221对数与对数运算
对数运算公式表
对数运算公式表在数学中,对数运算是一种常用的数学运算方法。
它可以帮助我们解决一些复杂的指数运算问题,并且在各个领域都有广泛的应用。
下面我将简要介绍一些常用的对数运算公式。
1. 对数的定义对数是指数运算的反运算。
设a和b是正数,并且a≠1,b>0,那么满足a^x=b的方程中的x就称为以a为底b的对数,记作log_a b。
其中,a被称为对数的底数,b被称为真数。
2. 对数的性质对数运算有以下几个重要的性质:(1) log_a (xy) = log_a x + log_a y,其中x和y是正数;(2) log_a (x/y) = log_a x - log_a y,其中x和y是正数;(3) log_a (x^k) = klog_a x,其中x是正数,k是任意实数;(4) log_a a = 1,其中a是正数;(5) log_a 1 = 0,其中a是正数。
3. 常用对数和自然对数常用对数是以10为底的对数,记作log x,其中x是正数。
自然对数是以自然常数e≈2.71828为底的对数,记作ln x,其中x是正数。
4. 对数运算的应用对数运算在各个领域都有广泛的应用,例如:(1) 在复利计算中,对数运算可以用来计算投资的收益率;(2) 在物理学中,对数运算可以用来描述声音的强度和地震的震级;(3) 在计算机科学中,对数运算可以用来衡量算法的时间复杂度。
总结:对数运算是一种重要的数学运算方法,它可以帮助我们解决复杂的指数运算问题,并在各个领域都有广泛的应用。
通过对数的定义和性质,我们可以更好地理解和应用对数运算。
希望这些对数运算公式和应用的介绍能对您有所帮助。
对数的运算及对数函数
§2.2.1 对数与对数运算(一)¤知识要点:1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N 在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =⇔=.4. 负数与零没有对数;log 10a =, log 1a a = ,log a a N N = ¤例题精讲:【例1】将下列指数式化为对数式,对数式化为指数式:(1)712128-=; (2)327a =; (3)1100.1-=; (4)12log 325=-; (5)lg0.0013=-; (6)ln100=4.606.【例2】计算下列各式的值:(1)lg 0.001; (2)4log 8; (3)第14练 §2.2.1 对数与对数运算(一)※基础达标1.log (0,1,0)b N a b b N =>≠>对应的指数式是( ). A. b a N = B. a b N = C. N a b = D. N b a = 2.下列指数式与对数式互化不正确的一组是( ). A. 01ln10e ==与 B. 1()381118log 223-==-与 C. 123log 9293==与 D. 17log 7177==与 3.设lg 525x =,则x 的值等于( ).A. 10B. 0.01C. 100D. 10004.设13log 82x=,则底数x 的值等于( ). A. 2 B. 12 C. 4 D. 145.已知432log [log (log )]0x =,那么12x -等于( ).A.13 B. C. D. 6.若21log 3x =,则x = ; 若log 32x =-,则x = .7.计算:= ; 6l g 0.1= . ※能力提高8.求下列各式的值:(1)8; (2)9log9.求下列各式中x 的取值范围:(1)1log (3)x x -+; (2)12log (32)x x -+.※探究创新10.(1)设log 2a m =,log 3a n =,求2m n a +的值.(2)设{0,1,2}A =,{log 1,log 2,}a a B a =,且A B =,求a 的值.第15讲 §2.2.1 对数与对数运算(二)¤知识要点:1. 对数的运算法则:log ()log log a a a M N M N =+,log log log aa a MM N N=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.2. 对数的换底公式log log log b a b N N a =. 如果令b =N ,则得到了对数的倒数公式1log log a b b a=. 同样,也可以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a nN N m=,log log log 1a b c b c a =等. ¤例题精讲:【例2】若2510a b ==,则11a b+= .【例4】(1)化简:532111log 7log 7log 7++; (2)设23420052006log 3log 4log 5log 2006log 4m ⋅⋅⋅=,求实数m 的值.第15练 §2.2.1 对数与对数运算(二)※基础达标 1.). A. 1B. -1C. 2D. -2 2.25log ()a -(a ≠0)化简得结果是( ).A. -aB. a 2C. |a |D. a3.化简3log 1的结果是( ). A.12B. 1C. 24.已知32()log f x x =, 则(8)f 的值等于( ). A. 1 B. 2 C. 8 D. 125.化简3458log 4log 5log 8log 9⋅⋅⋅的结果是 ( ).A .1 B.32C. 2D.3 6.计算2(lg5)lg2lg50+⋅= .7.若3a =2,则log 38-2log 36= .第16讲 §2.2.2 对数函数及其性质(一)¤知识要点:1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).2. 由2log y x =与12log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.¤例题精讲:【例1】比较大小:(1)0.9log 0.8,0.9log 0.7,0.8log 0.9; (2)3log 2,2log 3,41log 3.【例2】求下列函数的定义域:(1)y (2)y【例4】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值范围.第16练 §2.2.2 对数函数及其性质(一)※基础达标1.下列各式错误的是( ).A. 0.80.733>B. 0.10.10.750.75-<C. 0..50..5log 0.4log 0.6>D. lg1.6lg1.4>.2.当01a <<时,在同一坐标系中,函数log x a y a y x -==与的图象是( ).AC3.下列函数中哪个与函数y =x 是同一个函数( )A.log (0,1)a xy a a a =>≠ B. y =2x xC. log (0,1)x a y a a a =>≠D. y4.函数y ).A. (1,)+∞B. (,2)-∞C. (2,)+∞D. (1,2]5.若log 9log 90m n <<,那么,m n 满足的条件是( ).A. 1 m n >>B. 1n m >>C. 01n m <<<D. 01m n <<<6.函数y = . (用区间表示)7.比较两个对数值的大小:ln 7 ln12 ; 0.5log 0.7 0.5log 0.8. ※能力提高8.求下列函数的定义域:(1) ()()3log 1f x x =++; (2)y9.已知函数2()3log ,[1,4]f x x x =+∈,22()()[()]g x f x f x =-,求: (1)()f x 的值域; (2)()g x 的最大值及相应x 的值.第17讲 §2.2.2 对数函数及其性质(二)¤知识要点:1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.2. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.3. 复合函数(())y f x ϕ=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ϕ==的单调性;(iv )按“同增异减”得出复合函数的单调性.¤例题精讲:【例1】讨论函数0.3log (32)y x =-的单调性.【例2】(05年山东卷.文2)下列大小关系正确的是( ). A. 30.440.43log 0.3<< B. 30.440.4log 0.33<< C. 30.44log 0.30.43<< D. 0.434log 0.330.4<<第17练 §2.2.2 对数函数及其性质(二)※基础达标 1.函数1lg1xy x+=-的图象关于( ). A. y 轴对称 B. x 轴对称 C. 原点对称D. 直线y =x 对称2.函数212log (617)y x x =-+的值域是( ).A. RB. [8,)+∞C. (,3]-∞-D. [3,)+∞3.(07年全国卷.文理8)设1a >,函数()log a f x x =在区间[]2a a ,上的最大值与最小值之差为12,则a =( ).A.B. 2C.D. 44.图中的曲线是log a y x =的图象,已知a的值为43,310,15,则相应曲线1234,,,C C C C 的a 依次为( ).A.43,15,310B. 43,310,15C. 15,310,43D. 43,310,155.下列函数中,在(0,2)上为增函数的是( ). A. 12log (1)y x =+B. 2log y = C. 21log y x= D.20.2log (4)y x =-6.函数())f x x =是 函数. (填“奇”、“偶”或“非奇非偶”)7.函数x y a =的反函数的图象过点(9,2),则a 的值为 . ※能力提高8.已知6()log ,(0,1)a f x a a x b=>≠-,讨论()f x 的单调性.0 x C 1C 2C 4C 3 1y第18讲 §2.3 幂函数¤学习目标:通过实例,了解幂函数的概念;结合函数y=x, y=x 2, y=x 3, y =1/x , y=x 1/2 的图像,了解它们的变化情况.知识要点:1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象. 2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限内,图象向上及向右都与坐标轴无限趋近.3. 幂函数y x α=的图象,在第一象限内,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.¤例题精讲:【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性. 解:设y x α=,代入点(27,3),得327α=,解得13α=, 所以13y x =,在R 上单调递增.【例2】已知幂函数6()m y x m Z -=∈与2()m y x m Z -=∈的图象都与x 、y 轴都没有公共点,且2()m y x m Z -=∈的图象关于y 轴对称,求m 的值.解:∵ 幂函数图象与x 、y 轴都没有公共点,∴{6020m m -<-<,解得26m <<.又 ∵ 2()m y x m Z -=∈的图象关于y 轴对称, ∴ 2m -为偶数,即得4m =. 【例3】幂函数m y x =与n y x =在第一象限内的图象如图所示,则( ). A .101n m -<<<< B .1,01n m <-<<C .10,1n m -<<>D .1,1n m <->解:由幂函数图象在第一象限内的分布规律,观察第一象限内直线1x =的右侧,图象由下至上,依次是n y x =,1y x -=,0y x =,m y x =,1y x =,所以有101n m <-<<<. 选B.点评:观察第一象限内直线1x =的右侧,结合所记忆的分布规律. 注意比较两个隐含的图象1y x =与0y x =.【例4】本市某区大力开展民心工程,近几年来对全区2a m 的老房子进行平改坡(“平改坡”是指在建筑结构许可条件下,将多层住宅平屋面改建成坡屋顶,并对外墙面进行整修粉饰,达到改善住宅性能和建筑物外观视觉效果的房屋修缮行为),且每年平改坡面积的百分比相等. 若改造到面积的一半时,所用时间需10年. 已. (1)求每年平改坡的百分比;(2)问到今年为止,该平改坡工程已进行了多少年?(3)若通过技术创新,至少保留24am 的老房子开辟新的改造途径. 今后最多还需平改坡多少年?解:(1)设每年平改坡的百分比为(01)x x <<,则101(1)2a x a -=,即11011()2x -=,解得11011()0.0670 6.702x =-≈=%.(2)设到今年为止,该工程已经进行了n 年,则(1)na x -=,即110211()()22n =,解得n =5. 所以,到今年为止,该工程已经进行了5年.(3)设今后最多还需平改坡m 年,则 51(1)4m a x a +-=,即521011()()22m +=,解得m =15. 所以,今后最多还需平改坡15年.点评:以房屋改造为背景,从中抽象出函数模型,结合两组改造数据及要求,通过三个等式求得具有实际意义的底数或指数.第※基础达标1.如果幂函数()f x x α=的图象经过点 A. 16 B. 2 C. 116 2.下列函数在区间(0,3) A. 1y x= B. 12y x = C. y 3.设120.7a =,120.8b =,c 3log 0.7= A. c <b <a B. c <a <b C. a <b 4.如图的曲线是幂函数n y x =4c 相应的n 依次为( ).A .112,,,222-- B. 12,,2- C. 11,2,2,22-- D. 12,2--5.下列幂函数中过点(0,0),(1,1) A.12y x = B. 4y x = C. y =6.幂函数()y f x =的图象过点1(4,)27.比较下列各组数的大小: 32(2)a + 32a ; 223(5)a -+ 235-; 0.50.4 0.40.5.※能力提高8.幂函数273235()(1)t t f x t t x +-=-+是偶函数,且在(0,)+∞上为增函数,求函数解析式.9.1992年底世界人口达到54.8亿,若人口的平均增长率为x %,2008年底世界人口数为y (亿).