四年级数学《行程问题》
四年级数学专题讲义第十七讲 行程问题
第十七讲行程问题我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.在对小学数学的学习中,我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(v)和路程(s)这三个基本量,它们之间的关系如下:(1)速度×时间=路程可简记为:s = vt(2)路程÷速度=时间可简记为:t = s÷v(3)路程÷时间=速度可简记为:v = s÷t显然,知道其中的两个量就可以求出第三个量.涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.相遇问题:速度和×相遇时间=路程和S V t=⨯和和追及问题:速度差×追及时间=路程差S V t=差差对于上面的公式大家已经不陌生了,在下面的学习中我们将和小朋友们一起复习回顾以前的相关知识,而后拓展提高!〖经典例题〗例1、甲、乙两人从A、B两地同时出发,相对而行.如果两人按原来的速度前进,那么4小时后相遇;如果两人各自都比原定速度提高1千米/小时,那么他们经过3小时就相遇,则A、B两地的距离是多少千米?分析:加速后3小时多走了2×3=6(千米),这正好是加速前第四小时走的路程,所以按原速度两人1小时共走6千米,A、B两地相距6×4=24(千米).例2、A、B两村相距2800米,小明从A村出发步行5分钟后,小军骑车从B村出发,又经过10分钟两人相遇,已知小军骑车比小明步行每分钟多行130米,小明每分钟行多少米?分析:相遇时,小明行驶了5+10=15分钟,小军行驶了10分钟.小军骑车比小明步行每分钟多行130米,那么10分钟小军就比小明多行驶了130×10=1300米,也就是如果小军和小明的速度一样的话,小明和小军可以行驶2800-1300=1500米,相当于小明行驶了15+10=25分钟,从而可以求出小明的速度:1500÷25=60米/分。
小学四年级数学路程应用题及答案
四年级数学上册《行程问题》专项练习附答案1、①汽车每小时行驶80千米,3小时行驶多少千米?数量关系式:速度×时间=路程80×3=240(千米)②汽车3小时行驶了240千米,平均每小时行驶多少千米?数量关系式:路程÷时间=速度240÷3=80(千米/时)③一段路共长240千米,汽车每小时行驶80千米,需要几小时?240÷80=3(小时)2、冬冬每分步行70米,4分步行多少米?70×4=280(米)3、小华5分步行300米,照这样的速度,他从家到学校步行了20分。
小华家到学校大约有多少米?方法一:方法二:300÷5=60(米/分)20÷5=460×20=1200(米)4×300=1200(米)4、一列火车2小时共行驶164千米,照这样计算,这列火车每小时行驶多少千米?162÷2=82(千米/时)5、火车3小时行驶204千米。
照这样计算,从广州到北京约2312千米,要行多少小时?204÷3=68(千米/时)2312÷68=34(小时)6、客车4小时行驶288千米,货车5小时行驶310千米,客车每小时比货车多行驶多少千米?288÷4-310÷5=10(千米/时)7、一辆汽车2小时行驶170千米,照这样计算,5小时可行驶多少千米要行驶595千米,需要多少小时?170÷2=85(千米/时)85×5=425(千米)595÷85=7(小时)8、北京到天津的距离为174千米,轿车只要行驶3小时就能到达。
照这样计算,12小时它能行驶多少千米?方法一:方法二:174÷3=58(千米/时)12÷3=458×12=696(千米)4×174=696(千米)9、一列火车4小时行驶360千米。
照这样计算,再行驶3小时,一共行驶了几千米方法一:360÷4=90(千米/时)90×3+360=630(千米)方法二:360÷4=90(千米/时)90×(4+3)=630(千米)10、①一架直升机3小时行驶2400千米,一辆汽车的速度是50千米/时,直升每小时比汽多行驶多少千米?2400÷3=800(千米/时)800-50=750(千米/时)②一架直升起3小时行驶2400千米,一辆汽车4小时行驶200千米,直升机每小时比汽车多行驶多少千米?2400÷3-200÷4=750(千米/时)11、①一艘轮船从甲港开往乙港,速度是32千米/时,15小时到达。
四年级数学上册 《行程问题》专项训练
《行程问题》专项训练
1、卡车从南京出发,沿高速公路开往杭州.如果每小时行90千米,已经行了2小时,此时距终点还有20千米,南京到杭州的距离是多少千米呢?
解:90×2+20
=180+20
=200(千米)
答:南京到杭州的距离是200千米.
2、甲、乙两地相距285千米,一辆汽车从甲地开往乙地,行了3小时后还剩60千米,这辆汽车平均每小时行多少千米?
解:(285-60)÷3
=225÷3
=75(千米)
答:这辆汽车平均每小时行75千米.
3、一辆从北京到济南的长途客车,中途经过天津,北京到天津的公路长大约140千米,天津到济南的公路长大约370千米,早晨6:50出发,何时到达济南?
解:(140+370)÷85=6(小时)
6:50加上行驶的6小时就是12:50分到达济南.
