第五章相交线与平行线单元试卷测试卷 (word版,含解析)
第五章相交线与平行线单元试卷(培优篇)(Word版 含解析)
解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,
根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,
故△ABC的面积等于△PBC的面积.
故选D.
【点睛】
本题考查平行线之间的距离;三角形的面积.
2.A
解析:A
【分析】
根据两直线平行,内错角相等、同旁内角互补逐一判断可得.
(1)求a、b的值;
(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?
(3)如图,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.
请把下面的证明过程补充完整:
证明:过点E作EF∥AB,
∵AB∥DC(已知),EF∥AB(辅助线的作法),
∴EF∥DC()
∴∠C=∠CEF.()
∵EF∥AB,∴∠B=∠BEF(同理),
∴∠B+∠C=(等量代换)
即∠B+∠C=∠BEC.
(2)拓展探究
如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.
27.如图1.已知直线 .点 为 , 内部的一个动点,连接 , ,作 的平分线交直线 于点 ,作 的平分线交直线 于点 , 和 交于点 .
(1)若 ,猜想 和 的位置关系,并证明;
(2)如图2,在(1)的基础上连接 ,则在点 的运动过程中,当满足 且 时,求 的度数.
28.如图1,直线 与直线 交于点 , .小明将一个含 的直角三角板 如图1所示放置,使顶点 落在直线 上,过点 作直线 交直线 于点 (点 在 左侧).
第五章相交线与平行线单元试卷章末练习卷(Word版 含解析)
第五章相交线与平行线单元试卷章末练习卷(Word 版 含解析)一、选择题1.把一把直尺和一块三角板ABC 含30度,60度,按如图所示摆放,直尺一边与三角板的两直角边分别交于点D 和E ,另一边与三角板的两直角边分别交于点F 和A ,∠CED=50°,则∠CFA 的大小为( )A .40︒B .50︒C .60︒D .70︒2.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个 3.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )A .26°B .36°C .46°D .56° 4.如果A ∠与B 的两边分别平行,A ∠比B 的3倍少36,则A ∠的度数是( )A .18B .126C .18或126D .以上都不对 5.下列说法:①垂直于同一条直线的两条直线互相平行;②相等的角是对顶角;③两条直线被第三条直线所截,同位角相等;④两点之间直线最短,其中正确的有( ) A .0个 B .1个 C .2个 D .3个6.如图,AB ∥CD ,直线MN 与AB 、CD 分别交于点E 、F ,FG 平分∠EFD ,EG ⊥FG 于点G ,若∠CFN =110°,则∠BEG =( )A .20°B .25°C .35°D .40°7.如图,直线a ∥b ,直线l 与a ,b 分别交于A ,B 两点,过点B 作BC ⊥AB 交直线a 于点C ,若∠1=65°,则∠2的度数为( )A .115°B .65°C .35°D .25°8.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是010.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,∠B =90°,AB =8,DH =3,平移距离为4,求阴影部分的面积为( )A .20B .24C .25D .2611.已知:如图AB//EF ,BC CD ⊥,则α∠,β∠,γ∠之间的关系是( )A .βαγ∠∠∠=+B .αβγ180∠∠∠++=C .αβγ90∠∠∠+-=D .βγα90∠∠∠+-=12.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个二、填空题13.如图,∠AEM =∠DFN =a ,∠EMN =∠MNF =b ,∠PEM =12∠AEM ,∠MNP =12∠FNP ,∠BEP ,∠NFD 的角平分线交于点I ,若∠I =∠P ,则a 和b 的数量关系为_____(用含a 的式子表示b ).14.如图,已知,∠ABG 为锐角,AH ∥BG ,点C 从点B (C 不与B 重合)出发,沿射线BG 的方向移动,CD ∥AB 交直线AH 于点D ,CE ⊥CD 交AB 于点E ,CF ⊥AD ,垂足为F (F 不与A 重合),若∠ECF =n°,则∠BAF 的度数为_____度.(用n 来表示)15.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.16.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n 次移动n 格.则不停留棋子的格子的编号有_____.17.α∠与β∠的两边互相垂直,且o 50α∠=,则β∠的度数为_________.18.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________19.如图,已知直线//a b ,直线c 与a 、b 相交,且1135∠=︒,则2∠=______.20.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.三、解答题21.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED . 求证:∠BED =∠B +∠D .彤彤是这样做的:过点E 作EF //AB ,则有∠BEF =∠B .∵AB //CD ,∴EF //CD .∴∠FED =∠D .∴∠BEF +∠FED =∠B +∠D .即∠BED=∠B+∠D.请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.(1)如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;(2)如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,直接写出∠BED的度数(用含有α,β的式子表示).22.已知:直线l分别交AB、CD与E、F两点,且AB∥CD.(1)说明:∠1=∠2;(2)如图2,点M、N在AB、CD之间,且在直线l左侧,若∠EMN+∠FNM=260°,①求:∠AEM+∠CFN的度数;②如图3,若EP平分∠AEM,FP平分∠CFN,求∠P的度数;(3)如图4,∠2=80°,点G在射线EB上,点H在AB上方的直线l上,点Q是平面内一点,连接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接写出∠GQH的度数.23.(1)问题发现如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.请把下面的证明过程补充完整:证明:过点E 作EF ∥AB ,∵AB ∥DC (已知),EF ∥AB (辅助线的作法),∴EF ∥DC ( )∴∠C =∠CEF .( )∵EF ∥AB ,∴∠B =∠BEF (同理),∴∠B +∠C = (等量代换)即∠B +∠C =∠BEC .(2)拓展探究如果点E 运动到图②所示的位置,其他条件不变,求证:∠B +∠C =360°﹣∠BEC . (3)解决问题如图③,AB ∥DC ,∠C =120°,∠AEC =80°,则∠A = .(之间写出结论,不用写计算过程)24.(1)如图1,已知任意ABC ∆,过点C 作//DE AB ,求证:180A B ACB ∠+∠+∠=︒;(2)如图2,求证:∠AGF=∠AEF+∠F ;(3)如图3,//,119,AB CD CDE GF ∠=︒交DEB ∠的角平分线EF 于点,150F AGF ∠=︒,求F ∠的度数.25.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.26.如图,已知直线12//l l ,直线3l 交1l 于C 点,交2l 于D 点,P 是线段CD 上的一个动点,(1)若P 点在线段CD (C 、D 两点除外)上运动,问PAC ∠,APB ∠,PBD ∠之间的关系是什么?这种关系是否变化?(2)若P 点在线段CD 之外时,PAC ∠,APB ∠,PBD ∠之间的关系怎样?说明理由 27.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点.(1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.28. [问题解决]:如图1,已知AB ∥CD ,E 是直线AB ,CD 内部一点,连接BE ,DE ,若∠ABE=40°,∠CDE=60°,求∠BED 的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程: 解:过点E 作EF ∥AB ,∴∠ABE=∠BEF=40°∵AB ∥CD ,∴EF ∥CD ,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB ∥CD ,射线OM 与直线AB ,CD 分别交于点A ,C ,射线ON 与直线AB ,CD 分别交于点B ,D ,点P 在射线ON 上运动,设∠BAP=α,∠DCP=β.(1)当点P在B,D两点之间运动时(P不与B,D重合),求α,β和∠APC之间满足的数量关系.(2)当点P在B,D两点外侧运动时(P不与点O重合),直接写出α,β和∠APC之间满足的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,即可得出∠CFA的大小.【详解】解:∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∴∠CFA=90°-50°=40°,故选:A.【点睛】本题主要考查了平行线的性质以及直角三角形的性质的运用,解题解题的关键是掌握平行线的性质:两直线平行,同位角相等.2.B解析:B【分析】由平行线的性质,可知与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD.【详解】∵AB∥CD,∴∠A=∠ADC;∵AB∥EF,∴∠A=∠AFE;∵AF∥CG,∴∠EGC=∠AFE=∠A;∵CD∥EF,∴∠EGC=∠DCG=∠A;所以与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD四个,3.B解析:B【解析】试题分析:如图,首先根据平行线的性质(两直线平行,同旁内角互补),可求∠4=56°,然后借助平角的定义求得∠3=180°-∠2-∠4=36°.故选B考点:平行线的性质4.C解析:C【分析】由∠A与∠B的两边分别平行,即可得∠A与∠B相等或互补,然后分两种情况,分别从∠A与∠B相等或互补去分析,即可求得∠A的度数.【详解】解:∵∠A与∠B的两边分别平行,∴∠A与∠B相等或互补.分两种情况:①如图1,当∠A+∠B=180°时,∠A=3∠B-36°,解得:∠A=126°;②如图2,当∠A=∠B,∠A=3∠B-36°,解得:∠A=18°.所以∠A=18°或126°.故选:C.此题考查的是平行线的性质,如果两角的两边分别平行,则这两个角相等或互补.此题还考查了方程组的解法.解题要注意列出准确的方程组.5.A解析:A【分析】据平行线的性质可判断①③错误;根据对顶角相等,可判断②错误;据线段的性质可判断④错误;即可得出结论.【详解】解:①在同一个平面内,垂直于同一条直线的两条直线互相平行,故①错误;②对顶角相等,相等的角不一定是对顶角,故②错误;③两条平行直线被第三条直线所截,同位角相等,故③错误;④两点之间线段最短;故④错误;故选:A.【点睛】本题考查了平行公理、平行线的性质、相等的性质、对顶角相等的性质;熟记有关性质是解决问题的关键.6.C解析:C【分析】已知∠CFN=110°,根据对顶角相等可得∠DFE=∠CFN=110°,因为FG平分∠EFD,由角平分线的定义可得∠EFG=12∠EFD=55°;再由EG⊥FG,可得∠G=90°,即可求得∠GEF=35°;又因AB∥CD,∠EFD=110°,根据平行线的性质可得∠BEF=70°,即可得∠BEG=∠BEF﹣∠GEF=35°.【详解】∵∠CFN=110°,∴∠DFE=∠CFN=110°,∵FG平分∠EFD,∴∠EFG=12∠EFD=55°,又EG⊥FG,即∠G=90°,∴∠GEF=35°,∵AB∥CD,∠EFD=110°,∴∠BEF=70°,∴∠BEG=∠BEF﹣∠GEF=35°.故选C.【点睛】本题考查了平行线的性质,垂直的定义以及角平分线的性质.熟练运用相关知识是解决问题的关键.7.D解析:D【解析】解:∵直线a∥b,∴∠1+∠ABC+∠2=180°.又∵BC⊥AB,∠1=65°,∴∠2=180°﹣90°﹣65°=25°.故选D.8.B解析:B【分析】AD∥BC,∠D=∠ABC,则AB∥CD,则∠AEF=180°-∠AED-∠BEG=180°-2β,在△AEF中,100°+2α+180°-2β=180°,故β-α=40°,即可求解.【详解】解:设FBE=∠FEB=α,则∠AFE=2α,∠FEH的角平分线为EG,设∠GEH=∠GEF=β,∵AD∥BC,∴∠ABC+∠BAD=180°,而∠D=∠ABC,∴∠D+∠BAD=180°,∴AB∥CD,∠DEH=100°,则∠CEH=∠FAE=80°,∠AEF=180°-∠FEG-∠BEG=180°-2β,在△AEF中,在△AEF中,80°+2α+180-2β=180°故β-α=40°,而∠BEG=∠FEG-∠FEB=β-α=40°,故选:B.【点睛】此题考查平行线的性质,解题关键是落脚于△AEF内角和为180°,即100°+2α+180°-2β=180°,题目难度较大.9.A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A .【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.10.D解析:D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S 四边形HDFC =S 梯形ABEH=12(AB+EH )×BE=12(8+5)×4=26.故选D. 11.C解析:C【分析】分别过C 、D 作AB 的平行线CM 和DN ,由平行线的性质可得到∠α+∠β=∠C+∠γ,可求得答案.【详解】解:如图,分别过C 、D 作AB 的平行线CM 和DN ,AB//EF ,AB//CM //DN //EF ∴,αBCM ∠∠∴=,MCD NDC ∠∠=,NDE γ∠∠=,αβBCM CDN NDE BCM MCD γ∠∠∠∠∠∠∠∠∴+=++=++,又BC CD ⊥,BCD 90∠∴=,αβ90γ∠∠∠∴+=+,即αβγ90∠∠∠+-=,故选C .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④a//b ,b//c ⇒a//c .12.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确; ∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确; 过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C .【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.二、填空题13..【分析】分别过点P 、I 作ME∥P H ,AB∥GI,设∠AME=2x,∠PNF=2y,知∠PEM=x,∠MNP=y,由PH∥ME 知∠EPH=x,由EM∥FN 知PH∥FN,据此得∠HPN=2y,∠E 解析:81209a b =-︒. 【分析】分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME=2x ,∠PNF=2y ,知∠PEM=x ,∠MNP=y ,由PH ∥ME 知∠EPH=x ,由EM ∥FN 知PH ∥FN ,据此得∠HPN=2y ,∠EPN=x+2y ,同理知3902EIF x x ∠︒-+=,根据∠EPN=∠EIF 可得答案. 【详解】 分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME =2x ,∠PNF =2y ,则∠PEM =x ,∠MNP =y ,∴∠DFN =2x ,∵PH ∥ME ,∴∠EPH =x ,∵EM ∥FN ,∴PH∥FN,∴∠HPN=2y,∠EPN=x+2y,同理,3902EIF x x ∠︒-+=,∵∠EPN=∠EIF,∴3902x x︒-+=x+2y,∴339042b︒-a=,∴91358b a =︒-,∴81209b-︒a=,故答案为:81209b-︒a=.【点睛】本题主要考查平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质.14.n或180﹣n【分析】分两种情况讨论:当点在线段上;点在延长线上,根据平行线的性质,即可得到结论.【详解】解:过A作AM⊥BC于M,如图1,当点C在BM延长线上时,点F在线段AD上,∵解析:n或180﹣n【分析】分两种情况讨论:当点M在线段BC上;点C在BM延长线上,根据平行线的性质,即可得到结论.【详解】解:过A作AM⊥BC于M,如图1,当点C在BM延长线上时,点F在线段AD上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=180°﹣∠B=180°﹣n°,过A作AM⊥BC于M,如图2,当点C在线段BM上时,点F在DA延长线上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=∠B=n°,综上所述,∠BAF的度数为n°或180°﹣n°,故答案为:n或180﹣n.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.15.或或【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠E解析:30或120︒或165︒【分析】分三种情形画出图形分别建立好几何模型求解,即可解决问题.【详解】解:有三种情形:①如图1中,当AD∥BC时.∵AD∥BC,∴∠D=∠BCD=30°,∵∠ACE+∠ECD=∠ECD+∠DCB=90°,∴∠ACE=∠DCB=30°.②如图2中,当AD∥CE时,∠DCE=∠D=30°,可得∠ACE=90°+30°=120°.③如图2中,当AD∥BE时,延长BC交AD于M.∵AD∥BE,∴∠AMC=∠B=45°,∴∠ACM=180°-60°-45°=75°,∴∠ACE=75°+90=165°,综上所述,满足条件的∠ACE的度数为30°或120°或165°.故答案为30°或120°或165°.【点睛】本题考查旋转变换、平行线的判定和性质、三角形内角和定理等知识,解题的关键是学会用分类讨论的首先思考问题,属于中考常考题型.16.2,4,5【解析】【分析】因棋子移动了n次后走过的总格数是1+2+3+…+n=12n(n+1),然后再根据题目中所给的第n次依次移动n个顶点的规则,可得到不等式最后求得解.【详解】解:因棋解析:2,4,5【解析】【分析】因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),然后再根据题目中所给的第n次依次移动n个顶点的规则,可得到不等式最后求得解.【详解】解:因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),应停在第n(n+1)﹣7p格,这时p是整数,且使0≤n(n+1)﹣7p≤6,分别取n=1,2,3,4,5,6,7时,n(n+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n≤10,设n=7+t(t=1,2,3)代入可得, n(n+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与n=t时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.【点睛】此题主要考查推理与论证,解题的关键是根据题意分析运动规则,再列出式子来解答. 17.130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情解析:130°或50°【解析】【分析】作图分析,若两个角的边互相垂直,那么这两个角必相等或互补,可据此解答.【详解】如图∵β的两边与α的两边分别垂直,∴α+β=180°故β=130°,在上述情况下,若反向延长∠β的一边,那么∠β的补角的两边也与∠α的两边互相垂直,故此时∠β=50;综上可知:∠β=50°或130°,故正确答案为:【点睛】本题考核知识点:四边形内角和. 解题关键点:根据题意画出图形,分析边垂直的2种可能情况.18.4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=18解析:4∠AFC=3∠AEC【解析】【分析】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,根据平行线性质得出∠BAC+∠ACD=180°,求出∠CAE+∠ACE=180°-(4x°+4y°),求出∠AEC=4(x°+y°),∠AFC═3(x°+y°),即可得出答案.【详解】连接AC,设∠EAF=x°,∠ECF=y°,∠EAB=4x°,∠ECD=4y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+4x°+∠ACE+4y°=180°,∴∠CAE+∠ACE=180°-(4x°+4y°),∠FAC+∠FCA=180°-(3x°+3y°),∴∠AEC=180°-(∠CAE+∠ACE)=180°-[180°-(4x°+4y°)]=4x°+4y°=4(x°+y°),∠AFC=180°-(∠FAC+∠FCA)=180°-[180°-(3x°+3y°)]=3x°+3y°=3(x°+y°),∴∠AFC=34∠AEC,即:4∠AFC=3∠AEC,故正确答案为:4∠AFC=3∠AEC.【点睛】本题考查了平行线性质和三角形内角和定理的应用,注意:两直线平行,同旁内角互补.19.45︒【分析】先根据邻补角求出∠3的度数,再根据“两直线平行,同位角相等”求出∠2即可.【详解】如图,∵∠1+∠3=180︒∴∠3=180︒-∠1∵∠1=135︒∴∠3=45︒∵解析:45︒【分析】先根据邻补角求出∠3的度数,再根据“两直线平行,同位角相等”求出∠2即可.【详解】如图,∵∠1+∠3=180︒∴∠3=180︒-∠1∵∠1=135︒∴∠3=45︒∵a//b∴∠2=∠3=45︒.故答案为:45︒【点睛】此题主要考查了平行线的性质以及邻补角的定义,熟练掌握“两直线平行,同位角相等”是解此题的关键.20.73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.解析:73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=12∠CBE=73°.三、解答题21.(1)65°;(2)11 18022αβ︒-+(1)如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考彤彤思考问题的方法即可求∠BED的度数;(2)如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考彤彤思考问题的方法即可求出∠BED的度数.【详解】(1)如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;(2)如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD,∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=12α,∠EDC=12∠ADC=12β,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣12α +12β.答:∠BED的度数为180°﹣12α +12β.本题考查了平行线的判定与性质以及角平分线的定义,解决本题的关键是熟练掌握平行线的判定与性质.22.(1)理由见解析;(2)①80°,②40°;(3)38°、74°、86°、122°.【分析】(1)根据平行线的性质及对顶角的性质即可得证;(2)①过拐点作AB 的平行线,根据平行线的性质推理即可得到答案;②过点P 作AB 的平行线,根据平行线的性质及角平分线的定义求得角的度数;(3)分情况讨论,画出图形,根据三角形的内角和与外角的性质分别求出答案即可.【详解】(1)//AB CD1EFD ∴∠=∠,2EFD ∠=∠12∠∠∴=; (2)①分别过点M ,N 作直线GH ,IJ 与AB 平行,则//////AB CD GH IJ ,如图:AEM EMH ∴∠=∠,CFN FNJ ∠=∠,180HMN MNJ ∠+∠=︒,()80AEM CFN EMH FNJ EMN MNF HMN MNJ ∴∠+∠=∠+∠=∠+∠-∠+∠=︒;②过点P 作AB 的平行线,根据平行线的性质可得:3AEP ∠=∠,4CFP ∠=∠,∵EP 平分∠AEM ,FP 平分∠CFN ,∴11344022AEP CFP AEM CFM ∠+∠=∠+∠=∠+∠=︒, 即40P ∠=︒;(3)分四种情况进行讨论: 由已知条件可得80BEH ∠=︒,①如图:118082EPG BEH AGQ ∠=︒-∠-∠=︒182HPQ EPG ∴∠=∠=︒11118074GQ H EHQ HPQ ∴∠=︒-∠-∠=︒②如图:104BPH FHP BEH ∠=∠+∠=︒,22122BQ H BPH AGQ ∴∠=∠+∠=︒;③如图:56BPH BEH FHP ∠=∠-∠=︒,3338BQ H BPH AGQ ∴∠=∠-∠=︒;④如图:104BPH BEH FHP ∠=∠+∠=︒ ,4486GQ H BPH AGQ ∴∠=∠-∠=︒;综上所述,∠GQH 的度数为38°、74°、86°、122°.【点睛】本题考查平行线的性质,三角形外角的性质等内容,解题的关键是掌握辅助线的作法以及分类讨论的思想.23.(1)平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF +∠CEF ;(2)证明见解析;(3)20°.【分析】(1)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;(2)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可;(3)过点E 作//EF AB ,根据平行线的判定得出////AB CD EF ,根据平行线的性质得出即可.【详解】(1)证明:如图①,过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC(平行于同一直线的两直线平行),∴∠C=∠CEF.(两直线平行,内错角相等),∵EF∥AB,∴∠B=∠BEF(同理),∴∠B+∠C=∠BEF+∠CEF(等量代换)即∠B+∠C=∠BEC,故答案为:平行于同一直线的两直线平行,两直线平行,内错角相等,∠BEF+∠CEF;(2)证明:如图②,过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC(平行于同一直线的两直线平行),∴∠C+∠CEF=180°,∠B+∠BEF=180°,∴∠B+∠C+∠AEC=360°,∴∠B+∠C=360°﹣∠BEC;(3)解:如图③,过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC(平行于同一直线的两直线平行),∴∠C+∠CEF=180°,∠A=∠BEF,∵∠C=120°,∠AEC=80°,∴∠CEF=180°﹣120°=60°,∴∠BEF =80°﹣60°=20°,∴∠A =∠AEF =20°.故答案为:20°.【点睛】本题考查了平行线的性质和判定的应用,能正确作出辅助线是解此题的关键,注意:①两直线平行,内错角相等,②两直线平行,同位角相等,③两直线平行,同旁内角互补.24.(1)见详解;(2)见详解;(3)29.5°.【分析】(1)根据平行线的性即可A ACD ∠=∠,B BCE ∠=∠,再根据平角的定义进行等量代换即可证明;(2)因为根据平角的定义和三角形的内角和定理即可得到结论;(3)根据平行线的性质得到119DEB ∠=︒,61AED ∠=︒,由角平分线的性质得到59.5DEF ∠=︒,根据三角形的外角的性质即可得到结论.【详解】(1)如图1所示,在ABC ∆中,//DE AB ,A ACD ∴∠=∠,B BCE ∠=∠.180ACD BCA BCE ∠+∠+∠=︒,180A B ACB ∴∠+∠+∠=︒.即三角形的内角和为180︒;(2)180AGF FGE ∠+∠=︒,由(1)知,180GEF F FGE ∠+∠+∠=︒,AGF AEF F ∴∠=∠+∠;(3)//AB CD ,119CDE ∠=︒,119DEB CDE ∴∠=∠=︒,18061AED CDE ∠=︒-∠=︒,∵EF 平分DEB ∠,59.5DEF ∴∠=︒,120.5AEF AED FED ∴∠=∠+∠=︒,150AGF ∠=︒,AGF AEF F ∠=∠+∠,150120.529.5F ∴∠=︒-︒=︒.【点睛】本题考查了平行线的性质,三角形的内角和定理的证明与应用,三角形外角定理证明与应用,熟练掌握平行线的性质定理是解题的关键,此类题目每一步都为后续解题提供了解题条件或方法.25.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P在射线AM上时,过P作PE∥AD,交ON于E,∵AD∥BC,∴AD∥BC∥PE,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.26.(1)∠APB=∠PAC +∠PBD,不会变化;(2)∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB,理由见解析.【分析】(1)当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等以及三角形外角的性质,即可求得∠PAC,∠APB,∠PBD之间的关系.【详解】(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)如图②,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下:∵l1∥l2,∴∠PEC=∠PBD,∵∠PEC=∠PAC+∠APB,∴∠PBD=∠PAC+∠APB.当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.如图③,理由如下:∵l1∥l2,∴∠PED=∠PAC,∵∠PED=∠PBD+∠APB,∴∠PAC=∠PBD+∠APB.【点睛】本题主要考查平行线的性质与三角形外角的性质.解题的关键是掌握:两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.27.(1)∠A+∠C+∠APC=360°,证明详见解析;(2)∠APC=∠A−∠C,证明详见解析;(3)55°.【分析】(1)首先过点P作PQ∥AB,结合题意得出AB∥PQ∥CD,然后由“两直线平行,同旁内角互补”进一步分析即可证得∠A+∠C+∠APC=360°;(2)作PQ∥AB,结合题意得出AB∥PQ∥CD,根据“两直线平行,内错角相等”进一步分析即可证得∠APC=∠A−∠C;(3)由(2)知,∠APC=∠PAB−∠PCD,先利用平行线性质得出∠BEF=∠PQB=110°,然后进一步得出∠PEG=12∠FEG,∠GEH=12∠BEG,最后根据∠PEH=∠PEG−∠GEH即可得出答案.【详解】(1)∠A+∠C+∠APC=360°,证明如下:如图1所示,过点P作PQ∥AB,∴∠A+∠APQ=180°,又∵AB∥CD,∴PQ∥CD,∴∠C+∠CPQ=180°,∴∠A+∠APQ+∠C+∠CPQ=360°,即∠A+∠C+∠APC=360°;(2)∠APC=∠A−∠C,证明如下:如图2所示,过点P作PQ∥AB,∴∠A=∠APQ,∵AB∥CD,∴PQ∥CD,∴∠C=∠CPQ,∵∠APC=∠APQ−∠CPQ,∴∠APC=∠A−∠C;(3)由(2)知,∠APC=∠PAB−∠PCD,∵∠APC=30°,∠PAB=140°,∴∠PCD=110°,∵AB∥CD,∴∠PQB=∠PCD=110°,∵EF∥PC,∴∠BEF=∠PQB=110°,∵∠PEG=∠PEF,∴∠PEG=12∠FEG,∵EH平分∠BEG,∴∠GEH=12∠BEG,∴∠PEH=∠PEG−∠GEH=12∠FEG−12∠BEG=12∠BEF=55°.【点睛】本题主要考查了利用平行线性质与角平分线性质求角度的综合运用,熟练掌握相关概念是解题关键.28.[问题解决]见解析;[问题迁移](1)∠APC=α+β;(2)当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【分析】问题解决:过点E作EF∥AB,依据平行线的性质,即可得到∠BED的度数;问题迁移:(1)过P作PQ∥AB,依据平行线的性质,即可得出α,β和∠APC之间满足的数量关系.(2)分两种情况讨论:过P作PQ∥AB,易得当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【详解】问题解决:如图2,过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠B+∠D=40°+60°=100°;问题迁移:(1)如图3,过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠BAP=∠APQ,∠DCP=∠CPQ,∴∠APC=∠BAP+∠DCP,即∠APC=α+β;(2)如图4,当点P在BN上时,∠APC=β-α;如图5,当点P在OD上时,∠APC=α-β.【点睛】本题主要考查了平行线的性质与判定的运用,解决问题的关键是掌握:两直线平行,内错角相等,并利用角的和差关系进行推算.。