(1)写出1993年底、1994年底、2000年底的世界人口数; (2)求2008年底的世界人口数y 与x 的函数解析式. 如果要使2008年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?※探究创新10.请把相应的幂函数图象代号填入表格.① 23y x =; ② 2y x -=;③ 12y x =; ④ 1y x -=; ⑤ 13y x =;⑥ 43y x =;⑦ 12y x -=;⑧ 53y x =. 第19讲 第二章 基本初等函数(Ⅰ) 复习¤学习目标:理解掌握指数函数、对数函数和幂函数的性质、图象及运算性质. 突出联系与转化、分类与讨论、数与形结合等重要的数学思想、能力. 通过对指数函数、对数函数等具体函数的研究,加深对函数概念的理解.¤例题精讲:【例1】若()(0,1)x f x a a a =>≠且,则1212()()()22x x f x f x f ++≤. 证明:121212122()()()222x x x x f x f x x x a a f a ++++-=-0==≥. ∴ 1212()()()22x x f x f x f ++≤. (注:此性质为函数的凹凸性) 【例2】已知函数2()(0,0)1bxf x b a ax =≠>+.(1)判断()f x 的奇偶性; (2)若3211(1),log (4)log 422f a b =-=,求a ,b 的值.解:(1)()f x 定义域为R ,2()()1bxf x f x ax --==-+,故()f x 是奇函数.(2)由1(1)12b f a ==+,则210a b -+=.又log 3(4a -b )=1,即4a -b =3.由{21043a b a b -+=-=得a =1,b =1.【例3】(01天津卷.19)设a >0, ()x x e af x a e=+是R 上的偶函数.(1)求a 的值; (2)证明()f x 在(0,)+∞上是增函数.解:(1)∵ ()x x e af x a e=+是R 上的偶函数,∴ ()()0f x f x --=.∴ 110()()x x x x x x e a e a a e a e a e a e a a---+--=⇒-+-10()()0x x a e e a -=⇒--=.e x -e -x 不可能恒为“0”, ∴ 当1a-a =0时等式恒成立, ∴a =1.(2)在(0,)+∞上任取x 1<x 2,1212121212111()()()()x x x x x x x x e f x f x e e e a e e e e -=+--=-+-12121()(1)x x x x e e e e =-- ∵ e >1,x 1<x 2, ∴ 121x x e e >>, ∴12x x e e >1,121212()(1)x x x x x x e e e e e e --<0,∴ 12()()0f x f x -<, ∴ ()f x 是在(0,)+∞上的增函数.点评:本题主要考查了函数的奇偶性以及单调性的基础知识.此题中的函数,也可以看成指数函数xy a =与x a y a x =+的复合,可以进一步变式探讨x ay a x=+的单调性. 【例4】已知1992年底世界人口达到54.8亿.(1)若人口的平均增长率为1.2%,写出经过t 年后的世界人口数y (亿)与t 的函数解析式;(2)若人口的平均增长率为x %,写出2010年底世界人口数为y (亿)与x 的函数解析式. 如果要使2010年的人口数不超过66.8亿,试求人口的年平均增长率应控制在多少以内?解:(1)经过t 年后的世界人口数为 *54.8(1 1.2)54.8 1.012,t t y t N =⨯+%=⨯∈.(2)2010年底的世界人口数y 与x 的函数解析式为 1854.8(1)y x =⨯+%.由1854.8(1)y x =⨯+%≤66.8,解得1001) 1.1x ≤⨯≈. 所以,人口的年平均增长率应控制在1.1%以内.点评:解应用题应先建立数学模型,再用数学知识解决,然后回到实际问题,给出答案. 此题由增长率的知识,可以得到指数型或幂型函数,并得到关于增长率的简单不等式,解决实际中增长率控制问题.第19练 第二章 基本初等函数(Ⅰ) 复习※基础达标 1.(06年全国卷II.文2理1)已知集合{}2{|3},|log 1M x x N x x =<=>,则M N =( ).A. ∅B. {}|03x x <<C. {}|13x x <<D. {}|23x x << 2.(08年北京卷.文2)若372log πlog 6log 0.8a b c ===,,,则( ). A. a b c >> B. b a c >> C. c a b >> D. b c a >>3.(05年福建卷)函数()x b f x a -=的图象如图,其中a 、b 为常数,则下列结论正确的是( ). A. 1,0a b >< B. 1,0a b >> C. 01,0a b <<> D. 01,0a b <<<4.(06年广东卷)函数2()lg(31)f x x =++的定义域是( ). A.1(,)3-+∞ B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞-5.(06年陕西卷)设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),其反函数的图像过点(2,8),则a b +等于( ).A. 3B. 4C. 5D. 66.(06年辽宁卷.文14理13)设,0(),0x e x g x lnx x ⎧≤=⎨>⎩,则1(())2g g = .7.如图所示,曲线是幂函数y x α=在第一象限内的图象,已知α分别取11,1,,22-四个值,则相应图象依次为 .※能力提高8.已知定义域为R 的函数12()2x x bf x a+-+=+是奇函数. 求,a b 的值.9.已知函数y =24log log 42x x(2≤x ≤4).(1)求输入x =234时对应的y 值; (2)令2log t x =,求y 关于t 的函数关系式及t 的范围.※探究创新10.设121()log 1axf x x -=-为奇函数,a 为常数.(1)求a 的值; (2)证明()f x 在区间(1,+∞)内单调递增;1 () 2x m恒成立,求实数m的取值范围.(3)若对于区间[3,4]上的每一个x值,不等式()f x>。
2.2.1对数与对数运算
(1) 54 625
log5 625 4
(2) 26 1 64
1 log 2 64 6
(3) 3a 27
(4) 1 m 5.73 3
log3 27 a
log 1 5.73 m
3
例题讲解 例题2:将下列对数式写成指数式:
(1) log 1 16 4
§2.2.1对数与对数运算
引入:
回顾指数
22 = 4 25 = 32 2x = 26
X=
引入:
问题:设2005年我国的国民生产总 值为 a亿元,如每年平均增长8%,那么 经过多少年国民生产总值是2005年的2倍?
设:经过x年国民生产总值是2005年的2
倍,则有 a 1 8% x 2a
∴ x3
(2) log 625
2
3 54
解:设
x
log 3 54
625
则
x 625,
3 54
5 5 即
4
3 x 625
4, ∴
4x4 3
∴ x3
例题讲解
2.求x的值:①
log
64
x
2 3
求真数
解:∵
log
64
x
2 3
∴
2
x 64 3
(43)
2 3
4 2 1
2
1
4
16
2
(2)log2 128 7
27 128
(3)lg 0.01 2
102 0.01
(4)ln10 2.303
e2.303 10
对数的运算法则及公式是什么
对数的运算法则及公式是什么在数学中,对数是指一个数以另一个数为底的指数。
对数的运算法则和公式是数学中对数运算的基本准则和表达方式。
本文将重点介绍对数的运算法则及公式。
一、对数的定义和符号对数是指数的逆运算,主要用于求指数运算的未知数。
以底数为a,对数为n的运算表达为:a^n = x,其中n为指数,a为底数,x为真数。
对数的符号为log。
例如,对于底数为2的对数运算:2^3 = 8,可以表示为log2(8)=3。
其中,2为底数,3为指数,8为真数。
二、对数运算法则1. 对数的基本运算法则(1) 乘法法则:loga(M*N) = loga(M) + loga(N)。
(2) 除法法则:loga(M/N) = loga(M) - loga(N)。
(3) 幂运算法则:loga(M^k) = k*loga(M)。
(4) 开方法则:loga√M = 1/2 * loga(M)。
2. 对数换底公式对数换底公式是指当底数不同时,如何在不同底数之间进行换算。
常用的对数换底公式有以下两种形式:(1) loga(M) = logc(M) / logc(a),其中c为任意常数。
(2) loga(M) = ln(M) / ln(a),其中ln表示自然对数。
三、对数公式1. 对数幂的对数公式对数幂的对数公式是指对数运算中底数为幂的情况,常用的对数幂的对数公式有以下两种形式:(1) loga(a^k) = k,其中k为任意常数。
(2) loga(1) = 0。
2. 对数的乘法公式对数的乘法公式是指对数运算中底数相同,真数相乘的情况。
常用的对数的乘法公式有以下两种形式:(1) loga(M*N) = loga(M) + loga(N)。
(2) loga(a) = 1。
3. 对数的除法公式对数的除法公式是指对数运算中底数相同,真数相除的情况。
常用的对数的除法公式有以下两种形式:(1) loga(M/N) = loga(M) - loga(N)。
221对数的运算--换底公式
221对数的运算--换底公式科目:数学课堂教学导学案课题:换底公式高一年级部主备人:张云刚时间:20 年月日任课教师:__________一、学习目标1、能较熟练地运用对数运算法则解决问题;2、加强数学应用意识的训练,提高解决应用问题的能力。
二、复习回顾积、商、幂的对数运算法则:如果a,0,且a?1,M,0,N,0有:log(MN),_______________aMlog,______________aNnlogM,_________(n,R)alog(MM?M),_________________________a12n1nlog,______loga,____(n,R)aaMpnlogM,______,_______a三、学习新课一、对数的换底公式:logNclogN,alogac(a,c,(0,1):(1,,,),N,0)如何证明呢?1二、几个重要的推论:nnlogN,logNmaa1mlogb,alogaba,b,(0,1):(1,,,)如何证明呢?四、典例精析例1:计算,,1log27,,2log3,log7,log89237 1lg9 ,1log232,,33,10012ab例2:设4,5,100,求2(,)的值.ab2例3:已知log5,m,log7,n,试用m,n93表示log9. 35五、课堂自测:1(下列各式中不正确的是( )2(log3?log4?log5?log6?log7?log8,( ) 234567 A(1 B(2 C(3 D(43(设lg2,a,lg3,b,则log12等于( ) 52a,ba,2bA. B. 1,a1,a2a,ba,2bC. D. 1,a1,a(设log49,a,log5,b,则lg2,________. 8312ab5(设4,5,m,且,,1,求m的值( ab教学反学习思与级部核查签字(章) 教导处核查签字(章)教学检查 20 年月日 20 年月日3。
高中数学必修1公开课教案221对数与对数运算第1课时
2.2 对数函数 2.2.1 对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的根底,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比拟,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法那么的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用. 教学难点:对数概念的理解,对数运算性质的推导及应用. 课时安排 3课时教学过程第1课时 对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.〔1〕取4次,还有多长?〔2〕取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍?抽象出:1.(21)4=?(21)x =0.125⇒x=? 2.(1+8%)x =2⇒x=?都是底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕. 推进新课 新知探究 提出问题(对于课本P 572.1.2的例8) ①利用计算机作出函数y=13×1.01x 的图象.②从图象上看,哪一年的人口数要到达18亿、20亿、30亿…? ③如果不利用图象该如何解决,说出你的见解? 即1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,x 分别等于多少?④你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题①,回忆计算机作函数图象的方法,抓住关键点.对问题②,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题③,定义一种新的运算.对问题④,借助③,类比到一般的情形. 讨论结果:①如图2-2-1-1.图2-2-1-1②在所作的图象上,取点P,测出点P 的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.③1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,要求x 分别等于多少,目前我们没学这种运算,可以定义一种新运算,即假设1318=1.01x ,那么x 称作以1.01为底的1318的对数.其他的可类似得到,这种运算叫做对数运算.④一般性的结论就是对数的定义:一般地,如果a(a>0,a≠1)的x 次幂等于N,就是a x =N,那么数x 叫做以a 为底N 的对数(logarithm),记作x=log a N,其中a 叫做对数的底数,N 叫做真数. 