东北大学考试《离散数学X》考核作业参考705

合集下载

2023学堂在线网课《离散数学》课后作业单元考核答案

2023学堂在线网课《离散数学》课后作业单元考核答案

2023学堂在线网课《离散数学》课后作业单元考核答案第一单元答案1.1题目:在集合 {1, 2, 3, 4} 上定义一个二元关系 R,其中 R = {(1,1), (2,2), (3,3), (4,4), (1,4), (4,1)}。

给出 R 的自反、对称、反对称和传递性特点。

•自反特性:对于任意元素x ∈ {1, 2, 3, 4},都存在 (x, x) ∈ R。

所以,R 是自反的。

•对称特性:对于任意的(x, y) ∈ R,都存在(y, x) ∈ R。

所以,R 是对称的。

•反对称特性:对于任意的(x, y) ∈ R,如果存在 (y, x) ∈ R,那么 x = y。

所以,R 是反对称的。

•传递性特性:对于任意的(x, y) ∈ R 和(y, z) ∈ R,都存在(x, z) ∈ R。

所以,R 是传递的。

1.2题目:在集合 {1, 2, 3, 4} 上定义一个二元关系 R,其中 R = {(1,1), (1,2), (2,1), (2,2), (3,3), (3,4), (4,3), (4,4)}。

给出 R 的自反、对称、反对称和传递性特点。

•自反特性:对于任意元素x ∈ {1, 2, 3, 4},都存在 (x, x) ∈ R。

所以,R 是自反的。

•对称特性:对于任意的(x, y) ∈ R,都存在(y, x) ∈ R。

所以,R 是对称的。

•反对称特性:对于任意的(x, y) ∈ R,如果存在 (y, x) ∈ R,那么 x = y。

所以,R 是反对称的。

•传递性特性:对于任意的(x, y) ∈ R 和(y, z) ∈ R,都存在(x, z) ∈ R。

所以,R 是传递的。

第二单元答案2.1题目:证明或给出一个反例:若 R 是集合 A 上的一个等价关系,且对于任意 a, b ∈ A,有 (a, b) ∈ R 或 (b, a) ∈ R,那么 A 必然可以划分为若干等价类。

假设 R 是集合 A 上的一个等价关系,且对于任意a, b ∈ A,有(a, b) ∈ R 或(b, a) ∈ R。

离散数学形考任务1-7试题及答案完整版

离散数学形考任务1-7试题及答案完整版

2017年11月上交的离散数学形考任务一本课程的教学内容分为三个单元,其中第三单元的名称是(A ).选择一项:A. 数理逻辑B. 集合论C. 图论D. 谓词逻辑题目2答案已保存满分10.00标记题目题干本课程的教学内容按知识点将各种学习资源和学习环节进行了有机组合,其中第2章关系与函数中的第3个知识点的名称是(D ).选择一项:A. 函数B. 关系的概念及其运算C. 关系的性质与闭包运算D. 几个重要关系题目3答案已保存满分10.00标记题目题干本课程所有教学内容的电视视频讲解集中在VOD点播版块中,VOD点播版块中共有(B)讲.选择一项:A. 18B. 20C. 19D. 17题目4答案已保存满分10.00标记题目题干本课程安排了7次形成性考核作业,第3次形成性考核作业的名称是( C).选择一项:A. 集合恒等式与等价关系的判定B. 图论部分书面作业C. 集合论部分书面作业D. 网上学习问答题目5答案已保存满分10.00标记题目题干课程学习平台左侧第1个版块名称是:(C).选择一项:A. 课程导学B. 课程公告C. 课程信息D. 使用帮助题目6答案已保存满分10.00标记题目题干课程学习平台右侧第5个版块名称是:(D).选择一项:A. 典型例题B. 视频课堂C. VOD点播D. 常见问题题目7答案已保存满分10.00标记题目题干“教学活动资料”版块是课程学习平台右侧的第( A )个版块.选择一项:A. 6B. 7C. 8D. 9题目8答案已保存满分10.00标记题目题干课程学习平台中“课程复习”版块下,放有本课程历年考试试卷的栏目名称是:(D ).选择一项:A. 复习指导B. 视频C. 课件D. 自测请您按照课程导学与章节导学中安排学习进度、学习目标和学习方法设计自己的学习计划,学习计划应该包括:课程性质和目标(参考教学大纲)、学习内容、考核方式,以及自己的学习安排,字数要求在100—500字.完成后在下列文本框中提交.解答:学习计划学习离散数学任务目标:其一是通过学习离散数学,使学生了解和掌握在后续课程中要直接用到的一些数学概念和基本原理,掌握计算机中常用的科学论证方法,为后续课程的学习奠定一个良好的数学基础;其二是在离散数学的学习过程中,培养自学能力、抽象思维能力和逻辑推理能力,解决实际问题的能力,以提高专业理论水平。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