第五章相交线与平行线单元试卷检测(基础+提高,Word版 含解析)
第五章相交线与平行线单元试卷检测(基础+提高,Word 版 含解析)一、选择题1.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .42.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有( )A .4个B .3个C .2个D .1个 3.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数为( )A .70°B .60°C .50°D .40°4.如图,四边形ABCD 是正方形,直线a ,b ,c 分别通过A 、D 、C 三点,且a ∥b ∥c .若a 与b 之间的距离是3,b 与c 之间的距离是6,则正方形ABCD 的面积是( )A .36B .45C .54D .645.如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A .540°B .180°nC .180°(n-1)D .180°(n+1)6.如图,//,AD BC D ABC ∠=∠,点E 是边DC 上一点,连接AE 交BC 的延长线于点H ,点F 是边AB 上一点,使得FBE FEB ∠=∠,作FEH ∠的角平分线EG 交BH 于点G ,若100DEH ︒∠=,则BEG ∠的度数是( )A .30︒B .40︒C .50︒D .60︒7.如图,直线//AB CD ,点E 在CD 上,点O 、点F 在AB 上,EOF ∠的角平分线OG 交CD 于点G ,过点F 作FH OE ⊥于点H ,已知148OGD ∠=︒,则OFH ∠的度数为( )A .26ºB .32ºC .36ºD .42º8.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80° 9.下列命题中,是真命题的是( ) A .对顶角相等B .两直线被第三条直线所截,截得的内错角相等 C .等腰直角三角形都全等D .如果a b >,那么22a b > 10.下列命题中,假命题是( )A .对顶角相等B .同角的余角相等C .面积相等的两个三角形全等D .平行于同一条直线的两直线平行 11.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°12.如图,若∠1=70°,∠2=110°,∠3=70°,则有( ).A .a ∥bB .c ∥dC .a ⊥dD .任两条都无法判定是否平行 二、填空题13.如图,已知A 1B //A n C ,则∠A 1+∠A 2+…+∠A n 等于__________(用含n 的式子表示).14.如图,△ABC 的边长AB =3 cm ,BC =4 cm ,AC =2 cm ,将△ABC 沿BC 方向平移a cm (a <4 cm ),得到△DEF ,连接AD ,则阴影部分的周长为_______cm .15.一副三角尺按如图所示叠放在一起,其中点,B D 重合,若固定三角形AOB ,将三角形ACD 绕点A 顺时针旋转一周,共有 _________次 出现三角形ACD 的一边与三角形AOB 的某一边平行.16.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.17.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.18.如图所示,AB ∥CD ,EC ⊥CD .若∠BEC =30°,则∠ABE 的度数为_____.19.如图,AB ∥CD ,∠β=130°,则∠α=_______°.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.三、解答题21.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).22.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”) (2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。
第五章相交线与平行线单元试卷试卷(word版含答案)
第五章相交线与平行线单元试卷试卷(word版含答案)一、选择题AB CD的条件有()个1.如图,下列能判定//(1)∠1=∠2;(2)∠3=∠4;(3)∠B=∠5;(4)∠B+∠BCD=180°;(5)∠5=∠DA.1 B.2 C.3 D.42.如图,AD∥CE,∠ABC=95°,则∠2﹣∠1的度数是()A.105°B.95°C.85°D.75°3.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B;④AD∥BE,且∠D=∠B.其中能说明AB∥DC的条件有()A.4个B.3个C.2个D.1个4.如图,面积为12cm2的△ABC沿BC方向平移到△DEF的位置,平移的距离是边BC长的2倍,则图中四边形ACED的面积为()A.24cm2B.36cm2C.48cm2D.无法确定5.如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若∠1=65°,则∠2的度数为()A.115°B.65°C.35°D.25°6.定义:平面内的直线l 1与l 2相交于点O ,对于该平面内任意一点M ,点M 到直线l 1、l 2的距离分别为a 、b ,则称有序非负实数对(a ,b )是点M 的“距离坐标”,根据上述定义,距离坐标为(2,1)的点的个数有( )A .2个B .3个C .4个D .5个 7.如图,BD 是△ABC 的角平分线,DE ∥BC ,DE 交AB 于E ,若AB =BC ,则下列结论中错误的是( )A .BD ⊥ACB .∠A =∠EDAC .2AD =BC D .BE =ED8.如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒9.下列命题:①两边及其中一边的对角对应相等的两个三角形全等;②两角及其中一角的对边对应相等的两个三角形全等;③有两条边和第三条边上的高对应相等的两个三角形全等;④面积相等的两个三角形肯定全等;⑤有两条直角边对应相等的两个直角三角形全等.其中正确的个数是( )A .1个B .2个C .3个D .4个10.如图所示,已知 AB ∥CD ,下列结论正确的是( )A .∠1=∠2B .∠2=∠3C .∠1=∠4D .∠3=∠411.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°12.如图,将△ABE 向右平移50px 得到△DCF ,如果△ABE 的周长是400px(1px=0.04cm ),那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm二、填空题13.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .14.如图,两直线AB 、CD 平行,则12345∠+∠+∠+∠+∠=__________.15.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________16.如图,a ∥b ,∠2=∠3,∠1=40°,则∠4的度数是______度.17.如图,AC ⊥AB ,AC ⊥CD ,垂足分别是点A 、C ,如果∠CDB=130°,那么直线AB 与BD 的夹角是________度.18.如图,现给出下列条件:①∠1=∠2,②∠B =∠5,③∠3=∠4,④∠5=∠D ,⑤∠B+∠BCD =180°,其中能够得到AD ∥BC 的条件是______(填序号);能够得到AB ∥CD 的条件是_______.(填序号)19.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).20.如图,直线////a b c ,直角三角板的直角顶点落在直线b 上,若135∠=︒,则2∠等于_______.三、解答题21.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.22.问题情境(1)如图1,已知AB ∥CD ,∠PBA =125°,∠PCD =155°,求∠BPC 的度数.佩佩同学的思路:过点P 作PG ∥AB ,进而PG ∥CD ,由平行线的性质来求∠BPC ,求得∠BPC =问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB =90°,DF ∥CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记∠PED =∠α,∠PAC =∠β.①如图2,当点P 在C ,D 两点之间运动时,请直接写出∠APE 与∠α,∠β之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,∠APE 与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若∠PED ,∠PAC 的角平分线EN ,AN 相交于点N ,请直接写出∠ANE 与∠α,∠β之间的数量关系.23.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB //CD ,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED . 求证:∠BED =∠B +∠D .彤彤是这样做的:过点E 作EF //AB ,则有∠BEF =∠B .∵AB //CD ,∴EF //CD .∴∠FED =∠D .∴∠BEF +∠FED =∠B +∠D .即∠BED =∠B +∠D .请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a //b ,点A ,B 在直线a 上,点C ,D 在直线b 上,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,且BE ,DE 所在的直线交于点E .(1)如图1,当点B 在点A 的左侧时,若∠ABC =60°,∠ADC =70°,求∠BED 的度数; (2)如图2,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,直接写出∠BED 的度数(用含有α,β的式子表示).24.如图,//AB CD ,EG 平分DEF ∠,FG 平分BFE ∠.(1)求证:90EFG GEF ∠+∠=︒;(2)在(1)问的条件下,过点G 作GH AB ⊥,垂足为H ,FGH ∠的平分线GI 交AB 于点I ,EGH ∠的平分线GJ 交AB 于点J ,求IGJ ∠的度数.25.为了探究n 条直线能把平面最多分成几部分,我们从最简单的情形入手:①一条直线把平面分成2部分;②两条直线可把平面最多分成4部分;③三条直线可把平面最多分成7部分;④四条直线可把平面最多分成11部分;……把上述探究的结果进行整理,列表分析:直线条数把平面最多 分成的部分数 写成和的形式 12 1+1 24 1+1+2 37 1+1+2+3 411 1+1+2+3+4 … … …(1)当直线条数为5时,把平面最多分成____部分,写成和的形式:______;(2)当直线条数为10时,把平面最多分成____部分;(3)当直线条数为n时,把平面最多分成多少部分?26.(感知)如图①,AB∥CD,点E在直线AB与CD之间,连结AE、BE,试说明∠BAE+∠DCE=∠AEC;(探究)当点E在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE=360°;(应用)点E、F、G在直线AB与CD之间,连结AE、EF、FG和CG,其他条件不变,如图③,若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=______°.27.已知:∠1=∠2,EG 平分∠AEC.(1)如图1,∠MAE=50°,∠FEG=15°,∠NCE=80°.试判断EF 与CD 的位置关系,并说明理由.(2)如图2,∠MAE=135°,∠FEG=30°,当AB∥CD 时,求∠NCE 的度数;(3)如图2,试写出∠MAE、∠FEG、∠NCE 之间满足什么关系时,AB∥CD.28. [问题解决]:如图1,已知AB∥CD,E是直线AB,CD内部一点,连接BE,DE,若∠ABE=40°,∠CDE=60°,求∠BED的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程:解:过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,设∠BAP=α,∠DCP=β.(1)当点P 在B ,D 两点之间运动时(P 不与B ,D 重合),求α,β和∠APC 之间满足的数量关系.(2)当点P 在B ,D 两点外侧运动时(P 不与点O 重合),直接写出α,β和∠APC 之间满足的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;共3个.故选:C .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.2.C解析:C【分析】直接作出BF ∥AD ,再利用平行线的性质分析得出答案.【详解】解:作BF ∥AD ,∵AD ∥CE ,∴AD ∥BF ∥EC ,∴∠1=∠3,∠4+∠2=180°①,∵∠3+∠4=95°,∴∠1+∠4=95°②,①-②,得∠2-∠1=85°.故选C .【点睛】此题主要考查了平行线的性质,正确得出∠1+∠4=95°,∠2+∠4=180°是解题关键.3.B解析:B【详解】解:34∠∠=//AB CD ∴,①正确;12∠=∠//AD BC ∴,②不正确;5B ∠=∠//AB CD ∴,③正确;//AD BE5D ∴∠=∠B D ∠=∠5B ∴∠=∠//AB CD ∴,④正确;综上所述,①、③、④正确,故选B .4.B解析:B【解析】试题分析:由题意可知根据平移的性质可以知道四边形ACED 的面积是三个△ABC 的面积,依此计算即可.∵平移的距离是边BC长的两倍,∴BC=CE=EF,∴四边形ACED的面积是三个△ABC的面积;∴四边形ACED的面积=12×3=36cm2.考点:平移的性质.5.D解析:D【解析】解:∵直线a∥b,∴∠1+∠ABC+∠2=180°.又∵BC⊥AB,∠1=65°,∴∠2=180°﹣90°﹣65°=25°.故选D.6.C解析:C【分析】首先根据题意,可得距离坐标为(2,1)的点是到l1的距离为2,到l2的距离为1的点;然后根据到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线,可得所求的点是以上两组直线的交点,一共有4个,据此解答即可.【详解】解:如图1,,到l1的距离为2的点是两条平行直线l3、l4,到l2的距离为1的点也是两条平行直线l5、l6,∵两组直线的交点一共有4个:A、B、C、D,∴距离坐标为(2,1)的点的个数有4个.故选C.【点睛】此题主要考查了点的坐标,以及对“距离坐标”的含义的理解和掌握,解答此题的关键是要明确:到l1的距离为2的点是两条平行直线,到l2的距离为1的点也是两条平行直线.7.C解析:C【解析】试题分析:BD 是△ABC 的角平分线, AB =BC ,则BD 是AC 边上的高及中线,所以∠ABD =∠DBC ,BD ⊥AC ,2AD=AC, ∠A =∠BCA ;因为DE ∥BC ,所以∠EDA =∠BCA, ∠EDB =∠DBC ,所以∠A =∠EDA, ∠ABD =∠EDB ,所以BE =ED 。
人教版2022年七年级下册第5章《相交线与平行线》单元检测卷 word,含解析
人教版2022年七年级下册第5章《相交线与平行线》单元检测卷满分120分时间100分钟一.选择题(共8小题,满分24分,每小题3分)1.下面各图中,能够通过右图平移得到的是()A.B.C.D.2.下列图中,∠1与∠2属于对顶角的是()A.B.C.D.3.直线l外有一点P,直线l上有三点A、B、C,若P A=4cm,PB=2cm,PC=3cm,那么点P到直线l的距离()A.不小于2cm B.大于2cm C.不大于2cm D.小于2cm4.命题“同角的补角相等”改写成“如果……,那么……”的形式是()A.如果是同角的补角,那么相等B.如果两个角是同角的补角,那么这两个角相等C.如果两个角互补,那么这两个角相等D.如果两个角是同角,那么这两个角是补角5.在同一平面内,将两个完全相同的三角板如图所示摆放(直角边重合),可以画出两条互相平行的直线a,b.这样操作的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.两直线平行,内错角相等D.两直线平行,同位角相等A.24°B.26°C.34°D.44°7.如图所示,AB∥CD,若∠2=2∠1﹣6°,则∠2等于()A.116°B.118°C.120°D.124°8.如图,将△ABC沿BC所在直线向右平移2cm得到△DEF,连结AD.若△ABC的周长为10cm,则四边形ABFD 的周长为()A.10cm B.12cm C.14cm D.20cm二.填空题(共8小题,满分32分,每小题4分)9.如图,射线BD,CE相交于点A,则∠B的内错角是.10.在乡村振兴活动中,某村通过铺设水管将河水引到村庄C处,为节省材料,他们过点C向河岸作垂线,垂足为点D,于是确定沿CD铺设水管,这样做的数学道理是.11.“平行于同一条直线的两条直线平行”是命题.(填“真”或“假”)12.如图所示方式摆放纸杯测量角的基本原理是.13.如图所示,添加一个条件使得AB∥CD.14.将一副三角板按如图放置,∠BAC=∠DAE=90°,∠B=45°,∠E=60°,则:①∠1=∠3;②∠CAD+∠2=180°;③如果∠2=30°,则有AC∥DE;④如果∠2=45°,则有BC∥AD.上述结论中正确的是(填写序号).15.已知AB∥CD,∠ACD=60°,∠BAE:∠CAE=2:3,∠FCD=4∠FCE,若∠AEC=78°,则∠AFC=.16.如图,在一块长8米,宽6米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移1米就是它的右边线,则这块草地的绿地面积为米2.三.解答题(共9小题,满分64分)17.(5分)如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的位置如图所示(顶点是网格线的交点),请画出△ABC向右平移2单位再向下平移3个单位的△A1B1C1.18.(5分)如图所示,已知∠1+∠2=180°,∠4=110°,求∠3的度数.19.(6分)如图,如果∠1=60°,∠2=120°,∠D=60°,那么AB与CD平行吗?BC与DE呢?观察下面的解答过程,补充必要的依据或结论.解∵∠1=60°(已知),∠ABC=∠1 (),∴∠ABC=60°(等量代换).又∵∠2=120°(已知),∴()+∠2=180°(等式的性质),∴AB∥CD().又∵∠2+∠BCD=(°),∴∠BCD=60°(等式的性质).∵∠D=60°(已知),∴∠BCD=∠D(),∴BC∥DE().20.(6分)如图,若∠ADE=∠ABC,BE⊥AC于E,MN⊥AC于N,求证:∠1=∠2.21.(7分)如图所示,已知∠1=115°,∠2=65°,∠3=100°.(1)图中所有角中(包含没有标数字的角),共有几对内错角?(2)求∠4的大小.22.(8分)如图所示、已知直线AB、CD交于点O、OE⊥CD.(1)若∠AOC=42°,求∠BOE的度数;(2)若∠BOD:∠BOC=2:7,OF平分∠AOD,求∠EOF的度数.23.(9分)如图,已知点A在EF上,点P,Q在BC上,∠E=∠EMA,∠BQM=∠BMQ.(1)求证:EF∥BC;(2)若FP⊥AC,∠2+∠C=90°,求证:∠1=∠B;(3)若∠3+∠4=180°,∠BAF=3∠F﹣20°,求∠B的度数.24.(9分)如图,直线AB,CD相交于点O,OE平分∠BOC.【基础尝试】(1)如图1,若∠AOC=40°,求∠DOE的度数;【画图探究】(2)作射线OF⊥OC,设∠AOC=x°,请你利用图2画出图形,探究∠AOC与∠EOF之间的关系,结果用含x 的代数式表示∠EOF.【拓展运用】(3)在第(2)题中,∠EOF可能和∠DOE互补吗?请你作出判断并说明理由.25.(9分)问题探究:如图①,已知AB∥CD,我们发现∠E=∠B+∠D.我们怎么证明这个结论呢?张山同学:如图②,过点E作EF∥AB,把∠BED分成∠BEF与∠DEF的和,然后分别证明∠BEF=∠B,∠DEF =∠D.李思同学:如图③,过点B作BF∥DE,则∠E=∠EBF,再证明∠ABF=∠D.问题解答:(1)请按张山同学的思路,写出证明过程;(2)请按李思同学的思路,写出证明过程;问题迁移:(3)如图④,已知AB∥CD,EF平分∠AEC,FD平分∠EDC.若∠CED=3∠F,请直接写出∠F的度数.参考答案一.选择题(共8小题,满分24分,每小题3分)1.【解答】解:A、图形比原图少房顶的炊烟,形状发生改变,故错误;B、图形的形状和大小没有改变,符合平移的性质,故正确;C、屋顶里面的窗子与原图不同,形状发生改变,故错误;D、图形比原图少房顶的炊烟,屋顶里面的窗子与原图不同,形状发生改变,故错误.故选:B.2.【解答】解:由对顶角的定义可得B选项中的∠1与∠2是对顶角.故选:B.3.【解答】解:∵P A=4cm,PB=2cm,PC=3cm,∴PB最短,∵直线外一点与直线上点的连线中,垂线段最短,∴P到直线l的距离不大于2cm,故选:C.4.【解答】解:命题“同角的补角相等”改写成“如果……,那么……”的形式是:如果两个角是同角的补角,那么这两个角相等,故选:B.5.【解答】解:如图:∵两个完全相同的三角板,∴∠1=∠2,而∠1、∠2是一对内错角,∴a∥b,故选:A.6.【解答】解:∵EF⊥AB于E,∠CEF=56°,∴∠AEC=90°﹣∠CEF=90°﹣56°=34°,∴∠BED=∠AEC=34°.故选:C.7.【解答】解:∵AB∥CD,∴∠1=∠3,∵∠2+∠3=180°,∴∠1+∠2=180°,∵∠2=2∠1﹣6°,∴∠1+2∠1﹣6=180°,解得∠1=62°,∴∠2=2×62﹣6=118°,故选:B.8.【解答】解:∵△ABC沿BC方向平移2cm得到△DEF,∴AD=CF=2cm,AC=DF,∴四边形ABFD的周长=AB+(BC+CF)+DF+AD=AB+BC+AC+AD+CF,∵△ABC的周长=10cm,∴AB+BC+AC=10cm,∴四边形ABFD的周长=10+2+2=14(cm).故选:C.二.填空题(共8小题,满分32分,每小题4分)9.【解答】解:由内错角的意义可得,∠B与∠EAB是内错角,故答案为:∠EAB.10.【解答】解:这样做的数学道理是:垂线段最短,故答案为:垂线段最短.11.【解答】解:“平行于同一条直线的两条直线平行”是真命题.故答案为:真.12.【解答】解:图中的测量角的原理是:对顶角相等.故答案为:对顶角相等.13.【解答】解:∠A=∠ECD或∠A+∠ACD=180°,理由如下:∵∠A=∠ECD,∴AB∥CD(同位角相等,两直线平行);∵∠A+∠ACD=180°,故答案为:∠A=∠ECD或∠A+∠ACD=180°.14.【解答】解:①∵∠BAC=∠DAE=90°,∴∠1+∠2=∠2+∠3=90°,∴∠1=∠3,故①正确;②∵∠1+∠2+∠2+∠3=180°,∴∠CAD+∠2=180°,故②正确;③∵∠2=30°,∴∠1=∠E=60°,∴AC∥DE,故③正确;④∵∠2=45°,∴∠3=∠B=45°,∴BC∥AD,故④正确.故答案为:①②③④.15.【解答】解:∵AB∥CD,∴∠CAB=180°﹣∠ACD=180°﹣60°=120°,∵∠BAE:∠CAE=2:3,∴∠CAE=120×=72°,∵∠AEC=78°,∴∠ACE=180°﹣∠AEC﹣∠CAE=180°﹣78°﹣72°=30°,设∠FCE=x,则∠FCD=4x,∴∠ACF=∠ACD﹣∠FCD=60°﹣4x,∴∠ACE=∠ACF+∠ECF=60°﹣3x,∴60°﹣3x=30°,∴x=10°,∴∠ACF=60°﹣40°=20°,∴∠AFC=180°﹣∠ACF﹣∠CAE=180°﹣20°﹣72°=88°,故答案是:88°.(8﹣1)×6=7×6=42(平方米),所以:这块草地的绿地面积为42平方米,故答案为:42.三.解答题(共9小题,满分64分)17.【解答】解:如图,△A1B1C1即为所求.18.【解答】解:∵∠1+∠2=180°,∠2=∠5,∴∠1+∠5=180°,∴CD∥EF,∴∠3=∠4,∵∠4=110°,∴∠3=110°.19.【解答】解∵∠1=60°(已知),∠ABC=∠1 (对顶角相等),∴∠ABC=60°(等量代换).又∵∠2=120°(已知),∴∠ABC+∠2=180°(等式的性质),∴AB∥CD(同旁内角互补,两直线平行).又∵∠2+∠BCD=180°,∴∠BCD=60°(等式的性质).∵∠D=60°(已知),∴∠BCD=∠D(等量代换),∴BC∥DE(内错角相等,两直线平行).故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.20.【解答】证明:∵∠ADE=∠ABC,∵BE⊥AC,MN⊥AC,∴BE∥MN,∴∠2=∠EBC,∴∠1=∠2.21.【解答】解:如图所示:(1)直线c和d被直线b所截,有两对内错角,即∠2和∠6,∠5和∠7,同理还有六对内错角,共有8对内错角;(2)∵∠2+∠5=180°,∠2=65°,∴∠5=180°﹣65°=115°,∵∠1=115°,∴∠1=∠5,∴a∥b,∴∠3=∠6,又∵∠3=100°,∴∠6=100°,∴∠4=∠6=100°.22.【解答】解:(1)∵∠AOC=42°,OE⊥CD.∴∠DOE=90°,∠BOD=42°,∴∠BOE=90°﹣∠BOD=48°;(2)∵∠BOD:∠BOC=2:7,∴∠BOD=180°×=40°,∴∠BOC=180°﹣40°=140°,∵∠BOC=∠AOD=140°,∵OF平分∠AOD,∴∠DOF==°=70°,∵∠EOF=∠EOD+∠DOF,∴∠EOF=90°+70°=160°.23.【解答】(1)证明:∵∠E=∠EMA,∠BQM=∠BMQ,∠EMA=∠BMQ,∴∠E=∠BQM,∴EF∥BC;(2)证明:∵FP⊥AC,∴∠PGC=90°,∵EF∥BC,∴∠EAC+∠C=180°,∵∠2+∠C=90°,∴∠BAC=∠PGC=90°,∴AB∥FP,∴∠1=∠B;(3)解:∵∠3+∠4=180°,∠4=∠MNF,∴∠3+∠MNF=180°,∴AB∥FP,∴∠F+∠BAF=180°,∵∠BAF=3∠F﹣20°,∴∠F+3∠F﹣20°=180°,解得∠F=50°,∵AB∥FP,EF∥BC,∴∠B=∠1,∠1=∠F,∴∠B=∠F=50°.24.【解答】解:(1)∵∠AOC+∠BOC=180°,∠AOC=40°,∴∠BOC=180°﹣40°=140°,∵OE平分∠BOC,∴∠COE=∠BOC=70°,∵∠DOE+∠COE=180°,∴∠DOE=180°﹣70°=110°;(2)∠EOF=∠AOC或∠EOF=180°+∠AOC.当OF在∠BOC内部时,如图,∵∠AOC+∠BOC=180°,∠AOC=x°,∴∠BOC=(180﹣x)°,∵OE平分∠BOC,∴∠COE=∠BOC=(90﹣x)°,∵OF⊥OC,∴∠COF=90°,∴∠EOF=90°﹣∠COE=90°﹣(90﹣x)°=x°,即∠EOF=∠AOC;当OF在∠AOD内部时,如图,∵∠AOC+∠BOC=180°,∠AOC=x°,∴∠BOC=(180﹣x)°,∵OE平分∠BOC,∴∠COE=∠BOC=(90﹣x)°,∵OF⊥OC,∴∠COF=90°,∴∠EOF=90°+∠COE=90°+(90﹣x)°=(180+x)°,即∠EOF=180°+∠AOC.综上所述:∠EOF=∠AOC或∠EOF=180°+∠AOC;(3)∠EOF可能和∠DOE互补.当AB⊥CD,且OF与OB重合时,∠BOC=∠BOD=90°,∵OE平分∠BOC,∴∠BOE=BOC=45°,即∠EOF=45°,∴∠DOE=∠BOD+∠BOE=90°+45°=135°,∴∠EOF+∠DOE=180°,即∠EOF和∠DOE互补.25.【解答】解:(1)如图②中,过点E作EF∥AB,∵AB∥CD,EF∥AB,∴AB∥EF∥CD,∴∠B=∠BEF,∠D=∠CEF,∴∠BED=∠BEF+∠DEF=∠B+∠D.(2)如图③中,过点B作BF∥DE交CD的延长线于G.∵DE∥FG,∴∠EDC=∠G,∠DEB=∠EBF,∵AB∥CG,∴∠G=∠ABF,∴∠EDC=∠ABF,∴∠DEB=∠EBF=∠ABE+∠ABF=∠ABE+∠EDC.(3)如图④中,∵EF平分∠AEC,FD平分∠EDC,∴∠AEF=∠CEF,∠CDF=∠EDF,设∠AEF=∠CEF=x,∠CDF=∠EDF=y,则∠F=x+y,∵∠CED=3∠F,∴∠CED=3x+3y,∵AB∥CD,∴∠BED=∠CDE=2y,∵∠AEC+∠CED+∠DEB=180°,∴5x+5y=180°,∴x+y=36°,∴∠F=36°.。
八年级上册数学第五章相交线与平行线单元试卷综合测试卷(word含答案)