有了对数的定义,前面问题的x 就可表示了: x=log 1.011318,x=log 1.011320,x=log 1.011330.由此得到对数和指数幂之间的关系:a Nb 指数式a b =N 底数 幂 指数 对数式log a N=b对数的底数真数对数提出问题①为什么在对数定义中规定a>0,a≠1?②根据对数定义求log a 1和log a a(a>0,a≠1)的值. ③负数与零有没有对数? ④Na alog =N 与log a a b =b(a>0,a≠1)是否成立?讨论结果:①这是因为假设a <0,那么N 为某些值时,b 不存在,如log 〔-2〕21; 假设a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;假设a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了a >0且a≠1. ②log a 1=0,log a a=1.因为对任意a>0且a≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a=1.即1的对数等于0,底的对数等于1.③因为底数a >0且a≠1,由指数函数的性质可知,对任意的b ∈R ,a b >0恒成立,即只有正数才有对数,零和负数没有对数. ④因为a b =N,所以b=log a N,a b =a Na alog =N,即a Na alog =N.因为a b =a b ,所以log a a b =b.故两个式子都成立.(a Na alog =N 叫对数恒等式)思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗? 活动:同学们阅读课本P 68的内容,教师引导,板书. 解答:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5. ②自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作lnN. 例如:log e 3简记作ln3;log e 10简记作ln10. 应用例如思路1例1将以下指数式写成对数式,对数式写成指数式: 〔1〕54=625;〔2〕2-6=641;〔3〕(31)m =5.73; (4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对〔1〕根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数. 对〔2〕根据指数式与对数式的关系,-6在指数位置上,-6是以2为底641的对数. 对〔3〕根据指数式与对数式的关系,m 在指数位置上,m 是以31为底5.73的对数. 对(4)根据指数式与对数式的关系,16在真数位置上,16是21的-4次幂. 对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂. 对(6)根据指数式与对数式的关系,10在真数位置上,10是e 的2.303次幂.解:〔1〕log 5625=4;〔2〕log 2641=-6;〔3〕log 315.73=m; 〔4〕(21)-4=16;(5)10-2=0.01;(6)e 2.303=10. 思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照. 解答:假设是指数式化为对数式,关键要看清指数是几,再写成对数式.假设是对数式化为指数式,那么要看清真数是几,再写成幂的形式.最关键的是搞清N 与b 在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据. 变式训练课本P 64练习 1、2.例2求以下各式中x 的值: 〔1〕log 64x=32-;〔2〕log x 8=6; 〔3〕lg100=x;〔4〕-lne 2=x. 活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:〔1〕因为log 64x=-32,所以x=6432-=(2))32(6-⨯=2-4=161.〔2〕因为log x 8=6,所以x 6=8=23=(2)6.因为x>0,因此x=2. 〔3〕因为lg100=x,所以10x =100=102.因此x=2.〔4〕因为-lne 2=x,所以lne 2=-x,e -x =e 2.因此x=-2.点评:此题要注意方根的运算,同时也可借助对数恒等式来解. 变式训练求以下各式中的x : ①log 4x=21;②log x 27=43;③log 5〔log 10x 〕=1. 解:①由log 4x=21,得x=421=2;②由log x 27=43,得x 43=27,所以x=2734=81;③由log 5〔log 10x 〕=1,得log 10x=5,即x=105.点评:在解决对数式的求值问题时,假设不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是〔 〕 〔1〕假设log 5x=3,那么x=15 〔2〕假设log 25x=21,那么x=5 〔3〕假设log x 5=0,那么x=5 〔4〕假设log 5x=-3,那么x=1251 A.〔2〕〔3〕 B.〔1〕〔3〕 C.〔2〕〔4〕 D.〔3〕〔4〕 活动:学生观察,教师引导学生考虑对数的定义. 对数式化为指数式,根据指数幂的运算性质算出结果. 对于〔1〕因为log 5x=3,所以x=53=125,错误;对于〔2〕因为log 25x=21,所以x=2521=5,正确;对于〔3〕因为log x 5=0,所以x 0=5,无解,错误; 对于〔4〕因为log 5x=-3,所以x=5-3=1251,正确. 总之〔2〕〔4〕正确. 答案:C点评:对数的定义是对数形式和指数形式互化的依据. 例2对于a >0,a≠1,以下结论正确的选项是〔 〕 〔1〕假设M=N,那么log a M=log a N 〔2〕假设log a M=log a N,那么M=N 〔3〕假设log a M 2=log a N 2,那么M=N〔4〕假设M=N,那么log a M 2=log a N 2 A.〔1〕〔3〕 B.〔2〕〔4〕 C.〔2〕 D.〔1〕〔2〕〔4〕 活动:学生思考,讨论,交流,答复,教师及时评价. 回想对数的有关规定.对〔1〕假设M=N,当M 为0或负数时log a M≠log a N,因此错误; 对〔2〕根据对数的定义,假设log a M=log a N,那么M=N,正确; 对〔3〕假设log a M 2=log a N 2,那么M=±N,因此错误;对〔4〕假设M=N=0时,那么log a M 2与log a N 2都不存在,因此错误. 综上,〔2〕正确. 答案:C点评:0和负数没有对数,一个正数的平方根有两个. 例3计算:(1)log 927;(2)log 4381;(3)log )32(+(2-3);(4)log 345625.活动:教师引导,学生回忆,教师提问,学生答复,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法. 解法一:(1)设x=log 927,那么9x =27,32x =33,所以x=23; (2)设x=log 4381,那么(43)x =81,34x =34,所以x=16; (3)令x=log )32(+(2-3)=log )32(+(2+3)-1,所以(2+3)x =(2+3)-1,x=-1;(4)令x=log 345625,所以(345)x =625,534x=54,x=3.解法二:(1)log 927=log 933=log 9923=23; (2)log 4381=log 43(43)16=16; (3)log )32(+(2-3)=log )32(+(2+3)-1=-1;(4)log 345625=log 345(345)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据. 变式训练课本P 64练习 3、4. 知能训练1.把以下各题的指数式写成对数式:(1)42=16;〔2〕30=1;〔3〕4x =2;〔4〕2x =0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16. 解:(1)2=log 416;(2)0=log 31;(3)x=log 42;(4)x=log 20.5;(5)4=log 5625; (6)-2=log 391;(7)-2=log 4116. 2.把以下各题的对数式写成指数式:(1)x=log 527;(2)x=log 87;(3)x=log 43;(4)x=log 731; (5)log 216=4;(6)log 3127=-3;(7)logx3=6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a.解:(1)5x =27;(2)8x =7;(3)4x =3;(4)7x =31;(5)24=16;(6)(31)-3=27;(7)(3)6 =x;(8)x -6=64;(9)27=128;(10)3a =27. 3.求以下各式中x 的值: (1)log 8x=32-;(2)log x 27=43;(3)log 2〔log 5x 〕=1;(4)log 3〔lgx 〕=0.解:(1)因为log 8x=32-,所以x=832-=(23)32-=)32(32-⨯=2-2=41;(2)因为log x 27=43,所以x 43=27=33,即x=(33)34=34=81;(3)因为log 2〔log 5x 〕=1,所以log 5x=2,x=52=25; (4)因为log 3〔lgx 〕=0,所以lgx=1,即x=101=10. 4.(1)求log 84的值;(2)log a 2=m,log a 3=n,求a 2m +n 的值.解:(1)设log 84=x,根据对数的定义有8x =4,即23x =22,所以x=32,即log 84=32; (2)因为log a 2=m,log a 3=n,根据对数的定义有a m =2,a n =3,所以a 2m +n =(a m )2·a n =(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法那么的应用. 拓展提升请你阅读课本75页的有关阅读局部的内容,搜集有关对数开展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下根底. 课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数. 作业课本P 74习题2.2A 组 1、2. 【补充作业】1.将以下指数式与对数式互化,有x 的求出x 的值. 〔1〕521-=51;〔2〕log 24=x;〔3〕3x =271; 〔4〕(41)x=64;〔5〕lg0.000 1=x;〔6〕lne 5=x. 解:〔1〕521-=51化为对数式是log 551=21-; 〔2〕x=log24化为指数式是(2)x =4,即22x=22,2x=2,x=4; 〔3〕3x =271化为对数式是x=log 3271,因为3x =(31)3=3-3,所以x=-3; 〔4〕(41)x =64化为对数式是x=log 4164,因为(41)x =64=43,所以x=-3; 〔5〕lg0.0001=x 化为指数式是10x =0.0001,因为10x =0.000 1=10-4,所以x=-4;〔6〕lne 5=x 化为指数式是e x =e 5,因为e x =e 5,所以x=5. 2.计算51log 53log 333+的值.解:设x=log 351,那么3x =51,(321)x =(51)21,所以x=log513.所以351log 5log 3333+=513log 35+=515+=556. 3.计算Nc b c b a alog log log ••(a>0,b>0,c>0,N>0).解:Nc b c b a alog log log ••=Nc c b blog log •=Nc clog =N. 设计感想(设计者:路致芳)。
对数的概念及运算法则
对数的概念及运算法则对数是数学中的一个概念,它表示一个数相对于一些给定的底数的幂。
在日常生活中,对数经常被用来解释指数增长或减少的情况。
首先,对数的定义是:对于给定的正数a(a ≠ 1),将正数x表达为底数a的幂的等式,即x = a^m (m为任意实数),称m为x的以a为底的对数,记作m =log[底数a](x),即m = loga(x)。
对数有以下几个重要特点:1.底数必须是一个正数,并且不能等于12.对数函数中x的取值范围为正实数,因为负数和0的对数不存在。
3.对数的结果m可以是任意实数,包括正数、负数和零。
对数具有一些重要的性质和运算法则,下面介绍其中的一些:1.换底公式:对于任意给定的x和任意的正数a、b(a、b≠1),有以下等式成立:loga(x) = logb(x) / logb(a)换底公式可以将一个对数用另一个底数的对数表示,这样在计算和比较对数时更加方便。
2.加减法法则:对于任意给定的正数a、b和任意的正数x、y,有以下等式成立:loga(x * y) = loga(x) + loga(y)loga(x / y) = loga(x) - loga(y)加减法法则可以将对数的乘法和除法分解为对数的加法和减法,简化对数运算。
3.乘方法则:对于任意给定的正数a和任意的正数x和正整数n,有以下等式成立:loga(x^n) = n * loga(x)乘方法则可以将对数中的指数化简为对数本身的乘法。
4.对数的乘法和除法法则:对于任意给定的正数a、b和任意的正数x,有以下等式成立:loga(x^b) = b * loga(x)loga(b^x) = x * loga(b)乘法和除法法则可以将指数中的对数化简为对数本身的乘法或除法。
5.对数的幂次法则:对于任意给定的正数a、b和任意的正数x,有以下等式成立:a^(loga(x)) = x如果a ≠ 1,则loga(a^x) = x幂次法则可以将对数中的幂次化简为原指数。
对数算法公式
对数算法公式对数算法公式1. 什么是对数算法对数算法是数学中的一种重要算法,用于计算对数。
对数是一种特殊的指数运算,可以求解一个数以某个底数为底的幂次,即求解指数。
2. 对数的定义对于正实数x和正实数a,若满足a^x = b,则称x为以底数a的对数,记作x = log(a, b)。
3. 常用的对数公式自然对数公式自然对数是以常数e为底的对数,其中e约等于。