答:12:50到达济南.。
四年级数学行程问题
行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120千米,请问:谁的速度更快?2、墨墨练习慢跑,12分钟跑了3000千,按照这个速度慢跑25000米需要多少分钟?如果他每天都以这个速度跑10分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了1小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米,4小时后它们相距多少千米?这时甲提高速度打算用2小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45千米,实际上由于高速公路堵车,汽车每小时只行驶30千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午1点出发,晚上7点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。
7、小欣家离学校1000米,平时他步行25分钟后准时到校。
有一天他晚出发10分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的6倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发,6小时后相遇在中点,如果甲延迟1小时出发,乙每小时少走4千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第4题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350千米,A车在早上8点从甲地出发,以每小时40千米的速度开往乙地。
四年级上册基础行程问题
四年级上册基础行程问题基础行程问题在数学中,行程问题是一个基本的概念。
下面是一些例子和练题,帮助你理解和掌握行程问题。
公式导入:例1:XXX从家到学校共用30分钟,他每分钟走50米,他家与学校之间相距多少米?由此题得出行程公式:路程=时间×速度,即路程=30/60×50=25米。
例2:甲、乙两地之间的行程为200千米,一辆大卡车从甲地出发,每小时行50千米,几小时可到达乙地?由此题得出行程公式:时间=路程÷速度,即时间=200÷50=4小时。
例3:一辆小轿车从A地出发,开往相距240千米的B地,共用4小时,小轿车的速度是多少?由此得出行程公式:速度=路程÷时间,即速度=240÷4=60千米/小时。
一、填空题1、路程、速度、时间三者之间的乘法数量关系是:路程=速度×时间。
三者之间的乘法数量关系是:路程=速度×时间。
2、一辆汽车5小时行了375千米,这是一道求速度的题目。
计算方法是:速度=路程÷时间,即速度=375÷5=75千米/小时。
3、一辆汽车每小时行48千米,它的速度可记作:48千米/小时。
二、解决问题。
1、一辆汽车从甲地到乙地,每小时行驶30千米,6小时到达。
如果想5小时到达,每小时需要行驶多少千米?答案是:速度=路程÷时间,路程=速度×时间,所以路程=30×6=180千米。
如果想在5小时到达,那么每小时需要行驶36千米,因为路程=速度×时间,路程=36×5=180千米。
练:骑自行车每小时行驶14千米,骑自行车行驶9个小时的路程汽车只要3个小时。
汽车每小时行驶多少千米?答案是:设汽车的速度为x千米/小时,那么自行车行驶的路程为14×9=126千米,汽车行驶的路程为x×3=126千米,解方程得到x=42千米/小时。
练:XXX上山采药,上山时他每分钟走50米,18分钟到达山顶,下山时他沿原路返回,12分钟到达山下,XXX下山平均每分钟走多少米?答案是:小王上山的路程为18×50=900米,下山的路程也为900米,所以总路程为1800米。
四年级行程问题ppt课件
画图法
通过画图直观地表示物体 的运动轨迹和相对位置, 帮助理解问题并找出解决 方案。
代数法
通过设立代数式表示物体 的速度、时间和距离,通 过代数运算求解。
追及问题的实例
小明和小华在环形跑道上跑步,小明跑一圈需要5分钟,小华 跑一圈需要6分钟。两人从同一点同向出发,多少分钟后两人 再次相遇?
一辆货车和一辆客车在同一条公路上同向行驶,货车的速度 是60千米/小时,客车的速度是75千米/小时。客车在行驶了 2小时后发现货车在前方54千米处,问货车行驶了多少时间 追上了客车?
环形跑道问题的解决方法
总结词
解决环形跑道问题需要先确定每个物体的速度和方向,然后根据问题描述分析物 体的相对运动关系,最后通过计算得出答案。
详细描述
解决环形跑道问题需要先理解物体的相对运动关系,即哪个物体在追赶哪个物体 ,或者哪个物体在等待哪个物体。然后根据相对速度和距离,计算出物体相遇或 追及的时间和地点。
03
CATALOGUE
追及问题
追及问题的定义
01
追及问题是行程问题中的一种, 主要研究两个或多个物体在同一 直线上运动,一个物体追赶另一 个物体的过程。
02
追及问题的关键在于找出两者之 间的速度差和距离差,以及追赶 所需的时间。
追及问题的解决方法
01
02
03
公式法
利用速度、时间和距离之 间的关系,列出方程求解 。
05
CATALOGUE
环形跑道问题
环形跑道问题的定义
总结词
环形跑道问题是指两个或多个物体在同一条环形跑道上按照不同的速度进行运 动,并涉及到追及和相遇的问题。
详细描述
环形跑道问题通常涉及到两个或多个物体在同一环形跑道上运动,每个物体都 有自己的速度。这类问题通常涉及到追及和相遇的情况,需要找出物体何时、 何地能够相遇或者追及。
四年级数学上册 思维拓展训练:行程问题
也就是说同时行走,在汽车到达后,自行车还要性4分钟才能到达,那么距离为(10+4)×200=2800(米)
解:(60×4+80×3)÷(80-60)=24(分钟)
60×(24+4)=1680(千米)
答:小明的家到学校的路程是1680千米.
4、上午8时8分,小明骑自行车从家里出发,8分后,爸爸骑摩托车去追他,在离家4千米的地方追上了他,然后爸爸立刻回家.到家后又立刻回头去追小明,再追上他的时候,离家恰好是8千米,问这时是几时几分?