国家开放大学电大本科《离散数学》网络课形考网考作业及答案

国家开放大学电大本科《离散数学》网络课形考网考作业及答案

国家开放大学电大本科《离散数学》网络课形考网考作业及答案国家开放大学电大本科《离散数学》网络课形考网考作业及答案100%通过考试说明:2022年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

课程总成绩=形成性考核×30%+终结性考试×70%形考任务1单项选择题题目1若集合A={a,{a},{1,2}},则下列表述正确的是().选择一项:题目2若集合A={2,a,{a},4},则下列表述正确的是().选择一项:题目3设集合A={1,2,3,4}上的二元关系R={<1,1>,<2,2>,<2,3>,<4,4>},S={<1,1>,<2,2>,<2,3>,<3,2>,<4,4>},则S是R的()闭包.选择一项:A.传递B.对称C.自反和传递D.自反题目4设集合A={1,2,3},B={3,4,5},C={5,6,7},则A∪B–C=().选择一项:A.{1,2,3,5}B.{4,5,6,7}C.{2,3,4,5}D.{1,2,3,4}题目5如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:A.1B.3C.2D.0题目6集合A={1,2,3,4}上的关系R={<x,y>|x=y且x,y∈A},则R的性质为().选择一项:A.不是对称的B.反自反C.不是自反的D.传递的题目7若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是().选择一项:题目8设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:A.3B.2C.8D.6题目9设A={1,2,3,4,5,6,7,8},R是A上的整除关系,B={2,4,6},则集合B的最大元、最小元、上界、下界依次为().选择一项:A.6、2、6、2B.无、2、无、2C.8、1、6、1D.8、2、8、2题目10设集合A={1,2,3}上的函数分别为:f={<1,2>,<2,1>,<3,3>},g={<1,3>,<2,2>,<3,2>},h={<1,3>,<2,1>,<3,1>},则h=().选择一项:A.f◦fB.g◦fC.g◦gD.f◦g判断题题目11设A={1,2}上的二元关系为R={<x,y>|xA,yA,x+y=10},则R的自反闭包为{<1,1>,<2,2>}.()选择一项:对错题目12空集的幂集是空集.()选择一项:对错题目13设A={a,b},B={1,2},C={a,b},从A到B的函数f={<a,1>,<b,2>},从B到C的函数g={<1,b>,<2,a>},则g°f={<1,2>,<2,1>}.()选择一项:对错题目14设集合A={1,2,3,4},B={2,4,6,8},下列关系f={<1,8>,<2,6>,<3,4>,<4,2,>}可以构成函数f:.()选择一项:对错题目15设集合A={1,2,3},B={2,3,4},C={3,4,5},则A∩(C-B)={1,2,3,5}.()选择一项:对错题目16如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对错题目17设集合A={a,b,c,d},A上的二元关系R={<a,b>,<b,a>,<b,c>,<c,d>},则R具有反自反性质.()选择一项:对错题目18设集合A={1,2,3},B={1,2},则P(A)-P(B)={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对错题目19若集合A={1,2,3}上的二元关系R={<1,1>,<1,2>,<3,3>},则R是对称的关系.()选择一项:对错题目20设集合A={1,2,3,4},B={6,8,12},A到B的二元关系R=那么R-1={<6,3>,<8,4>}.()选择一项:对错形考任务2单项选择题题目1无向完全图K4是().选择一项:A.树B.欧拉图C.汉密尔顿图D.非平面图题目2已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为().选择一项:A.4B.8C.3D.5题目3设无向图G的邻接矩阵为则G的边数为().选择一项:A.7B.14C.6D.1题目4如图一所示,以下说法正确的是().选择一项:A.{(a,e),(b,c)}是边割集B.{(a,e)}是边割集C.{(d,e)}是边割集D.{(a,e)}是割边题目5以下结论正确的是().选择一项:A.有n个结点n-1条边的无向图都是树B.无向完全图都是平面图C.树的每条边都是割边D.无向完全图都是欧拉图题目6若G是一个欧拉图,则G一定是().选择一项:A.汉密尔顿图B.连通图C.平面图D.对偶图题目7设图G=<V,E>,v∈V,则下列结论成立的是().选择一项:题目8图G如图三所示,以下说法正确的是().选择一项:A.{b,d}是点割集B.{c}是点割集C.{b,c}是点割集D.a是割点题目9设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是().选择一项:A.(a)是强连通的B.(d)是强连通的C.(c)是强连通的D.(b)是强连通的题目10设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是().选择一项:A.(b)只是弱连通的B.(c)只是弱连通的C.(a)只是弱连通的D.(d)只是弱连通的判断题题目11设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.()选择一项:对错题目12汉密尔顿图一定是欧拉图.()选择一项:对错题目13设连通平面图G的结点数为5,边数为6,则面数为4.()选择一项:对错题目14设G是一个有7个结点16条边的连通图,则G为平面图.()选择一项:对错题目15如图八所示的图G存在一条欧拉回路.()选择一项:对错题目16设图G如图七所示,则图G的点割集是{f}.()选择一项:对错题目17设G是一个图,结点集合为V,边集合为E,则()选择一项:对错题目18设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.()选择一项:对错题目19如图九所示的图G不是欧拉图而是汉密尔顿图.()选择一项:对错题目20若图G=<V,E>,其中V={a,b,c,d},E={(a,b),(a,d),(b,c),(b,d)},则该图中的割边为(b,c).()选择一项:对错形考任务3单项选择题题目1命题公式的主合取范式是().选择一项:题目2设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为().选择一项:题目3命题公式的主析取范式是().选择一项:题目4下列公式成立的为().选择一项:题目5设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6前提条件的有效结论是().选择一项:A.QB.┐QC.PD.┐P题目7命题公式(P∨Q)→R的析取范式是().选择一项:A.(P∨Q)∨RB.┐(P∨Q)∨RC.(P∧Q)∨RD.(┐P∧┐Q)∨R题目8下列等价公式成立的为().选择一项:题目9下列等价公式成立的为().选择一项:题目10下列公式中()为永真式.选择一项:A.┐A∧┐B↔┐(A∧B)B.┐A∧┐B↔A∨BC.┐A∧┐B↔┐(A∨B)D.┐A∧┐B↔┐A∨┐B判断题题目11设个体域D={1,2,3},A(x)为“x小于3”,则谓词公式(∃x)A(x)的真值为T.()选择一项:对错题目12设P:小王来学校,Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.()选择一项:对错题目13下面的推理是否正确.()(1)(∀x)A(x)→B(x)前提引入(2)A(y)→B(y)US(1)选择一项:对错题目14含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).()选择一项:对错题目15命题公式P→(Q∨P)的真值是T.()选择一项:对错题目16命题公式┐P∧P的真值是T.()选择一项:对错题目17谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.()选择一项:对错题目18命题公式┐(P→Q)的主析取范式是P∨┐Q.()选择一项:对错题目19设个体域D={a,b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).()选择一项:对错题目20设个体域D={a,b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).()选择一项:对错形考任务4要求:学生提交作业有以下三种方式可供选择:1.可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅.2.在线提交word文档.3.自备答题纸张,将答题过程手工书写,并拍照上传形考任务5网上学习行为(学生无需提交作业,占形考总分的10%)。