自然对数公式如下:ln(x) = log(e, x)以10为底的对数公式以10为底的对数公式如下:log10(x) = log(10, x)4. 对数公式的应用举例求自然对数假设要计算ln(2),则根据自然对数公式:ln(2) = log(e, 2)≈求以10为底的对数假设要计算log,则根据以10为底的对数公式:log = log(10, 100)= 2总结对数算法是一种常用的数学运算方法,用于解决指数问题。
自然对数公式和以10为底的对数公式是常见的对数公式。
在实际应用中,我们可以使用对数公式来求解各种数值问题。
5. 其他常用对数公式换底公式换底公式是一种常用的对数转化公式,可以将一个底数为a的对数转化为另一个底数为b的对数。
换底公式如下:log_b(x) = log_a(x) / log_a(b)其中,x为正实数,a和b为正实数且不等于1。
对数的性质对数具有一些重要的性质,包括乘法性质、除法性质和幂次性质。
下面是对数的常见性质:•乘法性质:log_a(xy) = log_a(x) + log_a(y),其中x和y为正实数。
•除法性质:log_a(x/y) = log_a(x) - log_a(y),其中x和y为正实数。
•幂次性质:log_a(x^y) = y * log_a(x),其中x为正实数,y为任意实数。
6. 对数公式的应用举例换底公式的应用假设要计算log_2(8),根据换底公式,可以将底数为2的对数转化为底数为10的对数:log_2(8) = log_10(8) / log_10(2)= 3 /≈对数性质的应用假设要计算log_2(4) + log_2(8),可以利用对数的乘法性质将其转化为一个对数的和:log_2(4) + log_2(8) = log_2(4 * 8)= log_2(32)= log_10(32) / log_10(2)= 5 /≈总结除了自然对数和以10为底的对数公式外,换底公式以及对数的乘法性质、除法性质和幂次性质也是常见的对数公式。
《对数与对数运算》课件
换底公式的应用:换底公式在数学、物理、化学等领域都有广泛的应用,特别是在解决 实际问题时,可以简化计算过程,提高计算效率。
单击此处添加标题
换底公式的注意事项:在使用换底公式时,需要注意底数的取值范围,以及换底公式的 适用条件,避免出现错误。
换底公式在化简中的应用
换底公式: loga(b)=logc(b)/logc(a)
,
汇报人:
目录
对数的定义
对数是一种数学运算,用于表示两个数之间的关系 对数运算的基本形式为log(a,b)=c,其中a为底数,b为真数,c为对数 对数运算的性质包括:对数运算具有可逆性、可加性、可乘性等 对数运算在科学研究、工程计算等领域有着广泛的应用
对数的性质
对数运算:对数运算是一种特殊的运算方式,可以将复杂的乘法和除法转化为简单的加法和减法。
对数乘法:对数乘法是将两 个对数相乘,得到新的对数
对数加法:对数加法是将两 个对数相加,得到新的对数
对数除法:对数除法是将两 个对数相除,得到新的对数
对数运算法则:对数运算包括 对数加法、对数减法、对数乘 法和对数除法
对数运算的应用:对数运算在 求对数、求导数、求极限等方
面有广泛应用
对数在金融中的应用
对数在求幂中的应用
幂运算:a^n=a*a*...*a(n次) 对数运算:loga(b)=c,表示a^c=b 求幂运算:a^n=a^(loga(b)) 应用实例:计算a^n的值,可以通过计算loga(b)的值,然后进行幂运算得到结果。
对数在求对数中的应用
对数减法:对数减法是将两 个对数相减,得到新的对数
的真数相乘
公式:loga(b) * loga(c) = loga(bc)
对数公式及对数函数的总结
对数公式及对数函数的总结对数是数学中的一个重要概念。
如果一个数N可以表示为a的x次方(a>0且a≠1),那么x就是以a为底N的对数,记作x=logaN。
其中a称为底数,N称为真数。
负数和零没有对数。
对数式与指数式可以互相转化:x=logaN等价于ax=N (a>0,a≠1,N>0)。
常用的对数有lgN(即以10为底N的对数)和lnN(即以自然常数e为底N的对数)。
自然常数e≈2..对数函数是指函数y=logax(a>1或0<a<1)的图像。
它的定义域为正实数集,值域为实数集。
对数函数的图像经过点(1,0),在(0,+∞)上是增函数,在(0,1)上是减函数。
当x=1时,y=0.对数函数既非奇函数也非偶函数。
对数公式在数学中有广泛的应用。
例如,可以用对数公式计算各种对数值,如log26-log23=2,log212+log25=log=3,等等。
还可以用对数公式来解对数的值,如lg14-2lg7+lg7/lg18-2lg2-(-1)=log0.5,以及2(lg2+lg5)+log3(4/27)的值等。
在第一象限内,a越大图像越靠下,在第四象限内,a越大图像越靠上。
总之,对数及其函数在数学中有着广泛的应用,是不可或缺的数学工具。
4、已知a>b>c,那么a>b>c。
3、设a=log3π,b=log23,c=log32,则a>b>c。
2、如果a>b>logc1,那么B选项___c。
5、如果a>1,且a-x-logaxy。
1、已知函数f(x)=logx,如果f(ab)=1,则f(a)+f(b)=2.6、设函数f(x)={x-1,x<2;2logx-1,x≥2},那么f(f(2))=2log2-1.7、设函数f(x)满足:当x≥4时,f(x)=1/x;当x<4时,f(x)=f(x+1),那么f(2+log23)=1/7.参数问题部分无需改写。
221 对数与对数运算
§2.2 对数函数 2.2.1 对数与对数运算1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ⇔x =log a N ,从而得对数恒等式:a log a N =N .(2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.(3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.(1)基本公式①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和.②log a MN=log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数的对数减去除数的对数.③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数. (2)对数的运算性质注意点①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4).②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N =log a Mlog a N,log a M n =(log a M )n.3.对数换底公式在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底公式:log b N =log c Nlog c b(b >0,且b ≠1;c >0,且c ≠1;N >0).证明 设log b N =x ,则b x =N .两边取以c 为底的对数,得x log c b =log c N .所以x =log c N log c b ,即log b N =log c Nlog c b.换底公式体现了对数运算中一种常用的转化,即将复杂的或未知的底数转化为已知的或需要的底数,这是数学转化思想的具体应用.由换底公式可推出下面两个常用公式:(1)log b N =1log N b 或log b N ·log N b =1 (N >0,且N ≠1;b >0,且b ≠1);(2)log bn N m =mnlog b N (N >0;b >0,且b ≠1;n ≠0,m ∈R ).题型一 正确理解对数运算性质对于a >0且a ≠1,下列说法中,正确的是( )①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2.A .①与③B .②与④C .②D .①、②、③、④解析 在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立.在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立. 答案 C点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件,使用运算性质时,应牢记公式的形式及公式成立的条件.题型二 对数运算性质的应用求下列各式的值:(1)2log 32-log 3329+log 38-5log 53;(2)lg25+23lg8+lg5·lg20+(lg2)2;(3)log 52·log 79log 513·log 734.分析 利用对数的性质求值,首先要明确解题目标是化异为同,先使各项底数相同,才能使用性质,再找真数间的联系,对于复杂的真数,可以先化简再计算.解 (1)原式=2log 32-(log 332-log 39)+3log 32-3 =2log 32-5log 32+2+3log 32-3=-1.(2)原式=2lg5+2lg2+lg 102·lg(2×10)+(lg2)2=2lg(5×2)+(1-lg2)·(lg2+1)+(lg2)2 =2+1-(lg2)2+(lg2)2=3.(3)∵log 52·log 79log 513·log 734=12log 52·2log 73-log 53·13log 74=-lg2lg5·lg3lg7lg3lg5·13·lg4lg7=-32.点评 对数的求值方法一般有两种:一种是将式中真数的积、商、幂、方根利用对数的运算性质将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.题型三 对数换底公式的应用计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).分析 由题目可获取以下主要信息:本题是一道对数化简求值题,在题目中各个对数的底数都各不相同.解答本题可先通过对数换底公式统一底数再进行化简求值. 解 方法一 原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55 =⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.方法二 原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125 =⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.点评 方法一是先将括号内换底,然后再将底统一;方法二是在解题方向还不清楚的情况下,一次性地统一为常用对数(当然也可以换成其他非1的正数为底),然后再化简.上述方法是不同底数对数的计算、化简和恒等证明的常用方法.已知log (x +3)(x 2+3x )=1,求实数x 的值.错解 由对数的性质可得x 2+3x =x +3. 解得x =1或x =-3.错因分析 对数的底数和真数必须大于0且底数不等于1,这点在解题中忽略了.正解 由对数的性质知⎩⎪⎨⎪⎧x 2+3x =x +3,x 2+3x >0,x +3>0且x +3≠1.解得x =1,故实数x 的值为1.对数的定义及其性质是高考中的重要考点之一,主要性质有:log a 1=0,log a a =1,a log a N =N (a >0,且a ≠1,N >0).1.(上海高考)方程9x -6·3x -7=0的解是________. 解析 ∵9x -6·3x -7=0,即32x -6·3x -7=0 ∴(3x -7)(3x +1)=0 ∴3x =7或3x =-1(舍去) ∴x =log 37. 答案 log 372.(辽宁高考)设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=____. 解析 g ⎝⎛⎭⎫12=ln 12<0,g ⎝⎛⎭⎫ln 12=eln 12=12, ∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=12. 答案 121.对数式log (a -3)(7-a )=b ,实数a 的取值范围是( )A .(-∞,7)B .(3,7)C .(3,4)∪(4,7)D .(3,+∞)解析 由题意得⎩⎪⎨⎪⎧a -3>0,a -3≠1,7-a >0,解得3<a <7且a ≠4.2.设a =log 32,则log 38-2log 36用a 表示的形式是( )A .a -2B .3a -(1+a )2C .5a -2D .-a 2+3a -1 答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1) =3a -2(a +1)=a -2. 3.log 56·log 67·log 78·log 89·log 910的值为( )A .1B .lg5 C.1lg5D .1+lg2答案 C解析 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5.4.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( )A .(0,1) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1 D .(1,+∞) 答案 C解析 由题意,得⎩⎪⎨⎪⎧0<a <1,2a >1,∵a >0,a ≠1,log a (a 2+1)<log a 2a ,∴0<a <1.∴12<a <1.5.已知函数f (x )=a x -1+log a x (a >0,a ≠1)在[1,3]上最大值与最小值之和为a 2,则a 的值为( )A .4 B.14 C .3 D.13答案 D6.若方程(lg x )2+(lg7+lg5)lg x +lg7·lg5=0的两根为α,β,则αβ等于( )A .lg7·lg5B .lg35C .35 D.135解析 ∵lg α+lg β=-(lg7+lg5)=-lg35=lg 135∴α·β=135.7.已知f (log 2x )=x ,则f ⎝⎛⎭⎫12=________. 