时间:9×2÷(48-42)=3小时
距离:(48+42)×3=270千米
6、快车和慢车同时从甲乙两地相对开出,已知快车每小时行40千米,3小时后,快车已驶过中点25千米,这时与慢车还相距7千米,求慢车每小时行多少千米?
两地路程:(40×3-25)×2=190(千米)
慢车速度:(190-40×3-7)÷3=21(千米)
解答:解:爸爸的速度是小明的几倍:(4+8)÷4=3(倍)
爸爸走4千米所需的时间:8÷(3-1)=4(分钟)
爸爸的速度:4÷4=1(千米/分)
爸爸所用的时间:(4+4+8)÷1=16(分钟)
16+16=32(分钟)
答:这时是8时32分.
5、甲车和乙车同时从A,B两地相向而行.甲车每小时行48千米,乙车每小时行42千米,两车在离中点9千米处相遇,求AB两地的距离.
根据路程÷速度=时间可知,龟到达终点需要2000÷25此时兔子行了2000-400=1600米,
根据兔子的速度可知,兔子行了1600÷320=5分钟,
小学数学四年级《行程问题(一)》练习题(含答案)
小学数学四年级《行程问题(一)》练习题(含答案)【例1】小明以3千米/小时的速度走了45分钟,然后以一定的速度跑30 分钟,一共前进了6千米。
求小明跑步的速度。
分析:先算出步行的路程,再算出跑步的路程。
答案:小明走路走了3×45÷60=2.25千米,因此跑了6-2.25=3.75千米。
跑步的速度为3.75÷30×60=7.5千米/小时。
【例2】小彬和小明每天早晨坚持跑步,小明每秒跑6米,小彬每秒跑4米。
(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小明站在百米跑道的起点处,小彬站在他前面10米处,两人同时同向起跑,几秒后小明能追上小彬?分析:(1)利用路程=速度和×相遇时间。
(2)利用路程=速度差×追及时间。
答案:(1)100÷(6+4)=10秒。
(2)10÷(6-4)=5秒。
【例3】甲、乙两人从相距为180千米的A,B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条路线相向匀速行驶.已知甲的速度为15千米/时,乙的速度为45千米/时.经过多少时间两人相遇?相遇后经过多少时间乙到达A地?分析:利用路程=速度和×相遇时间。
答案:经过180÷(15+45)=3小时两人相遇。
因为乙从B到A需要180÷45=4小时,所以相遇后经过1小时乙到达A地。
【例4】甲乙两人同时从相距27千米的两地相向而行,3小时相遇。
已知甲每小时行5千米,乙每小时行多少千米?分析:先求出速度和。
答案:速度和为27÷3=9千米/小时。
所以乙每小时行9-5=4千米。
【例5】甲乙两人同时从相距3.5千米的两地背向而行,甲向东每小时行5千米,乙向西每小时行4.8千米。
3.5小时后两人相距多少千米?分析:利用路程=速度和×时间,注意一开始两人已有距离。
答案:相距3.5+(5+4.8)×3.5=37.8千米。
小学四年级数学行程问题(相遇、追及、相离)易错题
小学四年级数学行程问题(相遇、追及、相离)易错题1、在行车、行船、行走时,按照速度、时间和距离之间的相依关系,已知其中的两个量,要求第三个量,这类应用题,叫做行程应用题。
也叫行程问题。
2、行程应用题的解题关键是掌握速度、时间、距离之间的数量关系:距离=速度×时间速度=距离÷时间时间=距离÷速度3、按运动方向,行程问题可以分成三类:(1)相向运动问题(相遇问题)(2)同向运动问题(追及问题)(3)背向运动问题(相离问题)1、相向运动问题(1)相向运动问题(相遇问题),是指地点不同、方向相对所形成的一种行程问题。
两个运动物体由于相向运动而相遇。
(2)解答相遇问题的关键,是求出两个运动物体的速度之和。
基本公式有:两地距离=速度和×相遇时间相遇时间=两地距离÷速度和速度和=两地距离÷相遇时间例1、两列火车同时从相距540千米的甲乙两地相向而行,经过3.6小时相遇。
已知客车每小时行80千米,货车每小时行多少千米?例2、两城市相距138千米,甲乙两人骑自行车分别从两城出发,相向而行。
甲每小时行13千米,乙每小时行12千米,乙在行进中因修车候车耽误1小时,然后继续行进,与甲相遇。
求从出发到相遇经过几小时?2、同向运动问题(追及问题)(1)两个运动物体同向而行,一快一慢,慢在前快在后,经过一定时间快的追上慢的,称为追及。
解答追及问题的关键,是求出两个运动物体的速度之差。
(2)基本公式有:追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间例1、甲乙两人在相距12千米的AB两地同时出发,同向而行。