20秋学期《离散数学X》在线平时作业1答卷

20秋学期《离散数学X》在线平时作业1答卷

20秋学期《离散数学X》在线平时作业1试卷总分:100 得分:100一、单选题(共10 道试题,共40 分)1.单选填空题。

E是全集,E={a,b},E的幂集P(E)上的交运算&Ccedil;,的零元是()。

A.&Phi;;B.{a} ;C.{b};D.{a,b};E.不存在。

正确的答案是:A2.选择填空题。

R是A上关系,如果R是自反的,当且仅当()。

A.A中有些元素x,有<x,x>&isin;R ;B.所有A中元素x,都有<x,x>&isin;R ;C.所有A中元素x,y,如果有<x,y>&isin;R ,也有< y, x >&isin;R;则x=y 。

正确的答案是:B3.设集合S={Ф,{1},{1,2}},下面给定的四个选择正确的答案是中( ) &Iacute;S 。

A.Ф;B.{1} ;C.{2};D.{1,2} 。

正确的答案是:A4.A.f是满射,g是入射。

B.f是双射,g是双射C.f是入射,g是满射。

D.f是入射,g是入射。

正确的答案是:C5.单选题。

一棵树有7片树叶,3个3度结点,其余都是4度结点,该树有()个4度结点。

A.4;B.3;C.2;D.1;E.不在给定的选择的范围内。

正确的答案是:D6.下面的命题公式中不是永真式的是()。

A.(P&and;Q)→QB.(P&and;(P→Q))→Q。

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案

(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案(精华版)国家开放大学电大本科《离散数学》网络课形考网考作业及答案 100%通过考试说明:2020年秋期电大把该网络课纳入到“国开平台”进行考核,该课程共有5个形考任务,针对该门课程,本人汇总了该科所有的题,形成一个完整的标准题库,并且以后会不断更新,对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