答案 2解析 令log 2x =12,则212=x ,∴f ⎝⎛⎭⎫12=212= 2. 8.log (2-1)(2+1)=________. 答案 -1解析 log 2-1(2+1)=log 2-1(2+1)(2-1)2-1=log (2-1)12-1=-1.9.已知lg2=0.301 0,lg3=0.477 1,lg x =-2+0.778 1,则x =________. 答案 0.06解析 ∵lg2=0.301 0,lg3=0.477 1,而0.301 0+0.477 1=0.778 1,∴lg x =-2+lg2+lg3, 即lg x =lg10-2+lg6.∴lg x =lg(6×10-2),即x =6×10-2=0.06.10.(1)已知lg x +lg y =2lg(x -2y ),求log 2xy的值;(2)已知log 189=a,18b=5,试用a ,b 表示log 365. 解 (1)lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0. 即(x -y )(x -4y )=0,解得x =y 或x =4y ,又∵⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,∴x >2y >0,∴x =y ,应舍去,取x =4y .则log 2x y =log 24y y =log 24=lg4lg 2=4.(2)∵18b =5,∴log 185=b, 又∵log 189=a , ∴log 365=log 185lg 1836=blog 18(18×2)=b 1+log 182=b 1+log 18189=b 1+(1-log 189)=b2-a. 11.设a ,b ,c 均为不等于1的正数,且a x =b y =c z ,1x +1y +1z=0,求abc 的值.解 令a x =b y =c z =t (t >0且t ≠1),则有1x =log t a ,1y =log t b ,1z =log t c ,又1x +1y +1z=0,∴log t abc =0,∴abc =1. 12.已知a ,b ,c 是△ABC 的三边,且关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根,试判定△ABC 的形状.解 ∵关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根, ∴Δ=0,即4-4[lg(c 2-b 2)-2lg a +1]=0. 即lg(c 2-b 2)-2lg a =0,故c 2-b 2=a 2, ∴a 2+b 2=c 2,∴△ABC 为直角三角形.2.2.1对数与对数运算(一)学习目标1.理解对数的概念,能进行指数式与对数式的互化.2.了解常用对数与自然对数的意义.3.理解对数恒等式并能用于有关对数的计算.自学导引1.如果a(a>0且a≠1)的b次幂等于N,就是a b=N,那么数b叫做以a为底N的对数,记作b=log a N,其中a叫做对数的底数,N叫做真数.2.对数的性质有:(1)1的对数为零;(2)底的对数为1;(3)零和负数没有对数.3.通常将以10为底的对数叫做常用对数,以e为底的对数叫做自然对数,log10N可简记为lg N,log e N 简记为ln N.4.若a>0,且a≠1,则a b=N等价于log a N=b.5.对数恒等式:a log a N=N(a>0且a≠1).一、对数式有意义的条件例1求下列各式中x的取值范围:(1)log2(x-10);(2)log(x-1)(x+2);(3)log(x+1)(x-1)2.分析由真数大于零,底数大于零且不等于1可得到关于x的不等式(组),解之即可.解(1)由题意有x-10>0,∴x>10,即为所求.(2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2.(3)由题意有⎩⎪⎨⎪⎧(x -1)2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.点评 在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1. 变式迁移1 在b =log (a -2)(5-a )中,实数a 的取值范围是( ) A .a >5或a <2 B .2<a <5 C .2<a <3或3<a <5 D .3<a <4 答案 C解析 由题意得⎩⎪⎨⎪⎧5-a >0a -2>0a -2≠1,∴2<a <5且a ≠3.二、对数式与指数式的互化例2 将下列对数形式化成指数形式或将指数形式转化为对数形式:(1)54=625; (2)log 128=-3;(3)⎝⎛⎭⎫14-2=16; (4)log 101 000=3. 分析 利用a x =N ⇔x =log a N 进行互化. 解 (1)∵54=625,∴log 5625=4.(2)∵log 128=-3,∴⎝⎛⎭⎫12-3=8. (3)∵⎝⎛⎭⎫14-2=16,∴log 1416=-2. (4)∵log 101 000=3,∴103=1 000.点评 指数和对数运算是一对互逆运算,在解题过程中,互相转化是解决相关问题的重要途径.在利用a x=N ⇔x =log a N 进行互化时,要分清各字母分别在指数式和对数式中的位置.变式迁移2 将下列对数式化为指数式求x 值:(1)log x 27=32; (2)log 2x =-23;(3)log 5(log 2x )=0; (4)x =log 2719;(5)x =log 1216.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log 5(log 2x )=0,得log 2x =1,∴x =21=2.(4)由x =log 2719,得27x =19,即33x =3-2,∴x =-23.(5)由x =log 1216,得⎝⎛⎭⎫12x =16,即2-x =24, ∴x =-4.三、对数恒等式的应用例3 (1)a log a b ·log b c ·log c N 的值(a ,b ,c ∈R +,且不等于1,N >0);(2)412(log 29-log 25).解 (1)原式=(a log a b )log b c ·log c N =b log b c ·log c N =(b log b c )log c N=c log c N =N .(2)原式=2(log 29-log 25)=2log 292log 25=95.点评 对数恒等式a log a N =N 中要注意格式:(1)它们是同底的;(2)指数中含有对数形式;(3)其值为真数.变式迁移3 计算:3log 35+(3)log 315.解 原式=5+312log 315=5+(3log 315)12=5+15=655.1.一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b =N ,那么b 叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.2.利用a b =N ⇔b =log a N (其中a >0,a ≠1,N >0)可以进行指数与对数式的互化. 3.对数恒等式:a log a N =N (a >0且a ≠1).一、选择题1.下列指数式与对数式互化不正确的一组是( ) A .100=1与lg1=0B .27-13=13与log 2713=-13C .log 312=9与912=3D .log 55=1与51=5 答案 C2.指数式b 6=a (b >0,b ≠1)所对应的对数式是( )A .log 6a =aB .log 6b =aC .log a b =6D .log b a =6 答案 D3.若log x (5-2)=-1,则x 的值为( ) A.5-2 B.5+2C.5-2或5+2 D .2- 5 答案 B4.如果f (10x )=x ,则f (3)等于( ) A .log 310 B .lg3 C .103 D .310 答案 B解析 方法一 令10x =t ,则x =lg t , ∴f (t )=lg t ,f (3)=lg3.方法二 令10x =3,则x =lg3,∴f (3)=lg3.5.21+12·log 25的值等于( )A .2+ 5B .2 5C .2+52D .1+52答案 B解析 21+12log 25=2×212log 25=2×2log 2512=2×512=2 5.二、填空题6.若5lg x =25,则x 的值为________. 答案 100解析 ∵5lg x =52,∴lg x =2,∴x =102=100.7.设log a 2=m ,log a 3=n ,则a 2m +n 的值为________. 答案 12解析 ∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =a 2m ·a n =(a m )2·a n =22×3=12.8.已知lg6≈0.778 2,则102.778 2≈________. 答案 600解析 102.778 2≈102×10lg6=600.三、解答题9.求下列各式中x 的值(1)若log 3⎝⎛⎭⎫1-2x 9=1,则求x 值; (2)若log 2 003(x 2-1)=0,则求x 值. 解 (1)∵log 3⎝ ⎛⎭⎪⎫1-2x 9=1,∴1-2x 9=3∴1-2x =27,即x =-13 (2)∵log 2 003(x 2-1)=0 ∴x 2-1=1,即x 2=2 ∴x =±210.求x 的值:(1)x =log224;(2)x =log 93;(3)x =71-log 75; (4)log x 8=-3;(5)log 12x =4.解 (1)由已知得:⎝⎛⎭⎫22x =4,∴2-12x =22,-x2=2,x =-4.(2)由已知得:9x =3,即32x =312.∴2x =12,x =14.(3)x =7÷7log 75=7÷5=75.(4)由已知得:x -3=8, 即⎝⎛⎭⎫1x 3=23,1x =2,x =12. (5)由已知得:x =⎝ ⎛⎭⎪⎫124=116.2.2.1 对数与对数运算(二)学习目标1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.自学导引1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么, (1)log a (MN )=log a M +log a N ;(2)log a MN=log a M -log a N ;(3)log a M n =n log a M (n ∈R ).2.对数换底公式:log a b =log c blog c a.一、正确理解对数运算性质例1 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( ) ①log a x · log a y =log a (x +y ); ②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .A .0个B .1个C .2个D .3个 答案 A解析 对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件. 变式迁移1 若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( )A .log a x =-log a 1xB .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x答案 A二、对数运算性质的应用例2 计算:(1)log 535-2log 573+log 57-log 51.8;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)lg 27+lg8-lg 1 000lg1.2;(4)(lg5)2+lg2·lg50. 分析 利用对数运算性质计算.解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2=lg 2(lg2+lg5)+1-lg 2=lg 2+1-lg 2=1.(3)原式=32lg3+3lg2-32lg3+2lg2-1=3lg3+6lg2-32(lg3+2lg2-1)=32.(4)原式=(lg5)2+lg2·(lg2+2lg5)=(lg5)2+2lg5·lg2+(lg2)2=(lg5+lg2)2=1.点评 要灵活运用有关公式.注意公式的正用、逆用及变形使用. 变式迁移2 求下列各式的值:(1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64. 解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7)=1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=[log 262+log 62·log 6(3×6)]÷log 622=log 62(log 62+log 63+1)÷(2log 62)=1.三、换底公式的应用例3 (1)设3x =4y =36,求2x +1y的值;(2)已知log 189=a,18b=5,求log 3645. 解 (1)由已知分别求出x 和y . ∵3x =36,4y =36, ∴x =log 336,y =log 436,由换底公式得: x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y =log 364, ∴2x +1y =2log 363+log 364 =log 36(32×4)=log 3636=1. (2)∵log 189=a,18b =5,∴log 185=b .∴log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b 2-a .点评 指数式化为对数式后,两对数式的底不同,但式子两端取倒数后,利用对数的换底公式可将差异消除.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 1227=a ,求log 616的值.解 (1)利用换底公式,得lg4lg3·lg8lg4·lg mlg8=2,∴lg m =2lg3,于是m =9.(2)由log 1227=a ,得3lg32lg2+lg3=a ,∴lg3=2a lg23-a ,∴lg3lg2=2a3-a .