甲步行每小时行4千米,乙骑车在后面,每小时速度是甲的3倍。
几小时后乙能追上甲?例2、一个通讯员骑摩托车追赶前面部队乘的汽车。
汽车每小时行48千米,摩托车每小时行60千米。
通讯员出发后2小时追上汽车。
通讯员出发的时候和部队乘的汽车相距多少千米?注意:要求距离差,需要知道速度差和追及时间。
四年级上册数学 《行程问题》应用题
《行程问题》应用题1、甲乙两地相距8800千米,一辆汽车从甲地开往乙地,每小时行78千米,另一辆汽车从乙地开往甲地,每小时行65千米,两车从两地相对开出4小时后,两车相距多少千米?解:8800-(78+65)×4=8800-572=8228(千米)答:两车相距8228千米。
2、甲、乙两列火车从两地相对行驶。
甲车每小时行78千米。
乙车每小时行62千米。
甲车开出后1小时,乙车才开出,再过3小时两车相遇。
两地间的铁路长多少千米?解:78×(3+1)+62×3=78×4+186=498(千米)答:两地间的铁路长498千米。
3、两辆汽车同时从一个地方向相反的方向开出。
甲车平均每小时行65千米,乙车平均每小时行62千米。
经过3小时,两车相距多少千米?解:65×3+62×3=195+186=381(千米)答:经过3小时,两车相距381千米.4、一辆汽车和一辆摩托车同时从相距378千米的两地出发,相对开出。
汽车每小时行72千米,是摩托车速度的2倍,经过多长时间两车相遇?解:78÷(72+72÷2)=378÷108=3.5(小时)答:经过3.5时间两车相遇。
※5、辆汽车从甲地到乙地共要行驶580千米,用了6小时。
途中一部分公路是高速公路,另一部分是普通公路。
已知汽车在高速公路上每小时行120千米,在普通公路上每小时行80千米。
汽车在高速公路上行驶了多少千米?解:(580-6×80)÷(120-80)=(580-480)÷40=100÷40=2.5(小时)20×2.5=300(千米)答:汽车在高速公路上行驶了300千米。
*6、小华家距学校2300米,每天步行上学,有一天他正以每分钟80米的速度前进着,一抬头看见路边的钟表发现要迟到,他马上改用每分钟150米的速度跑步前进,途中共用20分钟,准时到达了学校。
四年级数学思维训练——行程问题(一)有答案
四年级数学思维训练——行程问题(一)有答案【1】甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇。
求A、B两地间的距离是多少千米?【2】甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米,两人在距离中点3千米处相遇。
A、B两地间相距多远?【3】甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲、乙两人从A地,丙一人从B地同时相向出发,丙遇到乙后2分钟又遇到甲。
甲、乙两地相距多少米?【4】张明、李军和赵琦三人都要从甲地到乙地,早上6时张、李两人一起从甲地出发,张明每小时走5千米,李军每小时走4千米。
赵琦上午8时才从甲地出发,傍晚6时,赵、张同时到达乙地,问赵琦是什么时候追上李军的?【5】一列慢车在上午9点钟以每小时40千米的速度由甲城开往乙城,另有一列快车在上午9时30分以每小时56千米的速度也从甲城开往乙城,规定同方向前进的两列火车之间相距不能少于8千米,问:这列慢车最迟应该在什么时候停车让快车超过?【6】上午8时有一列货车以每小时48千米的速度从甲城开往乙城,上午十时又有一列客车以每小时70千米的速度从甲城开往乙城,为了行驶的安全,列车间的距离不应少于8千米,货车最晚应在什么时候停车让客车通过?【7】一只兔子奔跑时,每两步跑1米,一只狗奔跑时,每两步跑3米,狗跑一步,兔子能跑三步。
如果让狗和兔子在100米跑道上跑一个来回,那么获胜的一定是谁?【8】龟兔赛跑,全程2000米,龟每分钟爬25米,兔每分钟跑320米,兔自以为快,在途中睡了一觉,结果龟到了终点的时候兔子离终点还有400米,兔在途中睡了几分钟?【答案】【1】甲、乙两辆汽车同时从A、B两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇。
求A、B两地间的距离是多少千米?32×2=64千米……甲比乙多行的路程54÷(56-48)=8小时……行的时间(56+48)×8=832千米【2】甲、乙两人同时从A、B两地相向而行,甲每小时行12千米,乙每小时行10千米,两人在距离中点3千米处相遇。
四年级数学下册《行程问题》环形跑道归纳!
