直接写出使四边形EFBC为菱形时AF的长度.23. (10分)如图,△ABC中,AD⊥BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当△EFC为直角三角形时,求∠BEF的度数.24. (5分)如图,在▱ABCD中,AB⊥AC,以点A为圆心,AB为半径的圆交BC于点E.(1)求证:DE为⊙O的切线;(2)如果BE=4,CE=2,求DE的值.25. (15分)如图,把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)若∠1=60°,求∠3的度数;(2)求证:BE=BF;(3)若AB=6,AD=12,求△BEF的面积.26. (15分) (2016八下·冷水江期末) 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C 出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC 于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共75分)19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、25-1、25-2、25-3、26-1、26-2、26-3、。
2018-2019学年河南省周口市鹿邑县八年级(下)期中数学试卷
2018-2019学年河南省周口市鹿邑县八年级(下)期中数学试卷一、选择题.(每题只有一个正确答案,请将正确答案填在下面的表格里每题3分,共30分)1.(3分)在▱ABCD中,若∠A=40°,则∠C=()A.140°B.130°C.50°D.40°2.(3分)下列各组数中,不是勾股数的一组是()A.1,2,B.7,24,25C.6,8,10D.15,8,173.(3分)下列性质中,菱形具有而矩形不一定具有的是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.邻边互相垂直4.(3分)如图,已知l1∥l2,AB∥CD,CE⊥l2于点E,FG⊥l2于点G,则下列说法中错误的是()A.AB=CDB.CE=FGC.A、B两点间距离就是线段AB的长度D.l1与l2两平行线间的距离就是线段CD的长度5.(3分)已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12 cm2B.24 cm2C.48 cm2D.96 cm26.(3分)如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°7.(3分)已知等腰三角形的两边长分别为3和5,则这个三角形的周长为()A.6+5B.3+10C.6+10D.6+5或3+108.(3分)如图,过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF,若AB=2,∠DCF=30°,则EF的长为()A.4B.6C.D.29.(3分)已知a+b=﹣5,ab=1,则+的值是()A.﹣1B.0C.1D.510.(3分)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE与BF相交于O;下列结论:(1)AE=BF;(2)AE⊥BF;(3)AD=OE;(4)S△AOB=S四边形DEOF.其中正确的有()A.4个B.3个C.2个D.1个二.填空题(每小题3分,共15分)11.(3分)在Rt△ABC中,如果斜边上的中线CD=5cm,那么AB=cm.12.(3分)如果最简二次根式与可以合并成一个二次根式,则a=.13.(3分)如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,则∠BCE的度数是.14.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为.15.(3分)如图所示,一只蚂蚁沿边长a的正方体表面从顶点A爬到顶点B,则它走过的路程最短为.三.解答题.(8个小题,共75分)16.(6分)计算:﹣×÷17.(8分)如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,求AD的长.18.(9分)如图,北部湾诲面有一艘解放军军舰正在基地A的正东方向且距A地40海里的B处训练,突然接到基地命令,要该舰前往C岛接送一名患病的渔民到基地的医院救治.已知C岛在基地A的北偏东58°方向且距基地A32海里,在B处的北偏西32°的方向上.军舰从B处出发,平均每小时行驶40海里.问至少需要多长时间能把患病渔民送到基地?19.(9分)如图所示,▱ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.20.