∴log 616=4lg2lg3+lg2=42a 3-a +1=4(3-a )3+a.1.对于同底的对数的化简常用方法是:(1)“收”,将同底的两对数的和(差)化成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对于常用对数的化简要充分利用“lg5+lg2=1”来解题. 3.对于多重对数符号对数的化简,应从内向外逐层化简求值.一、选择题1.lg8+3lg5的值为( )A .-3B .-1C .1D .3 答案 D解析 lg8+3lg5=lg8+lg53=lg1 000=3. 2.已知lg2=a ,lg3=b ,则log 36等于( ) A.a +b a B.a +b bC.a a +bD.b a +b 答案 B解析 log 36=lg6lg3=lg2+lg3lg3=a +bb.3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg ab 2的值等于( ) A .2 B.12 C .4 D.14答案 A解析 由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,∴⎝⎛⎭⎫lg ab 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b=22-4×12=2.4.若2.5x =1 000,0.25y =1 000,则1x -1y等于( )A.13 B .3 C .-13 D .-3 答案 A解析 由指数式转化为对数式:x =log 2.51 000,y =log 0.251 000, 则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13. 5.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 005)=8,则f (x 21)+f (x 22)+…+f (x 22 005)的值等于( ) A .4 B .8 C .16 D .2log a 8 答案 C解析 因为f (x )=log a x ,f (x 1x 2…x 2 005)=8,所以f (x 21)+f (x 22)+…+f (x 22 005) =log a x 21+log a x 22+…+log a x 22 005=2log a |x 1|+2log a |x 2|+…+2log a |x 2 005| =2log a |x 1x 2…x 2 005|=2f (x 1x 2…x 2 005)=2×8=16. 二、填空题6.设lg2=a ,lg3=b ,那么lg 1.8=__________.答案 a +2b -12解析 lg 1.8=12lg1.8=12lg 1810=12lg 2×910=12(lg2+lg9-1)=12(a +2b -1). 7.若log a x =2,log b x =3,log c x =6,则log abc x 的值为____. 答案 1解析 log abc x =1log x abc =1log x a +log x b +log x c∵log a x =2,log b x =3,log c x =6∴log x a =12,log x b =13,log x c =16,∴log abc x =112+13+16=11=1.8.已知log 63=0.613 1,log 6x =0.386 9,则x =________. 答案 2解析 由log 63+log 6x =0.613 1+0.386 9=1. 得log 6(3x )=1.故3x =6,x =2. 三、解答题9.求下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)(lg5)2+2lg2-(lg2)2.解 (1)方法一 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5=12(lg2+lg5) =12lg10=12.方法二 原式=lg 427-lg4+lg7 5=lg 42×757×4=lg(2·5)=lg 10=12.(2)方法一 原式=(lg5+lg2)(lg5-lg2)+2lg2=lg10·lg 52+lg4=lg ⎝⎛⎭⎫52×4=lg10=1. 方法二 原式=(lg10-lg2)2+2lg2-lg 22 =1-2lg2+lg 22+2lg2-lg 22=1.10.若26a =33b =62c ,求证:1a +2b =3c .证明 设26a =33b =62c =k (k >0),那么 ⎩⎪⎨⎪⎧6a =log 2k ,3b =log 3k ,2c =log 6k ,∴⎩⎪⎨⎪⎧1a =6log 2k=6log k 2,1b =3log 3k =3log k3,1c =2log 6k =2log k6.∴1a +2b=6·log k 2+2×3log k 3 =log k (26×36)=6log k 6=3×2log k 6=3c,即1a +2b =3c. 2.2.2 对数函数及其性质1.对数函数的概念形如y =log a x (a >0且a ≠1)的函数叫做对数函数.对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x恰好是指数函数的函数值y,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y=log a x中,log a x前面的系数为1,自变量在真数的位置,底数a必须满足a>0,且a≠1;(3)以10为底的对数函数为y=lg x,以e为底的对数函数为y=ln x.3.m (1)当(m -1)(n -1)>0,即m 、n 范围相同(相对于“1”而言),则log m n >0;(2)当(m -1)(n -1)<0,即m 、n 范围相反(相对于“1”而言),则log m n <0.有了这个规律,我们再判断对数值的正负就很简单了,如log 213<0,log 52>0等,一眼就看出来了!题型一 求函数定义域求下列函数的定义域:(1)y =log 3x -12x +3x -1;(2)y =11-log a (x +a ) (a >0,a ≠1).分析 定义域即使函数解析式有意义的x 的范围.解 (1)要使函数有意义,必须{2x +3>0, x -1>0, 3x -1>0, 3x -1≠1同时成立, 解得⎩⎨⎧x >-32, x >1, x >13, x ≠23. ∴x >1.∴定义域为(1,+∞).(2)要使原函数有意义,需1-log a (x +a )>0, 即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log 4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba ,logb a ,log a b 的大小.(1)解析 ∵log 34>1,0<log 43<1,log 4334=log 43⎝⎛⎭⎫43-1=-1, ∴log 34>log 43>log 4334.答案 B(2)解 ∵b >a >1,∴0<ab<1.∴log a a b <0,log b ba∈(0,1),log b a ∈(0,1).又a >b a >1,且b >1,∴log b ba<log b a ,故有log a a b <log b ba<log b a <log a b .点评 比较对数的大小,一般遵循以下几条原则:①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较. ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1). 当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限内)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限内,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限内)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限内,图象越靠近x 轴的对数函数的底数越小.已知log a 12<1,那么a 的取值范围是________.分析 利用函数单调性或利用数形结合求解.解析 由log a 12<1=log a a ,得当a >1时,显然符合上述不等式,∴a >1;当0<a <1时,a <12,∴0<a <12.故a >1或0<a <12.答案 a >1或0<a <12点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1; (2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x -log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 解要使不等式2x<logax 在x ∈⎪⎭⎫ ⎝⎛21,0时恒成立,即函数y=logax 的图象在⎪⎭⎫ ⎝⎛21,0内恒在函数y=2x 图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减. 又loga21>2=log 2a a ,∴a2>21,即a>2221⎪⎭⎫ ⎝⎛.∴所求的a 的取值范围为2221⎪⎭⎫⎝⎛<a<1. 点评 原问题等价于当x ∈⎪⎭⎫⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a 的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫ ⎝⎛.那么a 是大于a 0还是小于a 0才满足呢?可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f (x )=lg(ax 2+2x +1),若f (x )的值域是R ,求实数a 的取值范围.错解 ∵f (x )的值域是R , ∴ax 2+2x +1>0对x ∈R 恒成立, 即{ a >0 Δ<0⇔{a >0 4-4a <0⇔a >1.错因分析 出错的原因是分不清定义域为R 与值域为R 的区别.正解函数f(x)=lg(ax2+2x+1)的值域是R⇔真数t=ax2+2x+1能取到所有的正数.当a=0时,只要x>-12,即可使真数t取到所有的正数,符合要求;当a≠0时,必须有{a>0 Δ≥0⇔{a>0 4-4a≥0⇔0<a≤1.∴f(x)的值域为R时,实数a的取值范围为[0,1].本节内容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(广东高考)已知函数f(x)=11-x的定义域为M,g(x)=ln(1+x)的定义域为N,则M∩N等于()A.{x|x>-1}B.{x|x<1}C.{x|-1<x<1} D.∅解析由题意知M={x|x<1},N={x|x>-1}.故M∩N={x|-1<x<1}.答案 C2.(湖南高考)下列不等式成立的是()A.log32<log23<log25B.log32<log25<log23C.log23<log32<log25D.log23<log25<log32解析∵y=log2x在(0,+∞)上是增函数,∴log25>log23>log22=1.又y=log3x在(0,+∞)上为增函数,∴log32<log33=1.∴log32<log23<log25.答案 A3.(全国高考)若x∈(e-1,1),a=ln x,b=2ln x,c=ln3x,则() A.a<b<c B.c<a<bC.b<a<c D.b<c<a解析 ∵1e <x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0. ∴a -b =t -2t =-t >0.∴a >b . c -a =t 3-t =t (t 2-1)=t (t +1)(t -1), 又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a . ∴c >a >b . 答案 C1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C.⎩⎨⎧⎭⎬⎫x |-12<x <1 D .∅ 答案 C2.已知函数f (x )=lg 1-x 1+x,若f (a )=12,则f (-a )等于( )A.12 B .-12 C .-2 D .2 答案 B解析 f (-a )=lg 1+a1-a =-lg ⎝ ⎛⎭⎪⎫1+a 1-a -1=-lg 1-a 1+a=-f (a )=-12.3.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b 答案 A解析因为a=log23>1,b=log3 2<1,所以a>b;又因为2>3,则log32>log33=12,而log42=log22=12,所以b>12,c=12,即b>c.从而a>b>c.4.函数f(x)=lg|x|为()A.奇函数,在区间(0,+∞)上是减函数B.奇函数,在区间(0,+∞)上是增函数C.偶函数,在区间(-∞,0)上是增函数D.偶函数,在区间(-∞,0)上是减函数答案 D解析已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f(-x)=lg|-x|=lg|x|=f(x),所以它是偶函数.又当x>0时,|x|=x,即函数y=lg|x|在区间(0,+∞)上是增函数.又f(x)为偶函数,所以f(x)=lg|x|在区间(-∞,0)上是减函数.5.函数y=a x与y=-log a x (a>0,且a≠1)在同一坐标系中的图象只可能为()答案 A解析方法一若0<a<1,则曲线y=a x下降且过(0,1),而曲线y=-log a x上升且过(1,0);若a>1,则曲线y=a x上升且过(0,1),而曲线y=-log a x下降且过(1,0).只有选项A满足条件.方法二注意到y=-log a x的图象关于x轴对称的图象的表达式为y=log a x,又y=log a x与y=a x互为反函数(图象关于直线y =x 对称),则可直接选定选项A.6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)内的每一个x 值都有f (x )>0,则实数a 的取值范围为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫12,1 D.