八年级上册数学第五章相交线与平行线单元试卷综合测试卷(word 含答案)一、选择题1.下列说法中错误的是( )A .一个锐角的补角一定是钝角;B .同角或等角的余角相等;C .两点间的距离是连结这两点的线段的长度;D .过直线l 上的一点有且只有一条直线垂直于l2.下列结论中:①同一平面内,两条不相交的直线被第三条直线所截,形成的同旁内角互补;②在同一平面内,若,//a b b c ⊥,则a c ⊥; ③直线外一点到直线的垂线段叫点到直线的距离;④同一平面内,过一点有且只有一条直线与已知直线平行,正确的个数有( )A .1个B .2个C .3个D .4个3.如图,直角三角形ABC 的直角边AB =6,BC =8,将直角三角形ABC 沿边BC 的方向平移到三角形DEF 的位置,DE 交AC 于点G ,BE =2,三角形CEG 的面积为13.5,下列结论:①三角形ABC 平移的距离是4;②EG =4.5;③AD ∥CF ;④四边形ADFC 的面积为6.其中正确的结论是A .①②B .②③C .③④D .②④4.如图,AB ∥EF ,设∠C =90°,那么x 、y 和z 的关系是( )A .y =x+zB .x+y ﹣z =90°C .x+y+z =180°D .y+z ﹣x =90°5.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°6.如图,直线a ∥b ,将一个直角三角尺按如图所示的位置摆放,若∠1=58°,则∠2的度数为( )A .30°B .32°C .42°D .58°7.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④8.已知AB CD ∥,点E F ,分别在直线AB CD ,上,点P 在AB CD ,之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则EPF ∠的度数为( )A .120︒B .135︒C .45︒或135︒D .60︒或120︒9.两条平行线被第三条直线所截,则下列说法错误的是( )A .一对邻补角的平分线互相垂直B .一对同位角的平分线互相平行C .一对内错角的平分线互相平行D .一对同旁内角的平分线互相平行10.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B .在同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .直线外一点与直线上各点连接的所有线段中,垂线段最短11.如图,直线12l l //,被直线3l 、4l 所截,并且34l l ⊥,144∠=,则2∠等于( )A .56°B .36°C .44°D .46°12.如图,将△ABE 向右平移50px 得到△DCF ,如果△ABE 的周长是400px(1px=0.04cm ),那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm二、填空题13.如图,∠AEM =∠DFN =a ,∠EMN =∠MNF =b ,∠PEM =12∠AEM ,∠MNP =12∠FNP ,∠BEP ,∠NFD 的角平分线交于点I ,若∠I =∠P ,则a 和b 的数量关系为_____(用含a 的式子表示b ).14.如图,已知,∠ABG 为锐角,AH ∥BG ,点C 从点B (C 不与B 重合)出发,沿射线BG 的方向移动,CD ∥AB 交直线AH 于点D ,CE ⊥CD 交AB 于点E ,CF ⊥AD ,垂足为F (F 不与A 重合),若∠ECF =n°,则∠BAF 的度数为_____度.(用n 来表示)15.如图,AB ∥CD,BF 平分∠ABE,DF 平分∠CDE,∠BFD=35°,那么∠BED 的度数为_______.16.规律探究:同一平面内有直线1a 、2a 、3a ,⋯,100a ,若12//a a ,23a a ⊥,34//a a ,45a a ⊥,⋯,按此规律,1a 与100a 的位置关系是______.17.如图,已知AB ∥CD ,CE 、BE 的交点为E ,现作如下操作:第一次操作,分别作∠ABE 和∠DCE 的平分线,交点为E 1,第二次操作,分别作∠ABE 1和∠DCE 1的平分线,交点为E 2,第三次操作,分别作∠ABE 2和∠DCE 2的平分线,交点为E 3,…,第n 次操作,分别作∠ABE n ﹣1和∠DCE n ﹣1的平分线,交点为E n .若∠E n =1度,那∠BEC 等于________度18.如图,图①是长方形纸带,∠DEF=25°,将纸带沿EF 折叠成图②,则图②中的∠CFG 的度数是_____________.19.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.20.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.三、解答题21.如图,已知//AB CD ,50A C ∠=∠=︒,线段AD 上从左到右依次有两点E 、F (不与A 、D 重合)(1)求证://AD BC ;(2)比较1∠、2∠、3∠的大小,并说明理由;(3)若:1:4FBD CBD ∠∠=,BE 平分ABF ∠,且1BDC ∠=∠,判断BE 与AD 的位置关系,并说明理由.22.对于平面内的∠M 和∠N ,若存在一个常数k >0,使得∠M +k ∠N =360°,则称∠N 为∠M 的k 系补周角.如若∠M =90°,∠N =45°,则∠N 为∠M 的6系补周角.(1)若∠H =120°,则∠H 的4系补周角的度数为 ;(2)在平面内AB ∥CD ,点E 是平面内一点,连接BE ,DE .①如图1,∠D =60°,若∠B 是∠E 的3系补周角,求∠B 的度数;②如图2,∠ABE 和∠CDE 均为钝角,点F 在点E 的右侧,且满足∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),点P 是∠ABE 角平分线BG 上的一个动点,在P 点运动过程中,请你确定一个点P 的位置,使得∠BPD 是∠F 的k 系补周角,并直接写出此时的k 值(用含n 的式子表示).23.如图,//AB CD ,EG 平分DEF ∠,FG 平分BFE ∠.(1)求证:90EFG GEF ∠+∠=︒;(2)在(1)问的条件下,过点G 作GH AB ⊥,垂足为H ,FGH ∠的平分线GI 交AB 于点I ,EGH ∠的平分线GJ 交AB 于点J ,求IGJ ∠的度数.24.已知AB ∥CD ,点C 在点D 的右侧,连接AD ,BC ,BE 平分∠ABC ,DE 平分∠ADC ,BE ,DE 相交于点E .(1)如图1,当点B 在点A 的左侧时,①若∠ABC =50º,∠ADC =70º,求∠BED 的度数;②请直接写出∠BED与∠ABC,∠ADC的数量关系;(2)如图2,当点B在点A的右侧时,试猜想∠BED与∠ABC,∠ADC的数量关系,并说明理由.25.已知:直线l分别交AB、CD与E、F两点,且AB∥CD.(1)说明:∠1=∠2;(2)如图2,点M、N在AB、CD之间,且在直线l左侧,若∠EMN+∠FNM=260°,①求:∠AEM+∠CFN的度数;②如图3,若EP平分∠AEM,FP平分∠CFN,求∠P的度数;(3)如图4,∠2=80°,点G在射线EB上,点H在AB上方的直线l上,点Q是平面内一点,连接QG、QH,若∠AGQ=18°,∠FHQ=24°,直接写出∠GQH的度数.26.如图,如图1,在平面直角坐标系中,已知点A(﹣4,﹣1)、B(﹣2,1),将线段AB平移至线段CD,使点A的对应点C在x轴的正半轴上,点D在第一象限.(1)若点C的坐标(k,0),求点D的坐标(用含k的式子表示);(2)连接BD、BC,若三角形BCD的面积为5,求k的值;(3)如图2,分别作∠ABC和∠ADC的平分线,它们交于点P,请写出∠A、和∠P和∠BCD之间的一个等量关系,并说明理由.27.如图1,直线AB 与直线OC 交于点O ,()090BOC αα∠=︒<<.小明将一个含30的直角三角板PQD 如图1所示放置,使顶点P 落在直线AB 上,过点Q 作直线MN AB 交直线OC 于点H (点H 在Q 左侧).(1)若PD OC ∥,45NQD ∠=︒,则α=__________︒.(2)若PQH ∠的角平分线交直线AB 于点E ,如图2.①当QE OC ∥,60α=︒时,求证:OC PD . ②小明将三角板保持PD OC ∥并向左平移,运动过程中,PEQ ∠=__________.(用α表示).28.已知:∠1=∠2,EG 平分∠AEC . (1)如图1,∠MAE =50°,∠FEG =15°,∠NCE =80°.试判断 EF 与 CD 的位置关系,并说明理由.(2)如图2,∠MAE =135°,∠FEG =30°,当 AB ∥CD 时,求∠NCE 的度数;(3)如图2,试写出∠MAE 、∠FEG 、∠NCE 之间满足什么关系时,AB ∥CD .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:D 选项中缺少先要条件,就是在同一平面内故选:D2.B解析:B【分析】根据平行线的性质,点到直线的距离依次判断.【详解】解:①同一平面内,两条不相交的直线(即两直线平行)被第三条直线所截,形成的同旁内角互补,说法正确;②在同一平面内,若,//a b b c ⊥,则a c ⊥,说法正确;③直线外一点到直线的垂线段叫点到直线的距离,说法错误;④同一平面内,过一点有且只有一条直线与已知直线平行,说法错误;正确的说法有2个,故选:B .【点睛】此题考查平行线的性质,点到直线的距离,正确理解定义是解题的关键.3.B解析:B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC 的长和△CEG 的面积求EG ;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B ,E 是对应点,且BE =2,所以△ABC 平行的距离是2,则①错误; ②根据题意得,13.5×2=(8-2)EG ,解得EG =4.5,则②正确;③因为A,D是对应点,C,F是对应点,所以AD∥CF,则③正确;④平行四边形ADFC的面积为AB·CF=AB·BE=6×2=12,则④错误.故选B.点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.4.B解析:B【分析】过C作CM∥AB,延长CD交EF于N,根据三角形外角性质求出∠CNE=y﹣z,根据平行线性质得出∠1=x,∠2=∠CNE,代入求出即可.【详解】解:过C作CM∥AB,延长CD交EF于N,则∠CDE=∠E+∠CNE,即∠CNE=y﹣z∵CM∥AB,AB∥EF,∴CM∥AB∥EF,∴∠ABC=x=∠1,∠2=∠CNE,∵∠BCD=90°,∴∠1+∠2=90°,∴x+y﹣z=90°.故选:B.【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.5.D解析:D【解析】分析:由折叠可得:∠DGH=12∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.详解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=12∠DGE=74°.∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.故选D.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.6.B解析:B【解析】试题分析:如图,过点A作AB∥b,∴∠3=∠1=58°,∵∠3+∠4=90°,∴∠4=90°﹣∠3=32°,∵a∥b,AB∥B,∴AB∥b,∴∠2=∠4=32°,故选B.考点:平行线的性质.7.D解析:D【分析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论.8.C解析:C【分析】根据题意画出示意图,延长FP 交AB 于点Q ,根据折叠的性质和四边形的内角和进行分析解答.【详解】解:根据题意,延长FP 交AB 于点Q ,可画图如下:∵AB CD ∥∴CFQ PQE ∠=∠∵将射线EA 沿EP 折叠,射线FC 沿FP 折叠,∴,CFP PFM MEP PEQ ∠=∠∠=∠,∵,FPE PQE PEQ EM FM ∠=∠+∠⊥,如第一个图所示,在四边形FPEM 中,36090PFM MEP FPE ∠+∠+∠=︒-︒, 得:2270FPE ∠=︒,∴135FPE ∠=︒.如第二个图所示,在四边形FPEM 中,360(36090)90PFM MEP FPE ∠+∠+∠=︒-︒-︒=︒,得:290FPE ∠=︒,∴45FPE ∠=︒.故选:C .【点睛】本题考查的知识点是平行线的性质、折叠的性质、三角形的外角、四边形的内角和等知识.关键是利用平行线的性质以及四边形内角和进行解答.9.D解析:D【解析】试题分析:A 、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B 、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C 、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D 、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误; 故选:D .10.A解析:A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A 不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B 正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C 正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D 正确;故选:A.11.D解析:D【分析】依据l 1∥l 2,即可得到∠1=∠3=44°,再根据l 3⊥l 4,可得∠2=90°-44°=46°.【详解】解:如图,∵l1∥l2,∴∠1=∠3=44°,又∵l3⊥l4,∴∠2=90°-44°=46°,故选:D.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.12.C解析:C【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.注意:1px = 0.04cm .【详解】∵1px = 0.04cm,∴50px=2cm,400px=16cm,∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF=AB+BE+AE+AD+EF=△ABE的周长+AD+EF.∵平移距离为2cm,∴AD=EF=2cm,∵△ABE的周长是16cm,∴四边形ABFD的周长=16+2+2=20cm.故选:C.【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.二、填空题13..【分析】分别过点P、I作ME∥PH,AB∥GI,设∠AME=2x,∠PNF=2y,知∠PEM=x,∠MNP=y,由PH∥ME知∠EPH=x,由EM∥FN知PH∥FN,据此得∠HPN=2y,∠E解析:81209a b=-︒.【分析】分别过点P、I作ME∥PH,AB∥GI,设∠AME=2x,∠PNF=2y,知∠PEM=x,∠MNP=y,由PH ∥ME 知∠EPH=x ,由EM ∥FN 知PH ∥FN ,据此得∠HPN=2y ,∠EPN=x+2y ,同理知3902EIF x x ∠︒-+=,根据∠EPN=∠EIF 可得答案. 【详解】 分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME =2x ,∠PNF =2y ,则∠PEM =x ,∠MNP =y ,∴∠DFN =2x ,∵PH ∥ME ,∴∠EPH =x ,∵EM ∥FN ,∴PH ∥FN ,∴∠HPN =2y ,∠EPN =x +2y ,同理,3902EIF x x ∠︒-+=, ∵∠EPN =∠EIF ,∴3902x x ︒-+=x +2y , ∴339042b ︒-a =, ∴91358b a =︒-, ∴81209b -︒a =,故答案为:81209b -︒a =.【点睛】本题主要考查平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质. 14.n 或180﹣n【分析】分两种情况讨论:当点在线段上;点在延长线上,根据平行线的性质,即可得到结论.【详解】解:过A作AM⊥BC于M,如图1,当点C在BM延长线上时,点F在线段AD上,∵解析:n或180﹣n【分析】分两种情况讨论:当点M在线段BC上;点C在BM延长线上,根据平行线的性质,即可得到结论.【详解】解:过A作AM⊥BC于M,如图1,当点C在BM延长线上时,点F在线段AD上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=180°﹣∠B=180°﹣n°,过A作AM⊥BC于M,如图2,当点C在线段BM上时,点F在DA延长线上,∵AD∥BC,CF⊥AD,∴CF⊥BG,∴∠BCF=90°,∴∠BCE+∠ECF=90°,∵CE⊥AB,∴∠BEC=90°,∴∠B+∠BCE=90°,∴∠B=∠ECF=n°,∵AD∥BC,∴∠BAF=∠B=n°,综上所述,∠BAF的度数为n°或180°﹣n°,故答案为:n或180﹣n.【点睛】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.15.70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG ∥AB ,FH ∥AB ,再灵活运用平行线的性质是解本题的关键.16.互相垂直.【解析】【分析】依据,,,,,可得,即可得到与的位置关系是互相垂直.【详解】解:,,,,按此规律,,又,,,以此类推,,,故答案为:互相垂直.【点睛】本题主要解析:互相垂直.【解析】【分析】依据12a //a ,23a a ⊥,34a //a ,45a a ⊥,⋯,可得14n a a ⊥,即可得到1a 与100a 的位置关系是互相垂直.【详解】解:12a //a ,23a a ⊥,34a //a ,14a a ∴⊥,按此规律,58a a ⊥,又45a a ⊥,⋯,18a a ∴⊥,以此类推,14n a a ⊥100425=⨯,1100a a ∴⊥,故答案为:互相垂直.【点睛】本题主要考查了平行线的性质,解决问题的关键是根据已知条件得出规律:14n a a ⊥.17.2n .【解析】如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠解析:2n .【解析】如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=12∠ABE+12∠DCE=12∠BEC.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=12∠ABE1+12∠DCE1=12∠CE1B=14∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=12∠ABE2+12∠DCE2=12∠CE2B=18∠BEC;…以此类推,∠E n=12n∠BEC.∴当∠E n=1度时,∠BEC等于2n度.故答案为2n .点睛:本题主要考查了角平分线的定义以及平行线性质:两直线平行,内错角相等的运用.解决问题的关键是作平行线构造内错角,解题时注意:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.18.130°【解析】∵AD∥BC,∠DEF=25°,∴∠BFE=∠DEF=25°,∴∠EFC=155°,∴∠CFG=155°-25°=130°.故答案为130°.点睛:本题主要是根据折叠能解析:130°【解析】∵AD∥BC,∠DEF=25°,∴∠BFE=∠DEF=25°,∴∠EFC=155°,∴∠CFG=155°-25°=130°.故答案为130°.点睛:本题主要是根据折叠能够发现相等的角,同时运用了平行线的性质.19.【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35解析:035【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.20.65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.三、解答题21.(1)见解析;(2)∠1>∠2>∠3,理由见解析;(3)BE⊥AD,理由见解析【分析】(1)证明∠C+∠ADC=180°,再根据平行线的判定证明即可;(2)通过比较∠EBC、∠FBC、∠DBC的大小,再进行等量代换即可;(3)设∠FBD=x°,则∠DBC=4x°,根据∠ABC=130°列出方程,求解即可.【详解】解:(1)证明:∵AB∥CD,∴∠A+∠ADC=180°,∵∠A=50°,∴∠ADC=130°,∵∠C=50°,∴∠C+∠ADC=180°,∴AD∥BC;(2)∠1>∠2>∠3,∵AD∥BC,∴∠1=∠EBC,∠2=∠FBC,∠3=∠DBC,∵∠EBC>∠FBC>∠DBC,∴∠1>∠2>∠3;(3)∵AD∥BC,∴∠1=∠EBC,∵AB∥CD,∴∠BDC=∠ABD,∵∠1=∠BDC,∴∠ABE=∠DBC,∵BE平分∠ABF,设∠FBD=x°,则∠DBC=4x°,∴∠ABE=∠EBF=4x°,∴4x+4x+x+4x=130°,∴x=10°,∴∠1=4x+x+4x=90°,∴BE⊥AD.【点睛】此题考查平行线的性质,关键是根据平行线的判定和性质解答.22.(1)60°;(2)①75°,②当BG 上的动点P 为∠CDG 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k=2n ,推导见解析.【分析】(1)直接利用k 系补周角的定义列方程求解即可.(2)①依据k 系补周角的定义及平行线的性质,建立∠B ED 、∠B 、∠D 的关系式求解即可.②结合本题的构图特点,利用平行线的性质得到:∠ABF+∠CDF+∠F=360°,结合∠ABF =n ∠ABE ,∠CDF =n ∠CDE (其中n 为常数且n >1),又由于点P 是∠ABE 角平分线BG 上的一个动点,通过构造相同特殊条件猜想出一个满足条件的P 点,再通过推理论证得到k 的值(含n 的表达式),即说明点P 即为所求.【详解】解:(1)设∠H 的4系补周角的度数为x ,则有120°+4x=360°,解得:x=60°∴∠H 的4系补周角的度数为60°;(2)①如图,过点E 作EF//AB ,∵AB//EF,∴EF//CD ,∴∠B=∠1,∠D=∠2,∴∠1+∠2=∠B+∠D ,即∠B ED=∠B+∠D ,∵∠BED+3∠B=360°,∠D =60,∴360360B B ︒-∠=∠+︒,解得:∠B=75°,∴∠B=75°;②预备知识,基本构图:如图,AB//CD//EF,则∠ABE+∠BEG=180°,∠DCE+∠GEC=180°,∴∠ABE+∠BEG+∠DCE+∠GEC=360°,即∠ABE+∠DCG+∠BEC=360°如图:当BG 上的动点P 为∠CDG 的角平分线与BG 的交点时,满足∠BPD 是∠F 的k 系补周角,此时k=2n.理由如下:若∠BPD 是∠F 的k 系补周角,则∠F+k ∠BPD=360°,∴k ∠BPD=360°-∠F又由基本构图知:∠ABF+∠CDF=360°-∠F , ∴k ∠BPD=∠ABF+∠CDF ,又∵∠ABF =n ∠ABE ,∠CDF =n ∠CDE ,∴k ∠BPD= n ∠ABE+ n ∠CDE ,∵∠BPD=∠PHD+∠PDH,∵AB//CD ,PG 平分∠ABE ,PD 平分∠CDE ,∴∠PHD=∠ABH=12ABE ∠ ,∠PDH=12CDE ∠, ∴2k (ABE ∠+CDE ∠)=n(∠ABE+∠CDE), ∴k=2n.【点睛】本题主要考查平行线的基本性质及基本构图的应用.题型较新颖,发散性较强,理解题意,熟练掌握平行线的性质及其基本构图是解题的关键.23.(1)证明见解析;(2)45IGJ ∠=︒.【分析】(1)根据平行线的性质可得180DEF BFE ∠+∠=︒,再利用角平分线的定义即可得证; (2)过点G 作//GK AB ,则////AB GK CD ,根据平行线的性质可得DEG EGK ∠=∠,KGF GFB ∠=∠,再结合(1)的结论易得90EGK KGF ∠+∠=︒,利用角平分线的定义及垂线的定义即可求解.【详解】(1)证明:∵//AB CD ,∴180DEF BFE ∠+∠=︒.∵EG 平分DEF ∠,FG 平分BFE ∠,∴22DEF GEF DEG ∠=∠=∠,22BFE EFG GFB ∠=∠=∠,∴22180GEF EFG ∠+∠=︒,∴90EFG GEF ∠+∠=︒.(2)解:过点G 作//GK AB .∵//AB CD ,∴////AB GK CD ,∴DEG EGK ∠=∠,KGF GFB ∠=∠.由(1)得90DEG GFB ∠+∠=︒,∴90EGK KGF ∠+∠=︒.∵GH AB ⊥,∴GH KG ⊥,即90KGH KGF HGF ∠=∠+∠=︒,∴EGK HGF ∠=∠.∵GJ 平分EGH ∠,∴EGJ HGJ ∠=∠.又KGJ EGJ EGK ∠=∠-∠,FGJ HGJ HGF ∠=∠-∠,∴KGJ FGJ ∠=∠,∴2KGF FGJ ∠=∠.∵GI 平分HGF ∠,∴2HGF FGI ∠=∠,∴2290FGJ FGI ∠+∠=︒,即45FGJ FGI ∠+∠=︒,∴45IGJ FGJ FGI ∠=∠+∠=︒.【点睛】本题考查平行线的性质、角平分线的定义等内容,掌握平行线的性质是解题的关键.24.(1)①∠BED=60º;②∠BED=12∠ABC+12∠ADC;(2)∠BED=180º-1 2∠ABC+12∠ADC,理由见解析.【分析】(1)①过点E作EF∥AB,然后说明AB∥CD∥EF,再运用平行线的性质、角平分线的性质和角的和差即可解答;②利用平行线的性质和角平分线的性质即可确定它们的关系.(2)过点E作EF∥AB,再运用平行线的性质、角平分线的定义和角的和差即可确定它们的关系.【详解】(1)①如图1,过点E作EF∥AB.∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF,∠EDC=∠DEF.∵BE平分∠ABC,DE平分∠ADC,∴∠ABC=50º,∠ADC=70º∴∠ABE=12∠ABC=150252⨯=°°,∠EDC=12∠ADC=170352⨯︒=︒,∴∠BEF=25º,∠DEF=35º,∴∠BED=∠BEF+∠DEF=25º+35º=60º;②∵AB∥CD∴AB∥CD∥EF∴∠ABE=∠BEF=12∠ABC,∠EDC=∠DEF=12∠ADC;.∴∠BED=∠BEF +∠DEF =12∠ABC+12∠ADC∴∠BED=12∠ABC+12∠ADC(2)如图2,过点E作EF∥AB.∵AB ∥CD∴AB ∥CD ∥EF∴∠EDC=∠DEF ,∵∠ABE+∠BEF=180º,∴∠BEF=180º-∠ABE .∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠ABE=12∠ABC ,∠DEF=12∠ADC , ∴∠BED=∠BEF+∠DEF=180º-12∠ABC+12∠ADC .【点睛】本题考查了平行线的判定与性质,添加辅助线构造平行线并灵活利用平行线的性质是解答本题的关键.25.(1)理由见解析;(2)①80°,②40°;(3)38°、74°、86°、122°.【分析】(1)根据平行线的性质及对顶角的性质即可得证;(2)①过拐点作AB 的平行线,根据平行线的性质推理即可得到答案;②过点P 作AB 的平行线,根据平行线的性质及角平分线的定义求得角的度数;(3)分情况讨论,画出图形,根据三角形的内角和与外角的性质分别求出答案即可.【详解】(1)//AB CD1EFD ∴∠=∠,2EFD ∠=∠12∠∠∴=; (2)①分别过点M ,N 作直线GH ,IJ 与AB 平行,则//////AB CD GH IJ ,如图:AEM EMH ∴∠=∠,CFN FNJ ∠=∠,180HMN MNJ ∠+∠=︒,()80AEM CFN EMH FNJ EMN MNF HMN MNJ ∴∠+∠=∠+∠=∠+∠-∠+∠=︒;②过点P 作AB 的平行线,根据平行线的性质可得:3AEP ∠=∠,4CFP ∠=∠,∵EP 平分∠AEM ,FP 平分∠CFN , ∴11344022AEP CFP AEM CFM ∠+∠=∠+∠=∠+∠=︒, 即40P ∠=︒;(3)分四种情况进行讨论:由已知条件可得80BEH ∠=︒,①如图:118082EPG BEH AGQ ∠=︒-∠-∠=︒182HPQ EPG ∴∠=∠=︒11118074GQ H EHQ HPQ ∴∠=︒-∠-∠=︒②如图:104BPH FHP BEH ∠=∠+∠=︒,22122BQ H BPH AGQ ∴∠=∠+∠=︒;③如图:56 BPH BEH FHP∠=∠-∠=︒,3338BQ H BPH AGQ∴∠=∠-∠=︒;④如图:104BPH BEH FHP∠=∠+∠=︒,4486GQ H BPH AGQ∴∠=∠-∠=︒;综上所述,∠GQH的度数为38°、74°、86°、122°.【点睛】本题考查平行线的性质,三角形外角的性质等内容,解题的关键是掌握辅助线的作法以及分类讨论的思想.26.(1)D(k+2,2);(2)k=2;(3)∠BPD=12∠BCD+12∠A,理由详见解析【分析】(1)由平移的性质可得出答案;(2)过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,由四边形BEFD的面积可得出答案;(3)过点P作PE∥AB得出∠PBA=∠EPB,由平移的性质得出AB∥CD,由平行线的性质得出PE∥CD,则∠EPD=∠PDC,得出∠BPD=∠PBA+∠PDC,由角平分线的性质得出∠PBA=12∠ABC,∠PDC=12∠ADC,即可得出结论.【详解】解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴1(12)(k4)2⨯+⨯+=111(k2)22522⨯⨯++⨯⨯+,解得:k=2.(3)∠BPD=12∠BCD+12∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE ∥CD ,∠ADC =∠A ,∠ABC =∠BCD ,∴∠EPD =∠PDC ,∴∠BPD =∠PBA +∠PDC ,∵BP 平分∠ABC ,DP 平分∠ADC ,∴∠PBA =12∠ABC ,∠PDC =12∠ADC , ∴∠BPD =12∠ABC +12∠ADC =12∠BCD +12∠A . 【点睛】本题考查了平移的综合问题,掌握平移的性质、平行线的性质、角平分线的性质是解题的关键.27.(1)45;(2)①详见解析;②302α︒+或602α︒-; 【分析】(1)根据平行线性质可得180********BPD ∠=︒-︒-︒-︒=︒,再根据平行线性质得BOC BPD ∠=∠;(2)①根据平行线性质得160BOC ∠=∠=︒,2160∠=∠=︒,结合角平分线定义可证180DQE PDQ ∠+∠=︒,得PD QE ∥,根据平行线传递性可再证PD OC ∥; ②分两种情况分析:当Q 在H 的右侧时,根据平行线性质可得∠BPD=∠BOC=α,∠MQP=∠QPB=60°+α,根据角平分线性质∠MQE=12(60°+α),故∠PEQ=∠MQE ;当Q 在H 的右侧时,与上面同理,∠NQE=12(180°-60°-α),∠PEQ=∠NQE . 【详解】(1)由45NQD ∠=︒,MNAB ,可得180********BPD ∠=︒-︒-︒-︒=︒, 而PD OC ∥,则有BOC BPD ∠=∠.故45BPD α=∠=︒ (2)∵QE OC ∥,60BOC α∠==︒,∴160BOC ∠=∠=︒,又∵MN AB ,∴2160∠=∠=︒,又∵QE 平分PQH ∠,∴3260∠=∠=︒,又∵430∠=︒,∴4390DQE ∠=∠+∠=︒,且90PDQ ∠=︒,∴180DQE PDQ ∠+∠=︒,∴PD QE ∥,∵QE OC ∥,∴PD OC ∥.②当Q 在H 的右侧时,∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠MQP=∠QPB=60°+α又∵QE 平分∠MQP∴∠MQE=12(60°+α)=30°+12α ∴∠PEQ=∠MQE=30°+12α 当Q 在H 的左侧时∵PD ∥OC∴∠BPD=∠BOC=α∵MN ∥AB∴∠NQP=180°-60°-α又∵QE 平分∠NQP∠NQE=12(180°-60°-α)=60°-12α ∴∠PEQ=∠NQE=60°-12α∴302PEQ α∠=︒+或602α︒-.【点睛】 考核知识点:平移、平行线判定和性质综合运用.熟练运用平行线性质和判定,分类讨论问题是关键.28.(1)//EF CD ,证明见解析 (2)75° (3)2FEG NCE MAE +=∠∠∠,证明见解析【分析】(1)根据12∠=∠可得//MB EF ,根据角的和差关系和角平分线的性质可得80CEF NCE ==︒∠∠,从而得证//EF CD ;(2)根据12∠=∠可得//MB EF ,根据平行线的性质以及角平分线的性质可得18075NCE GEC FEG =︒--=︒∠∠∠;(3)根据12∠=∠可得//MB EF ,根据平行线的性质可得180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠,再根据角平分线的性质可得1802FEC MAE FEG =︒-+∠∠∠,再根据平行线的性质即可得2FEG NCE MAE +=∠∠∠.【详解】(1)//EF CD∵12∠=∠∴//MB EF∴50AEF MAE ==︒∠∠∴501565AEG AEF FEG =+=︒+︒=︒∠∠∠∵EG 平分∠AEC∴65CEG AEG ==︒∠∠∴651580CEF CEG FEG =+=︒+︒=︒∠∠∠∴80CEF NCE ==︒∠∠∴//EF CD ;(2)∵12∠=∠∴//MB EF∵∠MAE =135°∴18045AEF MAE =︒-=︒∠∠∵∠FEG =30°∴75AEG AEF FEG =+=︒∠∠∠∵EG 平分∠AEC∴75GEC =︒∠∵//AB CD∴18075NCE GEC FEG =︒--=︒∠∠∠;(3)2FEG NCE MAE +=∠∠∠∵12∠=∠∴//MB EF∴180MAE FEA +=︒∠∠∴180FEA MAE =︒-∠∠∴180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠∵EG 平分∠AEC∴GEC AEG =∠∠∴FEC GEC FEG =+∠∠∠∴180FEC MAE FEG FEG =︒-++∠∠∠∠∴1802FEC MAE FEG =︒-+∠∠∠∵//,//AB CD AB EF∴//EF CD∴180FEC NCE +=︒∠∠∴1802180MAE FEG NCE ︒-++=︒∠∠∠∴2FEG NCE MAE +=∠∠∠.【点睛】本题考查了平行线的综合问题,掌握平行线的性质以及判定定理、角平分线的性质、角的和差关系是解题的关键.。
八年级第五章相交线与平行线单元测试卷综合测试卷(word含答案)