(10分)如图,∠ABC=90°,AB=6cm,AD=24cm,BC+CD=34cm,C是直线l上一动点,请你探索当C离B多远时,△ACD是一个以CD为斜边的直角三角形?21.(10分)如图:在△ABC中,CE、CF分别平分∠ACB与它的邻补角∠ACD,AE⊥CE于E,AF⊥CF于F,直线EF分别交AB、AC于M、N.求证:(1)四边形AECF为矩形;(2)试猜想MN与BC的关系,并证明你的猜想.22.(11分)观察下列各式,发现规律:=2=3=4(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含正整数n的代数式把你们所发现的规律表示出来.23.(12分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.2018-2019学年河南省周口市鹿邑县八年级(下)期中数学试卷参考答案与试题解析一、选择题.(每题只有一个正确答案,请将正确答案填在下面的表格里每题3分,共30分)1.【解答】解:∵在▱ABCD中∠A=40°,∴∠C=∠A=40°,.故选:D.2.【解答】解:A、不是正整数,不是勾股数,此选项正确;B、72+242=252,能构成直角三角形,是整数,故是勾股数,此选项错误;C、62+82=102,三边是整数,同时能构成直角三角形,故是勾股数,此选项错误;D、82+152=172,是正整数,故是勾股数,此选项错误.故选:A.3.【解答】解:(A)对角线相等是矩形具有的性质,菱形不一定具有;(B)对角线互相平分是菱形和矩形共有的性质;(C)对角线互相垂直是菱形具有的性质,矩形不一定具有;(D)邻边互相垂直是矩形具有的性质,菱形不一定具有.故选:C.4.【解答】解:A、∵l1∥l2,AB∥CD,∴四边形ABDC是平行四边形,∴AB=CD,故本选项正确;B、∵l1∥l2,CE⊥l2于点E,FG⊥l2于点G,∴四边形CEGF是平行四边形,∴CE=FG,故本选项正确;C、∵AB是线段,∴A、B两点间距离就是线段AB的长度,故本选项正确;D、∵CE⊥l2于点E,∴l1与l2两平行线间的距离就是线段CE的长度,故本选项错误.故选:D.5.【解答】解:如图,∵四边形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,∵两条对角线的比是4:3,∴OB:OA=4:3,设OB=4xcm,OA=3xcm,在Rt△AOB中,AB==5x(cm),∵一个菱形的周长是20cm,∴4×5x=20,解得:x=1,∴AC=6cm,BD=8cm,∴这个菱形的面积是:AC•BD=×6×8=24(cm2).故选:B.6.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=30°,∴∠PEF=∠PFE=30°.故选:D.7.【解答】解:(1)当三边是3,35时,3+3=<5,不符合三角形的三边关系,应舍去;(2)当三边是3,5,5时,符合三角形的三边关系,此时周长是3+10;所以这个三角形的周长是3+10.故选:B.8.【解答】解:∵矩形对边AD∥BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴OE=OF,又∵EF⊥AC,∴四边形AECF是菱形,∵∠DCF=30°,∴∠ECF=90°﹣30°=60°,∴△CEF是等边三角形,∴EF=CF,∵AB=2,∴CD=AB=2,∵∠DCF=30°,∴CF=2÷=4,∴EF=4,故选:A.9.【解答】解:∵a+b=﹣5,ab=1,∴a<0,b<0,+=﹣﹣=﹣,∵a+b=﹣5,ab=1,∴原式=﹣=5.故选:D.10.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠ADE=90°.∵CE=DF,∴AF=DE.在△ABF和△DAE中,,∴△ABF≌△DAE.∴AE=BF,故(1)正确.∵△ABF≌△DAE,∴∠AFB=∠AED.∵∠AED+∠DAE=90°,∴∠AFB+∠DAE=90°,∴∠AOF=90°,即AE⊥BF,故(2)正确.∵△ABF≌△DAE,∴S△ABF=S△ADE.∴S△AOB=S△ABF﹣S△AOF,S四边形DEOF=S△ADE﹣S△AOF,即∴S△AOB=S四边形DEOF.如图所示:过点E作EG⊥AB,则EG=AD.∵HE>OE,GE>HE,∴GE>OE.∴AD>OE,故(3)错误.故选:B.二.填空题(每小题3分,共15分)11.【解答】解:∵在Rt△ABC中,如果斜边上的中线CD=5cm,∴AB=2CD=10cm,故答案为:10.12.【解答】解:∵最简二次根式与可以合并成一个二次根式,∴3a﹣8=7,∴a=5.故答案为5.13.【解答】解:∵四边形ABCD是正方形,∴∠CAE=45°=∠ACB.∵AE=AC,∴∠ACE=(180°﹣45°)÷2=67.5°.∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°.故答案为22.5°.14.