⎝⎛⎭⎫0,12 答案 D解析 已知-1<x <0,则0<x +1<1,又当-1<x <0时,都有f (x )>0,即0<x +1<1时都有f (x )>0,所以0<2a <1,即0<a <12.7.若指数函数f (x )=a x (x ∈R )的部分对应值如下表:则不等式log a (x -1)<0的解集为答案 {x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0, ∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}.8.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________.答案 12解析 若a >1,则函数y =log a x 在区间[1,2]上为增函数,其值域不可能为[-1,0];故0<a <1,此时当x =2时,y 取最小值-1,即log a 2=-1,得a -1=2,所以a =12.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log a x ,x ≥1是实数集R 上的减函数,那么实数a 的取值范围为__________.答案 ⎣⎡⎭⎫17,13解析 函数f (x )为实数集R 上的减函数,一方面,0<a <1且3a -1<0,所以0<a <13,另一方面,由于f (x )在R 上为减函数, 因此应有(3a -1)×1+4a ≥log a 1,即a ≥17.因此满足题意的实数a 的取值范围为17≤a <13.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值. 解 ∵f (x )的定义域为[1,4], ∴g (x )的定义域为[1,2].∵g (x )=f 2(x )+f (x 2)=(1+log 2x )2+(1+log 2x 2) =(log 2x +2)2-2, 又1≤x ≤2,∴0≤log 2x ≤1. ∴当x=1时,g (x )min=2;当x=2时,g (x )max =7.学习目标1.掌握对数函数的概念、图象和性质. 2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).对数函数y =log a x (a >0且a ≠1)和指数函数y =a x _(a >0且a ≠1)互为反函数.一、对数函数的图象例1 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a值依次是( )A.101,53,34,3B .53,101,34,3C .101,53,3,34D .53,101,3,34答案 A解析 方法一 因为对数的底数越大,函数的图象越远离y 轴的正方向,所以C1,C2,C3,C4的a 值依次由大到小,即C1,C2,C3,C4的a 值依次为101,53,34,3. 方法二过(0,1)作平行于x 轴的直线,与C1,C2,C3,C4的交点的横坐标为(a1,1),(a2,1),(a3,1),(a4,1),其中a1,a2,a3,a4分别为各对数的底,显然a1>a2>a3>a4,所以C1,C2,C3,C4的底值依次由大到小.点评 函数y=logax (a>0,且a ≠1)的底数a 的变化对图象位置的影响如下:①上下比较:在直线x=1的右侧,底数大于1时,底数越大,图象越靠近x 轴;底数大于0且小于1时,底数越小,图象越靠近x 轴.②左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的对数函数的底数越大. 变式迁移1 借助图象比较m ,n 的大小关系: (1)若logm5>logn5,则m n ; (2)若logm0.5>logn0.5,则m n.答案 (1)< (2)>二、求函数的定义域例2 求下列函数的定义域: (1)y =3log 2x ;(2)y =log 0.5(4x -3); (3)y =log (x +1)(2-x ).分析 定义域即使函数解析式有意义的x 的范围.解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}. (2)要使函数y =log 0.5(4x -3)有意义,必须log 0.5(4x -3)≥0=log 0.51,∴0<4x -3≤1.解得34<x ≤1.∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1.(3)由⎩⎪⎨⎪⎧ x +1>0x +1≠12-x >0,得⎩⎨⎧x >-1x ≠0,x <2即0<x <2或-1<x <0, 所求定义域为(-1,0)∪(0,2).点评 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移2 求y =log a (4x -3)(a >0,a ≠1)的定义域. 解 log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1, ∴4x -3≥1,x ≥1. 当0<a <1时,(*)可化为 log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1.综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1.三、对数函数单调性的应用例3 比较大小: (1)log 0.81.5与log 0.82; (2)log 35与log 64.分析 从比较底数、真数是否相同入手.解 (1)考查对数函数y =log 0.8x 在(0,+∞)内是减函数, ∵1.5<2,∴log 0.81.5>log 0.82.(2)log 35和log 64的底数和真数都不相同,找出中间量“搭桥”,再利用对数函数的单调性,即可求解. ∵log 35>log 33=1=log 66>log 64, ∴log 35>log 64.点评 比较两个对数值的大小,常用方法有:①底数相同真数不同时,用函数的单调性来比较;②底数不同而真数相同时,常借助图象比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.变式迁移3 比较下列各组中两个值的大小: (1)log 0.52.7,log 0.52.8; (2)log 34,log 65; (3)log a π,log a e (a >0且a ≠1).解 (1)∵0<0.5<1,∴对数函数y =log 0.5x 在(0,+∞)上是减函数.又∵2.7<2.8,∴log 0.52.7>log 0.52.8. (2)∵y =log 3x 在(0,+∞)上是增函数, ∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数, ∴log 65<log 66=1. ∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数. ∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数. ∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ; 当0<a <1时,log a π<log a e.例4 若-1<log a 34<1,求a 的取值范围.分析 此不等式为对数不等式且底数为参数.解答本题可根据对数函数的单调性转化为一般不等式求解,同时应注意分类讨论.解 -1<log a 34<1⇔log a 1a <log a 34<log a a .当a >1时,1a <34<a ,∴a >43.当0<a <1时,1a >34>a ,∴0<a <34.∴a 的取值范围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞. 点评 (1)解对数不等式问题通常转化为不等式组求解,其依据是对数函数的单调性. (2)解决与对数函数相关的问题时要遵循“定义域优先”原则. (3)若含有字母,应考虑分类讨论.变式迁移4 已知log a (2a +1)<log a 3a <0,求a 的取值范围. 解 log a (2a +1)<log a 3a <0(*)当a >1时,(*)可化为⎩⎨⎧0<2a +1<10<3a <12a +1<3a ,解得⎩⎪⎨⎪⎧-12<a <00<a <13a >1,∴此时a 无解.当0<a <1时,(*)可化为⎩⎨⎧2a +1>13a >12a +1>3a,解得⎩⎨⎧a >0a >13a <1,∴13<a <1. 综上所述,a 的取值范围为⎝⎛⎭⎫13,1.1.求对数函数定义域要注意底数中是否含有自变量,此时底数大于0且不等于1.2.应用对数函数的图象和性质时要注意a >1还是0<a <1。
对数与对数的运算
对数与对数的运算1. 对数的概念.一般地,如果N a x =)1,0(≠>a a ,那么数 x 叫做以a 为底 N 的对数.记作 ,其中a 叫做对数的底数,N 叫做真数.2. 对数与指数的关系.一般地,如果(a >0, a ≠1)的b 次幂等于N ,就是N a b=,那么数b 叫做以a为底N 的对数,记作b N a =log ,3. 常用对数.我们通常将以10为底的对数叫做常用对数,并把常用对数10log N 简记为lg N 例如:5log 10简记作lg5; 5.3log 10简记作 .4. 自然对数.在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数N e log 简记作N ln例如:3log e 简记作3ln ; 10log e 简记作 .反思:1.是不是所有的实数都有对数?b N a =log 中的N 可以取哪些值?负数与零是否有对数?为什么?2.=1log a , =a a log .3.底数的取值范围是 ,真数的取值范围 .4.=n a a log ,=n a a log .例1.将下列指数式写成对数式,对数式写成指数式. (1)62554=; (2)73.531=m )( ; (3)416log 21-= ; (4)303.210ln =.例2.求下列各式中的x 的值.(1)32log 64-=x ; (2)68log =x ; (3)x =100lg ; (4)x e =-2ln .例3.计算. (1)27log 9; (2)81log 3; (3)125log 5; (4)()()32log 32-+.1. 若2log 3x =,则x =( ).A. 4B. 6C. 8D. 9 2. )23(log )23(+-= ( ).A. 1B. -1C. 2D. -23. 对数式b a a =--)5(log )2(中,实数a 的取值范围是( ).A .(,5)-∞B .(2,5)C .(2,)+∞D . (2,3)(3,5)4.若1)12(log -=+x ,则x =_____,若y =8log2,则y =_____.⇔=N a b5. 计算:(1))223(log )12(++; (2)625log 35.问题:由q p q p a a a +=,如何探讨)(log MN a 和M a log 、N a log 之间的关系?设p M a =log , q N a =log ,由对数的定义可得:p a M =,q a N =∴qp q p a a a MN +==,∴q p MN a +=)(log ,即得N M MN a a a log log )(log +=.对数运算性质.如果1,0≠>a a ,M > 0, N > 0 有:(1)N M MN a a a log log )(log +=; (2)N M NM a a alog log log -= (3))(log log R n M n M a n a ∈=.例1.用x a log ,y a log ,z a log 表示下列各式.32log )2(;(1)log z y x zxy a a .例2.计算. (1)25log 5; (2))24(log 572⨯; (3)5100lg ; (4)1log 4.0.例3.计算. (1) 18lg 7lg 37lg 214lg -+-; (2) 5lg 2lg )5(lg 2⋅+.。
常见对数运算公式
常见对数运算公式对数运算在数学中可是个相当重要的“家伙”,咱们今天就来好好唠唠常见的对数运算公式。
先来说说对数的定义吧。
如果 a 的 x 次方等于 N(a>0,且 a 不等于 1),那么数 x 叫做以 a 为底 N 的对数,记作x=logₐN。
常见的对数运算公式那可是不少,咱们一个一个来看。
第一个就是“logₐ(MN) = logₐM + logₐN”。
这就好比是把两个数相乘的对数,拆分成了两个数各自对数的和。
比如说,计算 log₂(4×8),就可以变成 log₂4 + log₂8,也就是 2 + 3 = 5。
再看“logₐ(M/N) = logₐM - logₐN”。
这就像是把两个数相除的对数,变成了两个数各自对数的差。
比如说算 log₃(9÷3),那就是 log₃9 - log₃3,结果是 2 - 1 = 1。
还有“logₐMⁿ = nlogₐM”。
这个就像是给对数中的数来了个“乘方”的操作,结果就是把指数提到前面和对数相乘。
比如求 log₅25²,那就是2×log₅25 = 4。
我想起之前给学生们讲这部分内容的时候,有个学生特别有意思。
当时我在黑板上写了一道题:log₄(2×8)。
我就叫了这位同学上来做,他站在黑板前,皱着眉头,嘴里还念念有词:“这俩数相乘,应该是相加!”然后信心满满地写下“log₄2 + log₄8”,算出来是 5/2。
我笑着问他:“你再好好想想,log₄2 和 log₄8 分别等于多少呀?”他一拍脑袋,恍然大悟:“哎呀,老师,我算错啦,log₄2 是 1/2,log₄8 是 3/2,加起来应该是 2 才对!”全班同学都被他这可爱的反应逗得哈哈大笑。
咱们接着说对数运算公式。
“logₐb × logₓb = logₐx”。
这个公式有点绕,但多做几道题熟悉熟悉就好理解啦。
“logₐb = 1 / logₓa”。
221对数与对数运算1
讲授新课
4.对数的性质 探究活动
loga a = 1.