课程总成绩 = 形成性考核×30% + 终结性考试×70% 形考任务1 单项选择题题目1 若集合A={ a,{a},{1,2}},则下列表述正确的是().选择一项:题目2 若集合A={2,a,{ a },4},则下列表述正确的是( ).选择一项:题目3 设集合A={1 , 2 , 3 , 4}上的二元关系R={<1, 1>,<2, 2>,<2, 3>,<4, 4>},S={<1, 1>,<2, 2>,<2, 3>,<3, 2>,<4, 4>},则S是R的()闭包.选择一项:B. 对称题目4 设集合A={1, 2, 3},B={3, 4, 5},C={5, 6, 7},则A∪B–C=( ).选择一项:D. {1, 2, 3, 4} 题目5 如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.选择一项:C. 2 题目6 集合A={1, 2, 3, 4}上的关系R={<x,y>|x=y且x, y∈A},则R的性质为().选择一项:D. 传递的题目7 若集合A={1,2},B={1,2,{1,2}},则下列表述正确的是( ).选择一项:题目8 设A={a,b,c},B={1,2},作f:A→B,则不同的函数个数为().选择一项:C. 8 题目9 设A={1, 2, 3, 4, 5, 6, 7, 8},R是A上的整除关系,B={2, 4, 6},则集合B的最大元、最小元、上界、下界依次为 ( ).选择一项:B. 无、2、无、2 题目10 设集合A ={1 , 2, 3}上的函数分别为:f = {<1, 2>,<2, 1>,<3, 3>},g = {<1, 3>,<2, 2>,<3, 2>},h = {<1, 3>,<2,1>,<3, 1>},则h =().选择一项:D. f◦g 判断题题目11 设A={1, 2}上的二元关系为R={<x, y>|xA,yA, x+y =10},则R的自反闭包为{<1, 1>, <2, 2>}.()选择一项:对题目12 空集的幂集是空集.()选择一项:错题目13 设A={a, b},B={1, 2},C={a, b},从A到B的函数f={<a, 1>, <b, 2>},从B到C的函数g={<1, b>, <2, a >},则g° f ={<1,2 >, <2,1 >}.()选择一项:错题目14 设集合A={1, 2, 3, 4},B={2, 4, 6, 8},下列关系f = {<1, 8>, <2, 6>,<3, 4>, <4, 2,>}可以构成函数f:.()选择一项:对题目15 设集合A={1, 2, 3},B={2, 3, 4},C={3, 4, 5},则A∩(C-B )= {1, 2, 3, 5}.()选择一项:错题目16 如果R1和R2是A上的自反关系,则、R1∪R2、R1∩R2是自反的.()选择一项:对题目17 设集合A={a, b, c, d},A上的二元关系R={<a, b>, <b, a>, <b, c>, <c, d>},则R具有反自反性质.()选择一项:对题目18 设集合A={1, 2, 3},B={1, 2},则P(A)-P(B )={{3},{1,3},{2,3},{1,2,3}}.()选择一项:对题目19 若集合A = {1,2,3}上的二元关系R={<1, 1>,<1, 2>,<3, 3>},则R是对称的关系.()选择一项:错题目20 设集合A={1, 2, 3, 4 },B={6, 8, 12}, A到B的二元关系R=那么R-1={<6, 3>,<8,4>}.()选择一项:对形考任务2 单项选择题题目1 无向完全图K4是().选择一项:C. 汉密尔顿图题目2 已知一棵无向树T中有8个顶点,4度、3度、2度的分支点各一个,T的树叶数为( ).选择一项:D. 5 题目3 设无向图G的邻接矩阵为则G的边数为( ).选择一项:A. 7 题目4 如图一所示,以下说法正确的是 ( ) .选择一项:C. {(d, e)}是边割集题目5 以下结论正确的是( ).选择一项:C. 树的每条边都是割边题目6 若G是一个欧拉图,则G一定是( ).选择一项:B. 连通图题目7 设图G=<V, E>,v∈V,则下列结论成立的是 ( ) .选择一项:题目8 图G如图三所示,以下说法正确的是 ( ).选择一项:C. {b, c}是点割集题目9 设有向图(a)、(b)、(c)与(d)如图五所示,则下列结论成立的是( ).选择一项:A. (a)是强连通的题目10 设有向图(a)、(b)、(c)与(d)如图六所示,则下列结论成立的是( ).选择一项:D. (d)只是弱连通的判断题题目11 设图G是有6个结点的连通图,结点的总度数为18,则可从G中删去4条边后使之变成树.( ) 选择一项:对题目12 汉密尔顿图一定是欧拉图.( ) 选择一项:错题目13 设连通平面图G的结点数为5,边数为6,则面数为4.( ) 选择一项:错题目14 设G是一个有7个结点16条边的连通图,则G为平面图.( ) 选择一项:错题目15 如图八所示的图G存在一条欧拉回路.( ) 选择一项:错题目16 设图G如图七所示,则图G的点割集是{f}.( ) 选择一项:错题目17 设G是一个图,结点集合为V,边集合为E,则( ) 选择一项:对题目18 设图G是有5个结点的连通图,结点度数总和为10,则可从G中删去6条边后使之变成树.( ) 选择一项:错题目19 如图九所示的图G不是欧拉图而是汉密尔顿图.( ) 选择一项:对题目20 若图G=<V, E>,其中V={ a, b, c, d },E={ (a, b), (a, d),(b, c), (b, d)},则该图中的割边为(b, c).( ) 选择一项:对形考任务3 单项选择题题目1 命题公式的主合取范式是( ).选择一项:题目2 设P:我将去打球,Q:我有时间.命题“我将去打球,仅当我有时间时”符号化为( ).选择一项:题目3 命题公式的主析取范式是( ).选择一项:题目4 下列公式成立的为( ).选择一项:题目5 设A(x):x是书,B(x):x是数学书,则命题“不是所有书都是数学书”可符号化为().选择一项:题目6 前提条件的有效结论是( ).选择一项:B. ┐Q 题目7 命题公式(P∨Q)→R的析取范式是 ( ).选择一项:D. (┐P∧┐Q)∨R 题目8 下列等价公式成立的为( ).选择一项:题目9 下列等价公式成立的为( ).选择一项:题目10 下列公式中 ( )为永真式.选择一项:C. ┐A∧┐B ↔ ┐(A∨B) 判断题题目11 设个体域D={1, 2, 3},A(x)为“x小于3”,则谓词公式(∃x)A(x) 的真值为T.( ) 选择一项:对题目12 设P:小王来学校, Q:他会参加比赛.那么命题“如果小王来学校,则他会参加比赛”符号化的结果为P→Q.( ) 选择一项:对题目13 下面的推理是否正确.( ) (1) (∀x)A(x)→B(x) 前提引入(2) A(y)→B(y) US (1) 选择一项:错题目14 含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式(P∧Q∧R)∨(P∧Q∧┐R).( ) 选择一项:对题目15 命题公式P→(Q∨P)的真值是T.( ) 选择一项:对题目16 命题公式┐P∧P的真值是T.( ) 选择一项:错题目17 谓词公式┐(∀x)P(x)(∃x)┐P(x)成立.( ) 选择一项:对题目18 命题公式┐(P→Q)的主析取范式是P∨┐Q.( ) 选择一项:错题目19 设个体域D={a, b},则谓词公式(∀x)(A(x)∧B(x))消去量词后的等值式为(A(a)∧B(a))∧(A(b)∧B(b)).( ) 选择一项:对题目20 设个体域D={a, b},那么谓词公式(∃x)A(x)∨(∀y)B(y)消去量词后的等值式为A(a)∨B(b).( ) 选择一项:错形考任务4 要求:学生提交作业有以下三种方式可供选择:1. 可将此次作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,完成作业后交给辅导教师批阅. 2. 在线提交word文档. 3. 自备答题纸张,将答题过程手工书写,并拍照上传形考任务 5 网上学习行为(学生无需提交作业,占形考总分的10%)附:元宇宙(新兴概念、新型虚实相融的互联网应用和社会形态)元宇宙(Metaverse)是整合了多种新技术而产生的新型虚实相融的互联网应用和社会形态,通过利用科技手段进行链接与创造的,与现实世界映射与交互的虚拟世界,具备新型社会体系的数字生活空间。