【解答】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC=,S△BAC=×AB×AC=×BC×AE,∴2=AE,∴AE=,故答案为:.15.【解答】解:如图,则AB===a.故答案为:a.三.解答题.(8个小题,共75分)16.【解答】解:原式=3﹣12××=3﹣4.17.【解答】解:∵四边形ABCD是矩形,∴OB=OD,OA=OC,AC=BD,∴OA=OB,∵AE垂直平分OB,∴AB=AO,∴OA=AB=OB=3,∴BD=2OB=6,∴AD===3.18.【解答】解:根据题意,得∠CAB=32°,∠CBA=58°,则∠C=180°﹣32°﹣58°=90°,在Rt△ACB中,BC==24(海里),则AC+CB=32+24=56(海里),56÷40=1.4(小时).故至少需要1.4小时长时间能把患病渔民送到基地.19.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C.又∵AE=CF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB,DE=BF.由四边形ABCD是平行四边形,∴DC∥AB.∴∠CFB=∠ABF.∴∠AED=∠ABF.∴ME∥FN.又∵M、N分别是DE、BF的中点,且DE=BF,∴ME=FN.∴四边形ENFM是平行四边形.20.【解答】解:设BC=xcm时,三角形ACD是以DC为斜边的直角三角形,∵BC+CD=34,∴CD=34﹣x,在Rt△ABC中,AC2=AB2+BC2=36+x2,在Rt△ACD中,AC2=CD2﹣AD2=(34﹣x)2﹣576,∴36+x2=(34﹣x)2﹣576,解得x=8.∴当C离点B8cm时,△ACD是以DC为斜边的直角三角形.21.【解答】(1)证明:∵AE⊥CE于E,AF⊥CF于F,∴∠AEC=∠AFC=90°,又∵CE、CF分别平分∠ACB与它的邻补角∠ACD,∴∠BCE=∠ACE,∠ACF=∠DCF,∴∠ACE+∠ACF=(∠BCE+∠ACE+∠ACF+∠DCF)=×180°=90°,∴三个角为直角的四边形AECF为矩形;(2)解:MN∥BC且;证明:∵四边形AECF为矩形,∴对角线相等且互相平分,∴NE=NC,∴∠NEC=∠ACE=∠BCE,∴MN∥BC,又∵AN=CN(矩形的对角线相等且互相平分),∴MN是△ABC的中位线,∴MN=BC.22.【解答】解:(1)由已知等式可得=;=.故答案为:;;(2)=====;(3)归纳总结得:.23.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.。
周口市八年级下学期期中数学试卷
周口市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八下·高新期末) 如图,函数和的图象相交于A(m,3),则不等式的解集为()A .B .C .D .2. (2分) (2019八下·邢台期中) 小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确是().A . 两人从起跑线同时出发,同时到达终点B . 小苏跑全程的平均速度大于小林跑全程的平均速度C . 小苏前跑过的路程大于小林前跑过的路程D . 小林在跑最后的过程中,与小苏相遇2次3. (2分) (2017八上·辽阳期中) 若式子有意义,则一次函数的图象可能是()A .B .C .D .4. (2分)(2017·广元) 为了节能减排,鼓励居民节约用电,某市出台了新的居民用电收费标准:(1)若每户居民每月用电量不超过100度,则按0.60元/度计算;(2)若每户居民每月用电量超过100度,则超过部分按0.8元/度计算(未超过部分仍按每度电0.60元/度计算),现假设某户居民某月用电量是x(单位:度),电费为y(单位:元),则y与x的函数关系用图象表示正确的是()A .B .C .D .5. (2分)(2019·新乡模拟) 已知一次函数y=kx+b中,x取不同值时,y对应的值列表如下:则不等式kx+b >0(其中k,b,m,n为常数)的解集为()A . x>2B . x>3C . x<2D . 无法确定6. (2分)(2020·石家庄模拟) 下图中反比例函数y=与一次函数y=kx﹣k在同一直角坐标系中的大致图象是()A .B .C .D .7. (2分)甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是()A . 甲乙两人8分钟各跑了800米B . 前2分钟,乙的平均速度比甲快C . 5分钟时两人都跑了500米D . 甲跑完800米的平均速度为100米∕分8. (2分)(2014·四川理) 函数y=3x-6和y=-x+4的图象交于一点,这一点的坐标是()A .B .C .D . (-2,3)9. (2分)函数y=x-2的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限10. (2分)一家电信公司给顾客提供两种上网收费方式:方式A以每分0.1元的价格按上网所用时间计算;方式B除收月基费20元外.再以每分0.05元的价格按上网所用时间计费。