八年级第五章相交线与平行线单元测试卷综合测试卷(word 含答案)一、选择题1.在同一坐标平面内,图象不可能...由函数221y x =+的图象通过平移变换、轴对称变换得到的函数是( )A .22(1)1y x =+-B .223y x =+C .221y x =--D .2112y x =- 2. 如图,a ∥b ,点A 在直线a 上,点B ,C 在直线b 上,AC ⊥b ,如果AB=5cm ,BC=3cm ,那么平行线a ,b 之间的距离为( )A .5cmB .4cmC .3cmD .不能确定3.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°4.两条平行线被第三条直线所截,则下列说法错误的是( )A .一对邻补角的平分线互相垂直B .一对同位角的平分线互相平行C .一对内错角的平分线互相平行D .一对同旁内角的平分线互相平行5.一辆汽车在笔直的公路上行驶,两次拐弯后的方向与原来的方向相反,那么两次拐弯的角度可能是是( )A .第一次右拐60°,第二次左拐120°B .第一次左拐60°,第二次右拐60°C .第一次左拐60°,第二次左拐120°D .第一次右拐60°,第二次右拐60°6.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180°7.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b8.下列命题是真命题的有()个①对顶角相等,邻补角互补②两条直线被第三条直线所截,同位角的平分线平行③垂直于同一条直线的两条直线互相平行④过一点有且只有一条直线与已知直线平行A.0 B.1 C.2 D.39.如图所示,已知 AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠410.下列命题中,属于假命题的是()A.如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B.内错角不一定相等C.平行于同一直线的两条直线平行D.若数a使得a a>-,则a一定小于011.下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是012.如图,ABC面积为2,将ABC沿AC方向平移至DFE△,且AC=CD,则四边形AEFB的面积为()A.6 B.8 C.10 D.12二、填空题13.已知∠ABC=70︒,点D为BC边上一点,过点D作DP//AB,若∠PBD=12∠ABC,则∠DPB=_____︒.14.下列说法中正确的有_____________(填序号).①过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间线段最短;④若AC=BC,则点C是线段AB的中点;⑤相等的角是对顶角;⑥180°角是补角;⑦65.5°=65.50′;⑧如果∠1+∠2+∠3=90°,那么∠1、∠2、∠3互为余角.15.如图,a∥b,∠2=∠3,∠1=40°,则∠4的度数是______度.16.如图,请你添加一个条件....使得AD∥BC,所添的条件是__________.17.如图,直线AB、CD相交于点O,OE平分∠AOC,OF⊥OE于点O,若∠AOD=70°,则∠AOF=______度.18.将一张长方形纸片折叠成如图所示的形状,则∠ABC=_________.19.如图,AB∥CD,∠β=130°,则∠α=_______°.20.跳格游戏:如图,人从格外只能进入第1格;在格中,每次可向前跳l格或2格,那么人从格外跳到第6格可以有_________种方法.三、解答题21.问题情境(1)如图1,已知AB ∥CD ,∠PBA =125°,∠PCD =155°,求∠BPC 的度数.佩佩同学的思路:过点P 作PG ∥AB ,进而PG ∥CD ,由平行线的性质来求∠BPC ,求得∠BPC =问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB =90°,DF ∥CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记∠PED =∠α,∠PAC =∠β.①如图2,当点P 在C ,D 两点之间运动时,请直接写出∠APE 与∠α,∠β之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,∠APE 与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若∠PED ,∠PAC 的角平分线EN ,AN 相交于点N ,请直接写出∠ANE 与∠α,∠β之间的数量关系.22.已知:如图所示,直线MN ∥GH ,另一直线交GH 于A ,交MN 于B ,且∠MBA =80°,点C 为直线GH 上一动点,点D 为直线MN 上一动点,且∠GCD =50°.(1)如图1,当点C 在点A 右边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(2)如图2,当点C 在点A 右边且点D 在点B 右边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(3)当点C 在点A 左边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线所在直线交于点P ,请直接写出∠BPC 的度数,不说明理由.23.已知//AB CD ,点E 、F 分别在AB 、CD 上,点G 为平面内一点,连接EG 、FG .(1)如图,当点G 在AB 、CD 之间时,请直接写出AEG ∠、CFG ∠与G ∠之间的数量关系__________.(2)如图,当点G 在AB 上方时,且90EGF ︒∠=, 求证:90︒∠-∠=BEG DFG ;(3)如图,在(2)的条件下,过点E 作直线HK 交直线CD 于K , FT 平分DFG ∠交HK 于点T ,延长GE 、FT 交于点R ,若ERT TEB ∠=∠,请你判断FR 与HK 的位置关系,并证明. (不可以直接用三角形内角和180°)24.如图,已知:点A C 、、B 不在同一条直线,AD BE .(1)求证:180B C A ∠+∠-∠=︒. (2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.25.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.26.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限.(1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示);(2)连接BD 、BC ,若三角形BCD 的面积为5,求k 的值;(3)如图2,分别作∠ABC 和∠ADC 的平分线,它们交于点P ,请写出∠A 、和∠P 和∠BCD 之间的一个等量关系,并说明理由.27.已知:∠1=∠2,EG 平分∠AEC .(1)如图1,∠MAE =50°,∠FEG =15°,∠NCE =80°.试判断 EF 与 CD 的位置关系,并说明理由.(2)如图2,∠MAE =135°,∠FEG =30°,当 AB ∥CD 时,求∠NCE 的度数;(3)如图2,试写出∠MAE 、∠FEG 、∠NCE 之间满足什么关系时,AB ∥CD .28. [问题解决]:如图1,已知AB∥CD,E是直线AB,CD内部一点,连接BE,DE,若∠ABE=40°,∠CDE=60°,求∠BED的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程:解:过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,设∠BAP=α,∠DCP=β.(1)当点P在B,D两点之间运动时(P不与B,D重合),求α,β和∠APC之间满足的数量关系.(2)当点P在B,D两点外侧运动时(P不与点O重合),直接写出α,β和∠APC之间满足的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据图形平移的性质可得,平移后的图形与原图形大小、形状、开口相同,再根据抛物线的形状由二次项的系数a决定的进行分析即可.解:由于抛物线的形状由二次项的系数a决定,所以两个函数表达式中的a要相同或互为相反数才可以通过平移变换、轴对称变换得到,A、B选项的二次项系数为2;C选项的二次项系数为-2;D选项的二次项系数为12,故D不能由原函数平移而得到.故选D.2.B解析:B【分析】从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,并由勾股定理可得出答案.【详解】解:∵AC⊥b,∴△ABC是直角三角形,∵AB=5cm,BC=3cm,∴AC=22AB BC-=2253-=4(cm),∴平行线a、b之间的距离是:AC=4cm.故选:B.【点睛】本题考查了平行线之间的距离,以及勾股定理,关键是掌握平行线之间距离的定义,以及勾股定理的运用.3.C解析:C【解析】【分析】作AB∥a,先证AB∥a∥b,由平行线性质得∠2=180°-∠1+∠3,变形可得结果.【详解】作AB∥a,由直线a平移后得到直线b,所以,AB∥a∥b所以,∠2=180°-∠1+∠3,所以,∠2-∠3=180°-∠1=180°-70°=110°.故选:C【点睛】本题考核知识点:平行线性质.解题关键点:熟记平行线性质.4.D【解析】试题分析:A 、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B 、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C 、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D 、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误; 故选:D .5.C解析:C【解析】试题分析:两次拐弯以后方向相反,那么2次同方向拐弯之和是180°.故选:C .6.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .【点睛】本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补. 7.C解析:C【分析】根据对顶角、补角、绝对值的定义与性质逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、一个角的补角不一定大于这个角,如这个角为130︒,其补角为50︒,小于这个角,此项是假命题;C 、由绝对值的非负性得:绝对值最小的数是0,此项是真命题;D 、如果a b =,那么a b =或=-a b ,此项是假命题;故选:C .【点睛】本题考查了对顶角、补角、绝对值、真命题与假命题,熟练掌握各定义与性质是解题关键.解析:B【分析】根据平行线的性质定理、平行公理、对顶角和邻补角的概念判断即可.【详解】解:对顶角相等,邻补角互补,故①是真命题;两条平行线被第三条直线所截,同位角的平分线平行,故②是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,故③是假命题;过直线外一点有且只有一条直线与已知直线平行,故④是假命题;故正确的个数只有1个,故选:B.【点睛】本题考查的是平行的公理和应用,命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.9.C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB∥CD,∴∠1=∠4,故选 C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.10.D解析:D【分析】利用三角形内角和对A进行判断;根据内错角的定义对B进行判断;根据平行线的判定方法对C进行判断;根据绝对值的意义对D进行判断.【详解】解:A、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A选项为真命题;B、内错角不一定相等,所以B选项为真命题;C、平行于同一直线的两条直线平行,所以C选项为真命题;D、若数a使得|a|>-a,则a为不等于0的实数,所以D选项为假命题.故选:D.【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.11.A解析:A【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A .【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.12.C解析:C【分析】如图(见解析),先根据平移的性质可得//AE BF ,2BF AD AC ==,DE AC =,再根据平行线的性质可得BEF 的边BF 上的高等于BG ,然后根据三角形的面积公式分别求出ABE △和BEF 的面积即可得出答案.【详解】如图,过点B 作BG AE ⊥于点G ,连接BE , ABC 面积为2,122AC BG ∴⋅=,即4AC BG ⋅=, 由平移的性质得://AE BF ,BF AD =,DE AC =,AC CD =,2BF AD AC CD AC ∴==+=,3AE AD DE AC =+=,113622ABE S AE BG AC BG ∴=⋅=⋅⋅=, //AE BF ,BEF ∴的边BF 上的高等于BG ,112422BEF S BF BG AC BG ∴=⋅=⋅⋅=, ∴四边形AEFB 的面积为6410ABE BEF S S +=+=,故选:C .【点睛】本题考查了平移的性质、平行线间的距离、三角形的面积公式等知识点,熟练掌握平移的性质是解题关键.二、填空题13.35或75【解析】分析:根据题意,分为点P在∠ABC的内部和外部两种情况,由平行线的性质求解.详解:如图,当P点在∠ABC的内部时,∵PD∥AB∴∠P=∠ABP∵∠PBD=∠ABC,∠A解析:35或75【解析】分析:根据题意,分为点P在∠ABC的内部和外部两种情况,由平行线的性质求解.详解:如图,当P点在∠ABC的内部时,∵PD∥AB∴∠P=∠ABP∵∠PBD=12∠ABC,∠ABC=70︒∴∠PBD=35°∴∠ABP=∠ABC-∠PBD=35°.当点P在∠ABC的外部时,∵∠PBD=12∠ABC,∠ABC=70︒∴∠PBD=35°∴∠ABP=∠ABC+∠DPB=105°∵PD∥AB∴∠DPB+∠ABP=180°∴∠DPB=75°.故答案为:35或75.点睛:此题主要考查了平行线的性质,关键是明确P点的位置,分两种情况进行求解. 14.①③【解析】根据直线公理,可知过两点有且只有一条直线,①正确;连接两点的线段的长度脚两点的距离,故②不正确;根据线段公理,两点之间线段最短,故③正确;若AC=BC,只有在一条直线上时,点C是线段A解析:①③【解析】根据直线公理,可知过两点有且只有一条直线,①正确;连接两点的线段的长度脚两点的距离,故②不正确;根据线段公理,两点之间线段最短,故③正确;若AC=BC,只有在一条直线上时,点C是线段AB的中点,④不正确;根据对顶角的定义,可知相等的角不一定是对顶角,⑤不正确;根据和为180°的两角互为补角,知⑥不正确.故答案为:①③.15.40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.解析:40【解析】试题分析:如图,分别作a、b的平行线,然后根据a∥b,可得∠1=∠5,∠6=∠7,∠8=∠4,然后根据∠2=∠3,即∠5+∠6=∠7+∠8,然后由∠1=40°,可求得∠4=40°.故答案为:40.16.∠EAD=∠B或∠DAC=∠C【解析】当∠EAD =∠B 时,根据“同位角相等,两直线平行”可得AD//BC ;当∠DAC =∠C 时,根据“内错角相等,两直线平行”可得AD//BC ;当∠DAB+∠B解析:∠EAD =∠B 或∠DAC =∠C【解析】当∠EAD =∠B 时,根据“同位角相等,两直线平行”可得AD//BC ;当∠DAC =∠C 时,根据“内错角相等,两直线平行”可得AD//BC ;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC ,故答案是:∠EAD =∠B 或∠DAC =∠C 或∠DAB+∠B=180°(答案不唯一).17.145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵,∵OE 平分∠AOC,∴,∵OF⊥OE 于点O ,∴∠EOF=90°,∴∠A解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°, 故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.18.73°【解析】试题解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.解析:73°【解析】试题解析:∵∠CBD =34°,∴∠CBE =180°-∠CBD =146°,∴∠ABC =∠ABE =12∠CBE =73°.19.50【分析】根据平行线的性质解答即可.【详解】解:∵AB ∥CD ,∴ =∠1,∵∠1+=180°,∠=130°,∴∠1=180°-=180°-130°=50°,∴=50°,故答案为:5解析:50【分析】根据平行线的性质解答即可.【详解】解:∵AB ∥CD ,∴α∠ =∠1,∵∠1+β∠=180°,∠β=130°,∴∠1=180°-β∠=180°-130°=50°,∴α∠=50°,故答案为:50.【点睛】本题考查了平行线的性质和平角的定义,解题的关键掌握平行线的性质和平角的定义. 20.8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1解析:8【分析】理解已知条件是解答此题的关键,跳格总共有6格,第一次只能跳1格,后面的可以跳2格或者1格,当全部都是1格,或者部分1格部分2格,整理出所有的情况即可求出答案.【详解】当全部都只跳1格时,1种方法;当有1次跳2格,其他全部1格,有4种方法;当有2次跳2格时,其他全部1格,有3种方法;不存在3次或者更多跳2格的情况综上共有1+4+3=8种方法.【点睛】本题考查数列的递推式,实际上我们解题时抓住实际问题的本质,写出满足条件的数列,利用数列的递推式写出结果.三、解答题21.(1)80°;(2)①∠APE=∠α+∠β;②∠APE=∠β﹣∠α,理由见解析;(3)∠ANE=12(∠α+∠β)【分析】(1)过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠BPC的度数;(2)①过点P作FD的平行线,依据平行线的性质可得∠APE与∠α,∠β之间的数量关系;②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ﹣∠EPQ=∠β﹣∠α;(3)过P和N分别作FD的平行线,依据平行线的性质以及角平分线的定义,即可得到∠ANE与∠α,∠β之间的数量关系为∠ANE=12(∠α+∠β).【详解】解:(1)如图1,过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°﹣125°﹣155°=80°,故答案为:80°;(2)①如图2,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;理由如下:作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ+∠EPQ=∠β+∠α;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β﹣∠α;理由如下:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ﹣∠EPQ=∠β﹣∠α;(3)如图4,∠ANE与∠α,∠β之间的数量关系为∠ANE=12(∠α+∠β).理由如下:作NQ∥DF,∵DF∥CG,∴NQ∥CG,∴∠DEN=∠QNE,∠CAN=∠QNA,∵EN平分∠DEP,AN平分∠CAP,∴∠DEN=12∠α,∠CAN=12∠β,∴∠QNE=12∠α,∠QNA=12∠β,∴∠ANE=∠QNE +∠QNA=12∠α+12∠β=12(∠α+∠β);【点睛】本题主要考查了平行线的判定和性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.22.(1)∠BPC=65°;(2)∠BPC=155°;(3)∠BPC=155°【分析】(1)如图1,过点P作PE∥MN,根据题意结合平行线的性质和角平分线的性质可以得出:∠BPE=∠DBP=40°,1CPE PCA DCA252︒∠=∠=∠=,据此进一步求解即可;(2)如图2,过点P作PE∥MN,根据平角可得∠DBA=100°,再由角平分线和平行线的性质得∠BPE=130°,1PCA CPE DCA252︒∠=∠=∠=,据此进一步求解即可;(3)如图3,过点P作PE∥MN,根据角平分线性质得出∠DBP=∠PBA=40°,由此得出∠BPE=∠DBP=40°,然后根据题意得出1PCA DCA652︒∠=∠=,由此再利用平行线性质得出∠CPE度数,据此进一步求解即可.【详解】(1)如图1,过点P作PE∥MN.∵PB平分∠DBA,∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,同理可证:1CPE PCA DCA252︒∠=∠=∠=,∴∠BPC=40°+25°=65°;(2)如图2,过点P作PE∥MN.∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∴1DBP DBA502︒∠=∠=,∵MN∥PE,∴∠BPE=180°−∠DBP=130°,∵PC平分∠DCA.∴1PCA DCA252︒∠=∠=,∵MN∥PE,MN∥GH,∴PE∥GH,∴∠EPC=∠PCA=25°,∴∠BPC=130°+25°=155°;(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,∵CP平分∠DCA,∠DCA=180°−∠DCG=130°,∴1PCA DCA652︒∠=∠=,∵PE∥MN,MN∥GH,∴PE∥GH,∴∠CPE=180°−∠PCA=115°,∴∠BPC=40°+115°=155°.【点睛】本题主要考查了平行线性质与角平分线性质的综合运用,熟练掌握相关概念是解题关键.23.(1)∠G=∠AEG+∠CFG ;(2)见解析;(3)FR ⊥HK ,理由见解析【分析】(1)根据平行线的判定和性质即可写出结论;(2)过点G 作//GP AB ,根据平行线的性质得角相等和互补,即可得证; (3)根据平行线的性质得角相等,即可求解.【详解】解:(1)如图:过点G 作//GH AB ,∵//AB CD ,∴//GH CD ,∴AEG EGH ∠=∠,CFG FGH ∠=∠,EGF AEG CFG ∴∠==∠+∠AEG ∴∠、CFG ∠与G ∠之间的数量关系为G AEG CFG ∠=∠+∠.故答案为:G AEG CFG ∠=∠+∠.(2)如图,过点G 作//GP AB ,180BEG EGP ∴∠+∠=︒,180EHG HGP ∠+∠=︒,90180EHG EGP ∴∠+︒+∠=︒,90EHG EGP ∴∠+∠=︒,//AB CD ,DFG EHG ∴∠=∠,180180()1809090BEG DFG EGP EHG EGP EHG ∴∠-∠=︒-∠-∠=︒-∠+∠=︒-︒=︒.(3)FR 与HK 的位置关系为垂直.理由如下: FT 平分DFG ∠交HK 于点T ,GFT KFT ∴∠=∠,90EGF ∴∠=︒,90GFT ERT ∴∠+∠=︒,90KFT ERT ∴∠+∠=︒,ERT TEB ∠=∠,90KFT TEB ∴∠+∠=︒,//AB CD ,FKT TEB ∴∠=∠,90KFT FKT ∴∠+∠=︒,90FTK ∴∠=︒,KT FR ∴⊥,即FR HK ⊥.∴FR 与HK 的位置关系是垂直.【点睛】本题考查了平行线的判定和性质,解决本题的关键是应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.24.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.25.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PE AB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P作PE∥AD,交ON于E,∵AD∥BC,∴AD∥BC∥PE,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P在射线AM上时,过P作PE∥AD,交ON于E,∵AD∥BC,∴AD∥BC∥PE,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.26.(1)D(k+2,2);(2)k=2;(3)∠BPD=12∠BCD+12∠A,理由详见解析【分析】(1)由平移的性质可得出答案;(2)过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,由四边形BEFD的面积可得出答案;(3)过点P作PE∥AB得出∠PBA=∠EPB,由平移的性质得出AB∥CD,由平行线的性质得出PE∥CD,则∠EPD=∠PDC,得出∠BPD=∠PBA+∠PDC,由角平分线的性质得出∠PBA=12∠ABC,∠PDC=12∠ADC,即可得出结论.【详解】解:(1)∵点A(﹣4,﹣1)、B(﹣2,1),C(k,0),将线段AB平移至线段CD,∴点B向上平移一个单位,向右平移(k+4)个单位到点D,∴D(k+2,2);(2)如图1,过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,∵A(﹣4,﹣1)、B(﹣2,1),C(k,0),D(k+2,2),∴BE=1,CE=k+2,DF=2,EF=k+4,CF=2,∵S四边形BEFD=S△BEC+S△DCF+S△BCD,∴1(12)(k4)2⨯+⨯+=111(k2)22522⨯⨯++⨯⨯+,解得:k=2.(3)∠BPD=12∠BCD+12∠A;理由如下:过点P作PE∥AB,如图2所示:∴∠PBA=∠EPB,∵线段AB平移至线段CD,∴AB∥CD,∴PE∥CD,∠ADC=∠A,∠ABC=∠BCD,∴∠EPD=∠PDC,∴∠BPD=∠PBA+∠PDC,∵BP平分∠ABC,DP平分∠ADC,∴∠PBA =12∠ABC ,∠PDC =12∠ADC , ∴∠BPD =12∠ABC +12∠ADC =12∠BCD +12∠A . 【点睛】 本题考查了平移的综合问题,掌握平移的性质、平行线的性质、角平分线的性质是解题的关键.27.(1)//EF CD ,证明见解析 (2)75° (3)2FEG NCE MAE +=∠∠∠,证明见解析【分析】(1)根据12∠=∠可得//MB EF ,根据角的和差关系和角平分线的性质可得80CEF NCE ==︒∠∠,从而得证//EF CD ;(2)根据12∠=∠可得//MB EF ,根据平行线的性质以及角平分线的性质可得18075NCE GEC FEG =︒--=︒∠∠∠;(3)根据12∠=∠可得//MB EF ,根据平行线的性质可得180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠,再根据角平分线的性质可得1802FEC MAE FEG =︒-+∠∠∠,再根据平行线的性质即可得2FEG NCE MAE +=∠∠∠.【详解】(1)//EF CD∵12∠=∠∴//MB EF∴50AEF MAE ==︒∠∠∴501565AEG AEF FEG =+=︒+︒=︒∠∠∠∵EG 平分∠AEC∴65CEG AEG ==︒∠∠∴651580CEF CEG FEG =+=︒+︒=︒∠∠∠∴80CEF NCE ==︒∠∠∴//EF CD ;(2)∵12∠=∠∴//MB EF∵∠MAE =135°∴18045AEF MAE =︒-=︒∠∠∵∠FEG =30°∴75AEG AEF FEG =+=︒∠∠∠∵EG 平分∠AEC∴75GEC =︒∠∵//AB CD∴18075NCE GEC FEG =︒--=︒∠∠∠;(3)2FEG NCE MAE +=∠∠∠∵12∠=∠∴//MB EF∴180MAE FEA +=︒∠∠∴180FEA MAE =︒-∠∠∴180AEG FEA FEG MAE FEG =+=︒-+∠∠∠∠∠∵EG 平分∠AEC∴GEC AEG =∠∠∴FEC GEC FEG =+∠∠∠∴180FEC MAE FEG FEG =︒-++∠∠∠∠∴1802FEC MAE FEG =︒-+∠∠∠∵//,//AB CD AB EF∴//EF CD∴180FEC NCE +=︒∠∠∴1802180MAE FEG NCE ︒-++=︒∠∠∠∴2FEG NCE MAE +=∠∠∠.【点睛】本题考查了平行线的综合问题,掌握平行线的性质以及判定定理、角平分线的性质、角的和差关系是解题的关键.28.[问题解决]见解析;[问题迁移](1) ∠APC=α+β;(2) 当点P 在BN 上时,∠APC=β-α;当点P 在OD 上时,∠APC=α-β.【分析】问题解决:过点E 作EF ∥AB ,依据平行线的性质,即可得到∠BED 的度数;问题迁移:(1)过P 作PQ ∥AB ,依据平行线的性质,即可得出α,β和∠APC 之间满足的数量关系.(2)分两种情况讨论:过P 作PQ ∥AB ,易得当点P 在BN 上时,∠APC=β-α;当点P 在OD 上时,∠APC=α-β.【详解】问题解决:如图2,过点E 作EF ∥AB ,∴∠ABE=∠BEF=40°∵AB ∥CD ,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠B+∠D=40°+60°=100°;问题迁移:(1)如图3,过P作PQ∥AB,∵AB∥CD,∴PQ∥CD,∴∠BAP=∠APQ,∠DCP=∠CPQ,∴∠APC=∠BAP+∠DCP,即∠APC=α+β;(2)如图4,当点P在BN上时,∠APC=β-α;如图5,当点P在OD上时,∠APC=α-β.【点睛】本题主要考查了平行线的性质与判定的运用,解决问题的关键是掌握:两直线平行,内错角相等,并利用角的和差关系进行推算.。
第五章相交线与平行线单元试卷试卷(word版含答案)