东北大学计算机专业本科段离散数学作业1及答案

东北大学计算机专业本科段离散数学作业1及答案
()。
A.
Φ;
B.{a};
C.{b};
D.{a,b};
E.不存在。
满分:5分
4.
A.
B.
C.
D.
满分:5分
5.
设.X、Y是有限集合,|X|=3,|Y|=2,可以构成(Hale Waihona Puke 个是从X到Y的满射函数。A.3
B.4
C.6
D.8
满分:5分
6.
选择填空。
下面给定的集合中()与CD相等。
A.A={1,2,3,4,5,6,7,8,9},
B.B={2,4,6,8},
C.C={1,3,5,7,9},
D.D={3,4,5},
E.E=Ф,
F.F={1,4,7,9},
G.G={1,7,9}。
满分:5分
7.
单选题。该图是树,则它的边数e与结点数v之间的关系是()。
A.
e=2v-2;
B.e=v+1;
C.v=e+1;
D.不确定。
满分:5分
8.
选择填空题。给定集合A={1,2,3},定义A上的等价关系如下:
A.
任何两个结点之间都有通路;
B.任何两个结点之间都有唯一路;
C.
任何两个结点之间都有路;
D.任何两个结点之间都有迹。
满分:5分
二、判断题(共5道试题,共25分。)
V
1.
判断题,判断下面说法是否正确。
“对于整数集合I上的减法运算“-”来说,0是幺元。”
A.错误
B.正确
满分:5分
2.
判断题。判断下面的说法是否正确。
17秋学期《离散数学》在线作业1
试卷总分:100测试时间:--