时两人各跑了多少圈?解:①冬冬第一次追上晶晶所需要的时间:200÷(6-4)=100(秒)②冬冬第一次追上晶晶时他所跑的路程应为:6×100=600(米)③晶晶第一次被追上时所跑的路程:4×100=400(米)④冬冬第二次追上晶晶时所跑的圈数:(600×2)÷200=6(圈)⑤晶晶第2次被追上时所跑的圈数:(400×2)÷200=4(圈)3.成才小学有一条200米长的环形跑道,包包昊昊同时从起跑线起跑包包每秒钟跑6米,昊昊每秒钟跑4米,问包包第一次追上昊昊时两人各跑了多少米?第一次追上昊昊时两人各跑了多少圈?解:包包追上昊昊多跑一周200米,需用时200÷(6-4)=100(秒)因此,追上昊昊时包包跑了6×100=600米600÷200=3(圈)昊昊跑了4×100=400米400÷200=2(圈)4.一个圆的周长为1.26米,两只蚂蚁从一条直径的两端同时出发沿圆周相向爬行.这两只蚂蚁每秒分别爬行5.5厘米和3.5厘米.它们每爬行1秒,3秒,5秒…(连续的奇数),就调头爬行。
那么,它们相遇时已爬行的时间是多少秒?解:它们相遇时应是行了半个圆周,半个圆周长为:1.26÷2=0.63(米)=63(厘米)如不调头,它们相遇时间为:63÷(3.5+5.5)=7(秒)根据它们调头再返回的规律可知:由于1-3+5-7+9-11+13=7(秒)所以13+11+9+7+5+3+1=49(秒)相遇答:它们相遇时已爬行的时间是49秒。
点评:完成本题关健是发现蚂蚁爬行方向的变化是有规律可循。
小学数学四年级下册分类复习行程问题
行程问题1、一辆货车和一辆轿车同时从永新站出发,相背而行,货车每小时行50km,轿车每小时行90km,经过多少小时两车相距420km?2、一辆汽车从X出发,每小时行驶68km,5时到达X,如果要提前1小时,每时应行驶多少千米?3、两列火车同时从X、X出发,相向而行,经过2小时相遇,X列火车62 km/时,X列108 km/时,X到X铁路长多km?4、小明乘车行55 km/时,步行5 km/时,小明过年走亲戚,从永川出发需乘车2小时,再步行1小时才到亲戚家,小明亲戚家离永川有多少千米?5、小强从家到学校的路程是1800m,平常走24分钟。
一天他有急事每分钟比平常多走了15m,这天小强用多少分钟走到学校?6、〔1〕余刚和苗苗约定9:00同时从自己家去年少宫。
9:16两人正好在年少宫相遇,他们两家相距多少米?余刚75米/分,苗苗70米/分。
〔2〕余刚比约定的时间提前4分出发,每分走60m,其余条件不要。
他们两家相距多少米?7、甲、乙两辆汽车同时从新站出发,向相反方向行驶,甲车每小时行45km,乙车每小时行52km,两车开出3小时相距多少千米?按方案修复这段公路时,甲队比乙队多修了多少米?8、王刚丽下午4:20分别从家中同时出发,赶去电影院看4:45开场的电影,王刚骑摩托600m/分,丽骑自行车200m/分,一段时间后他俩同时赶到电影院。
王刚电影院丽7200m〔1〕他俩能在电影开场前赶到吗?〔2〕到电影院时,王刚比丽多行多少米?9、李老师到学校交流中心学习12天,每天往返一次。
单程车费2元,如果买月票需要36元,李老师买月票合算吗?10、两只船在江面相遇后,一只货船以每时25km的航速开往上游的港口A,另一只客船开往下游的港口B。
经过18时,两船同时到达目的地,港口A、B之间的航程为954km,客船的航速是多少?11、一辆客车和一辆轿车同时从X开往X,客车每时行70km,轿车每时行100km。
经过3时,两车相距多少千米?〔同向〕12、6时出发(75千米/时) 8时出发汇东车站中午12时相遇80千米/时求:汇东和双凤车站相距多少千米?13、小李出车时,油箱内装满了油。
行程问题7大经典题型四年级
行程问题7大经典题型四年级
行程问题是数学题中常见的一个题型,主要考察学生在时间、距离、速度等方面的计算能力。
以下是四年级常见的7大经典行程问题题型:
1. 单程问题:小明骑自行车从家到学校的距离是5公里,速度是10公里/小时,问他需要多长时间才能到学校?
2. 往返问题:小红骑自行车从家到公园的距离是8公里,速度是12公里/小时,然后原路返回,问她总共用了多长时间?
3. 多人同时出发问题:小明和小红同时从A地出发,小明骑自行车速度是15公里/小时,小红步行速度是5公里/小时,他们同时到达B地,问B地离A地有多远?
4. 多人相遇问题:小华从A地出发,小明从B地出发,他们同时向对方出发,小华速度是10公里/小时,小明速度是15公里/小时,他们多久能相遇?
5. 超速问题:小王乘坐火车从A地到B地,全程200公里,平均速度是80公里/小时,但在旅途中超速行驶,超速部分之速度是100公里/小时,问他超速了多少时间?
6. 高速公路问题:小李驾车从A地到B地,全程300公里,他在高速公路上以100公里/小时的速度行驶,而在市区行驶的速度是40公里/小时,问他全程需要多长时间?
7. 追及问题:小明从A地以15公里/小时的速度出发,小红从B地以10公里/小时的速度出发,小明比小红晚出发1小时,问小明追上小红需要多长时间?