第五章相交线与平行线单元试卷试卷(word 版含答案)一、选择题1.下列命题是真命题的是( )A .直角三角形中两个锐角互补B .相等的角是对顶角C .同旁内角互补,两直线平行D .若a b =,则a b = 2.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有( )A .4个B .3个C .2个D .1个 3.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )A .26°B .36°C .46°D .56° 4.如果A ∠与B 的两边分别平行,A ∠比B 的3倍少36,则A ∠的度数是( )A .18B .126C .18或126D .以上都不对 5.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ; ④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个 6.下列命题中,假命题的个数为( ) (1)“是任意实数,”是必然事件; (2)抛物线的对称轴是直线;(3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为;(4)某件事情发生的概率是1,则它一定发生;(5)某彩票的中奖率为10%,则买100张彩票一定有1张会中奖;(6)函数与轴必有两个交点.A .2B .3C .4D .57.已知两个角的两边两两互相平行,则这两个角的关系是( )A .相等B .互补C .相等或互补D .相等且互补8.已知∠A 的两边与∠B 的两边互相平行,且∠A=20°,则∠B 的度数为( ). A .20° B .80° C .160° D .20°或160°9.如图,直线l 1∥l 2∥l 3,等腰Rt △ABC 的三个顶点A ,B ,C 分别在l 1,l 2,l 3上,∠ ACB=90°,AC 交l 2于点D ,已知l 1与l 2的距离为1,l 2与l 3的距离为3,则AB:BD 的值为( )A .425B .345C .528D .322010.下列命题中,是真命题的是( ) A .对顶角相等 B .两直线被第三条直线所截,截得的内错角相等 C .等腰直角三角形都全等 D .如果a b >,那么22a b > 11.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定12.如图,直线//a b ,直线AB AC ⊥,若150∠=,则2∠=( )A .50B .45C .40D .30二、填空题13.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.14.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.15.如图,请你添加一个条件....使得AD ∥BC ,所添的条件是__________.16.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .17.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.18.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF=__________________°.19.如图,//AB CD ,BD 平分ABC ∠,:4:1C DBA ∠∠=,则CDB ∠=______.20.在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.三、解答题21.(1)如图1,已知任意ABC ∆,过点C 作//DE AB ,求证:180A B ACB ∠+∠+∠=︒;(2)如图2,求证:∠AGF=∠AEF+∠F ;(3)如图3,//,119,AB CD CDE GF ∠=︒交DEB ∠的角平分线EF 于点,150F AGF ∠=︒,求F ∠的度数.22.如图1所示,AB ∥CD ,E 为直线CD 下方一点,BF 平分∠ABE .(1)求证:∠ABE +∠C ﹣∠E =180°.(2)如图2,EG 平分∠BEC ,过点B 作BH ∥GE ,求∠FBH 与∠C 之间的数量关系. (3)如图3,CN 平分∠ECD ,若BF 的反向延长线和CN 的反向延长线交于点M ,且∠E +∠M =130°,请直接写出∠E 的度数.23.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.24.如图,已知直线12//l l ,直线3l 交1l 于C 点,交2l 于D 点,P 是线段CD 上的一个动点,(1)若P 点在线段CD (C 、D 两点除外)上运动,问PAC ∠,APB ∠,PBD ∠之间的关系是什么?这种关系是否变化?(2)若P 点在线段CD 之外时,PAC ∠,APB ∠,PBD ∠之间的关系怎样?说明理由25.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE⊥BC时,写出图中所有与∠B相等的角:;所有与∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45) .①求∠B的度数;②是否存在这样的x的值,使得△DEF中有两个角相等.若存在,并求x的值;若不存在,请说明理由.∥,且直线AB、CD与AD、BC分别交于A、D和26.如图`,已知:直线AD BCB、C两点,点P在直线AB上.∠、(1)如图1,当点P在A、B两点之间时(点P不与点A、B重合),探究ADP、DPC ∠之间的关系,并说明理由.BCP∠、(2)若点P不在A、B两点之间,在备用图中画出图形,直接写出ADP、DPC∠之间的关系,不需说理.BCP27. [问题解决]:如图1,已知AB∥CD,E是直线AB,CD内部一点,连接BE,DE,若∠ABE=40°,∠CDE=60°,求∠BED的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程:解:过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB∥CD,射线OM与直线AB,CD分别交于点A,C,射线ON与直线AB,CD分别交于点B,D,点P在射线ON上运动,设∠BAP=α,∠DCP=β.(1)当点P 在B ,D 两点之间运动时(P 不与B ,D 重合),求α,β和∠APC 之间满足的数量关系.(2)当点P 在B ,D 两点外侧运动时(P 不与点O 重合),直接写出α,β和∠APC 之间满足的数量关系.28.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时//CE AB ,并简要说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别利用直角三角形的性质、对顶角和平行线的判定方法以及绝对值的性质分析得出答案.【详解】解:A 、直角三角形中两个锐角互余,故此选项错误;B 、相等的角不一定是对顶角,故此选项错误;C 、同旁内角互补,两直线平行,正确;D 、若|a|=|b|,则a=±b ,故此选项错误;故选C .【点睛】此题主要考查了命题与定理,正确把握相关性质是解题关键.2.B解析:B【详解】解:34∠∠=//AB CD ∴,①正确;12∠=∠//AD BC ∴,②不正确;5B ∠=∠//AB CD ∴,③正确;//AD BE5D ∴∠=∠B D ∠=∠5B ∴∠=∠//AB CD ∴,④正确;综上所述,①、③、④正确,故选B .3.B解析:B【解析】试题分析:如图,首先根据平行线的性质(两直线平行,同旁内角互补),可求∠4=56°,然后借助平角的定义求得∠3=180°-∠2-∠4=36°.故选B考点:平行线的性质4.C解析:C【分析】由∠A与∠B的两边分别平行,即可得∠A与∠B相等或互补,然后分两种情况,分别从∠A与∠B相等或互补去分析,即可求得∠A的度数.【详解】解:∵∠A与∠B的两边分别平行,∴∠A与∠B相等或互补.分两种情况:①如图1,当∠A+∠B=180°时,∠A=3∠B-36°,解得:∠A=126°;②如图2,当∠A=∠B,∠A=3∠B-36°,解得:∠A=18°.所以∠A=18°或126°.故选:C.【点睛】此题考查的是平行线的性质,如果两角的两边分别平行,则这两个角相等或互补.此题还考查了方程组的解法.解题要注意列出准确的方程组.5.C解析:C【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.6.C解析:C【解析】试题解析:(1)“a是任意实数,|a|-5>0”是不确定事件,是假命题;(2)抛物线y=(2x+1)2的对称轴是直线x=-,是假命题;(3)若某运动员投篮2次,投中1次,则该运动员投1次篮,投中的概率为,是假命题;(4)某件事情发生的概率是1,则它一定发生,是真命题;(5)某彩票的中奖率为10%,则买100张彩票中奖的可能性很大,但不是一定中奖,是假命题;(6)函数y=-9(x+2014)2+与x轴必有两个交点,是真命题,则假命题的个数是4;故选C.考点:命题与定理.7.C解析:C【解析】分类讨论:两个角的两边方向是否相同.若相同,则相等;否则互补.故选C. 8.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行,∴∠B和∠A可能相等也可能互补,即∠B的度数是20°或160°,9.A解析:A 【解析】解:如图,作3BF l ⊥, 3AE l ⊥,∵090ACB ∠=,∴090BCF ACE ∠+∠=,∵090BCF CFB ∠+∠=,∴ACE CBF ∠=∠,在ACE ∆和CBF ∆中,{BFC CEACBF ACE BC AC∠=∠∠=∠=∴ACE CBF ∆≅∆,∴3,4CE BF CF AE ====,∵1l 与2l 的距离为1, 2l 与3l 的距离为3,∴1,7AG BG EF CF CE ===+=, ∴2252AB BG AG +=∵23//l l , ∴14DG AG CE AE ==, ∴1344DG CE ==, ∴325744BD BG DG =-=-=, ∴52424AB BD == 故选A .【点睛】本题考查了全等三角形的性质和判定,平行线分线段成比例定理等,构造全等三角形是解决本题的关键.10.A【分析】分别利用对顶角的性质、平行线的性质及不等式的性质分别判断后即可确定正确的选项.【详解】解:A.对顶角相等,正确,是真命题;B.两直线被第三条直线所截,内错角相等,错误,是假命题;C.等腰直角三角形不一定都全等,是假命题;D.如果0>a >b ,那么a 2<b 2,是假命题.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的性质、平行线的性质及不等式的性质,难度不大.11.B解析:B【分析】根据a ∥c ,a 与b 相交,可知c 与b 相交,如果c 与b 不相交,则c 与b 平行,故b 与a 平行,与题目中的b 与a 相交矛盾,从而可以解答本题.【详解】解:假设b ∥c ,∵a ∥c ,∴a ∥b ,而已知a 与b 相交于点O ,故假设b ∥c 不成立,故b 与c 相交,故选:B .【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.12.C解析:C【分析】根据垂直的定义和余角的定义列式计算得到3∠,根据两直线平行,同位角相等可得23∠∠=.【详解】如图,直线AB AC ⊥,1390︒∴∠+∠=.150︒∠=,390140︒︒∴∠=-∠=,直线//a b ,2340︒∴∠=∠=,故选C .【点睛】本题考查了平行线的性质,垂直的定义,熟记性质并准确识图是解题的关键.二、填空题13.78°【解析】解:过点B 作BE∥a,∵a∥b,∴a∥b∥BE,∴∠1=∠3=28°,∠2=∠4=50°,∴∠ABC=∠3+∠4=78°.故答案为:78°.点睛:此题考查了平行线的性质:两直线解析:78°【解析】解:过点B 作BE ∥a ,∵a ∥b ,∴a ∥b ∥BE ,∴∠1=∠3=28°,∠2=∠4=50°,∴∠ABC =∠3+∠4=78°.故答案为:78°.点睛:此题考查了平行线的性质:两直线平行,内错角相等.解此题的关键是辅助线的作法.14.55或20【分析】根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A+∠B=180解析:55或20【分析】根据平行线性质得出∠A+∠B =180°①,∠A =∠B②,求出∠A =3∠B ﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A+∠B =180°①,∠A =∠B②,∵∠A 比∠B 的3倍少40°,∴∠A =3∠B ﹣40°③,把③代入①得:3∠B ﹣40°+∠B =180°,∠B =55°,把③代入②得:3∠B ﹣40°=∠B ,∠B =20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A 和∠B 的两边分别平行,即可得∠A =∠B 或∠A +∠B =180° ,注意分类讨论思想的应用.15.∠EAD=∠B 或∠DAC=∠C【解析】当∠EAD=∠B 时,根据“同位角相等,两直线平行”可得AD//BC ;当∠DAC=∠C 时,根据“内错角相等,两直线平行”可得AD//BC ;当∠DAB+∠B解析:∠EAD =∠B 或∠DAC =∠C【解析】当∠EAD =∠B 时,根据“同位角相等,两直线平行”可得AD//BC ;当∠DAC =∠C 时,根据“内错角相等,两直线平行”可得AD//BC ;当∠DAB+∠B=180°时,根据“同旁内角互补,两直线平行”可得AD//BC ,故答案是:∠EAD =∠B 或∠DAC =∠C 或∠DAB+∠B=180°(答案不唯一).16.(1)35,55;(2)与,【分析】(1)由,可得,,所以,,,所以,已知的度数,即可得出与的度数;(2)由(1)可得的余角是与,要求的补角,即要求的补角,的补角是.【详解】(1),,,解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.【详解】(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】 本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键. 17.46【分析】过点C 作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠ABC=∠BCF,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=76°,由等式性质得到∠解析:46【分析】过点C 作CF ∥AB ,根据平行线的传递性得到CF ∥DE ,根据平行线的性质得到∠ABC =∠BCF ,∠CDE +∠DCF =180°,根据已知条件等量代换得到∠BCF =76°,由等式性质得到∠DCF =30°,于是得到结论.【详解】解:过点C 作CF ∥AB ,∵AB ∥DE ,∴AB ∥DE ∥CF ,∴∠ABC =∠BCF ,∠CDE +∠DCF =180°,∵∠ABC =76°,∠CDE =150°,∴∠BCF =76°,∠DCF =30°,∴∠BCD =46°,故答案为:46.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.18.【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵解析:【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×64°=32°,∵AB∥CD,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.19.30°【分析】先由AB//CD得到∠CDB=∠ABD,∠C+∠ABC=180︒,设出∠ABD=x°,依据“平分,”列出方程,求出∠ABD即可解决问题.【详解】∵AB//CD∴∠ABD=x°解析:30°【分析】先由AB//CD得到∠CDB=∠ABD,∠C+∠ABC=180︒,设出∠ABD=x°,依据“BD平分ABC ∠,:4:1C DBA ∠∠=”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°,∠ABD ,∠C+∠ABC=180︒,BD 平分ABC ∠,∴∠ABD=∠CBD∵:4:1C DBA ∠∠=,∴4C DBA ∠=∠设∠ABD=x°,则∠CBD=x°,∠C=4x°,∴2x°+4x°=180°,解得,x=30∴∠ABD=30°,∴∠CDB=30°,故答案为:30°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,求出∠ABD=30°是解此题的关键. 20.15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD,再利用角的和差得到∠ACE;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=解析:15° 15°【分析】(1)根据平行线的性质得出∠D+∠BCD=180°,从而得到∠BCD ,再利用角的和差得到∠ACE ;(2)根据平行线的性质得出∠2+∠BAC+∠ACB+∠1=180°,再由等腰直角三角形的性质得到∠BAC=90°,∠ACB=45°,结合∠1的度数可得结果.【详解】解:(1)由三角板的性质可知:∠D=60°,∠ACB=45°,∠DCE=90°,∵BC ∥DE ,∴∠D+∠BCD=180°,∴∠BCD=120°,∴∠BCE=∠BCD-∠DCE=30°,∴∠ACE=∠ACB-∠BCE=15°,故答案为:15°;(2)∵a ∥b ,∴∠2+∠BAC+∠ACB+∠1=180°,∵△ABC 为等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠2=180°-∠BAC-∠ACB=45°,∵∠1=30°,∴∠2=15°,故答案为:15°.【点睛】本题考查了三角板的性质,平行线的性质,解题时注意:两直线平行,同旁内角互补.三、解答题21.(1)见详解;(2)见详解;(3)29.5°.【分析】(1)根据平行线的性即可A ACD ∠=∠,B BCE ∠=∠,再根据平角的定义进行等量代换即可证明;(2)因为根据平角的定义和三角形的内角和定理即可得到结论;(3)根据平行线的性质得到119DEB ∠=︒,61AED ∠=︒,由角平分线的性质得到59.5DEF ∠=︒,根据三角形的外角的性质即可得到结论.【详解】(1)如图1所示,在ABC ∆中,//DE AB ,A ACD ∴∠=∠,B BCE ∠=∠.180ACD BCA BCE ∠+∠+∠=︒,180A B ACB ∴∠+∠+∠=︒.即三角形的内角和为180︒;(2)180AGF FGE ∠+∠=︒,由(1)知,180GEF F FGE ∠+∠+∠=︒,AGF AEF F ∴∠=∠+∠;(3)//AB CD ,119CDE ∠=︒,119DEB CDE ∴∠=∠=︒,18061AED CDE ∠=︒-∠=︒,∵EF 平分DEB ∠,59.5DEF ∴∠=︒,120.5AEF AED FED ∴∠=∠+∠=︒,150AGF ∠=︒,AGF AEF F ∠=∠+∠,150120.529.5F ∴∠=︒-︒=︒.【点睛】本题考查了平行线的性质,三角形的内角和定理的证明与应用,三角形外角定理证明与应用,熟练掌握平行线的性质定理是解题的关键,此类题目每一步都为后续解题提供了解题条件或方法.22.(1)见解析;(2)2∠FBH +∠C =180°;(3)80°【分析】(1)过点E 作//EK AB ,由平行线的性质得出,180ABE BEK CEK C ∠=∠∠+∠=︒,进而得出答案;(2)设,ABF EBF BEG CEG αβ∠=∠=∠=∠=,由平行线的性质得出,HBE BEG FBH FBE HBE βαβ∠=∠=∠=∠-∠=-,由(1)知180ABE C BEC ∠+∠-∠=︒,即可得出答案;(3)设,ABF EBF x ECN DCN y ∠=∠=∠=∠=,由(1)知2()180E x y ∠=+-︒,过M 作////PQ AB CD ,由平行线的性质得出,PMF ABF x QMN DCN y ∠=∠=∠=∠=,求出130E FMN x y ∠+∠=+=︒,即可得出答案.【详解】(1)如图1,过点E 作//EK AB∴ABE BEK ∠=∠∵//AB CD∴//EK CD∴180CEK C ∠+∠=︒∴180ABE C E BEC CEK C BEC CEK C ∠+∠-∠=∠+∠+∠-∠=∠+∠=︒; (2)∵BF 、EG 分别平分ABE ∠、BEC ∠∴,ABF EBF BEG CEG ∠=∠∠=∠设,ABF EBF BEG CEG αβ∠=∠=∠=∠=∵//BH EG∴HBE BEG β∠=∠=∴FBH FBE HBE αβ∠=∠-∠=-由(1)知,180ABE C BEC ∠+∠-∠=︒即222()180C C αβαβ+∠-=-+∠=︒∴2180FBH C ∠+∠=︒;(3)∵CN 、BF 分别平分ECD ∠、ABE ∠∴,ABF EBF ECN DCN ∠=∠∠=∠设,ABF EBF x ECN DCN y ∠=∠=∠=∠=由(1)知:180ABE C E ∠+∠-∠=︒即2()180E x y ∠=+-︒如图3,过M 作////PQ AB CD则,PMF ABF x QMN DCN y ∠=∠=∠=∠=∴180180()FMN PMF QMN x y ∠=︒-∠-∠=︒-+130E FMN ∠+∠=︒∴2()180180()130x y x y +-︒+︒-+=︒130x y ∴+=︒∴2()180213018080E x y ∠=+-︒=⨯︒-︒=︒.【点睛】本题考查了角平分线的定义、平行线的性质、角的和差等知识点,较难的是题(3),通过作辅助线,构造平行线是解题关键.23.(1)证明见解析;(2)∠BCD=108°;(3)70°【分析】(1)根据两直线平行,内错角相等得出∠EDF=∠DAB,由角平线的定义得出∠EDF=∠FDC,最后根据同旁内角互补,两直线平行进行求证;(2)设∠DCF=x,则∠CFB=1.5x,由两直线平行,内错角相等得出∠ABF=1.5x,由角平分线的定义得出∠ABC=3x,最后利用两直线平行,同旁内角互补得出关于x的方程,求解即可;(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF=∠CBF,由角平分线的定义与已知条件可求出∠ABC与∠FDC,由平移的性质与平行公理的推论得出AD∥PQ,最后根据两直线平行,同旁内角互补列式求解.【详解】解:(1)证明:∵AB∥DE,∴∠EDF=∠DAB,∵DF平分∠EDC,∴∠EDF=∠FDC,∴∠FDC=∠DAB,∵∠FDC+∠ABC=180°,∴∠DAB+∠ABC=180°,∴AD∥BC;(2)∵32CFB DCF∠=∠,设∠DCF=x,则∠CFB=1.5x,∵CF∥AB,∴∠ABF=∠CFB=1.5x,∵BE平分∠ABC,∴∠ABC=2∠ABF=3x,∵AD∥BC,∴∠FDC+∠BCD=180°,∵∠FDC+∠ABC=180°,∴∠BCD=∠ABC=3x,∴∠BCF=2x,∵CF∥AB,∴∠ABC+∠BCF=180°,∴3x+2x=180°,∴x=36°,∴∠BCD=3×36°=108°;(3)如图,∵∠DCF=∠CFB,∴BF∥CD,∴∠CDF +∠BFD=180°,∵AD∥BC,∴∠CBF +∠BFD=180°,∴∠CDF=∠CBF,∵AD,BE分别平分∠ABC,∠CDE,∴∠ABC=2∠CBF,∠CDE=2∠FDC,∴∠ABC=∠CDE=2∠FDC,∵∠FDC+∠ABC=180°,∴∠ABC=120°,∠FDC=60°,∵线段BC沿直线AB方向平移得到线段PQ,∴BC∥PQ,∵AD∥BC,∴AD∥PQ,∵∠PQD﹣∠QDC=20°,∴∠QDC=∠PQD﹣20°,∴∠FDC+∠QDC +∠PQD=60°+∠PQD﹣20°+∠PQD=180°,∴∠PQD=70°,即∠DQP=70°.故答案为:70°.【点睛】本题考查平行线的判定与性质,平行公理的推论,角平分线的定义,平移的性质,熟练运用平行线的判定与性质是解题的关键.24.(1)∠APB=∠PAC +∠PBD,不会变化;(2)∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB,理由见解析.【分析】(1)当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等以及三角形外角的性质,即可求得∠PAC,∠APB,∠PBD之间的关系.【详解】(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)如图②,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下:∵l1∥l2,∴∠PEC=∠PBD,∵∠PEC=∠PAC+∠APB,∴∠PBD=∠PAC+∠APB.当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.如图③,理由如下:∵l 1∥l 2,∴∠PED=∠PAC ,∵∠PED=∠PBD+∠APB ,∴∠PAC=∠PBD+∠APB .【点睛】本题主要考查平行线的性质与三角形外角的性质.解题的关键是掌握:两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.25.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去); 综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.26.(1)∠ADP+∠BCP=∠DPC ,理由见解析;(2)∠ADP=∠DPC+∠BCP ,理由见解析【分析】(1)过P 作直线PQ ∥AD ,交CD 于点Q ,根据平行线的性质进行推理;(2)过P 作直线PQ ∥AD ,交CD 于点Q ,根据平行线的性质进行推理;【详解】解:(1)过P 作直线PQ ∥AD ,交CD 于点Q ,∵AD ∥BC ,∴PQ ∥AD ∥BC ,∴∠ADP=∠DPQ ,∠BCP=∠CPQ ,∴∠ADP+∠BCP=∠DPC ;(2)∠ADP=∠DPC+∠BCP .过P 作直线PQ ∥AD ,交CD 于点Q ,∵AD ∥BC ,∴PQ ∥AD ∥BC ,∴∠ADP=∠DPQ=∠DPC+∠CPQ,∠BCP=∠CPQ,∴∠ADP=∠DPC+∠BCP.【点睛】本题考查了平行线的性质,利用平行线的性质得出角的和差关系是解题的关键. 27.[问题解决]见解析;[问题迁移](1)∠APC=α+β;(2)当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【分析】问题解决:过点E作EF∥AB,依据平行线的性质,即可得到∠BED的度数;问题迁移:(1)过P作PQ∥AB,依据平行线的性质,即可得出α,β和∠APC之间满足的数量关系.(2)分两种情况讨论:过P作PQ∥AB,易得当点P在BN上时,∠APC=β-α;当点P在OD上时,∠APC=α-β.【详解】问题解决:如图2,过点E作EF∥AB,∴∠ABE=∠BEF=40°∵AB∥CD,∴EF∥CD,∴∠B=∠BEF,∠D=∠DEF,∴∠BED=∠B+∠D=40°+60°=100°;问题迁移:(1)如图3,过P作PQ∥AB,∵AB ∥CD ,∴PQ ∥CD ,∴∠BAP=∠APQ ,∠DCP=∠CPQ ,∴∠APC=∠BAP+∠DCP ,即∠APC=α+β;(2)如图4,当点P 在BN 上时,∠APC=β-α;如图5,当点P 在OD 上时,∠APC=α-β.【点睛】本题主要考查了平行线的性质与判定的运用,解决问题的关键是掌握:两直线平行,内错角相等,并利用角的和差关系进行推算.28.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.。
八年级上册第五章相交线与平行线单元测试卷测试卷 (word版,含解析)
∵BE和DF分别平分∠ABF和∠CDE,
∴∠ABE= ∠ABF,∠CDF= ∠CDE,
过点E作EM AB,点F作FN AB,
∵ ,
∴ EM FN,
∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,
∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE= ∠ABF+∠CDE,
【解析】分析:根据直线公理对①进行判断;根据两点之间的距离的定义对②进行判断;根据线段公理对③进行判断;根据角的定义对④进行判断;根据线段的中点的定义对⑤进行判断.
详解:根据直线公理:两点确定一条直线,所以①正确;
连接两点的线段的长度叫做两点的距离,所以②错误;
两点之间,线段最短,所以③正确;
有一个公共端点的两条射线组成的图形叫做角,所以④错误;
(4)彭敏同学又提出来了,如果像图4这样,AB∥EF,当∠ACD=90°时,∠BAC、∠CDE和∠DEF之间又有怎样的数量关系?请你直接写出结果,不需要证明.
25.已知, ,点 在射线 上, .
(1)如图1,若 ,求 的度数;
(2)把“ °”改为“ ”,射线 沿射线 平移,得到 ,其它条件不变(如图2所示),探究 的数量关系;
10.如图,直线a∥b,则∠A的度数是()
A.28°B.31°C.39°D.42°
11.如图,下列条件: 中能判断直线 的有( )
A.5个B.4个C.3个D.2个
12.如图是一块长小路汇合处路宽为 ,其余部分种植草坪,则草坪面积为()
A. m2B. m2C. m2D. m2
若AB=BC,且B点在AB上,则点B是AC的中点,所以⑤错误.
故选B.
点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
第五章相交线与平行线单元试卷试卷(word版含答案)
第五章相交线与平行线单元试卷试卷(word 版含答案)一、选择题1.如图,A 、P 是直线m 上的任意两个点,B 、C 是直线n 上的两个定点,且直线m ∥n .则下列说法正确的是( )A .AC=BPB .△ABC 的周长等于△BCP 的周长 C .△ABC 的面积等于△ABP 的面积D .△ABC 的面积等于△PBC 的面积 2.如图,AB CD ∥,154FGB ∠︒=,FG 平分EFD ∠,则AEF ∠的度数等于( ).A .26°B .52°C .54°D .77° 3.如图,AB ∥CD ,BF ,DF 分别平分∠ABE 和∠CDE ,BF ∥DE ,∠F 与∠ABE 互补,则∠F 的度数为A .30°B .35°C .36°D .45°4.两条平行线被第三条直线所截,则下列说法错误的是( )A .一对邻补角的平分线互相垂直B .一对同位角的平分线互相平行C .一对内错角的平分线互相平行D .一对同旁内角的平分线互相平行5.已知:点A ,B ,C 在同一条直线上,点M 、N 分别是AB 、BC 的中点,如果AB =10cm ,AC =8cm ,那么线段MN 的长度为( )A .6cmB .9cmC .3cm 或6cmD .1cm 或9cm6.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠=7.在同一平面内,有3条直线a ,b ,c ,其中直线a 与直线b 相交,直线a 与直线c 平行,那么b 与c 的位置关系是( )A .平行B .相交C .平行或相交D .不能确定8.光线在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射.如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的.若水面和杯底互相平行,且∠1=122°,则∠2=( )A .61°B .58°C .48°D .41° 9.在下列命题中,为真命题的是( ) A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相垂直10.下列选项中,不是运用“垂线段最短”这一性质的是( )A .立定跳远时测量落点后端到起跳线的距离B .从一个村庄向一条河引一条最短的水渠C .把弯曲的公路改成直道可以缩短路程D .直角三角形中任意一条直角边的长度都比斜边短11.如图,直线l 与直线AB 、CD 分别相交于点E 、点F ,EG 平分BEF ∠交直线CD 与点G ,若168BEF ∠=∠=︒,则EGF ∠的度数为( ).A .34°B .36°C .38°D .68°12.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个二、填空题13.如图, 已知//AB CF ,//CF DE , 90BCD ∠=︒,则D B ∠-∠=_________14.某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ ∥MN . 如图所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度. 若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动_________秒,两灯的光束互相平行.15.平面内不过同一点的n 条直线两两相交,它们交点个数记作n a ,并且规定10a =,则2a =__________,1n n a a --=____________.16.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)17.如图,Rt △AOB 和Rt △COD 中,∠AOB =∠COD =90°,∠B =40°,∠C =60°,点D 在边OA 上,将图中的△COD 绕点O 按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中,在第________秒时,边CD 恰好与边AB 平行.18.如图,直线a ∥b ∥c ,直角∠BAC 的顶点A 在直线b 上,两边分别与直线a ,c 相交于点B ,C ,则∠1+∠2的度数是___________.19.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;20.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题21.如图,AD 平分∠BAC 交BC 于点D ,点F 在BA 的延长线上,点E 在线段CD 上,EF 与AC 相交于点G ,∠BDA+∠CEG=180°.(1)AD 与EF 平行吗?请说明理由;(2)若点H 在FE 的延长线上,且∠EDH=∠C ,则∠F 与∠H 相等吗,请说明理由.22.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).23.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.24.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.25.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明;(2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数. 26.AB ∥CD ,点P 为直线AB ,CD 所确定的平面内的一点.(1)如图1,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(2)如图2,写出∠APC 、∠A 、∠C 之间的数量关系,并证明;(3)如图3,点E 在射线BA 上,过点E 作EF ∥PC ,作∠PEG =∠PEF ,点G 在直线CD 上,作∠BEG 的平分线EH 交PC 于点H ,若∠APC =30°,∠PAB =140°,求∠PEH 的度数.27.(问题提出)(1)如图①,已知 AB ∥CD ,求证 :∠1+∠MEN+∠2=360°(推广应用)(2)如图②,已知 AB ∥ CD ,求∠1+∠2+∠3+∠4+∠5 +∠6的度数为___________. 如图③,已知 AB ∥CD ,求∠1+∠2+∠3+∠4+∠5 +∠6+…+∠n 的度数为_________.∥,且直线AB、CD与AD、BC分别交于A、D和28.如图`,已知:直线AD BCB、C两点,点P在直线AB上.∠、(1)如图1,当点P在A、B两点之间时(点P不与点A、B重合),探究ADP、DPC ∠之间的关系,并说明理由.BCP∠、(2)若点P不在A、B两点之间,在备用图中画出图形,直接写出ADP、DPC∠之间的关系,不需说理.BCP【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,故△ABC的面积等于△PBC的面积.故选D.【点睛】本题考查平行线之间的距离;三角形的面积.2.B解析:B【分析】根据平行线的性质可得26GFD ︒∠= ,再根据角平分线的性质可得52ECD ︒∠=,因此可计算的AEF ∠的度数.【详解】解:∵AB CD ∥,∴180FGB GFD ∠+∠=︒,∴18026GFD FGB ∠=︒-∠=︒,∵FG 平分EFD ∠,∴252EFD GFD ∠=∠=︒,∵AB CD ∥,∴52AEF EFD ∠=∠=︒.故选B .【点睛】本题主要考查平行线的性质和角平分线的性质.平行线的性质 1.两直线平行,同位角相等;2.两直线平行,内错角相等;3.两直线平行,同旁内角互补. 角平分线的性质: 角平分线可以得到两个相等的角.3.C解析:C【解析】【分析】延长BG 交CD 于G,然后运用平行的性质和角平分线的定义,进行解答即可.