离散数学期中考试题-参考试题(附答案)

离散数学期中考试题-参考试题(附答案)

《离散数学基础》期中考试题(附参考答案)学 期:20XX-20XX 学年第X 学期 学生班级:XX 专业 XXXX-XXXX 班 考试时间:20XX.XX.XX XX:XX-XX:XX am 考试地点:学号:姓名:班级:□必修 □选修一、填空题(共10分,每空1分)1. 我们称 能够表达判断,并且具有确定真值 的陈述句为命题。

2. 在命运题逻辑中,任何命题公式的主合取范式都是存在的,并且是 唯一的 。

3. 把命题公式在其所有解释下所取真值列成一个表,称为G 的 真值表 。

4. 命题公式G=(P ∧Q )→R ,则G 共有 8 个不同的解释;解释(F ,T ,F )使G 的真值为 T 。

5. 在推理理论中,前提在推导过程中的任何时候都可以引入使用,这一推理规则叫做( P 规则 )。

6. 设集合}}{,{φφ=A ,A 的幂集ρ(A )=φ,{φ},{{φ}},{φ,{φ}}{}。

7. 设R 是集合A 上的二元关系,如果R 是自反的,则它的关系矩阵的主对角线元素( 全是1 )。

8. 设R 是集合A 上的二元关系,R -1是R 的逆关系,则R 的关系矩阵与R -1的关系矩阵具有的关系是( 互为转置矩阵 )。

9. 设R 是集合A 上的二元关系,如果关系R 同时具有自反性、 反对称性 和传递性,则称R 是A 上的一个偏序关系。

二、选择一个正确答案的代号,填入括号中。

(共20分,每小题2分)1. 下列语句中不能成为命题的是( D )。

A .地球外的星球上也有人;B .小王是我的同学,也是我的好朋友;C .11+1=100;D .我正在说慌。

2. 下列谓词公式中( C )不是命题。

A .(∀x)P(x); B .(∃x)P(x);C .(∀x)(P(x)∨P(y));D .(∃x)(∃y)(P(x) →R(y))3. 个体域为整数集合,下列公式中( C )不是命题。

A .(∀x)(∀y)(x *y=y);B .(∀x)(∃y)(x *y=1);C .(∀x)(x *y=x);D .(∃x)(∃y)(x *y=2)4.下列谓词公式中(A)不正确。

【东大】21春学期《离散数学》在线平时作业1参考资料

【东大】21春学期《离散数学》在线平时作业1参考资料

东大21春学期《离散数学》在线平时作业1提示:东北大学课程学习已经开启,本套试卷是课程学习辅导资料,只作参考学习使用!!!一、单选题 (共 10 道试题,共 50 分)1.7.选择题:在一次集会中,与奇数个人握手的人数共有()个。