周口市八年级下学期期中数学试卷
周口市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·港闸期末) 下列运算正确的是()A . 2a+6b=8abB . 4x2y﹣5xy2=﹣x2yC . a2b﹣3ba2=﹣2a2bD . ﹣(﹣a﹣b)=a﹣b2. (2分) (2017八下·龙海期中) 有理式,(x+y),,,中分式有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2017八下·龙海期中) 在平面直角坐标系中,点(3,﹣2)所在象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分) (2017八下·龙海期中) 下列式子成立的是()A .B .C .D .5. (2分) (2017八下·龙海期中) 有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A . 12×108B . 12×10﹣8C . 1.2×10﹣8D . 1.2×10﹣96. (2分) (2017八下·龙海期中) 下列命题是假命题的是()A . 平行四边形的对角线互相平分B . 平行四边形的对角相等C . 平行四边形是轴对称图形D . 平行四边形是中心对称图形7. (2分) (2017八下·龙海期中) 对于函数y= (k>0),下列说法正确的是()A . y随x的增大而减小B . y随x的增大而增大C . 当x<0时,y随x的增大而减小D . 图象在第二、四象限内8. (2分) (2017八下·龙海期中) 若点M(x,y)的坐标满足x2﹣y2=0,则点M的位置是()A . 在第二、四象限坐标轴夹角的平分线B . 在坐标轴夹角的平分线上C . 在第一、三象限坐标轴夹角的平分线上D . 在坐标轴上9. (2分) (2017八下·龙海期中) 在给定的条件中,能画出平行四边形的是()A . 以60cm为一条对角线,20cm,34cm为两条邻边B . 以6cm,10cm为两条对角线,8cm为一边C . 以20cm,36cm为两条对角线,22cm为一边D . 以6cm为一条对角线,3cm,10cm为两条邻边10. (2分) (2017八下·龙海期中) 如图,点P是x轴正半轴上的一个动点,过点P作PQ⊥x轴交双曲线y=(x>0)于点Q,连结OQ,当点P沿x轴的正方向运动时,Rt△QOP的面积()A . 保持不变B . 逐渐减少C . 逐渐增大D . 无法确定二、填空题 (共6题;共6分)11. (1分)已知,则的值为________.12. (1分)若一个偶数的立方根比2大,平方根比4小,则这个数一定是________.13. (1分) (2019七下·普陀期中) 如图,以数轴的单位长度线段为边做一个正方形以表示数2的点为圈心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是________14. (1分) (2017八上·肥城期末) 如图,已知AB=A1B,A1C=A1A2 , A2D=A2A3 , A3E=A3A4 ,∠B=20°,则∠A4=________度.15. (1分) (2018八上·东台月考) 如图,在平面直角坐标系中,△P1OA1 ,△P2A1A2 ,△P3A2A3 ,…都是等腰直角三角形,其直角顶点P1(3,3),P2 , P3 ,…均在直线y=﹣ x+4上.设△P1OA1 ,△P2A1A2 ,△P3A2A3 ,…的面积分别为S1 , S2 , S3 ,…,依据图形所反映的规律,S2018=________.16. (1分) (2017八下·龙海期中) 某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意列方程为________.三、解答题 (共9题;共95分)17. (20分)用简便方法计算:(1)(﹣9)3×(﹣)3×()3(2)﹣0.2514×230(3) 1007×993(4) 9982 .18. (5分)(2019·揭阳模拟) 计算:19. (10分)计算题:计算(1)计算:()﹣1﹣3tan30°+(1﹣π)0 .(2)解分式方程: = ﹣1.20. (5分) (2017八下·龙海期中) 如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,求EC的长.21. (5分) (2017八下·龙海期中) 若关于x的方程 + = 有增根,求增根和m的值.22. (10分) (2017八下·龙海期中) 已知甲加工A型零件60个所用时间和乙加工B型零件80个所用时间相同,甲、乙两人每天共加工35个零件,设甲每天加工x个A型零件.(1)求甲、乙每天各加工零件多少个?