【详解】解:如图延长BG 交CD 于G∵BF ∥ED∴∠F=∠EDF又∵DF 平分∠CDE,∴∠CDE=2∠F,∵BF∥ED∴∠CGF=∠EDF=2∠F,∵AB∥CD∴∠ABF=∠CGF=2∠F,∵BF平分∠ABE∴∠ABE=2∠ABF=4∠F,又∵∠F 与∠ABE 互补∴∠F +∠ABE =180°即5∠F=180°,解得∠F=36°故答案选C.【点睛】本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键.4.D解析:D【解析】试题分析:A、两条平行线被第三条直线所截,一对邻补角的平分线互相垂直,故本选项正确;B、两条平行线被第三条直线所截,同位角的平分线互相平行,故本选项正确;C、两条平行线被第三条直线所截,内错角的平分线互相平行,故本选项正确;D、两条平行线被第三条直线所截,同旁内角的平分线互相垂直,故本选项错误;故选:D.5.D解析:D【解析】试题分析:有两种情况:①点C在AB上,②点C在AB的延长线上,这两种情况根据线段的中点的性质,可得BM、BN的长,再利用线段的和、差即可得出答案.解:(1)点C在线段AB上,如:点M是线段AB的中点,点N是线段BC的中点,MB=12AB=5,BN=12CB=4,MN=BM-BN=5-4=1cm;(2)点C在线段AB的延长线上,如:点M是线段AB的中点,点N是线段BC的中点,MB=12AB=5,BN=12CB=4,MN =MB +BN =5+4=9cm ,故选D .点睛:本题考查了两点间的距离. 解题的关键在于要利用分类讨论思想结合线段中点的性质、线段的和差进行解答.6.C解析:C【分析】由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.7.B解析:B【分析】根据a ∥c ,a 与b 相交,可知c 与b 相交,如果c 与b 不相交,则c 与b 平行,故b 与a 平行,与题目中的b 与a 相交矛盾,从而可以解答本题.【详解】解:假设b ∥c ,∵a ∥c ,∴a ∥b ,而已知a 与b 相交于点O ,故假设b ∥c 不成立,故b 与c 相交,故选:B .【点睛】本题考查平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.8.B解析:B【分析】由水面和杯底互相平行,利用“两直线平行,同旁内角互补”可求出∠3的度数,由水中的两条折射光线平行,利用“两直线平行,同位角相等”可得出∠2的度数.【详解】如图,∵水面和杯底互相平行,∴∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣122°=58°.∵水中的两条折射光线平行,∴∠2=∠3=58°.故选:B.【点睛】本题考查了平行线的性质,牢记“两直线平行,同旁内角互补”和“两直线平行,同位角相等”是解题的关键.9.B解析:B【分析】分别利用对顶角的性质以及平行线的性质和推论进而判断得出即可.【详解】解:A、相等的角不一定是对顶角,故此选项错误;B、平行于同一条直线的两条直线互相平行,正确;C、两直线平行,同旁内角互补,故此选项错误;D、垂直于同一条直线的两条直线互相平行,故此选项错误.故选B.【点睛】此题主要考查了命题与定理,熟练掌握平行线的性质与判定是解题关键.10.C解析:C【分析】垂线段最短,指的是从直线外一点到这条直线所作的垂线段最短.它是相对于这点与直线上其他各点的连线而言.据此逐个分析即可.【详解】解:A.立定跳远时测量落点后端到起跳线的距离,运用“垂线段最短”这一性质;B.从一个村庄向一条河引一条最短的水渠,运用“垂线段最短”这一性质;C.把弯曲的公路改成直道可以缩短路程,运用“两点之间,线段最短”这一性质;D.直角三角形中任意一条直角边的长度都比斜边短,运用“垂线段最短”这一性质;故选:C.【点睛】本题主要考查了垂线段最短,实际问题中涉及线路最短问题时,其理论依据应从“两点之间,线段最短”和“垂线段最短”这两个中去选择.11.A解析:A【分析】由角平分线的性质可得∠GEB=12∠BEF=34°,由同位角相等,两直线平行可得CD∥AB,即可求解.【详解】∵EG平分∠BEF,∴∠GEB=12∠BEF=34°,∵∠1=∠BEF=68°,∴CD∥AB,∴∠EGF=∠GEB=34°,故选:A.【点睛】本题考查了平行线的判定和性质,角平分线的定义,灵活运用这些性质进行推理是本题的关键.12.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.二、填空题13.90°【分析】根据AB∥CF,可得出∠B和∠B CF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠解析:90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠FCD+∠D=180°∴∠FCD+∠D-∠B=180°-∠BCF,化简得:∠D-∠B=180°-(∠BCF+∠FCD)∵∠BCD=90°,∴∠BCF+∠FCD=90°∴∠D―∠B=90°故答案为:90°【点睛】本题考查平行线的性质,解题关键是将∠BCD分为∠BCF和∠FCD,然后利用平行线的性质进行角度转换.14.30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当解析:30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当0<t≤90时,如图1所示:∵PQ∥MN,则∠PBD=∠BDA,∵AC∥BD,则∠CAM=∠BDA,∴∠PBD=∠CAM有题意可知:2t=30+t解得:t=30,②当90<t<150时,如图2所示:∵PQ∥MN,则∠PBD+∠BDA=180°,∵AC∥BD,则∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴30+t+(2t-180)=180解得:t=110综上所述,当t=30秒或t=110秒时,两灯的光束互相平行.故答案为:30或110【点睛】本题主要考查补角、角的运算、平行线的性质的应用,解题的关键是熟练掌握平行线的性质,注意分两种情况谈论.15.【分析】条直线相交只有一个交点,条直线相交,交点数是,条直线相交,交点数是,即,可写出,的解.【详解】解:求平面内不过同一点的条直线两两相交的交点个数,可由简入繁,当2条直线相交时,交点解析:1n -【分析】2条直线相交只有一个交点,3条直线相交,交点数是12+,n 条直线相交,交点数是123(1)n ++++-,即1123(1)(1)2n a n n n =++++-=-,可写出2a , 1n n a a --的解.【详解】解:求平面内不过同一点的n 条直线两两相交的交点个数,可由简入繁,当2条直线相交时,交点数只有一个;当3条直线相交时,交点数为两条时的数量+第3条直线与前两条的交点2个,即交点数是12+;同理,可以推导当n 条直线相交时,交点数是123(1)n ++++-,即1123(1)(1)2n a n n n =++++-=-, 212(21)12a ∴=⨯⨯-=, 111(1)(1)(2)122n n a a n n n n n -∴-=----=-, 本题的答案为:1,1n -.【点睛】本题考查了平面内直线两两相交交点数的计算,涉及到一种很重要的数学方法数学归纳法的初步应用接触,此方法在推导证明中比较常用.16.【解析】【详解】作IF ∥AB,GK ∥AB,JH ∥AB因为AB ∥CD所以,AB ∥CD ∥ IF ∥GK ∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠解析:【解析】【详解】作IF ∥AB,GK ∥AB,JH ∥AB因为AB ∥CD所以,AB ∥CD ∥ IF ∥GK ∥JH所以,∠IFG=∠FEC=10°所以,∠GFI=90°-∠IFG=80°所以,∠KGF=∠GFI=80°所以,∠HGK=150°-∠KGF=70°所以,∠JHG=∠HGK=70°同理,∠2=90°-∠JHG=20°所以,∠1=90°-∠2=70°故答案为70【点睛】本题考查了平行线的性质,正确作出辅助线是关键,注意掌握平行线的性质:两直线平行,内错角相等.17.10或28【解析】【分析】作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠解析:10或28【解析】【分析】作出图形,分①两三角形在点O的同侧时,设CD与OB相交于点E,根据两直线平行,同位角相等可得∠CEO=∠B,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角∠AOD,再根据每秒旋转10°列式计算即可得解;②两三角形在点O的异侧时,延长BO与CD相交于点E,根据两直线平行,内错角相等可得∠CEO=∠B,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠DOE,然后求出旋转角度数,再根据每秒旋转10°列式计算即可得解.【详解】解:①两三角形在点O的同侧时,如图1,设CD与OB相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角∠AOD=∠AOB+∠DOE=90°+10°=100°,∵每秒旋转10°,∴时间为100°÷10°=10秒;②两三角形在点O的异侧时,如图2,延长BO与CD相交于点E,∵AB∥CD,∴∠CEO=∠B=40°,∵∠C=60°,∠COD=90°,∴∠D=90°-60°=30°,∴∠DOE=∠CEO-∠D=40°-30°=10°,∴旋转角为270°+10°=280°,∵每秒旋转10°,∴时间为280°÷10°=28秒;综上所述,在第10或28秒时,边CD恰好与边AB平行.故答案为10或28.【点睛】本题考查了平行线的判定,平行线的性质,旋转变换的性质,难点在于分情况讨论,作出图形更形象直观.18.270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC是直角即可得出结果.【详解】解:如图所示,∵a∥b,∴∠1+∠3=180°,则∠3=180°-∠1,∵解析:270°【分析】根据题目条件可知∠1+∠3=∠2+∠4=180°,再结合∠BAC 是直角即可得出结果.【详解】解:如图所示,∵a ∥b ,∴∠1+∠3=180°,则∠3=180°-∠1,∵b ∥c∴∠2+∠4=180°,则∠4=180°-∠2,∵∠BAC 是直角,∴∠3+∠4=180°-∠1+180°-∠2,∴90°=360°-(∠1+∠2),∴∠1+∠2=270°.故答案为:270°【点睛】本题主要考查的是平行线的性质,掌握平行线的性质是解题的关键.19.62【详解】∵,,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.解析:62【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.20.12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的 解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的, 故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.见解析【解析】分析:(1)求出∠ADE +∠FEB =180°,根据平行线的判定推出即可;(2)根据角平分线定义得出∠BAD =∠CAD ,推出HD ∥AC ,根据平行线的性质得出∠H =∠CGH ,∠CAD =∠CGH ,推出∠BAD =∠F 即可.详解:(1)AD ∥EF .理由如下:∵∠BDA +∠CEG =180°,∠ADB +∠ADE =180°,∠FEB +∠CEF =180°∴∠ADE +∠FEB =180°,∴AD ∥EF ;(2)∠F =∠H ,理由是:∵AD 平分∠BAC ,∴∠BAD =∠CAD .∵∠EDH =∠C ,∴HD ∥AC ,∴∠H =∠CGH .∵AD ∥EF ,∴∠CAD =∠CGH ,∴∠BAD =∠F ,∴∠H =∠F .点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较好的题目,难度适中.22.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-. 【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论;(2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.23.(1)详见解析;(2)HPQ ∠的大小不发生变化,一直是45︒.【分析】(1)利用平行线的性质推知180BEF EFD ∠+∠=︒;然后根据角平分线的性质、三角形内角和定理证得90EPF ∠=︒,即EG PF ⊥,故结合已知条件GH EG ⊥,易证//PF GH ;(2)利用三角形外角定理、三角形内角和定理求得49039022∠=︒-∠=︒-∠;然后由邻补角的定义、角平分线的定义推知14522QPK EPK ∠=∠=︒+∠;最后根据图形中的角与角间的和差关系求得HPQ ∠的大小不变,是定值45︒.【详解】解:(1)证明:如图1,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P ,1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥.GH EG ⊥,//PF GH ∴;(2)HPQ ∠的大小不发生变化,理由如下:如图2,12∠=∠, 322∠=∠∴. 又GH EG ⊥,49039022∠=︒-∠=︒-∠∴.18049022EPK ∠=︒-∠=︒+∠∴.PQ ∵平分EPK ∠,14522QPK EPK ∴∠=∠=︒+∠. ∴245HPQ QPK ∠=∠-∠=︒,∴HPQ ∠的大小不发生变化,一直是45︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.24.(1)证明见解析;(2)∠BCD =108°;(3)70°【分析】(1)根据两直线平行,内错角相等得出∠EDF =∠DAB ,由角平线的定义得出∠EDF =∠FDC ,最后根据同旁内角互补,两直线平行进行求证;(2)设∠DCF =x ,则∠CFB =1.5x ,由两直线平行,内错角相等得出∠ABF =1.5x ,由角平分线的定义得出∠ABC =3x ,最后利用两直线平行,同旁内角互补得出关于x 的方程,求解即可;(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF =∠CBF ,由角平分线的定义与已知条件可求出∠ABC 与∠FDC ,由平移的性质与平行公理的推论得出AD ∥PQ ,最后根据两直线平行,同旁内角互补列式求解.【详解】解:(1)证明:∵AB ∥DE ,∴∠EDF =∠DAB ,∵DF 平分∠EDC ,∴∠EDF =∠FDC ,∴∠FDC =∠DAB ,∵∠FDC+∠ABC=180°,∴∠DAB+∠ABC=180°,∴AD∥BC;(2)∵32CFB DCF∠=∠,设∠DCF=x,则∠CFB=1.5x,∵CF∥AB,∴∠ABF=∠CFB=1.5x,∵BE平分∠ABC,∴∠ABC=2∠ABF=3x,∵AD∥BC,∴∠FDC+∠BCD=180°,∵∠FDC+∠ABC=180°,∴∠BCD=∠ABC=3x,∴∠BCF=2x,∵CF∥AB,∴∠ABC+∠BCF=180°,∴3x+2x=180°,∴x=36°,∴∠BCD=3×36°=108°;(3)如图,∵∠DCF=∠CFB,∴BF∥CD,∴∠CDF +∠BFD=180°,∵AD∥BC,∴∠CBF +∠BFD=180°,∴∠CDF=∠CBF,∵AD,BE分别平分∠ABC,∠CDE,∴∠ABC=2∠CBF,∠CDE=2∠FDC,∴∠ABC=∠CDE=2∠FDC,∵∠FDC+∠ABC=180°,∴∠ABC=120°,∠FDC=60°,∵线段BC沿直线AB方向平移得到线段PQ,∴BC∥PQ,∵AD∥BC,∴AD∥PQ,∵∠PQD﹣∠QDC=20°,∴∠QDC=∠PQD﹣20°,∴∠FDC+∠QDC +∠PQD=60°+∠PQD﹣20°+∠PQD=180°,∴∠PQD=70°,即∠DQP=70°.故答案为:70°.【点睛】本题考查平行线的判定与性质,平行公理的推论,角平分线的定义,平移的性质,熟练运用平行线的判定与性质是解题的关键.25.(1)AD BC ∥,见解析;(2)108°【分析】(1)//AD BC ,根据角平分线的性质可知EDF FDC ∠=∠,又因为//AB ED ,因此EDF DAB ∠=∠,推出FDC DAB ∠=∠,再结合已知条件即可得出结论;(2)设DCF x ,则32CFB x ∠=,根据平行线的的性质有32ABF CFB x ∠=∠=,再根据角平分线性质可得23ABC ABF x ∠=∠=,又因为//AD BC ,推出3BCD ABC x ∠=∠=,2BCF x ∠=,由//CF AB 得180ABC BCF ∠+∠=︒,从而可解得x 的值,即可得出答案.【详解】解:(1)//AD BC .证明如下:∵//AB ED ,∴EDF DAB ∠=∠,∵DF 平分EDC ∠,∴EDF FDC ∠=∠,∴FDC DAB ∠=∠,∵180FDC ABC ∠+∠=︒,∴180DAB ABC ∠+∠=︒,∴//AD BC .(2)∵32CFB DCF ∠=∠, ∴设DCF x ,则32CFB x ∠=, ∵//CF AB , ∴32ABF CFB x ∠=∠=, ∵BE 平分ABC ∠,∴23ABC ABF x ∠=∠=,由(1)得//AD BC ,∴180FDC BCD ∠+∠=︒,∵180FDC ABC ∠+∠=︒,∴3BCD ABC x ∠=∠=,∴2BCF x ∠=,∵//CF AB ,∴180ABC BCF ∠+∠=︒,即32180x x +=︒,解得36x =︒,∴3108BCD x ∠==︒.【点睛】本题考查的主要知识点是平行线的判定及性质以及角平分线的性质,根据图形找准角与角之间的关系 是解此题的关键.26.(1)∠A +∠C +∠APC =360°,证明详见解析;(2)∠APC =∠A −∠C ,证明详见解析;(3)55°.【分析】(1)首先过点P 作PQ ∥AB ,结合题意得出AB ∥PQ ∥CD ,然后由“两直线平行,同旁内角互补”进一步分析即可证得∠A+∠C+∠APC =360°;(2)作PQ ∥AB ,结合题意得出AB ∥PQ ∥CD ,根据“两直线平行,内错角相等”进一步分析即可证得∠APC =∠A −∠C ;(3)由(2)知,∠APC =∠PAB −∠PCD ,先利用平行线性质得出∠BEF =∠PQB =110°,然后进一步得出∠PEG =12∠FEG ,∠GEH =12∠BEG ,最后根据∠PEH =∠PEG −∠GEH 即可得出答案.【详解】(1)∠A+∠C+∠APC =360°,证明如下:如图1所示,过点P 作PQ ∥AB ,∴∠A+∠APQ =180°,又∵AB ∥CD ,∴PQ ∥CD ,∴∠C+∠CPQ =180°,∴∠A+∠APQ+∠C+∠CPQ =360°,即∠A+∠C+∠APC =360°;(2)∠APC =∠A −∠C ,证明如下:如图2所示,过点P 作PQ ∥AB ,∴∠A =∠APQ ,∵AB ∥CD ,∴PQ ∥CD ,∴∠C =∠CPQ ,∵∠APC =∠APQ −∠CPQ ,∴∠APC =∠A −∠C ;(3)由(2)知,∠APC =∠PAB −∠PCD ,∵∠APC =30°,∠PAB =140°,∴∠PCD =110°,∵AB ∥CD ,∴∠PQB =∠PCD =110°,∵EF ∥PC ,∴∠BEF =∠PQB =110°,∵∠PEG =∠PEF ,∴∠PEG =12∠FEG , ∵EH 平分∠BEG , ∴∠GEH =12∠BEG , ∴∠PEH =∠PEG −∠GEH =12∠FEG −12∠BEG =12∠BEF =55°.【点睛】本题主要考查了利用平行线性质与角平分线性质求角度的综合运用,熟练掌握相关概念是解题关键.27.(1)见解析,(2)900,180(1).n ︒︒-【分析】(1)过点E 作EF ∥CD ,根据平行线的判定得出EF ∥AB ,根据平行线的性质得出即可;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,根据平行线的判定得出EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,根据平行线的性质得出即可;如图③,利用(1)(2)②发现规律,直接得到答案.【详解】证明:(1)证明:过点E 作EF ∥CD ,∵AB ∥CD , ∴EF ∥AB ,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°,∴∠1+∠2+∠MEN =360°;(2)如图②过E 作EQ ∥CD ,过F 作FW ∥CD ,过G 作GR ∥CD ,过H 作HY ∥CD ,∵CD ∥AB , ∴EQ ∥FW ∥GR ∥HY ∥AB ∥CD ,∴∠1+∠MEQ=180°,∠QEF+∠EFW=180°,∠WFG+∠FGR=180°,∠RGH+∠GHY=180°,∠YHN+∠6=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=5×180°=900°,如图③,由∠1+∠2+∠MEN 3601802=︒=︒⨯,∠1+∠2+∠3+∠4+∠5+∠69001805=︒=︒⨯,可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n 180(1)n =︒-,故答案为:900°,180(1)n ︒-;【点睛】本题考查了平行线的性质和判定,能灵活运用平行线的性质进行推理是解此题的关键.28.(1)∠ADP+∠BCP=∠DPC ,理由见解析;(2)∠ADP=∠DPC+∠BCP ,理由见解析【分析】(1)过P 作直线PQ ∥AD ,交CD 于点Q ,根据平行线的性质进行推理;(2)过P 作直线PQ ∥AD ,交CD 于点Q ,根据平行线的性质进行推理;【详解】解:(1)过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ,∠BCP=∠CPQ,∴∠ADP+∠BCP=∠DPC;(2)∠ADP=∠DPC+∠BCP.过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ=∠DPC+∠CPQ,∠BCP=∠CPQ,∴∠ADP=∠DPC+∠BCP.【点睛】本题考查了平行线的性质,利用平行线的性质得出角的和差关系是解题的关键.。
第五章《相交线与平行线》单元测试卷(含答案)
第五章 相交线与平行线单元测试班级: 姓名: 考生得分:一、选择题(每小题3分,共30分) 1.已知∠α=35°,则∠α的补角的度数是( ) A.55° B.65° C.145° D.165° 2.将图中所示的图案平移后得到的图案是( )A. B. C. D.3.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数 是( )A.60°B.50°C.40°D.30°4.如图,a ∥b ,∠1=∠2,∠3=40°,则∠4等于( ) A.40° B.50° C.60° D.70° 5.如图所示,已知AB ∥CD ,∠C =70°,∠F =30°,则∠A 的度数为( ) A .30° B .35° C .40° D .45°6.如图,AB ∥CD ,AC ⊥BC ,图中与∠CAB 互余的角有( ) A .1个 B .2个 C .3个 D .4个7.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( ) A .∠1=∠2 B .∠3=∠4 C .∠5=∠B D .∠B +∠BDC =180°8.如图,DH ∥EG ∥BC ,DC ∥EF ,那么与∠DCB 相等的角的个数为( ) A .2个 B .3个 C .4个 D .5个 9. 下列条件中能得到平行线的是( )①邻补角的角平分线;②平行线内错角的角平分线;③平行线同旁内角的角平分线. A .①② B .②③ C .② D .③10. 两平行直线被第三条直线所截,同位角的平分线( ) A .互相重合 B .互相平行 C .互相垂直 D .相交二、填空题(每小题3分,满分24分) 11.图中是对顶角量角器,用它测量角的原理是 .12.如图,l ∥m ,∠1=120°,∠A =55°,则∠ACB 的大小是 . 13.如图,计划把河水引到水池A 中,先作AB ⊥CD ,垂足为B ,然后沿AB 开渠, 能使所开的渠道最短,这样设计的依据是 .14.如图,直线AB ,CD ,EF 相交于点O ,且AB ⊥CD ,∠1与∠2的关系是 .15.如图,在△ABC 中,∠A =90°,点D 在AC 边上,DE ∥BC ,若∠1=155°,则∠B 的度数为 .16.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72°,则∠2= .1718第2题图第6题图 第7题图 第8题图第11题图第13题图 第14题图 第15题图 第16题图 第17题图第18题图第3题图三、解答题(共46分)19.(7分)读句画图:如图,直线CD与直线AB相交于C,根据下列语句画图:(1)过点P作PQ∥CD,交AB于点Q;(2)过点P作PR⊥CD,垂足为R;(3)若∠DCB=120°,猜想∠PQC是多少度?并说明理由.20.(7分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为;(2)画出小鱼向左平移3格后的图形.(不要求写作图步骤和过程)21.(8分)已知:如图,∠BAP+∠APD =180°,∠1 =∠2.求证:∠E =∠F.22.(8分)已知:如图,∠1 =∠2,∠3 =∠4,∠5 =∠6.求证:ED∥FB.23.(8分)如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.24.(9分)如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.25.(10分)如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,(1)若∠AOE=40°,求∠BOD的度数;(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?第19题图第五章相交线与平行线检测题参考答案1.C 解析:∵∠α=35°,∴∠α的补角的度数为180°35°=145°,故选C.2. C 解析:根据平移的性质可知C正确.3. C 解析:因为FE⊥DB,所以∠FED=90°,由∠1=50°可得∠FDE=90°-50°=40°.因为AB∥CD,由两直线平行,同位角相等,可得∠2=∠FDE=40°.4. D 解析:因为a∥b,所以∠2=∠4.又∠2=∠1,所以∠1=∠4.因为∠3=40°,所以∠1=∠4==70°.5. C 解析:由AB∥CD可得,∠FEB=∠C=70°,∵∠F=30°,又∵∠FEB=∠F+∠A,∴∠A=∠FEB∠F=70°30°=40°.故选项C是正确的.6. C 解析:∵AB∥CD,∴∠ABC=∠BCD.设∠ABC的对顶角为∠1,则∠ABC=∠1.又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.7. A 解析:选项B中,∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故正确;选项C中,∵∠5=∠B,∴AB∥CD(内错角相等,两直线平行),故正确;选项D中,∵∠B+∠BDC=180°,∴AB∥CD(同旁内角互补,两直线平行),故正确;而选项A中,∠1与∠2是直线AC、BD被直线AD所截形成的内错角,∵∠1=∠2,∴AC∥BD,故A错误.选A.8. D 解析:如题图所示,∵DC∥EF,∴∠DCB=∠EFB.∵DH∥EG∥BC,∴∠GEF=∠EFB,∠DCB=∠HDC,∠DCB=∠CMG=∠DME,故与∠DCB相等的角共有5个.故选D.9. C 解析:结合已知条件,利用平行线的判定定理依次推理判断.10. B 解析:∵两条平行直线被第三条直线所截,同位角相等,∴它们角的平分线形成的同位角相等,∴同位角相等的平分线平行.故选B.11.对顶角相等解析:根据图形可知量角器测量角的原理是:对顶角相等.12. 65°解析:∵l∥m,∴∠ABC=180°-∠1=180°-120°=60°.在△ABC中,∠ACB=180°-∠ABC-∠A=180°-60°-55°=65°.13. 垂线段定理:直线外一点与直线上所有点的连线中,垂线段最短解析:根据垂线段定理,直线外一点与直线上所有点的连线中,垂线段最短,∴沿AB开渠,能使所开的渠道最短.14. ∠1+∠2=90°解析:∵直线AB、EF相交于O点,∴∠1=∠DOF.又∵AB⊥CD,∴∠2+∠DOF=90°,∴∠1+∠2=90°.15. 65°解析:∵∠1=155°,∴∠EDC=180°-155°=25°.∵DE∥BC,∴∠C=∠EDC=25°.∵在△ABC中,∠A=90°,∠C=25°,∴∠B=180°-90°-25°=65°.故答案为65°.16. 54°解析:∵AB∥CD,∴∠BEF=180°∠1=180°72°=108°,∠2=∠BEG.又∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,故∠2=∠BEG=54°.17. 78°解析:延长BC与直线a相交于点D,∵a∥b,∴∠ADC=∠DBE=50°. ∴∠ACB=∠ADC +28°=50°+28°=78°.故应填78°.18. 120 解析:∵AB∥CD,∴∠1=∠3,而∠1=60°,∴∠3=60°.又∵∠2+∠3=180°,∴∠2=180°-60°=120°.故答案为120.19.解:(1)(2)如图所示.第19题答图(3)∠PQC=60°.理由:∵PQ∥CD,∴∠DCB+∠PQC=180°.∵∠DCB=120°,∴∠PQC=180°120°=60°.20. 解:(1)小鱼的面积为7×621×5×621×2×521×4×221××121×21×11=16.(2)将每个关键点向左平移3个单位,连接即可.第20题答图21.证明:∵ ∠BAP +∠APD = 180°,∴ AB ∥CD .∴ ∠BAP =∠APC . 又∵ ∠1 =∠2,∴ ∠BAP −∠1 =∠APC −∠2.即∠EAP =∠APF .∴ AE ∥FP .∴ ∠E =∠F .22.证明:∵ ∠3 =∠4,∴ AC ∥BD .∴ ∠6+∠2+∠3 = 180°. ∵ ∠6 =∠5,∠2 =∠1,∴ ∠5+∠1+∠3 = 180°. ∴ ED ∥FB .23. 解:∵ DE ∥BC ,∠AED =80°,∴ ∠EDC =∠BCD ,∠ACB=∠AED=80°.∵ CD 平分∠ACB ,∴ ∠BCD = 21∠ACB =40°,∴ ∠EDC =∠BCD =40°.24. 解:∵ AB ∥CD ,∴ ∠B +∠BCE =180°(两直线平行,同旁内角互补).∵ ∠B =65°,∴ ∠BCE =115°.∵ CM 平分∠BCE ,∴ ∠ECM =21∠BCE =57.5°. ∵ ∠ECM +∠MCN +∠NCD =180°,∠MCN =90°,∴ ∠NCD =180°-∠ECM -∠MCN =180°-57.5°-90°=32.5°.25、解:(1)∵∠AOE +∠AOF =180°(互为补角),∠AOE =40°,∴∠AOF =140°; 又∵OC 平分∠AOF ,∴∠FOC =∠AOF =70°,∴∠EOD =∠FOC =70°(对顶角相等);而∠BOE =∠AOB ﹣∠AOE =50°,∴∠BOD =∠EOD ﹣∠BOE =20°; (2)(3)略。
八年级上册数学第五章相交线与平行线单元试卷综合测试(Word版 含答案)
16.如图,点A、B为定点,直线 ∥AB,P是直线 上一动点,对于下列各值:①线段AB的长;②△PAB的周长;③△PAB的面积;④∠APB的度数,其中不会随点P的移动而变化的是(填写所有正确结论的序号)______________.
第一次操作,分别作 和 的平分线,交点为 ,
第二次操作,分别作 和 的平分线,交点为 ,
第三次操作,分别作 和 的平分线,交点为 ,
…
第 次操作,分别作 和 的平分线,交点为 .
若 度,那 等于__________度.
14.100条直线两两相交于一点,则共有对顶角(不含平角)_______对,邻补角________对.
∴∠CGF=∠EDF=2∠F,
∵AB∥CD
∴∠ABF=∠CGF=2∠F,
∵BF平分∠ABE
∴∠ABE=2∠ABF=4∠F,
又∵∠F与∠ABE互补
∴∠F+∠ABE=180°即5∠F=180°,解得∠F=36°
故答案选C.
【点睛】
本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键.
3.B
解析:B
三、解答题
21.综合与探究
综合与实践课上,同学们以“一个含 角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线 , ,且 ,三角形 是直角三角形, , ,
操作发现:
(1)如图1. ,求 的度数;
(2)如图2.创新小组的同学把直线 向上平移,并把 的位置改变,发现 ,请说明理由.
实践探究:
17.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.
18.如图,AB∥CD,∠B=75°,∠E=27°,则∠D的度数为_____.