3、求下列各式的值:
log3 3; lg10; log0.5 0.5; ln e.
思考:你发现了什么?
讲授新课
4.对数的性质 探究活动
aloga N = N.
3、求下列各式的值:
2 ; 0.4 . 7 ; log2 3
பைடு நூலகம்
log7 0.6
log0.4 89
(2)log
1 a
=
0
即:1的.对数是0
(3)log
a a
=
1
即:底数的对数是1
(4)对数恒等式:aloga N = N
(5)对数恒等式:loga an = n
巩固练习
1、指数式b2 = a(b 0,且b 1)相应的对数式是(D)
A log2a = b B log2 b = a
C logab=2
2
(3)lg 0.01 = -2 (4)ln10 = 2.303
解:
(1)
1 2
-4
=
16
(2) 27 = 128
(3) 10-2 = 0.01
(4) e2.303 = 10
例题分析
3、运用指数运算求值
例3 求下列各式中的x的值
(1)
log 64
x
=
-
2 3
(2) log x 8 = 6
(3) lg 100 = x (4) - ln e2 = x
思考:你发现了什么?
讲授新课
4.对数的性质 探究活动
loga ab = b.
4、求下列各式的值:
log3 34 ; log0.9 0.95; ln e8.
对数及对数运算1
ax=N
x=logaN
指数与对数是可以等价且相互转化
思考3:当a>0,且a≠1时,loga(-2), loga0存在吗?为什么?由此能得到什么 结论?
设loga(-2)=x,则ax=-2
设loga0=x,则ax=0
而当a>0,且a≠1时,恒有ax>0
思考2:在指数式ax=N和对数式x=logaN 中,a,x,N各自的地位有什么不同?
;
(2) loga
x2
3
y z
.
例2 求下列各式的值:
(1) log2(47×25);
(2) lg5 100
;
31log3 2
(3) log318 -log32 ;
3 (4) 1log3 2
.
例3 计算:
2log 52 log 53
log
5
10
1 2
log
5
0.36
1 3
log
5
8
小结作业: 性质①的等号左端是乘积的对数,右端是 对数的和,从左往右看是—个降级运算. 性质②的等号左端是商的对数,右端是对 数的差,从左往右是一个降级运算,从右 往左是一个升级运算. 性质③从左往右仍然是降级运算. 利用对数的性质①②可以使两正数的积、 商的对数转化为两正数的各自的对数的和 差运算,大大的方便了对数式的化简和求 值.
理论迁移
例1.将下列指数式化为对数式,对数式
化为指数式:
1
(1) 54=625 ;
1
(2) 2-6=64 ;
(3)
(
)m=5.73
3
;
(4)
log 1 16=-4;
221对数与对数运算
其中a > o且a ≠ 1; M>0,N>0.
作业: 作业:配套作业本
log e 3
简记作ln3 ; log e 10 简记作 简记作ln10 简记作
规律1: 底的对数等于1. 规律 : 底的对数等于
规律2: 的对数等于 的对数等于0. 规律 : 1的对数等于
规律3: 负数和零没有对数 规律 : 负数和零没有对数.
规律4: 规律 :
(a > o且a ≠ 1)
讲解范例 将下列指数式写成对数式: 例1 将下列指数式写成对数式: (1) )
幂 对数 底数 真数
底数 指数
常用对数: 常用对数: 我们通常将以10为底的对数叫做常用对数。 为底的对数叫做常用对数 我们通常将以 为底的对数叫做常用对数。 为了简便,N的常用对数 简记作lgN。 为了简便 的常用对数 log 10 N 简记作 。 log 简记作lg3.5. 简记作lg5; 例如: 例如: 10 5 简记作 ;log10 3.5 简记作 自然对数: 自然对数: 在科学技术中常常使用以无理数e=2.71828…… 在科学技术中常常使用以无理数 为底的对数, 为底的对数叫自然对数 为底的对数,以e为底的对数叫自然对数。 为底的对数叫自然对数。 为了简便, 的自然对数 简记作lnN。 为了简便,N的自然对数 log e N 简记作 。
其中a > o且a ≠ 1; M>0,N>0.
小结: 1.对数定义: 对数定义: 对数定义 2.性质: 性质: 性质 规律1: 底的对数等于1. 规律 : 底的对数等于 规律2: 的对数等于 的对数等于0. 规律 : 1的对数等于 规律3: 负数和零没有对数。 规律 : 负数和零没有对数。 规律4: 规律 : 规律5: 规律 : 规律6: 规律 :
2.2.1对数与对数运算
x −x−2=0
2
∴ 方程的解是x = 2
知识探究( 知识探究(一):对数的换底公式
log 2 5 = x log 2 3 = log 2 3 ,从而有 3x = 5 . 进一步可得到什么结论? 进一步可得到什么结论?
x
log 2 5 = x ,则 思考1: 思考1:假设 log 2 3
log2 5 x = log3 5,即 = log3 5 log2 3
log c b 结论 : = log a b log c a
log c b 证明 :令 = x ⇒ log c b = x log c a log c a
log c b ⇒ = log a b log c a
log c b log c a
⇒ log c b = log c a x ⇒ b = a x ⇒ x = log a b
log N M
对数换底公式
log m N log a N = log m a
( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0)
五、课堂小结:对数的运算性质 课堂小结 对数的运算性质
如果 a > 0,a ≠ 1,M > 0, N > 0 有: , , , log a MN = log a M + log a N ⑴
高中数学必修 ①
§2.2.1对数与对数运算
对数的运算
复习引入
假设1999年我国人口 亿,如果每年 年我国人口13亿 假设 年我国人口 平均增长1%,那么经过多少年我国人口增 平均增长 , 长到16亿? 长到 亿
13(1+8% =16 ⇒ x = ? )
x
已知底数和幂的值,求指数. 已知底数和幂的值,求指数.你能 看得出来吗?怎样求呢? 看得出来吗?怎样求呢?
对数的运算规律
对数的运算规律对数的运算规律:在数学中,对数的运算有着特定的规律。
若有两个正数 M 和 N,以 a 为底数,那么对数的加法运算规律为:logₐ(M×N) = logₐM + logₐN;对数的减法运算规律为:logₐ(M÷N) = logₐM - logₐN;对数的幂运算规律为:logₐMⁿ = n×logₐM 。
咱们来想象一下,对数就像是一个神奇的密码箱。
这个密码箱里藏着数的秘密,而对数的运算规律就是打开这些秘密的钥匙。
先来说说加法运算规律,logₐ(M×N) = logₐM + logₐN 。
咱们把 M 和N 想象成两个小伙伴,M 带着自己的小秘密进入了密码箱,N 也带着自己的小秘密进去了。
这时候,要想知道他俩合起来的秘密,就等于分别知道 M 的秘密和 N 的秘密然后加起来。
是不是有点像两个小伙伴各自有一袋糖果,要知道他俩糖果总数,就是把各自的糖果数加起来一样。
再看看减法运算规律,logₐ(M÷N) = logₐM - logₐN 。
这就好比 M 和N 这两个小伙伴一起去分一堆宝贝,M 先拿到了一部分,N 又拿走了一部分,那 M 比 N 多出来的宝贝数量,就是 M 的宝贝秘密减去 N 的宝贝秘密。
还有幂运算规律,logₐMⁿ = n×logₐM 。
这就好像 M 这个小伙伴有 n 把同样的钥匙,每把钥匙能打开的秘密都是一样的,那总的秘密数量就是一把钥匙能打开的秘密数量乘以钥匙的数量。
给您举个例子吧。
假设我们要计算log₂(8×16),根据加法运算规律,log₂(8×16) = log₂8 + log₂16 。
因为 8 = 2³,16 = 2⁴,所以 log₂8 = 3,log₂16 = 4,那么 log₂(8×16) = 3 + 4 = 7 ,而实际上 8×16 = 128 ,log₂128 也正好等于 7 。