以上是四年级常见的7大经典行程问题题型。
通过解决这些问题,学生能够提高他们的数学计算能力和逻辑思维能力,同时也锻炼了他们在实际生活中解决问题的能力。
小学数学知识点:行程问题
小学数学知识点:行程问题公式:1. 行程问题:行程问题可以大概分为简单问题、相遇问题、时钟问题等。
2.常用公式:1)速度×时间=路程;路程÷速度=时间;路程÷时间=速度;2)速度和×时间=路程和;3)速度差×时间=路程差。
3.常用比例关系:1)速度相同,时间比等于路程比;2)时间相同,速度比等于路程比;3)路程相同,速度比等于时间的反比。
4.行程问题中的公式:1)顺水速度=静水速度+水流速度;2)逆水速度=静水速度-水流速度。
3)静水速度=(顺水速度+逆水速度)/24)水流速度=(顺水速度–逆水速度)/25.基本数量关系是火车速度×时间=车长+桥长1)超车问题(同向运动,追及问题)路程差=车身长的和超车时间=车身长的和÷速度差2)错车问题(反向运动,相遇问题)路程和=车身长的和错车时间=车身长的和÷速度和3)过人(人看作是车身长度是0的火车)4)过桥、隧道(桥、隧道看作是有车身长度,速度是0的火车)例题:例1:已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度。
分析:本题关键在求得火车行驶120秒和80秒所对应的距离。
解答:设火车长为L米,则火车从开始上桥到完全下桥行驶的距离为(1000+L)米,火车完全在桥上的行驶距离为(1000-L)米,设火车行进速度为u米/秒,则:由此知200×u=2000,从而u=10,L=200,即火车长为200米,速度为10米/秒。
评注:行程问题中的路程、速度、时间一定要对应才能计算,另外,注意速度、时间、路程的单位也要对应。
例2:甲、乙各走了一段路,甲走的路程比乙少1/5,乙用的时间比甲多了1/8,问甲、乙两人的速度之比是多少?分析:速度比可以通过路程比和时间比直接求得。
解答:设甲走了S米,用时T秒,则乙走了S÷(1-1/5)=5/4 S(米),用时为:T×(1+1/8)=9/8 T(秒),甲的速度为:S/T,乙速度为:5/4 S÷ 9/8 T=10S/9T,甲乙速度比为S/T :10S/9T=9:10评注:甲、乙路程比4/5,时间比8/9,速度比可直接用:4/5 ÷ 8/9=9/10,即9:10。
四年级行程问题教案(汇总5篇)
四年级行程问题教案(汇总5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、述职报告、合同协议、演讲致辞、规章制度、策划方案、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work summaries, job reports, contract agreements, speeches, rules and regulations, planning plans, insights, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!四年级行程问题教案(汇总5篇)作为一位杰出的老师,编写教案是必不可少的,教案有助于顺利而有效地开展教学活动。
(完整版)四年级数学行程问题
行程问题一、基本简单行程及变速问题1、强强跑100米用10秒,旗鱼每小时能游120千米,请问:谁的速度更快?2、墨墨练习慢跑,12分钟跑了3000千,按照这个速度慢跑25000米需要多少分钟?如果他每天都以这个速度跑10分钟,连续跑一个月,他一共跑了多少千米?3、A、B两城相距240千米,一辆汽车原计划用6小时从A城到B城,那么汽车每小时应该行驶多少千米?实际上汽车行驶了一半路程后发生故障,在途中停留了1小时,如果要按照原定的时间到达B城,汽车在后一半行程上每小时应该行驶多少千米?4、甲乙两架飞机同时从机场起飞,向同一方向飞行,甲每小时飞行300千米,乙每小时飞行340千米,4小时后它们相距多少千米?这时甲提高速度打算用2小时追上乙,那么甲每小时应该飞行多少千米?5、萱萱一家开车去外地旅游,原计划每小时行驶45千米,实际上由于高速公路堵车,汽车每小时只行驶30千米,这样就晚到两小时,问:萱萱一家在路上实际花了几个小时?6、甲从A地出发去B地办事情,下午1点出发,晚上7点准时到达,如果他想下午两点出发,晚上7点准时到达,每小时就必须多行2千米,求AB两地之间的距离。
7、小欣家离学校1000米,平时他步行25分钟后准时到校。
有一天他晚出发10分钟,为避免迟到,小欣先乘公共汽车,然后步行,结果仍然准时到校,已知公共汽车的速度是小欣步行速度的6倍,问:小欣这天上学步行了多少米?8、甲乙两人分别从AB两地同时出发,6小时后相遇在中点,如果甲延迟1小时出发,乙每小时少走4千米,两人仍在中点相遇,问:甲乙两地相距多少千米?二、基本相遇问题:1、A、B两地相距4800米,甲乙两人分别从A、B两地同时出发,相向而行,如果甲每分钟走60米,乙每分钟走100米,请问:(1)甲从A走到B需要多长时间?(2)两人从出发地到相遇需要多长时间?2、在第4题中,如果甲乙两人的速度大小不变,但甲出发时改变方向,即两人同时同向出发,问:乙出发后多久可以追上甲?3、甲乙两地相距350千米,A车在早上8点从甲地出发,以每小时40千米的速度开往乙地。
四年级数学上册《行程问题》公式讲解汇总,收藏预习
四年级数学上册《行程问题》公式讲解汇总经典公式路程例:小明从家到学校需要30分钟,小明步行的速度为8米/分钟,问小明家到学校为多远?解:30×8=240 米答:小明家到学校为240米。