八年级数学第五章相交线与平行线单元测试卷综合测试卷(word含答案)
八年级数学第五章相交线与平行线单元测试卷综合测试卷(word含答案)一、选择题1.如图,AB∥EF,设∠C=90°,那么x、y和z的关系是()A.y=x+z B.x+y﹣z=90°C.x+y+z=180°D.y+z﹣x=90°2.下列四个说法中,正确的是()A.相等的角是对顶角B.平移不改变图形的形状和大小,但改变直线的方向C.两条直线被第三条直线所截,内错角相等D.两直线相交形成的四个角相等,则这两条直线互相垂直3.如图,四边形ABCD是正方形,直线a,b,c分别通过A、D、C三点,且a∥b∥c.若a与b之间的距离是3,b与c之间的距离是6,则正方形ABCD的面积是()A.36 B.45 C.54 D.644.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A.、1个B.2个C.3个D.4个5.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为(). A.20° B.80° C.160° D.20°或160°6.如图,BD是△ABC的角平分线,DE∥BC,DE交AB于E,若AB=BC,则下列结论中错误的是()A .BD ⊥ACB .∠A =∠EDAC .2AD =BC D .BE =ED7.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 8.下列命题中,属于真命题的是( ) A .相等的角是对顶角 B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b 9.已知,//AB CD ,且2CD AB =,ABE △和CDE △的面积分别为2和8,则ACE △的面积是( )A .3B .4C .5D .6 10.如图,已知AB CD ∕∕,AF 交CD 于点E ,且,40BE AF BED ⊥∠=︒,则A ∠的度数是( )A .40︒B .50︒C .80︒D .90︒11.下列四个说法:①两点之间,线段最短;②连接两点之间的线段叫做这两点间的距离;③经过直线外一点,有且只有一条直线与这条直线平行;④直线外一点与这条直线上各点连接的所有线段中,垂线段最短.其中正确的个数有( )A .1个B .2个C .3个D .4个12.下列命题中,是真命题的是( )A .在同一平面内,垂直于同一直线的两条直线平行B .相等的角是对顶角C .两条直线被第三条直线所截,同旁内角互补D .过一点有且只有一条直线与已知直线平行二、填空题13.如图,已知AD //BC ,BD 平分∠ABC ,∠A =112°,且BD ⊥CD ,则∠ADC =_____.14.如图,△ABC 的边长AB =3 cm ,BC =4 cm ,AC =2 cm ,将△ABC 沿BC 方向平移a cm (a <4 cm ),得到△DEF ,连接AD ,则阴影部分的周长为_______cm .15.如图,A 、B 、C 表示三位同学所站位置,C 同学在A 同学的北偏东50方向,在B 同学的北偏西60方向,那么C 同学看A 、B 两位同学的视角ACB ∠=______.16.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________17.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空:图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔18.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .19.如图,AC ∥BD,AE 平分∠BAC 交BD 于点E,若∠1=62°,则∠2=______.20.在数学拓展课程《玩转学具》课堂中,老师把我们常用的一副三角板带进了课堂.(1)嘉嘉将一副三角板按如图1所示的方式放置,使点A 落在DE 上,且//BC DE ,则ACE ∠的度数为__________.(2)如图2,淇淇将等腰直角三角板放在一组平行的直线与之间,并使直角顶点A 在直线a 上,顶点C 在直线b 上,现测得130∠=,则2∠的度数为__________.三、解答题21.如图1,D 是△ABC 延长线上的一点,CE //AB .(1)求证:∠ACD =∠A+∠B ;(2)如图2,过点A 作BC 的平行线交CE 于点H ,CF 平分∠ECD ,FA 平分∠HAD ,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.22.已知:直线l 分别交AB 、CD 与E 、F 两点,且AB ∥CD .(1) 说明:∠1=∠2;(2) 如图2,点M 、N 在AB 、CD 之间,且在直线l 左侧,若∠EMN +∠FNM =260°, ①求:∠AEM +∠CFN 的度数;②如图3,若EP 平分∠AEM ,FP 平分∠CFN ,求∠P 的度数;(3) 如图4,∠2=80°,点G 在射线EB 上,点H 在AB 上方的直线l 上,点Q 是平面内一点,连接QG 、QH ,若∠AGQ =18°,∠FHQ =24°,直接写出∠GQH 的度数.23.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH(2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.24.如图,已知:点A C 、、B 不在同一条直线,AD BE . (1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.25.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.26.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足|a ﹣3b|+(a+b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ ∥MN ,且∠BAN =45°.(1)求a 、b 的值;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前,若射出的光束交于点C ,过C 作CD ⊥AC 交PQ 于点D ,则在转动过程中,∠BAC 与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.27.如图1,直线AB 与直线OC 交于点O ,()090BOC αα∠=︒<<.小明将一个含30的直角三角板PQD 如图1所示放置,使顶点P 落在直线AB 上,过点Q 作直线MN AB 交直线OC 于点H (点H 在Q 左侧).(1)若PD OC ∥,45NQD ∠=︒,则α=__________︒.(2)若PQH ∠的角平分线交直线AB 于点E ,如图2.①当QE OC ∥,60α=︒时,求证:OC PD . ②小明将三角板保持PD OC ∥并向左平移,运动过程中,PEQ ∠=__________.(用α表示). 28.如图1,在四边形ABCD 中,A D BC ,A=C ∠∠.(1)求证:B=D ∠∠;(2)如图2,点E 在线段AD 上,点G 在线段AD 的延长线上,连接BG ,AEB=2G ∠∠,求证:BG 是EBC ∠的平分线;(3)如图3,在(2)的条件下,点E 在线段AD 的延长线上,EDC ∠的平分线DH 交BG 于点H ,若ABE=66∠︒.,求B HD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过C 作CM ∥AB ,延长CD 交EF 于N ,根据三角形外角性质求出∠CNE =y ﹣z ,根据平行线性质得出∠1=x ,∠2=∠CNE ,代入求出即可.【详解】解:过C 作CM ∥AB ,延长CD 交EF 于N ,则∠CDE =∠E+∠CNE ,即∠CNE =y ﹣z∵CM ∥AB ,AB ∥EF ,∴CM ∥AB ∥EF ,∴∠ABC =x =∠1,∠2=∠CNE ,∵∠BCD =90°,∴∠1+∠2=90°,∴x+y ﹣z =90°.故选:B .【点睛】本题考查了平行线的性质和三角形外角性质的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.2.D解析:D【分析】根据对顶角的概念、平移的性质、平行线的性质以及垂直的概念进行判断.【详解】A.相等的角不一定是对顶角,而对顶角必定相等,故A错误;B.平移不改变图形的形状和大小,也不改变直线的方向,故B错误;C.两条直线被第三条直线所截,内错角不一定相等,故C错误;D.两直线相交形成的四个角相等,则这四个角都是90°,即这两条直线互相垂直,故D正确.故选D.【点睛】本题考查了平移的性质、对顶角、平行线以及垂直的定义,解题时注意:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.3.B解析:B【分析】过A作AM⊥直线b于M,过D作DN⊥直线c于N,求出∠AMD=∠DNC=90°,AD=DC,∠1=∠3,根据AAS推出△AMD≌△CND,根据全等得出AM=CN,求出AM=CN=4,DN=8,在Rt△DNC中,由勾股定理求出DC2即可.【详解】解:如图:过A作AM⊥直线b于M,过D作DN⊥直线c于N,则∠AMD =∠DNC =90°,∵直线b ∥直线c ,DN ⊥直线c ,∴∠2+∠3=90°,∵四边形ABCD 是正方形,∴AD =DC ,∠1+∠2=90°,∴∠1=∠3,在△AMD 和△CND 中1390AMD CND AD CD ⎧∠=∠⎪∠=∠=︒⎨⎪=⎩, ∴△AMD ≌△CND (AAS ),∴AM =CN ,∵a 与b 之间的距离是3,b 与c 之间的距离是6,∴AM =CN =3,DN =6,在Rt △DNC 中,由勾股定理得:DC 2=DN 2+CN 2=32+62=45,即正方形ABCD 的面积为45,故选:B .【点睛】本题主要考查了根据平行线的性质证明三角形全等,准确分析是解题的关键.4.C解析:C【详解】①如图1,过点E 作EF ∥AB ,因为AB ∥CD ,所以AB ∥EF ∥CD ,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误; ②如图2,过点E 作EF ∥AB ,因为AB ∥CD ,所以AB ∥EF ∥CD ,所以∠A=∠AEF ,∠C=∠CEF ,所以∠A+∠C=∠AEC+∠AEF=∠AEC ,则②正确;③如图3,过点E 作EF ∥AB ,因为AB ∥CD ,所以AB ∥EF ∥CD ,所以∠A+∠AEF=180°,∠1=∠CEF ,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P 作PF ∥AB ,因为AB ∥CD ,所以AB ∥PF ∥CD ,所以∠A=∠APF ,∠C=∠CPF ,所以∠A=∠CPF+∠APC=∠C+∠APC ,则④正确; 故选C.5.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行,∴∠B和∠A可能相等也可能互补,即∠B的度数是20°或160°,故选:D.6.C解析:C【解析】试题分析:BD是△ABC的角平分线, AB=BC,则BD是AC边上的高及中线,所以∠ABD=∠DBC ,BD⊥AC,2AD=AC, ∠A=∠BCA;因为DE∥BC,所以∠EDA=∠BCA,∠EDB=∠DBC,所以∠A=∠EDA, ∠ABD=∠EDB,所以BE=ED。
第五章相交线与平行线单元试卷综合测试(Word版 含答案)
第五章相交线与平行线单元试卷综合测试(Word 版 含答案)一、选择题1.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .42.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65°3.如图,下列条件不能判定AB ∥CD 的是( )A .12∠∠=B .2E ∠∠=C .B E 180∠∠+=D .BAF C ∠∠= 4.如图,直线a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=60°,则∠2的度数为( )A .45°B .35°C .30°D .25°5.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A.120︒B.130︒C.140︒D.150︒6.已知∠A的两边与∠B的两边互相平行,且∠A=20°,则∠B的度数为(). A.20° B.80° C.160° D.20°或160°7.如图,BD是△ABC的角平分线,DE∥BC,DE交AB于E,若AB=BC,则下列结论中错误的是()A.BD⊥AC B.∠A=∠EDA C.2AD=BC D.BE=ED8.下列命题中,其逆命题为真命题的是()A.若a=b,则a2=b2B.同位角相等C.两边和一角对应相等的两个三角形全等D.等腰三角形两底角不相等9.如图,如果AB∥EF,EF∥CD,下列各式正确的是()A.∠1+∠2−∠3=90°B.∠1−∠2+∠3=90°C.∠1+∠2+∠3=90°D.∠2+∠3−∠1=180°10.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C,求证:AB∥CD证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB11.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是()A.75︒B.120︒C.135︒D.无法确定12.甲,乙两位同学用尺规作“过直线l外一点C作直线l的垂线”时,第一步两位同学都以C为圆心,适当长度为半径画弧,交直线l于D,E两点(如图);第二步甲同学作∠DCE 的平分线所在的直线,乙同学作DE的中垂线.则下列说法正确的是()A.只有甲的画法正确B.只有乙的画法正确C.甲,乙的画法都正确D.甲,乙的画法都不正确二、填空题13.已知直线AB∥CD,点P、Q分别在AB、CD上,如图所示,射线PB按顺时针方向以每秒4°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按顺时针方向每秒1°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____;(2)若射线QC先转45秒,射线PB才开始转动,当射线PB旋转的时间为_____秒时,PB′∥QC′.14.如图,△ABC中,∠C=90︒,AC=5cm,CB=12cm,AB=13cm,将△ABC沿直线CB向右平移3cm得到△DEF,DF交AB于点G,则点C到直线DE的距离为______cm.15.如图,已知,∠ABG为锐角,AH∥BG,点C从点B(C不与B重合)出发,沿射线BG 的方向移动,CD∥AB交直线AH于点D,CE⊥CD交AB于点E,CF⊥AD,垂足为F(F不与A重合),若∠ECF=n°,则∠BAF的度数为_____度.(用n来表示)16.如图,请你添加一个条件....使得AD ∥BC ,所添的条件是__________.17.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔18.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.19.如图,已知12∠=∠,求证:A BCH ∠=∠.证明:∵12∠=∠(已知)23∠∠=(______)∴13∠=∠(等量代换)∴//CH (______)(同位角相等,两直线平行)∴A BCH ∠=∠(______)20.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题21.如图①,已知直线12l l //,且3l 和12,l l 分别相交于,A B 两点,4l 和12,l l 分别相交于,C D 两点,点P 在线段AB 上,记1 23ACP BDP CPD ∠∠∠∠∠∠=,=,=.(1)若120,355︒︒∠=∠=,则2∠=_____;(2)试找出123∠∠∠,,之间的数量关系,并说明理由;(3)应用(2)中的结论解答下列问题;如图②,点A 在B 处北偏东42︒的方向上, 若88BAC ︒∠=,则点 A 在C 处的北偏西_____的方向上;(4)如果点P 在直线3l 上且在,A B 两点外侧运动时,其他条件不变,试探究1 23∠∠∠,,之间的关系(点 P 和,A B 两点不重合),直接写出结论即可.22.为了探究n 条直线能把平面最多分成几部分,我们从最简单的情形入手:①一条直线把平面分成2部分;②两条直线可把平面最多分成4部分;③三条直线可把平面最多分成7部分;④四条直线可把平面最多分成11部分;……把上述探究的结果进行整理,列表分析:直线条数 把平面最多 写成和的形式分成的部分数12 1+1 24 1+1+2 37 1+1+2+3 411 1+1+2+3+4 … … …(1)当直线条数为5时,把平面最多分成____部分,写成和的形式:______;(2)当直线条数为10时,把平面最多分成____部分;(3)当直线条数为n 时,把平面最多分成多少部分?23.问题情境:如图1,AB CD ,130PAB ∠=,120PCD ∠=.求 APC ∠ 度数. 小明的思路是:如图2,过 P 作 PE AB ,通过平行线性质,可得5060110APC ∠=+=.问题迁移:(1)如图3,AD BC ,点 P 在射线 OM 上运动,当点 P 在 A 、 B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.CPD ∠ 、 α∠ 、 β∠ 之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点 P 在 A 、 B 两点外侧运动时(点 P 与点 A 、 B 、 O 三点不重合),请你直接写出 CPD ∠ 、 α∠ 、 β∠ 间的数量关系.24.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A 射线自AM 顺时针旋转至AN 便立即回转,灯B 射线自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是a °/秒,灯B 转动的速度是b °/秒,且a 、b 满足|a ﹣3b|+(a+b ﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ ∥MN ,且∠BAN =45°.(1)求a 、b 的值;(2)若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A 射线到达AN 之前,若射出的光束交于点C ,过C 作CD ⊥AC 交PQ 于点D ,则在转动过程中,∠BAC 与∠BCD 的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.25.课题学习:平行线的“等角转化”功能.阅读理解:如图1,已知点A 是BC 外一点,连接AB ,AC ,求BAC B C ∠+∠+∠的度数.(1)阅读并补充下面推理过程.解:过点A 作ED BC ∥B EAB ∴∠=∠,C ∠=__________.__________180=︒180B BAC C ∴∠+∠+∠=︒解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将BAC ∠,B ,C ∠“凑”在一起,得出角之间的关系,使问题得以解决.方法运用:(2)如图2,已知AB ED ,试说明:180D BCD B ∠+∠-∠=︒(提示:过点C 做CF AB ∥).深化拓展:(3)已知AB CD ∥,点C 在点D 的右侧,70ADC ∠=︒.BE 平分ABC ∠,DE 平分ADC ∠,BE ,DE 所在的直线交于点E ,点E 在AB 与CD 两条平行线之间.①如图3,点B 在点A 的左侧,若60ABC ∠=︒,则BED ∠的度数为________. ②如图4,点B 在点A 的右侧,且<AB CD ,AD BC <.若ABC n ∠=︒,则BED ∠的度数为________.(用含n 的代数式表示)26.[感知发现]:如图,是一个“猪手”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE ,我们发现:∠E=∠B+∠D证明如下:过E 点作EF ∥AB .∴∠B=∠1(两直线平行,内错角相等.) 又AB ∥CD(已知)∴CD ∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行.) ∴∠2=∠D(两直线平行,内错角相等.)∴∠1+∠2=∠B+∠D(等式的性质1.)即:∠E=∠B+∠D[类比探究]:如图是一个“子弹头”图,AB ∥CD ,点E 在两平行线之间,连接BE ,DE .试探究∠E+∠B+∠D=360°.写出证明过程.[创新应用]:(1).如图一,是两块三角板按如图所示的方式摆放,使直角顶点重合,斜边平行,请直接写出∠1的度数.(2).如图二,将一个长方形ABCD 按如图的虚线剪下,使∠1=120o ,∠FEQ=90°. 请直接写出∠2的度数.∥,且直线AB、CD与AD、BC分别交于A、D和27.如图`,已知:直线AD BCB、C两点,点P在直线AB上.∠、(1)如图1,当点P在A、B两点之间时(点P不与点A、B重合),探究ADP、DPC ∠之间的关系,并说明理由.BCP∠、(2)若点P不在A、B两点之间,在备用图中画出图形,直接写出ADP、DPC∠之间的关系,不需说理.BCP28.已知:∠1=∠2,EG 平分∠AEC.(1)如图1,∠MAE=50°,∠FEG=15°,∠NCE=80°.试判断EF 与CD 的位置关系,并说明理由.(2)如图2,∠MAE=135°,∠FEG=30°,当AB∥CD 时,求∠NCE 的度数;(3)如图2,试写出∠MAE、∠FEG、∠NCE 之间满足什么关系时,AB∥CD.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;共3个.故选:C .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.2.B解析:B【分析】由题意过点B 作直线//l m ,利用平行线的判定定理和性质定理进行分析即可得出答案.【详解】解:如图,过点B 作直线//l m ,∵直线m//n ,//l m ,∴//l n ,∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,∵//l m ,∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.3.B解析:B【分析】结合图形,根据平行线的判定方法对选项逐一进行分析即可得.【详解】A. ∠l=∠2,根据内错角相等,两直线平行,可得AB//CD,故不符合题意;B. ∠2=∠E,根据同位角相等,两直线平行,可得AD//BE,故符合题意;C. ∠B+∠E= 180°,根据同旁内角互补,两直线平行,可得AB//CD,故不符合题意;D. ∠BAF=∠C,根据同位角相等,两直线平行,可得AB//CD,故不符合题意,故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.4.C解析:C【分析】由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.【详解】【解答】解:∵a∥b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.【点睛】本题考查了根据平行线的性质求角的度数,利用直角转化角是一种比较常见的方法,在一条直线上,3个角共顶点,且有一个角为直角,则另两个角的和为90°.5.B解析:B【分析】过点P作MN∥AB,结合垂直的定义和平行线的性质求∠EPF的度数.解:如图,过点P作MN∥AB,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB∥CD,PF⊥CD于F,∴PF⊥MN,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.6.D解析:D【解析】试题分析:如图,∵∠A=20°,∠A的两边分别和∠B的两边平行,∴∠B和∠A可能相等也可能互补,即∠B的度数是20°或160°,故选:D.7.C解析:C【解析】试题分析:BD是△ABC的角平分线, AB=BC,则BD是AC边上的高及中线,所以∠ABD=∠DBC ,BD⊥AC,2AD=AC, ∠A=∠BCA;因为DE∥BC,所以∠EDA=∠BCA,∠EDB=∠DBC,所以∠A=∠EDA, ∠ABD=∠EDB,所以BE=ED。
八年级上册数学第五章相交线与平行线单元试卷检测题(Word版 含答案)
八年级上册数学第五章相交线与平行线单元试卷检测题(Word 版 含答案)一、选择题1.如图,直线//AB CD ,AP 平分BAC CP AP ∠⊥,于点P ,若149︒∠=,则2∠的度数为( )A .40︒B .41︒C .50︒D .51︒2.如图,已知AB ∥CD ,AD 平分∠BAE ,∠D =40°,则∠DAE 的度数是( )A .20°B .40°C .60°D .80° 3.如图,直线l 1,l 2,l 3交于一点,直线l 4∥l 1,若∠1=124°,∠2=88°,则∠3的度数为( )A .26°B .36°C .46°D .56°4.如图,面积为12cm 2的△ABC 沿BC 方向平移到△DEF 的位置,平移的距离是边BC 长的2倍,则图中四边形ACED 的面积为( )A .24cm 2B .36cm 2C .48cm 2D .无法确定 5.如图,直线a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=60°,则∠2的度数为( )A .45°B .35°C .30°D .25°6.如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A .540°B .180°nC .180°(n-1)D .180°(n+1)7.如图,//AB CD ,PF CD ⊥于F ,40AEP ∠=︒,则EPF ∠的度数是( )A .120︒B .130︒C .140︒D .150︒ 8.如图,已知AB ∥CD ,BE 和DF 分别平分∠ABF 和∠CDE ,2∠E-∠F=48°,则∠CDE 的度数为( ).A .16°B .32°C .48°D .64° 9.如图,直线a ∥b ,AC ⊥AB 于A ,AC 交直线b 于点C ,∠1=50°,则∠2的度数是( )A .50°B .40°C .25°D .20°10.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm11.下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容,则回答正确的是()已知:如图,∠BEC=∠B+∠C,求证:AB∥CD证明:延长BE交__※__于点F,则∠BEC=__⊙__+∠C又∵∠BEC=∠B+∠C,∴∠B=▲∴AB∥CD(__□__相等,两直线平行)A.⊙代表∠FEC B.□代表同位角C.▲代表∠EFC D.※代表AB 12.下列说法中不正确的个数为().①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个二、填空题13.一副三角尺按如图所示叠放在一起,其中点,B D重合,若固定三角形AOB,将三角形ACD绕点A顺时针旋转一周,共有 _________次出现三角形ACD的一边与三角形AOB的某一边平行.14.如图,AB∥CD, AC∥BD, CE平分∠ACD,交BD于点E,点F在CD的延长线上,且∠BEF=∠CEF,若∠DEF=∠EDF,则∠A的度数为_____ .15.如图,将一张长方形纸片ABCD沿EF折叠,使顶点C,D分别落在点C′、D′处,C′E交AF于点G,若∠CEF=64°,则∠GFD′=_____________.16.如图,长方形ABCD 的周长为30,则图中虚线部分总长为____________.17.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.18.如图,点О为直线AB 上一点,,,135OC OD OE AB ⊥⊥∠=︒.(1)EOD ∠= °,2∠= °;(2)1∠的余角是_ ,EOD ∠的补角是__ .19.如图,AB ∥CD ,∠1=64°,FG 平分∠EFD ,则∠EGF=__________________°.20.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.三、解答题21.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.问题迁移:(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.22.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P 在线段CE 上时,请直写出∠NAP 、∠HBP 、∠APB 之间的数量关系: ;(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 .23.如图1,AB ∥CD ,点E 在AB 上,点G 在CD 上,点 F 在直线 AB ,CD 之间,连接EF ,FG ,EF 垂直于 FG ,∠FGD =125°.(1)求出∠BEF 的度数;(2)如图 2,延长FE 到H ,点M 在FH 的上方,连接MH ,Q 为直线 AB 上一点,且在直线 MH 的右侧, 连接 MQ ,若∠EHM=∠M +90°,求∠MQA 的度数;(3)如图 3,S 为 NB 上一点,T 为 GD 上一点,作直线 ST ,延长 GF 交 AB 于点 N ,P 为直线 ST 上一动点,请直接写出∠PGN ,∠SNP 和∠GPN 的数量关系 .(题中所有角都是大于 0°小于 180°的角)24.如图,已知:点A C 、、B 不在同一条直线,ADBE .(1)求证:180B C A ∠+∠-∠=︒. (2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.25.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.26.已知,点、、A B C 不在同一条直线上,//AD BE(1)如图①,当,58118A B ︒︒∠=∠=时,求C ∠的度数;(2)如图②,,AQ BQ 分别为,DAC EBC ∠∠的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下且//AC QB ,QP PB ⊥,直接写11,,DAC ACB CBE ∠∠∠的值27.点C ,B 分别在直线MN ,PQ 上,点A 在直线MN ,PQ 之间,//MN PQ . (1)如图1,求证:A MCA PBA ∠=∠+∠;(2)如图2,过点C 作//CD AB ,点E 在PQ 上,ECM ACD ∠=∠,求证:A ECN ∠=∠;(3)在(2)的条件下,如图3,过点B 作PQ 的垂线交CE 于点F ,ABF ∠的平分线交AC 于点G ,若DCE ACE ∠=∠,32CFB CGB ∠=∠,求A ∠的度数.28.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时//CE AB ,并简要说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的性质和角平分线的定义可得∠ACD=82°,再根据CP ⊥AP ,即可得∠2的度数.【详解】解:∵AB ∥CD ,∴∠BAC+∠ACD=180°,∵AP 平分∠BAC ,∴∠BAC=2∠1=98°,∴∠ACD=180°-98°=82°,∵CP⊥AP,∴∠P=90°,∴∠ACP=90°-∠1=90°-49°=41°,∴∠2=∠ACD-∠ACP=82°-41°=40°.则∠2的度数为41°.故选:B.【点睛】本题考查了平行线的性质、垂线,解题的关键是掌握平行线的性质.2.B解析:B【分析】根据平行线的性质得出∠DAB=∠D=40°,再由角平分线即可得解.【详解】解:∵AB∥CD,∴∠DAB=∠D=40°(两直线平行,内错角相等),∵AD平分∠BAE,∴∠DAE=∠DAB=40°,故选:B.【点睛】本题考查平行线的性质和角平分线性质,关键是求出∠DAE的度数,题目比较好,难度适中.3.B解析:B【解析】试题分析:如图,首先根据平行线的性质(两直线平行,同旁内角互补),可求∠4=56°,然后借助平角的定义求得∠3=180°-∠2-∠4=36°.故选B考点:平行线的性质4.B解析:B【解析】试题分析:由题意可知根据平移的性质可以知道四边形ACED的面积是三个△ABC的面积,依此计算即可.∵平移的距离是边BC 长的两倍,∴BC=CE=EF ,∴四边形ACED 的面积是三个△ABC 的面积;∴四边形ACED 的面积=12×3=36cm 2.考点:平移的性质.5.C解析:C【分析】由a 与b 平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.【详解】【解答】解:∵a ∥b ,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C .【点睛】本题考查了根据平行线的性质求角的度数,利用直角转化角是一种比较常见的方法,在一条直线上,3个角共顶点,且有一个角为直角,则另两个角的和为90°.6.C解析:C【分析】根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,由两直线平行,同旁内角互补,即可求出答案.【详解】解:根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,∵1n //AB CB ,∴121180B B D ∠+∠=︒,2323180DB B B B E ∠+∠=︒,3434180EB B B B F ∠+∠=︒,……∴122323343411803B B D DB B B B E EB B B B F ∠+∠+∠+∠+∠+∠=︒⨯,…… ∴123180(1)n n ∠+∠+∠++∠=︒⨯-;故选:C .【点睛】本题考查了平行线的性质,解题的关键是正确作出辅助线,熟练运用两直线平行同旁内角互补进行证明. 7.B解析:B【分析】过点P 作MN ∥AB ,结合垂直的定义和平行线的性质求∠EPF 的度数.【详解】解:如图,过点P 作MN ∥AB ,∵∠AEP=40°,∴∠EPN=∠AEP=40°∵AB ∥CD,PF ⊥CD 于F ,∴PF ⊥MN ,∴∠NPF=90∴∠EPF=∠EPN+∠NPF=40°+90°=130°故答案为B【点睛】本题考查了平行线的判定定理和性质,作出辅助线构造平行线是解答本题的关键.8.B解析:B【分析】已知BE和DF分别平分∠ABF和∠CDE,根据角平分线分定义可得∠ABE=12∠ABF,∠CDF=12∠CDE;过点E作EM//AB,点F作FN//AB,即可得////AB CD EM//FN,由平行线的性质可得∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,由此可得∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,又因2∠BED-∠BFD=48°,即可得2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,由此即可求得∠CDE=32°.【详解】∵BE和DF分别平分∠ABF和∠CDE,∴∠ABE=12∠ABF,∠CDF=12∠CDE,过点E作EM//AB,点F作FN//AB,∵//AB CD,∴////AB CD EM//FN,∴∠ABE=∠BEM,∠MED=∠EDC,∠ABF=∠BFN,∠CDF=∠DFN,∴∠BED=∠BEM+∠DEM=∠ABE+∠CDE=12∠ABF+∠CDE,∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=∠ABF +12∠CDE,∵2∠BED-∠BFD=48°,∴2(12∠ABF+∠CDE)-(∠ABF +12∠CDE)=48°,∴∠CDE=32°.故选B.【点睛】本题考查了平行线的性质,根据平行线的性质确定有关角之间的关系是解决问题的关键. 9.B【解析】试题分析:根据平行线的性质,由a∥b 可得∠1=∠B=50°,然后根据垂直的定义知△ABC 是直角三角,然后根据直角三角形的两锐角互余,可求的∠2=40°.故选:B.10.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.11.C解析:C【分析】延长BE 交CD 于点F ,利用三角形外角的性质可得出∠BEC =∠EFC+∠C ,结合∠BEC =∠B+∠C 可得出∠B =∠EFC ,利用“内错角相等,两直线平行”可证出AB ∥CD ,找出各符号代表的含义,再对照四个选项即可得出结论.【详解】证明:延长BE 交CD 于点F ,则∠BEC =∠EFC+∠C .又∵∠BEC =∠B+∠C ,∴∠B =∠EFC ,∴AB ∥CD (内错角相等,两直线平行).∴※代表CD ,⊙代表∠EFC ,▲代表∠EFC ,□代表内错角.故选:C .【点睛】本题考查了平行线的判定以及三角形外角的性质,利用各角之间的关系,找出∠B =∠EFC 是解题的关键.12.