[A.]奇数[B.]不能确定[C.]偶数[D.]不知道[解析:请从上述选项中选择您认为正确的一项,并从填写到答案栏]参考答案是:C2.单选题。

无向图是连通的,当且仅当()。

[A.]任何两个结点之间都有通路;[B.]任何两个结点之间都有唯一路;[C.]任何两个结点之间都有路;[D.]任何两个结点之间都有迹。

[解析:请从上述选项中选择您认为正确的一项,并从填写到答案栏]参考答案是:C3.单选择题:在一次集会中,与奇数个人握手的人数共有( )个。

[A.]奇数;[B.]非负整数;[C.]偶数;[D.]不能确定。

[解析:请从上述选项中选择您认为正确的一项,并从填写到答案栏]参考答案是:C4.单选题。

一个有向图是根树,当且仅当该图()。

[A.]有树根,也有树叶;[B.]忽略边的方向时,是连通无回路的无向图;[C.]有一个结点可以到达任何其余结点;[D.]恰有一个结点入度为0:其余结点入度为1。

[解析:请从上述选项中选择您认为正确的一项,并从填写到答案栏]参考答案是:D5.单选题。

一棵根树是m叉树,当且仅当该图()。

[A.]每个结点的度数是m;[B.]每个结点的出度都是m;[C.]每个结点的出度小于或等于m;[D.]恰有一个结点入度为0:其余结点入度为1。

[解析:请从上述选项中选择您认为正确的一项,并从填写到答案栏]参考答案是:C6.单选题。

无向图G中有21条边,3个4度结点,其余都是3度结点。

问G中有()个结点?[A.]12;[B.]13;[C.]16;[D.]18。

[解析:请从上述选项中选择您认为正确的一项,并从填写到答案栏]参考答案是:B7.设命题P、Q、R所代表的意义如下:P:天气好。

[东北大学]21春学期《离散数学》在线平时作业2辅导学习资料

[东北大学]21春学期《离散数学》在线平时作业2辅导学习资料

[东北大学]21春学期《离散数学》在线平时作业2注:本试卷为东北大学2021年课程学习材料,仅作参考学习使用!!!一、单选题 (共 10 道试题,共 50 分)1.X,Y 是有限集合,|X|=m,|Y|=n。

可以构成 ( )个从X到Y的函数。

A.mnB.mnC.2mnD.nm[仔细阅读上述题目,并从中选择你认为正确的选项进行作答]正确选择:D2.A.等价B.不等价C.无法确定D.不知道[仔细阅读上述题目,并从中选择你认为正确的选项进行作答]正确选择:A3.单选题。

无向图是连通的,当且仅当()。

A.任何两个结点之间都有通路;B.任何两个结点之间都有唯一路;C.任何两个结点之间都有路;D.任何两个结点之间都有迹。

[仔细阅读上述题目,并从中选择你认为正确的选项进行作答]正确选择:C4.选择填空。

如果集合X满足 X&Iacute;D 且 X&Ccedil;B=Ф,则X可能与下面给定的集合( )相等。

A.A={1,2,3,4,5,6,7,8,9},B.B={2,4,6,8},C.C={1,3,5,7,9},D.D={3,4,5},E.E={3,5},[仔细阅读上述题目,并从中选择你认为正确的选项进行作答]正确选择:E5.选择填空题。

给定集合A={1,2,3},定义A上的等价关系如下:S={<1,1>,<1,2>,<2,1>,<2,2>,<3,3>}等价关系S中含有的等价类个数是 ( )。

A.1B.2。

(完整版)《离散数学》试题及答案解析,推荐文档

(完整版)《离散数学》试题及答案解析,推荐文档
3. 设 R 是实数集合,,,是 R 上的三个映射,(x) = x+3, (x) = 2x, (x) = x/4, 试求复合映射•,•, •, •,••.
4. 设 I 是如下一个解释:D = {2, 3},
a
b
f (2) f (3)
3
2
3
2
试求 (1) P(a, f (a))∧P(b, f (b));
WORD 整理版
一、填空题 1 设集合 A,B,其中 A={1,2,3}, B= {1,2}, 则 A - B=____________________;
(A)
- (B)= __________________________ . 2. 设有限集合 A, |A| = n, 则 |(A×A)| = __________________________. 3. 设集合 A = {a, b}, B = {1, 2}, 则从 A 到 B 的所有映射是 __________________________ _____________, 其中双射的是
专业资料学习参考
WORD 整理版
0 1 1 1 1
15. 设图 G 的相邻矩阵为 1 0 1 0 0 ,则 G 的顶点数与边数分别为(
).
1 1 0 1 1
1 0 1 0 1
1 0 1 1 0
(A)4, 5 (B)5, 6 三、计算证明题
(C)4, 10
(D)5, 8.
1.设集合 A={1, 2, 3, 4, 6, 8, 9, 12},R 为整除关系。
则在解释 I 下取真值为 1 的公式是( ).
(A)xyP(x,y) (B)xyP(x,y) (C)xP(x,x) (D)xyP(x,y). 6. 若供选择答案中的数值表示一个简单图中各个顶点的度,能画出图的是( ).