(2)根据市场预测,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A 型少1元.求甲、乙每天加工的零件所获得的总利润P(元)与m的函数关系式,并求P的最大值和最小值.23. (10分) (2017八下·龙海期中) 我市某医药公司把一批药品运往外地,现有两种运输方式可供选择,方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用快递公司的火车运输,装卸收费820元,另外每公里再加收2元,(1)请分别写出邮车、火车运输的总费用y1、y2(元)与运输路程x公里之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?24. (15分) (2017八下·龙海期中) 在平面直角坐标系中,已知直线AB 与y轴交于点A,与x轴交于点B,与双曲线y= (x>0)交于点C(1,6)和点D(3,n).作CE⊥y轴于E,DF⊥x轴于F.(1)求出m、n的值;(2)求出直线AB的解析式;(3)是否有△AEC≌△DFB,并说明理由.25. (15分) (2017八下·龙海期中) 已知直线AB:y=﹣ x+5与x轴、y轴分别交于点A、B,y轴上点C 的坐标为(0,10).(1)求A、B两点的坐标;(2)动点M从A点出发,以每秒1个单位长度的速度,沿x轴向左运动,连接CM.设点M的运动时间为t,△COM的面积为S,求S与t的函数关系式;(并标出自变量的取值范围)(3)直线AB与直线CM相交于点N,点P为y轴上一点,且始终保持PM+PN最短,当t为何值时,△COM≌△AOB,并求出此时点P的坐标.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共95分)17-1、17-2、17-3、17-4、18-1、19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、第11 页共11 页。
周口市数学八年级下学期期中模拟试卷
周口市数学八年级下学期期中模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列不是最简二次根式的是()A .B .C .D .2. (2分)下列说法中正确的是()A . 已知是三角形的三边,则B . 在直角三角形中,两边的平方和等于第三边的平方C . 在Rt△ 中,∠ °,所以D . 在Rt△ 中,∠ °,所以3. (2分)如图,已知AB∥CD,∠1=56°,则∠2的度数是()A . 34°B . 56°C . 65°D . 124°4. (2分)如图,矩形ABCD中,AB=8cm,AD=6cm,EF是对角线BD的垂直平分线,则EF的长为()A . cmB . cmC . cmD . 8cm5. (2分)如图,在矩形ABCD中,AB=9,BC=12,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A . 4B . 6C . 8D . 96. (2分)(2011·泰州) 四边形ABCD中,对角线AC、BD相交于点O,给出下列四组条件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判断这个四边形是平行四边形的条件共有()A . 1组B . 2组C . 3组D . 4组7. (2分)从边长为a的大正方形纸板中挖去一个边长为b的小正方形后,将其裁成四个相同的等腰梯形(如图1),然后拼成一个平行四边形(如图2)。
那么通过计算两个图形的阴影部分的面积,可以验证成立的公式是()A . a2-b2=(a-b)2B . (a+b)2=a2+2ab+b2C . (a-b)2=a2-2ab+b 2D . a2-b2=(a-b)(a+b)8. (2分)如图,给出了正方形ABCD的面积的四个表达式,其中错误的是()A . (x+a)(x+a)B . x2+a2+2axC . (x-a)(x-a)D . (x+a)a+(x+a)x9. (2分)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,4),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A . 5B . 4C . 3D . 410. (2分)(2018·丹江口模拟) 如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE,将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①点G是BC中点;②FG=FC;③与∠AGB相等的角有5个;④S△FGC= .其中正确的是()A . ①③B . ②③C . ①④D . ②④二、填空题 (共8题;共8分)11. (1分)对于任意非零实数x,y,定义新运算“ × ”:x × y=ax-by.