常见单位:路程:米(m),千米(km)速度:米/秒(m/s),米/分钟(m/min),千米/时(km/h)时间:秒(s),分钟(min),小时(h)相遇问题两个运动的物体同时由两地出发相向而行,在途中相遇。
(1)直线总路程=甲速×时间+乙速×时间=(甲速+乙速)×时间=速度和×时间S总=(V甲+V乙)×t=V和×t例:甲乙两人分别从相距20千米的两地同时相向而行,甲每小时走6千米,乙每小时走4千米,两人几小时后相遇?答案:20÷(6+4)=2(小时)(2)环形跑道(背向、反向)甲、乙从同一起点反向出发最终相遇,甲、乙走的路程为一个圆周。
S总=S甲+S乙=V甲t+V乙tS总=(V甲+V乙)t →S总=V和×t→ 总路程(圆周长)=速度和×时间例:甲、乙两人在操场练习跑步,已知操场为环形,甲乙同时出发,背向而行。
甲的速度为2m/s,乙的速度为3m/s,在5分钟时两人相遇,求操场为多少米?答案:5分钟=300秒(2+3)×300=1500(米)追及问题两个物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的物体速度更快,在一定时间内追上前方。
(1)直线S追=V乙t-V甲t=V差×t追击路程=速度差×时间例:甲、乙两人分别从相距24千米的两地同时向东而行,甲在后,乙在前。
甲每小时行13千米,乙每小时行5千米,几小时后甲可以追上乙?答案:24÷(13-5)= 3(小时)(2)环形跑道(同向)V甲>V乙S追=V甲t-V乙t=(V甲-V乙)×t路程差=速度差×时间追上一次为一个圆周,追上n次,路程差即为n个圆周长。
四年级趣味数学课外知识篇每天20分钟拓展训练行程问题
第二十三讲行程问题(一)知识要点:基本关系式:速度×时间=路程路程÷速度=时间路程÷时间=速度例题讲解:【例1】飞机每小时飞行500千米,是汽车速度的5倍。
汽车和飞机6小时一共可以前行多少千米?分析:这个题目最后是要求路程,我们要找到速度和时间。
飞机的速度已知是500千米,汽车的速度为5005100÷=千米。
汽车的路程为100×6=600千米,飞机的路程为500×6=3600千米,一共行驶600+3600=4200千米。
解:(1)汽车行驶的速度是多少?÷=(千米)5005100(2)汽车的路程是多少?100×6=600(千米)(3)飞机的路程是多少?500×6=3000(千米)(4)汽车和飞机6小时一共可以前行多少千米?3000+600=3600(千米)答:汽车和飞机6小时一共可以前行3600千米。
小结:这是最基础的行程问题,可以直接根据公式:路程=速度×时间来进行求解。
【例2】一辆卡车从甲城到乙城用了8小时,从乙城到丙城用了2小时,已知甲城与乙城之间的路程是320千米,求从甲城经过乙城到丙城的路程是多少?分析:甲城经过乙城到丙城的路程,等于把甲城到乙城的距离加上乙城到丙城的距离。
现在甲城到乙城的距离已知,只需要求乙城到丙城的距离。
320千米 ?千米甲 乙 丙?千米解:(1)卡车的速度:320840÷=(千米)(2)乙、丙两城之间的路程:40×2=80(千米)(3)从甲城经乙城到丙城的路程:320+80=400(千米)答:从甲城经乙城到丙城的路程是400千米。
小结:本题中出现了不同的速度和路程,需要将时间×速度=路程的公式进行灵活运用。
【例3】 一辆轿车从甲地开到乙地用了6小时,由乙地返回到甲地,每小时比来时多行了16千米,只用了4小时,这辆轿车往返甲、乙两地平均每小时行多少千米?分析:往返甲、乙两地的平均速度是用总路程除以总时间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点小节
1、速度的概念
2、速度的单位
知识定位
3、基本公式
4.相遇问题 追及问题
2
知识梳理
知识梳理
速度的概念 速度:每分(每秒、每小时)行的路程
Lorem ipsum
人骑自行车每小时 约行15千米
Lorem ipsum
小汽车每小时约行 60千米
速度的单位
知识梳理
千米/时 km/h 米/分 m/min 米/秒 m/s
课后作业1
1、北旺镇和南旺镇的车有两种:大 巴和中巴。每天早上6时,大巴从北 旺镇开往南旺镇,每小时行35千米, 中巴同时从南王镇开往北旺镇,每 小时行49千米,4小时后两车相遇, 求甲、乙两地相距多少千米?
课后作业2
1
2、甲、乙两人分别从A、B两城
同向而行,甲在前,每分钟走
60米,乙在后,每分钟走75米,
相遇问题
路程和=速度和×相遇时间 相遇时间=路程和÷速度和 速度和=路程和÷相遇时间
A的速度+B的速度
知识梳理
追及问题
追及路程=速度差×追及时间 追及时间=追及路程÷速度差
速度差=追及路程÷追及时间
追及开始时,前 后两个物体之间 的距离
追及开始后, 后面物体追 上前面物提升
擦亮眼睛:辨一辨划线部分表示什么“量”
1、小明的家离学校 有500米。( )
2、小汽车每小时行 60千米。( )
3、一只雨燕连续飞 行了2.5小时。( )
知识梳理
公式 路程=速度×时间
速度=路程÷时间
时间=路程÷速度
相遇问题
路程和= 相遇时间= 速度和=
知识梳理
追及问题
追及路程= 追及时间= 速度差=
行程问题
课堂导入
话说啊,有一天,哆啦A梦在一个圆 形的操场上跑步减肥,跑了几圈后,准 备停下来休息一下,这时它忽然看见前 方50米处有一只又肥又大的老鼠,哆啦 A梦吓得掉头就往反方向跑。本以为只 有老鼠怕猫,原来还有猫怕老鼠呀,于 是这只大老鼠想恶作剧一下,吓吓哆啦 A梦,就和哆啦A梦背向而行。准备和哆 啦A梦面对面的相遇!