东北大学离散数学试卷及复习资料

东北大学离散数学试卷及复习资料

一、填空 20% (每小题2分)1、 P :你努力,Q :你失败。

“除非你努力,否则你将失败”的翻译为;“虽然你努力了,但还是失败了”的翻译为 。

2、论域D={1,2},指定谓词P则公式),(x y yP x ∃∀真值为 。

2、 设S={a 1 ,a 2 ,…,a 8},B i 是S 的子集,则由B 31所表达的子集是 。

3、 设A={2,3,4,5,6}上的二元关系}|,{是质数x y x y x R ∨<><=,则R=(列举法)。

R 的关系矩阵M R =。

5、设A={1,2,3},则A 上既不是对称的又不是反对称的关系R= ;A 上既是对称的又是反对称的关系R= 。

6、设代数系统<A ,*>,其中A={a ,b ,c},则幺元是 ;是否有幂等性 ;是否有对称性 。

7、4阶群必是 群或 群。

8、下面偏序格是分配格的是 。

9、n 个结点的无向完全图K n 的边数为 ,欧拉图的充要条件是 。

10、公式R Q P Q P P ⌝∧∨⌝∧∧⌝∨)(())(( 的根树表示为。

二、选择 20% (每小题2分)1、在下述公式中是重言式为( )A .)()(Q P Q P ∨→∧;B .))()(()(P Q Q P Q P →∧→↔↔;C .Q Q P ∧→⌝)(;D .)(Q P P ∨→ 。

2、命题公式 )()(P Q Q P ∨⌝→→⌝ 中极小项的个数为( ),成真赋值的个数为( )。

A .0;B .1;C .2;D .3 。

3、设}}2,1{},1{,{Φ=S ,则 S2 有( )个元素。

A .3;B .6;C .7;D .8 。

4、 设} 3 ,2 ,1 {=S ,定义S S ⨯上的等价关系},,,, | ,,,{c b d a S S d c S S b a d c b a R +=+⨯>∈<⨯>∈<><><<=则由 R 产 生的S S ⨯上一个划分共有( )个分块。

东大20春学期《离散数学X》在线平时作业3【标准答案】

东大20春学期《离散数学X》在线平时作业3【标准答案】
D.不知道
答案:A
6.X,Y 是有限集合,|X|=m,|Y|=n。可以构成 ( )个从X到Y的函数。
A.nm
B.mn
C.mn
D.2mn
答案:A
7.令命题P表示“没有大学生不懂外语。” 下面命题( )与P等价。
A.没有大学生懂所有外语。
B.有些大学生懂所有外语。
C.有些大学生懂一些外语。
D.所有大学生都懂一些外语。
等价关系S中含有等价类 ( )。
A.{3}
B.{2}
C.{1}
D.{2,3}
E.{1,3}
F.{1,2,3}
G.{1,2}
答案:AG
14.{图}
A.D:⑴⑵⑶⑷
B.C:⑵⑶⑷
C.B:⑴⑵⑷
D.A:⑴⑵⑶
答案:AD
15.试题见图片{图}
A.C图
B.B图
C.A图
答案:BC
三、判断题 (共 10 道试题,共 40 分)
"xC(x), $x(A(x)&Uacute;B(x)), "x(B(x)?&Oslash;C(x)) &THORN; $xA(x)
的谓词推理过程。在这个过程中每一步中的( )处是此步所用的推理规则。请写出这些推理规则。
⑴ $x(A(x)&Uacute;B(x)), ( )
⑵ A(a)&Uacute;B(a) ( ) ⑴
答案:D
8.{图}
A.等价
B.无法确定
C.不等价
D.不知道Hale Waihona Puke 答案:A9.{图}
A.B:④:⑶⑺
B.B:③:⑶⑹⑺⑻
C.B:②:⑶⑷⑻
D.B:①:⑵⑶⑺⑻
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

东北大学继续教育学院
离散数学X 试卷(作业考核线上2) A 卷(共 4 页)
总分题号一二三四五六七八九十得分
一、(13分)有两个小题
1.分别说明联结词⌝、∧、∨、→和↔在自然语言中表示什么含义。

解:“⌝”表示“…不成立”,“不…”。

“∧”表示“并且”、“不但…而且...”、“既…又 ...”等。

“∨”表示“或者”,是可兼取的或。

“→”表示如果…,则…;只要…,就…;只有… , 才…;仅当…。

“↔”表示“当且仅当”、“充分且必要”。

2.分别列出P Q、P Q、P Q、P Q的真值表(填下表)。

P Q P Q P Q P Q P Q
F F T F T F
F T F T T F
T F F T F F
T T T T T T
二、(10分)写出命题公式(Q→P)→Q 的主合取范式。

(要求有解题过程)
解:
等价变换
(Q→⌝P)→Q
⇔⌝(⌝Q∨⌝P)∨Q ( 去→ )
⇔ (Q∧P)∨Q ( 摩根定律 )
⇔ Q ( 吸收律 )
⇔ (P∧⌝P)∨Q (互补、同一律)
⇔ (P∨Q)∧(⌝P∨Q) ( 分配律 )
三、(14分) 用谓词逻辑推理的方法证明下面推理的有效性。

要求按照推理的格式书写推理过程。

xC(x), x(A(x)B(x)), x(B(x)C(x)) xA(x)。

相关文档
最新文档