若2 × 3=2,3 × 5=2,则3 × 4=________.12. (1分) (2019八上·嘉兴期末) 小明从A处出发沿北偏东40°的方向走了30米到达B处:小军也从A 处出发,沿南偏东a°(0<a<90)的方向走了40米到达C处.若B、C两处的距离为50米,则a=________.13. (1分) (2020七下·岳阳期中) 化简: ________.14. (1分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是________ .15. (1分) (2020八下·海港期中) 三角形两边的长分别是8cm和15cm,第三边的长是方程x2﹣24x+119=0的一个实数根,则三角形的面积是________.16. (1分) (2015八下·鄂城期中) 一根旗杆在离底部4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为________17. (1分)如图,在△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为________18. (1分)(2019·颍泉模拟) 如图,CD=4,∠C=90°,点B在线段CD上,,沿AB所在的直线折叠△ACB得到△AC′B,若△DC′B是以BC'为腰的等腰三角形,则线段CB的长为________.三、解答题 (共3题;共15分)19. (5分)定理证明:平行四边形的对边相等.20. (5分) (2017八下·河东期中) 如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE∥BD,DE∥AC,CE与DE交于点E,请探索DC与OE的位置关系,并说明理由.21. (5分)(2019·郴州) 如图,中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.四、计算题 (共1题;共5分)22. (5分)如图1,⊙O的半径为r(r>0),若点P′在射线OP上,满足OP′•OP=r2 ,则称点P′是点P 关于⊙O的“反演点”.如图2,⊙O的半径为4,点B在⊙O上,∠BOA=60°,OA=8,若点A′,B′分别是点A,B关于⊙O的反演点,求A′B′的长.五、综合题 (共3题;共30分)23. (10分)(2012·南通) 计算:(1) |﹣1|+(﹣2)2+(7﹣π)0﹣()﹣1(2)÷ ﹣× + .24. (10分) (2017八上·高邑期末) 如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D 在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.25. (10分) (2019八下·大埔期末) 已知四边形ABCD是菱形(四条边都相等的平行四边形).AB=4,∠ABC =60°,∠EAF的两边分别与边BC , DC相交于点E , F ,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE , EF , AF之间的数量关系为:________.(2)如图2,当点E是线段CB上任意一点时(点E不与B , C重合),求证:BE=CF;(3)求△AEF周长的最小值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共3题;共15分)19-1、20-1、21-1、四、计算题 (共1题;共5分)22-1、五、综合题 (共3题;共30分)23-1、23-2、24-1、24-2、25-1、25-2、25-3、第11 页共11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年河南省周口市川汇区八年级(下)期中数学试卷一、选择题下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.二次根式中,a的取值范围是()A.a≥1B.a≥﹣1C.a≤1D.a≤﹣12.下列二次根式中,最简二次根式是()A.B.C.D.3.下列计算正确的是()A.B.C.D.4.如图,正方形的一个顶点为A,有两个顶点对应于数轴上表示1和2的两点,以原点O为圆心,以OA为半径顺时针画弧,交数轴于点B,则点B对应的数是()A.B.C.D.5.下列长度的三条线段不能组成直角三角形的是()A.1,,B.,,C.1,,2D.,3,6.在平行四边形ABCD中,已知∠A+∠C=76°,则下列正确的是()A.∠A=28°B.∠B=142°C.∠C=48°D.∠D=152°7.在△ABC中,点D在AB上,AD=3DB,点E在AC上,且AE=3EC,若BC=8,则DE等于()A.3B.4C.5D.68.四边形ABCD的对角线AC,BD交于点O,AB∥CD,要使四边形是平行四边形,下列添加条件不正确的是()A.AO=OB B.BC∥AD C.AB=CD D.