12分钟乙追上甲,问A、B两地
相距多少米?
2
3
课后作业3
3、王华步行从家里去超市买东西,已 知他每分钟行65米,行了17分钟后,距 离超市还有3分钟的路程,他家距离超 市有多远?
解析:追及时间=追及路程÷速度差 =760÷(390-10) =760÷380=2(分钟)
答:兔子能在2分钟后追上乌龟。
追及路程760米 乌龟跑的路程
兔子追上乌龟所行的的路程
追上了
巩固提升1
1、一辆大巴车从张村出发,如果每 小时行驶60千米,4小时就可以到达 李庄。结果用了3个小时就到达了。 这辆汽车实际平均每小时行驶多少 千米?
从这个小故事中你看到了什么? 老鼠和哆啦A梦的运动在数学上称为 什么问题?
行程问题
Contents 课程目录
1 知识定位 2 知识梳理
3 例题精讲&巩固提升 4 课后作业
1
知识定位
行程问题
知识定位
1、创设具体的情景,进一步分析 出行程问题中的各种量:时间,速 度,路程 2、掌握速度×时间=路程这组数量 关系,并应用它去解决简单的行程 问题。 3、理解相遇问题、追及问题的关 键点并掌握公式
解析:1.时间=路程÷速度 =7800÷390=20(分钟)
答:需要20分钟。 2.路程=速度×时间
=10×30=300(米) 答:它经过的路程是300米。
例题精讲2
这一天,乌龟与兔子约好时间,同时出门了。如 果乌龟出门后的速度是10米/分钟,兔子的速度 是390米/分钟,两家相距1600米。那么多久以 后他们会在路上相遇?
通过今天这节课的学习 你有什么收获呢?
归纳总结
行程 问题
速度的概念:分(每秒、每小时)行的路程
速度
千米/时 km/h
速度的单位
米/分 m/min
基本 公式
米/秒 m/s 路程=速度×时间
速度=路程÷时间 时间=路程÷速度
相遇 问题
路程和=速度和×相遇时间 相遇时间=路程和÷速度和 速度和=路程和÷相遇时间
1600米
例题精讲3
兔子因为贪睡输了比赛,很后悔。于是兔子向乌 龟提出挑战:再比一次,乌龟同意了。为了公平, 骄傲的兔子让乌龟先走760米,乌龟出门后的速 度是10米/分钟,兔子的速度是390米/分钟,兔 子能在几分钟后追上乌龟呢?
例题精讲3
兔子因为贪睡输了比赛,很后悔。于是兔子向乌龟提出挑 战:再比一次,乌龟同意了。为了公平,骄傲的兔子让乌 龟先走760米,乌龟出门后的速度是10米/分钟,兔子的速 度是390米/分钟,兔子能在几分钟后追上乌龟呢?
例题精讲2
这一天,乌龟与兔子约好时间,同时出门了。如果乌龟出 门后的速度是10米/分钟,兔子的速度是390米/分钟,两家 相距1600米。那么多久以后他们会在路上相遇?
解析:相遇时间=路程和÷速度和 =1600÷(10+390) =1600÷400=4(分钟)
答:4分钟后他们会在路上相遇。
相遇 390×时间 10×时间
巩固提升2
2、警察、小偷分别从相距100米的 两地同时向东行驶,警察跑步每分 钟行100米,小偷跑步每分钟行80 米,几分钟后警察可以追上小偷?
巩固提升3
3、甲、乙两辆货车分别从A、B两 地同时出发,相向而行。已知A、B 两地相距270千米,甲货车速度为每 小时65千米,乙货车速度为每小时 70千米。经过多长时间两车相遇?
例题精讲1
乌龟与兔子决定通过比赛来一决胜负,路线是从 约定的柳树下跑到相距7800米的桃树下,先到的 胜利。 1.如果兔子以390米/分钟的速度跑完全程,则需 要用多少时间? 2.若乌龟的速度是10米/分钟,那么30分钟后, 它经过的路程是多少米?
例题精讲1
乌龟与兔子决定通过比赛来一决胜负,路线是从约定的柳树下 跑到相距7800米的桃树下,先到的胜利。 1.如果兔子以390米/分钟的速度跑完全程,则需要用多少时间? 2.若乌龟的速度是10米/分钟,那么30分钟后,它经过的路程 是多少米?
追及 问题
追及路程=速度差×追及时间 追及时间=追及路程÷速度差 速度差=追及路程÷追及时间
小贴士 ——应用题3步走.
1、认真仔细的审题,明确题目 的要求。 2、找到题目的已知条件:变 量和不变量。可以勾勾画画, 做好标记。 3、知识点应用,带入正确的数 学公式求结果,解答务必要完整。
4
课后作业