∠BAD=∠DCB9.菱形的两条对角线长分别为6和8,则它的周长等于()A.10B.14C.15D.2010.如图,在正方形ABCD和正方形CEFG中,点E在边BC上的延长线上,点G在CD上,若AB=2,则线段DF的最小值为()A.1B.C.D.2二、填空题11.化简:=.12.若等边三角形的面积为,则它的边长为.13.在平面直角坐标系中,A(x,y)到原点的距离为.14.我国南宋时期数学家秦九韶,曾提出利用三角形的三边求面积的秦九韶公式.若已知△ABC的三边长分别为1,2,,则这个三角形的面积等于.15.已知∠MON=90°,点A在射线OM上,点B在射线ON上,OA=8,OB=6,点C在线段AO上,△BCD和△BCO关于直线BC对称,若△ACD是直角三角形,则AC的长是.三、解答题16.计算:(1);(2).17.计算:(1)已知x=2﹣,求代数式x2﹣4x+1的值;(2)已知a=1+,b=1﹣,求代数式a2﹣b2的值.18.如图,一架6.5m长的梯子AB斜靠在一竖直的墙AO上,这时BO为2.5m.如果将梯子的低端B外移1.4m,顶端A沿着墙壁也下滑1.4m吗?19.如图,每个小正方形的边长都是1,在网格线上建立坐标系,已知A(﹣2,0),B(﹣1,﹣2),C(2,﹣1),D(1,1).(1)画出四边形ABCD;(2)判断四边形ABCD的形状并说明理由.20.如图,在菱形ABCD中,AE⊥BC于点E,交对角线BD于点F.(1)填空:点F到CD的距离等于线段的长(仅限图中线段);(2)若∠BCD=130°,求∠AFB的度数.21.如图,在△ABC中,∠C=90°,点D在斜边AB上,E、F分别在直角边CA、BC上,且DE⊥AC,DF∥AC.(1)求证:四边形CEDF是矩形;(2)填空:连接EF,若AC=3,BC=4,则EF的最小值是.22.如图,在矩形ABCD中,AB=4,AD=6,点E在BC上,BE=2,点F在CD上,DF=1.求证:AE⊥BF.小明做了如下尝试:延长CD至点G,使DG=CF,连接AG,发现四边形ABFG是平行四边形;连接EG,如果能证明△AEG是直角三角形,问题就得到解决.请你完成证明过程.23.如图,在四边形ABCD中,AD∥BC,∠ABC=30°,∠BCD=60°,AD=4,CD=3.(1)求线段BC的长;(2)填空:点E在BC上,G,F,H分别是AB,BE,AE的中点.①当EC=时,四边形AGFH是菱形;②当EC=时,四边形AGFH是矩形.2018-2019学年河南省周口市川汇区八年级(下)期中数学试卷参考答案一、选择题下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内. 1.解:由题意可知:1﹣a≥0,∴a≤1,故选:C.2.解:A、=2,故A错误;B、=,故B错误;C、是最简二次根式,故C正确;D、=,故D错误,故选:C.3.解:A、+不是同类二次根式,无法合并,故此选项错误;B、﹣不是同类二次根式,无法合并,故此选项错误;C、×=3,正确;D、÷=,故此选项错误;故选:C.4.解:∵OB=OA==,∴点B对应的实数为,故选:B.5.解:A、12+()2=()2,能组成直角三角形;B、()2+()2=()2,能组成直角三角形;C、12+()2=22,能组成直角三角形;D、()2+()2≠32,不能组成直角三角形.故选:D.6.解:▱ABCD中,∠A=∠C,∵∠A+∠C=76°,∴∠A=×76°=38°,∠B=180°﹣∠A=180°﹣38°=142°.故选:B.7.解:如图所示,∵AD=3DB,AE=3EC,∴,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,即,∴DE=6,故选:D.8.解:如图,∵AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,故B选项不合题意,∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,故C选项不合题意,∴∠BAD+∠ADC=180°,∠ABC+∠BCD=180°,且∠BAD=∠DCB,∴∠ABC=∠ADC,∴四边形ABCD是平行四边形,故D选项不合题意,若AO=BO,无法证明四边形ABCD是平行四边形,故A符合题意,故选:A.9.解:如图所示,∵四边形ABCD是菱形,∴AO=×8=4,BO=×6=3,AB=BC=CD=DA,AC⊥BD,∴△AOB是直角三角形,∴AB===5,∴此菱形的周长=5×4=20.故选:D.10.解:如图,连接CF,并延长CF,∵四边形CEFG是正方形,∴∠DCF=∠DCE=45°,∴点F在∠DCE的角平分线上,∴当DF⊥CF时,DF的长最小,∵DF⊥CF,∠DCF=45°,∴∠DCF=∠CDF=45°,∵DF2+CF2=CD2=4,∴DF=,故选:B.二、填空题11.解:==,故答案为:.12.解:如图,作AD⊥BC于点D.设AB=BC=AC=x,则AD=AB×sin∠B=x,故边长为x的等边三角形的面积为×x×x=,解得:x=1,故答案为:113.解:平面直角坐标系中任意一点A(x,y)到原点的距离OA=,故答案为:.14.解:∵△ABC的三边长分别为1,2,,∴===.故答案为:.15.解:①当∠DCA=90°时,∵△BCD和△BCO关于直线BC对称,∴∠BCO=∠DCB=45°,∴在Rt△OCB中,OC=OB=6,∴AC=OA﹣OC=8﹣6=2;②当∠DAC=90°时,作DE⊥BC于点E,∵∠DAC=90°,DE⊥BC,OB⊥OA,∴∠DAC=∠DEO=∠EOA=90°,∴四边形DEOA是矩形,∴DE=OA=8,OE=DA,设DA=x,则BE=OB﹣OE=6﹣x,∵△BCD和△BCO关于直线BC对称,∴BD=BO=6,∴BD2=BE2+DE2,∴62=(6﹣x)2+82,∴(6﹣x)2=﹣28,此方程无解,∴此情况不存在;③当∠CDA=90°时,∵∠BDC=∠BOC=90°,∴∠CDA+∠BDC=180°,∴A、D、B三点共线,∴AB2=OB2+OA2=62+82=100,∴AB=10,∴AD=AB﹣BD=10﹣6=4,设AC=x,则DC=OC=OA﹣AC=8﹣x,在Rt△ADC中,AC2=CD2+AD2,∴x2=(8﹣x)2+42,解得x=5,即AC=5,综上所述,AC的长为2或5.故答案为:2或5.三、解答题16.解:(1)原式=(2x﹣x)÷=x•=3x;(2)原式=(2﹣)(+)=2+12﹣﹣=+11.17.解:(1)x2﹣4x+1=x2﹣4x+4﹣4+1=(x﹣2)2﹣3,当x=2﹣时,原式=(2﹣﹣2)2﹣3=3﹣3=0;(2)a2﹣b2=(a+b)(a﹣b)=(1++1﹣)(1+﹣1+)=2×2=4.18.解:依题意,得AB=6.5,BO=2.5,在Rt△AOB中,根据勾股定理,可得:OA=,在Rt△COD中,根据勾股定理,可得:OC=,∴顶端A沿着墙壁下滑了6﹣5.2=0.8≠1.4,答:顶端A沿着墙壁没有下滑1.4m.19.解:(1)四边形ABCD即为所求;(2)四边形ABCD是平行四边形.理由如下:∵A(﹣2,0),B(﹣1,﹣2),C(2,﹣1),D(1,1).∴AB=CD=,AD=BC=,∴四边形ABCD是平行四边形.20.解:(1)连接CF,如图:∵四边形ABCD是菱形,∴AD∥BC,∵AE⊥BC,∴AE⊥AD,∵菱形ABCD是轴对称图形,直线BD是一条对称轴,∴点C和A关于直线BD对称,∴CF=AF,FC⊥CD,∴点F到CD的距离等于线段AF的长;故答案为:AF;(2)∵四边形ABCD是菱形,∴BC=DC,∴∠CBD=∠CDB=(180°﹣∠BCD)=(180°﹣130°)=25°,∵AE⊥BC,∴∠FEB=90°,∴∠AFB=∠FEB+∠CBD=115°.21.解:(1)∵DF∥AC,∠C=90°,∴∠DFC=∠C=90°,∵DE⊥AC,∴∠DEC=∠DFC=∠C=90°,∴四边形CEDF是矩形;(2)连接CD,∵AC=3,BC=4,∴AB===5,∵四边形CEDF是菱形,∴CD=EF,∴当CD有最小值时,EF的值最小,∴当CD⊥AB时,CD有最小值,即EF有最小值,此时:×AC×BC=×AB×CD,∴CD==,∴CD的最小值为,故答案为:.22.证明:如图,延长CD至点G,使DG=CF,连接AG,∵四边形ABCD是矩形,∴AB∥CD,AB=CD=4,BC=AD=6,∵DG=CF,∴DG+DF=CF+DF,即GF=DC,∴GF=AB=4,∴四边形ABFG是平行四边形,连接EG,在Rt△CGE中,CG=DG+CD=CF+CD=CD﹣DF+CD=4﹣1+4=7,CE=BC﹣BE=6﹣2=4,根据勾股定理,得EG2=CG2+CE2=49+16=65.在Rt△ABE中,AB=4,BE=2,根据勾股定理,得AE2=AB2+BE2=16+4=20.在Rt△ADG中,DG=CF=CD﹣DF=4﹣1=3,AD=6,根据勾股定理,得AG2=DG2+AD2=9+36=45.∵65=20+45,∴EG2=AE2+AG2,∴△AEG是直角三角形.∴∠EAG=90°,∴AE⊥AG,∵BF∥AG∴AE⊥BF.23.解:(1)如图,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AD∥BC,AM⊥BC,DN⊥BC,∴AM⊥AD,DN⊥AD,∴四边形ADNM是矩形,∴AM=DN,AD=MN=4,∵∠BCD=60°,CD=3,DN⊥BC,∴CN=,DN=CN=,∴AM=,∵∠ABC=30°,AM⊥BC,∴AB=3,BM=AM=,∴BC=BM+MN+CN=10;(2)①∵G,F,H分别是AB,BE,AE的中点.∴GF∥AE,GF=AE,FH∥AB,FH=AB,若四边形AGFH是菱形,∴FH=GF,∴AB=AE,∴BE=2×=9,∴EC=1,当EC=1时,四边形AGFH是菱形;②若四边形AGFH是矩形,∴∠BAE=90°,且∠ABC=30°,∴AB=AE=3,BE=2AE,∴BE=6,∴EC=4,当EC=4时,四边形AGFH是矩形,故答案为:1,4.。