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.二、填空题13.【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°;(2)如图2,解析:8【分析】要分类讨论,不要漏掉任何一种情况,也可实际用三角板操作找到它们之间的关系,再计算.【详解】解:分8种情况讨论:(1)如图1,AD边与OB边平行时,∠BAD=45°;(2)如图2,当AC边与OB平行时,∠BAD=90°+45°=135°;(3)如图3,DC边与AB边平行时,∠BAD=60°+90°=150°,(4)如图4,DC边与OB边平行时,∠BAD=135°+30°=165°,(5)如图5,DC边与OB边平行时,∠BAD=45°﹣30°=15°;(6)如图6,DC边与AO边平行时,∠BAD=15°+90°=105°(7)如图7,DC边与AB边平行时,∠BAD=30°,(8)如图8,DC边与AO边平行时,∠BAD=30°+45°=75°;综上所述:∠BAD的所有可能的值为:15°,30°,45°,75°,105°,135°,150°,165°.故答案为:8.【点睛】本题考查了平行线的性质及判定,画出所有符合题意的示意图是解决本题的关键.14.108【解析】分析:根据平行线的性质,得到∠A+∠B=180°,∠B=∠BDF,∠A+∠ACD=180°,然后根据角平分线的性质,得到∠ACE=∠ECD=∠CED,然后根据题意和三角形的外角的性解析:108【解析】分析:根据平行线的性质,得到∠A+∠B=180°,∠B=∠BDF,∠A+∠ACD=180°,然后根据角平分线的性质,得到∠ACE=∠ECD=∠CED,然后根据题意和三角形的外角的性质,四边形的内角和求解.详解:∵CE平分∠ACD∴∠ACE=∠DCE∵AB∥CD,AC∥BD,∴∠A+∠B=180°,∠B=∠BDF,∠ACD+∠A=180°,∠ACE=∠CED ∵∠EDF=∠DEF =∠ECD+∠CED∴∠CEF=∠FEB=∠CED+∠DEF设∠B=x,则∠A=180°-x,∠ACE=∠ECD=∠CED=12 x,∴∠EDF=x,∠BEF=32x∴∠CEB=360°-2×∠BEF=360°-3x∴∠A+∠B+∠BEC+∠ACE=180°-x+x+360°-3x+12x=360°解得x=72°∴∠A=180°-72°=108°.故答案为108.点睛:此题主要考查了平行线的性质和三角形的外角的综合应用,关键是利用平行线的性质和三角形的外角确定角之间的关系,有一定的难度.15.520【解析】因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠解析:520【解析】因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠EFD′-∠AFE=116°-64°=52°,故答案为52°.16.15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:130152AB BC+=⨯=.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.17.40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=18解析:40【解析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差就可以了.解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°-∠ECD=180°-150°=30°,∴∠BEC=∠BEF-∠CEF=40°;故应填40.“点睛”本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.18.(1)35,55;(2)与,【分析】(1)由,可得,,所以,,,所以,已知的度数,即可得出与的度数;(2)由(1)可得的余角是与,要求的补角,即要求的补角,的补角是.【详解】(1),,,解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.【详解】(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.19.【分析】根据两直线平行,同位角相等求出∠EFD,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,内错角相等解答.【详解】解:∵AB∥CD,∠1=64°,∴∠EFD=∠1=64°,∵解析:【分析】根据两直线平行,同位角相等求出∠EFD ,再根据角平分线的定义求出∠GFD ,然后根据两直线平行,内错角相等解答.【详解】解:∵AB ∥CD ,∠1=64°,∴∠EFD=∠1=64°,∵FG 平分∠EFD ,∴∠GFD=12∠EFD=12×64°=32°, ∵AB ∥CD ,∴∠EGF=∠GFD=32°.故答案为:32.考点:平行线的性质.20.65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE.【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒ 故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.三、解答题21.(1)CPD αβ∠=∠+∠,理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.【详解】解:(1)∠CPD=∠α+∠β,理由如下:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β.(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠CPE-∠DPE=∠β-∠α;当点P在B、O两点之间时,∠CPD=∠α-∠β.理由:如图,过P作PE∥AD交CD于E.∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE-∠CPE=∠α-∠β.【点睛】本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.22.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P 点作PQ ∥GH ,根据平行线的性质即可求解;(2)过P 点作PQ ∥GH ,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P 点作PQ ∥GH ,∵MN ∥GH ,∴MN ∥PQ ∥GH ,∴∠APQ =∠NAP ,∠BPQ =∠HBP ,∵∠APB =∠APQ +∠BPQ ,∴∠APB =∠NAP +∠HBP ,故答案为:∠APB =∠NAP+∠HBP ;(2)如图②,过P 点作PQ ∥GH ,∵MN ∥GH ,∴MN ∥PQ ∥GH ,∴∠APQ +∠NAP =180°,∠BPQ +∠HBP =180°,∵∠APB =∠APQ +∠BPQ ,∴∠APB =(180°﹣∠NAP )+(180°﹣∠HBP )=360°﹣(∠NAP +∠HBP ); (3)如备用图,∵MN ∥GH ,∴∠PEN =∠HBP ,∵∠PEN =∠NAP +∠APB ,∴∠HBP =∠NAP +∠APB.故答案为:∠HBP =∠NAP +∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.23.(1)145︒;(2)55︒;(3)2125PGN SNP NPG ∠+∠-︒=∠【分析】(1)过点F 作//FN AB ,根据AB ∥CD ,EF 垂直于FG ,∠FGD =125°可计算NFG ∠,EFN ∠,从而求算BEF ∠;(2)作//FN AB ,//HK AB 交MQ 于点K ,由(1)知55,=35NFG EFN ∠=︒∠︒,从而求算35AEF EHL ∠=∠=︒,再根据90EHM M ∠=∠+︒,设M x ∠=︒,利用外角求出MHL ∠,从而求算MQA ∠;(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,设SNP x ∠=︒ ,则NPI x ∠=︒ 设IPG y ∠=︒ ,则PGT y ∠=︒,从而表示PGN ∠,进而寻找数量关系.【详解】(1)过点F 作//FN AB ,如图:∵AB ∥CD ,EF 垂直于FG ,∠FGD =125°∴55,905535NFG EFN ∠=︒∠=︒-︒=︒∴180145BEF EFN ∠=︒-∠=︒(2)作//FN AB ,//HK AB 交MQ 于点K ,如图:由(1)知:55,905535NFG EFN ∠=︒∠=︒-︒=︒∴35AEF EHL ∠=∠=︒又∵90EHM M ∠=∠+︒,设M x ∠=︒∴90EHM x ∠=︒+︒∴903555MHL x x ∠=︒+︒-︒=︒+︒∴5555MKH MQA MHL M x x ∠=∠=∠-∠=︒+︒-︒=︒(3)作//PI AB 交NG 于I ,连接NP ,GP ,FP ,如图:设SNP x ∠=︒ ,则NPI x ∠=︒设IPG y ∠=︒ ,则PGT y ∠=︒又∵125FGD ∠=︒∴125PGN y ∠=︒-︒∴2125PGN SNP NPG ∠+∠-︒=∠【点睛】本题考查平行线的性质综合,转化相关的角度是解题关键.24.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.25.(1)∠E 、∠CAF ;∠CDE 、∠BAF ; (2)①20°;②30【分析】(1)由翻折的性质和平行线的性质即可得与∠B 相等的角;由等角代换即可得与∠C 相等的角;(2)①由三角形内角和定理可得90B C ∠+∠=︒,再由50C B ∠∠︒-=根据角的和差计算即可得∠C 的度数,进而得∠B 的度数.②根据翻折的性质和三角形外角及三角形内角和定理,用含x 的代数式表示出∠FDE 、∠DFE 的度数,分三种情况讨论求出符合题意的x 值即可.【详解】(1)由翻折的性质可得:∠E =∠B ,∵∠BAC =90°,AE ⊥BC ,∴∠DFE =90°,∴180°-∠BAC =180°-∠DFE =90°,即:∠B +∠C =∠E +∠FDE =90°,∴∠C =∠FDE ,∴AC ∥DE ,∴∠CAF =∠E ,∴∠CAF =∠E =∠B故与∠B 相等的角有∠CAF 和∠E ;∵∠BAC =90°,AE ⊥BC ,∴∠BAF +∠CAF =90°, ∠CFA =180°-(∠CAF +∠C )=90°∴∠BAF +∠CAF =∠CAF +∠C =90°∴∠BAF =∠C又AC ∥DE ,∴∠C =∠CDE ,∴故与∠C 相等的角有∠CDE 、∠BAF ;(2)①∵90BAC ∠=︒∴90B C ∠+∠=︒又∵50C B ∠∠︒-=,∴∠C =70°,∠B =20°;②∵∠BAD =x °, ∠B =20°则160ADB x ∠︒︒=-,20ADF x ∠︒︒=+,由翻折可知:∵160ADE ADB x ∠∠︒︒==-, 20E B ∠∠︒==,∴1402FDE x ∠︒︒=-, 202DFE x ∠︒︒=+,当∠FDE =∠DFE 时,1402202x x ︒︒︒︒-=+, 解得:30x ︒︒=;当∠FDE =∠E 时,140220x ︒︒︒-=,解得:60x ︒︒=(因为0<x ≤45,故舍去); 当∠DFE =∠E 时,20220x ︒︒︒+=,解得:0x ︒=(因为0<x ≤45,故舍去); 综上所述,存在这样的x 的值,使得△DEF 中有两个角相等.且30x =.【点睛】本题考查图形的翻折、三角形内角和定理、平行线的判定及其性质、三角形外角的性质、等角代换,解题的关键是熟知图形翻折的性质及综合运用所学知识.26.(1)120°;(2)2∠AQB+∠C=180°;(3)∠DAC=60°,∠ACB=120°,∠CBE=120°.【分析】(1)过点C作CF∥AD,则CF∥BE,根据平行线的性质可得出∠ACF=∠A、∠BCF=180°-∠B,将其代入∠ACB=∠ACF+∠BCF即可求出∠ACB的度数;(2)过点Q作QM∥AD,则QM∥BE,根据平行线的性质、角平分线的定义可得出∠AQB=12(∠CBE-∠CAD),结合(1)的结论可得出2∠AQB+∠C=180°;(3)由(2)的结论可得出∠CAD=12∠CBE①,由QP⊥PB可得出∠CAD+∠CBE=180°②,联立①②可求出∠CAD、∠CBE的度数,再结合(1)的结论可得出∠ACB的度数.【详解】解:(1)在图①中,过点C作CF∥AD,则CF∥BE.∵CF∥AD∥BE,∴∠ACF=∠A,∠BCF=180°-∠B,∴∠ACB=∠ACF+∠BCF=180°-(∠B-∠A)=180°-(118°-58°)=120°.(2)在图2中,过点Q作QM∥AD,则QM∥BE.∵QM∥AD,QM∥BE,∴∠AQM=∠NAD,∠BQM=∠EBQ.∵AQ平分∠CAD,BQ平分∠CBE,∴∠NAD=12∠CAD,∠EBQ=12∠CBE,∴∠AQB=∠BQM-∠AQM=12(∠CBE-∠CAD).∵∠C=180°-(∠CBE-∠CAD)=180°-2∠AQB,∴2∠AQB+∠C=180°.(3)∵AC∥QB,∴∠AQB=∠CAP=12∠CAD,∠ACP=∠PBQ=12∠CBE,∴∠ACB=180°-∠ACP=180°-12∠CBE.∵2∠AQB+∠ACB=180°,∴∠CAD=12∠CBE.又∵QP ⊥PB ,∴∠CAP+∠ACP=90°,即∠CAD+∠CBE=180°,∴∠CAD=60°,∠CBE=120°,∴∠ACB=180°-(∠CBE-∠CAD )=120°,故∠DAC=60°,∠ACB=120°,∠CBE=120°.【点睛】本题考查了平行线的性质、邻补角、角平分线以及垂线,解题的关键是:(1)根据平行线的性质结合角的计算找出∠ACB=180°-(∠B-∠A);(2)根据平行线的性质、角平分线的定义找出∠AQB=12(∠CBE-∠CAD);(3)由AC ∥QB 、QP ⊥PB 结合(1)(2)的结论分别求出∠DAC 、∠ACB 、∠CBE 的度数.27.(1)证明见解析;(2)证明见解析;(3)∠A=72°.【分析】 (1)根据题意过点A 作平行线AD//MN ,证出三条直线互相平行并由平行得出与ACM ∠和ABP ∠相等的角即可得出结论;(2)由题意利用垂直线定义以及三角形内角和为180°进行分析即可证得A ECN ∠=∠; (3)根据题意设MCA ACE ECD x ∠=∠=∠=,由(1)列出关系式2702CFB x ∠=︒-和11352CGB x ∠=︒-,解出方程进而得出结论. 【详解】证明:(1)过点A 作平行线AD//MN ,∵AD//MN ,//MN PQ ,∴AD//MN//PQ,∴,MCA DAC PBA DAB ∠=∠∠=∠,∴A DAC DAB MCA PBA ∠=∠+∠=∠+∠.(2)∵//CD AB∴180A ACD ∠+∠=︒∵180ECM ECN ∠+∠=︒又ECM ACD ∠=∠∴A ECN ∠=∠(3)证得MCA ACE ECD ∠=∠=∠ ABP NCD ∠=∠设MCA ACE ECD x ∠=∠=∠=由(1)可知CFB FCN FBQ ∠=∠+∠列出关系式2702CFB x ∠=︒-由(1)可知CGB MCG GBP ∠=∠+∠ 列出关系式11352CGB x ∠=︒- 312702(135)22x x -=︒- 解得:54x =︒结论:72A ∠=︒【点睛】本题考查平行线的性质与判定,结合平行线的性质与判定运用数形结合思维分析是解题的关键.28.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.。
第五章相交线与平行线单元试卷测试卷 (word版,含解析)
第五章相交线与平行线单元试卷测试卷 (word 版,含解析)一、选择题1.下列命题是真命题的是( )A .直角三角形中两个锐角互补B .相等的角是对顶角C .同旁内角互补,两直线平行D .若a b =,则a b =2.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③∠5=∠B ;④AD ∥BE ,且∠D =∠B .其中能说明AB ∥DC 的条件有( )A .4个B .3个C .2个D .1个3.如图,已知直线a ∥b ,∠1=100°,则∠2等于( )A .80°B .60°C .100°D .70° 4.如果A ∠与B 的两边分别平行,A ∠比B 的3倍少36,则A ∠的度数是() A .18 B .126 C .18或126 D .以上都不对5.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒6.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++- 7.如图,直线AB 、CD 、EF 相交于点O ,其中AB ⊥CD ,∠1:∠2=3:6,则∠EOD =( )A .120°B .130°C .60°D .150°8.如图,直线a ∥b ,AC ⊥AB 于A ,AC 交直线b 于点C ,∠1=50°,则∠2的度数是( )A .50°B .40°C .25°D .20°9.如图,BD 是△ABC 的角平分线,DE ∥BC ,DE 交AB 于E ,若AB =BC ,则下列结论中错误的是( )A .BD ⊥ACB .∠A =∠EDAC .2AD =BC D .BE =ED10.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣3 11.如图,直线a 和直线b 被直线c 所载,且a//b ,∠2=110°,则∠3=70°,下面推理过程错误的是( )A .因为a//b ,所以∠2=∠6=110°,又∠3+∠6=180°(邻补角定义)所以∠3=180︒-∠6=180︒-110︒=70︒B .//,13,12180a b ︒∴∠=∠∠+∠=1180218011070︒︒︒︒∴∠=-∠=-=所以370︒∠=C .因为a//b 所以25∠=∠又∠3+∠5=180°(邻补角定义),3180518011070︒︒︒︒∴∠=-∠=-=D .//,42110a b ︒∴∠=∠=,43180︒∠+∠=,∴∠3=180°−∠4=180°−110°=70° 所以3180418011070︒︒︒︒∠=-∠=-=12.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46°二、填空题13.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为_______.14.如图,AB ∥CD,BF 平分∠ABE,DF 平分∠CDE,∠BFD=35°,那么∠BED 的度数为_______.15.如图,已知AB ∥CD,∠EAF =14∠EAB,∠ECF=14∠ECD ,则∠AFC 与∠AEC 之间的数量关系是_____________________________16.设a 、b 、c 为平面上三条不同直线,(1)若//,//a b b c ,则a 与c 的位置关系是_________;(2)若,a b b c ⊥⊥,则a 与c 的位置关系是_________;(3)若//a b ,b c ⊥,则a 与c 的位置关系是________.17.如图,将直角三角形ABC 沿斜边AC 的方向平移到三角形DEF 的位置,DE 交BC 于点G ,BG =4,EF =12,△BEG 的面积为4,下列结论:①DE ⊥BC ;②△ABC 平移的距离是4;③AD =CF ;④四边形GCFE 的面积为20,其中正确的结论有________(只填写序号).18.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.19.如图所示,AB∥CD,EC⊥CD.若∠BEC=30°,则∠ABE的度数为_____.20.如图,∠AOB=60°,在∠AOB的内部有一点P,以P为顶点,作∠CPD,使∠CPD的两边与∠AOB的两边分别平行,∠CPD的度数为_______度.三、解答题21.阅读下面材料:彤彤遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.彤彤是这样做的:过点E作EF//AB,则有∠BEF=∠B.∵AB//CD,∴EF//CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.请你参考彤彤思考问题的方法,解决问题:如图乙.已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.(1)如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;(2)如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,直接写出∠BED的度数(用含有α,β的式子表示).22.感知与填空:如图①,直线//AB CD ,求证:B D BED ∠+∠=∠.阅读下面的解答过程,并填上适当的理由,解:过点E 作直线//EF CD ,2D ∴∠=∠( ) //AB CD (已知),//EF CD ,//AB EF ∴( )1B ∴∠=∠( )12BED ∠+∠=∠,B D BED ∴∠+∠=∠( )应用与拓展:如图②,直线//AB CD ,若22,35,25B G D ∠=︒∠=∠=︒.则E F ∠+∠= 度方法与实践:如图③,直线//AB CD ,若60,80E B F ∠=∠=︒∠=︒,则D ∠= 度.23.在综合与实践课上,老师让同学们以“三条平行线m,n,l(即始终满足m∥n∥l)和一副直角三角尺ABC,DEF(∠BAC=∠EDF=90°,∠FED=60°,∠DFE=30°,∠ABC=∠ACB=45°)”为主题开展数学活动.操作发现(1)如图1,展翅组把三角尺ABC的边BC放在l上,三角尺DEF的顶点F与顶点B重合,边EF经过AB,顶点E恰好落在m上,顶点D恰好落在n上,边ED与n相交所成的一个角记为∠1,求∠1的度数;(2)如图2,受到展翅组的启发,高远组把直线m向下平移后使得两个三角尺的两个直角顶点A、D分别落在m和l上,顶点C恰好落在n上,边AC与l相交所成的一个角记为∠2,边DF与m相交所成的一个角记为∠3,请你说明∠2﹣∠3=15°;结论应用(3)老师在点评高远组的探究操作时提出,在(2)的条件下,若点N是直线n上一点,CN恰好平分∠ACB时,∠2与∠3之间存在一个特殊的倍数关系,请你直接写出它们之间的倍数关系,不需要说明理由.24.(感知)如图①,AB∥CD,点E在直线AB与CD之间,连结AE、BE,试说明∠BAE+∠DCE=∠AEC;(探究)当点E在如图②的位置时,其他条件不变,试说明∠AEC+∠BAE+∠DCE=360°;(应用)点E、F、G在直线AB与CD之间,连结AE、EF、FG和CG,其他条件不变,如图③,若∠EFG=36°,则∠BAE+∠AEF+∠FGC+∠DCG=______°.25.已知AB∥CD,点C在点D的右侧,连接AD,BC,BE平分∠ABC,DE平分∠ADC,BE,DE相交于点E.(1)如图1,当点B在点A的左侧时,①若∠ABC=50º,∠ADC=70º,求∠BED的度数;②请直接写出∠BED与∠ABC,∠ADC的数量关系;(2)如图2,当点B在点A的右侧时,试猜想∠BED与∠ABC,∠ADC的数量关系,并说明理由.26.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4直接写出结果出DCE ∠、AEC ∠、CDB ∠之间的数量关系.27.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数. 28.如图,如图1,在平面直角坐标系中,已知点A (﹣4,﹣1)、B (﹣2,1),将线段AB 平移至线段CD ,使点A 的对应点C 在x 轴的正半轴上,点D 在第一象限. (1)若点C 的坐标(k ,0),求点D 的坐标(用含k 的式子表示);(2)连接BD 、BC ,若三角形BCD 的面积为5,求k 的值;(3)如图2,分别作∠ABC 和∠ADC 的平分线,它们交于点P ,请写出∠A 、和∠P 和∠BCD 之间的一个等量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别利用直角三角形的性质、对顶角和平行线的判定方法以及绝对值的性质分析得出答案.【详解】解:A 、直角三角形中两个锐角互余,故此选项错误;B 、相等的角不一定是对顶角,故此选项错误;C 、同旁内角互补,两直线平行,正确;D 、若|a|=|b|,则a=±b ,故此选项错误;故选C .【点睛】此题主要考查了命题与定理,正确把握相关性质是解题关键.2.B解析:B【详解】解:34∠∠=//AB CD ∴,①正确;12∠=∠//AD BC ∴,②不正确;5B ∠=∠//AB CD ∴,③正确;//AD BE5D ∴∠=∠B D ∠=∠5B ∴∠=∠//AB CD ∴,④正确;综上所述,①、③、④正确,故选B .3.A解析:A【解析】试题分析:根据对顶角相等可得∠3=∠1=100°,再根据两直线平行,同旁内角互补可得∠2=180°﹣∠3=180°﹣100°=80°.故答案选A .考点:平行线的性质.4.C解析:C【分析】由∠A 与∠B 的两边分别平行,即可得∠A 与∠B 相等或互补,然后分两种情况,分别从∠A 与∠B 相等或互补去分析,即可求得∠A 的度数.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A 与∠B 相等或互补.分两种情况:①如图1,当∠A+∠B=180°时,∠A=3∠B-36°,解得:∠A=126°;②如图2,当∠A=∠B,∠A=3∠B-36°,解得:∠A=18°.所以∠A=18°或126°.故选:C.【点睛】此题考查的是平行线的性质,如果两角的两边分别平行,则这两个角相等或互补.此题还考查了方程组的解法.解题要注意列出准确的方程组.5.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.6.C解析:C【分析】过C作CD∥AB,过M作MN∥EF,推出AB∥CD∥MN∥EF,根据平行线的性质得出α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,求出∠BCD=180°-α,∠DCM=∠CMN=β-γ,即可得出答案.【详解】过C作CD∥AB,过M作MN∥EF,∵AB∥EF,∴AB∥CD∥MN∥EF,∴α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,∴∠BCD=180°-α,∠DCM=∠CMN=β-γ,︒--+,∴x=∠BCD+∠DCM=180αγβ故选:C.【点睛】本题考查了平行线的性质的应用,主要考查了学生的推理能力.7.D解析:D【解析】试题分析:根据对顶角的性质可知∠1=∠DOF,然后由平面直角坐标系可知∠DOB=90°=∠DOF+∠2,可知∠1+∠2=90°,再由∠1:∠2=3:6,可求得∠2=60°,因此可知∠AOE=60°,从而求得∠EOD的度数为150°.故选:D8.B解析:B【解析】试题分析:根据平行线的性质,由a∥b可得∠1=∠B=50°,然后根据垂直的定义知△ABC是直角三角,然后根据直角三角形的两锐角互余,可求的∠2=40°.故选:B.9.C解析:C【解析】试题分析:BD是△ABC的角平分线, AB=BC,则BD是AC边上的高及中线,所以∠ABD=∠DBC ,BD⊥AC,2AD=AC, ∠A=∠BCA;因为DE∥BC,所以∠EDA=∠BCA,∠EDB=∠DBC,所以∠A=∠EDA, ∠ABD=∠EDB,所以BE=ED。
八年级上册第五章相交线与平行线单元测试卷测试卷 (word版,含解析)
八年级上册第五章相交线与平行线单元测试卷测试卷 (word 版,含解析)一、选择题1.给出下列4个命题:①同旁内角互补;②相等的角是对顶角;③等角的补角相等;④两直线平行,同位角相等.其中,假命题的个数为( )A .1B .2C .3D .42.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个3.如图,直线12//,,140l l αβ∠=∠∠=︒,则2∠等于( )A .140︒B .130︒C .120︒D .110︒4.如图,要得到AB ∥CD ,只需要添加一个条件,这个条件不可以...是( )A .∠1=∠3B .∠B +∠BCD =180°C .∠2=∠4D .∠D +∠BAD =180°5.如图,已知直线AB 、CD 被直线AC 所截,AB ∥CD ,E 是平面内任意一点(点E 不在直线AB 、CD 、AC 上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC 的度数可能是( )A .①②③B .①②④C .①③④D .①②③④6.如图,直线AB 、CD 相交于点E ,DF ∥AB .若∠AEC=100°,则∠D 等于( )A .70°B .80°C .90°D .100°7.如图,////OP QR ST 下列各式中正确的是( )A .123180∠+∠+∠=B .12390∠+∠-∠=C .12390∠-∠+∠=D .231180∠+∠-∠= 8.如图,在△ABC 中,AB=AC ,CD∥AB,点E 在BC 的延长线上.若∠A=30°,则∠DCE 的大小为( )A .30°B .52.5°C .75°D .85°9.如图,BD 是△ABC 的角平分线,DE ∥BC ,DE 交AB 于E ,若AB =BC ,则下列结论中错误的是( )A .BD ⊥ACB .∠A =∠EDAC .2AD =BC D .BE =ED10.已知:点A ,B ,C 在同一条直线上,点M 、N 分别是AB 、BC 的中点,如果AB =10cm ,AC =8cm ,那么线段MN 的长度为( )A .6cmB .9cmC .3cm 或6cmD .1cm 或9cm11.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于012.如图,△ABC 经平移得到△EFB ,则下列说法正确的有 ( )①线段AC 的对应线段是线段EB ;②点C 的对应点是点B ;③AC ∥EB ;④平移的距离等于线段BF 的长度.A .1B .2C .3D .4二、填空题13.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)14.如图,BC AE ⊥,垂足为C ,过C 作CD AB .若48ECD ∠=︒,则B ∠=__________.15.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有____对,内错角有_____对,同旁内角有_____对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有____对,内错角有___对,同旁内角有___对;(3)根据以上探究的结果,n(n 为大于1的整数)条水平直线被一条竖直直线所截,同位角有______对,内错角有_______对,同旁内角有______对.(用含n 的式子表示)16.如图,已知EF ∥GH ,A 、D 为GH 上的两点,M 、B 为EF 上的两点,延长AM 于点C ,AB 平分∠DAC ,直线DB 平分∠FBC ,若∠ACB=100°,则∠DBA 的度数为________.17.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.18.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___19.如图,点A 、B 为定点,直线l ∥AB,P 是直线l 上一动点,对于下列各值:①线段AB 的长;②△PAB 的周长;③△PAB 的面积;④∠APB 的度数,其中不会随点P 的移动而变化的是(填写所有正确结论的序号)______________.20.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC ,∠EOD=120°,则∠BOD=__________°.三、解答题21.问题情境:如图1,AB ∥CD ,∠PAB=130°,∠PCD=120°.求∠APC 度数.小明的思路是:如图2,过P 作PE ∥AB ,通过平行线性质,可得∠APC=50°+60°=110°. 问题迁移:(1)如图3,AD ∥BC ,点P 在射线OM 上运动,当点P 在A 、B 两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD 、∠α、∠β之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出∠CPD 、∠α、∠β间的数量关系.22.问题情境:如图1,AB CD ,130PAB ∠=,120PCD ∠=.求 APC ∠ 度数. 小明的思路是:如图2,过 P 作 PE AB ,通过平行线性质,可得5060110APC ∠=+=.问题迁移:(1)如图3,AD BC ,点 P 在射线 OM 上运动,当点 P 在 A 、 B 两点之间运动时,ADP α∠=∠,BCP β∠=∠.CPD ∠ 、 α∠ 、 β∠ 之间有何数量关系?请说明理由;(2)在(1)的条件下,如果点 P 在 A 、 B 两点外侧运动时(点 P 与点 A 、 B 、 O 三点不重合),请你直接写出 CPD ∠ 、 α∠ 、 β∠ 间的数量关系.23.如图1所示,AB ∥CD ,E 为直线CD 下方一点,BF 平分∠ABE .(1)求证:∠ABE +∠C ﹣∠E =180°.(2)如图2,EG 平分∠BEC ,过点B 作BH ∥GE ,求∠FBH 与∠C 之间的数量关系. (3)如图3,CN 平分∠ECD ,若BF 的反向延长线和CN 的反向延长线交于点M ,且∠E +∠M =130°,请直接写出∠E 的度数.24.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.25.如图,AB ∥CD .(1)如图1,∠A 、∠E 、∠C 的数量关系为 .(2)如图2,若∠A =50°,∠F =115°,求∠C ﹣∠E 的度数;(3)如图3,∠E =90°,AG ,FG 分别平分∠BAE ,∠CFE ,若GD ∥FC ,试探究∠AGF 与∠GDC 的数量关系,并说明理由.26.如图1,直线AB 与直线OC 交于点O ,()090BOC αα∠=︒<<.小明将一个含30的直角三角板PQD 如图1所示放置,使顶点P 落在直线AB 上,过点Q 作直线MN AB 交直线OC 于点H (点H 在Q 左侧).(1)若PD OC ∥,45NQD ∠=︒,则α=__________︒.(2)若PQH ∠的角平分线交直线AB 于点E ,如图2.①当QE OC ∥,60α=︒时,求证:OC PD . ②小明将三角板保持PD OC ∥并向左平移,运动过程中,PEQ ∠=__________.(用α表示). 27. [问题解决]:如图1,已知AB ∥CD ,E 是直线AB ,CD 内部一点,连接BE ,DE ,若∠ABE=40°,∠CDE=60°,求∠BED 的度数.嘉琪想到了如图2所示的方法,但是没有解答完,下面是嘉淇未完成的解答过程: 解:过点E 作EF ∥AB ,∴∠ABE=∠BEF=40°∵AB ∥CD ,∴EF ∥CD ,…请你补充完成嘉淇的解答过程:[问题迁移]:请你参考嘉琪的解题思路,完成下面的问题:如图3,AB ∥CD ,射线OM 与直线AB ,CD 分别交于点A ,C ,射线ON 与直线AB ,CD 分别交于点B ,D ,点P 在射线ON 上运动,设∠BAP=α,∠DCP=β.(1)当点P在B,D两点之间运动时(P不与B,D重合),求α,β和∠APC之间满足的数量关系.(2)当点P在B,D两点外侧运动时(P不与点O重合),直接写出α,β和∠APC之间满足的数量关系.28.阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).(1)如图1,AB∥CD,E为形内一点,连结BE、DE得到∠BED,求证:∠E=∠B+∠D悦悦是这样做的:过点E作EF∥AB.则有∠BEF=∠B.∵AB∥CD,∴EF∥CD.∴∠FED=∠D.∴∠BEF+∠FED=∠B+∠D.即∠BED=∠B+∠D.(2)如图2,画出∠BEF和∠EFD的平分线,两线交于点G,猜想∠G的度数,并证明你的猜想.(3)如图3,EG1和EG2为∠BEF内满足∠1=∠2的两条线,分别与∠EFD的平分线交于点G1和G2,求证:∠FG1E+∠G2=180°.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据平行线的判定方法对①进行判断;据对顶角的定义对②进行判断;根据平行线的性质对④进行判断;根据补角的定义对③进行判断.【详解】两直线平行,同旁内角互补,所以①错误;相等的角不一定是对顶角,所以②错误;等角的补角相等,所以③正确;两条平行直线被第三条直线所截,同位角相等,所以④正确;;故选B.【点睛】本题主要考查了平行线的性质及判定,对顶角的性质等,熟练掌握各性质定理是解答此题的关键.2.B解析:B【分析】由平行线的性质,可知与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD.【详解】∵AB∥CD,∴∠A=∠ADC;∵AB∥EF,∴∠A=∠AFE;∵AF∥CG,∴∠EGC=∠AFE=∠A;∵CD∥EF,∴∠EGC=∠DCG=∠A;所以与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD四个,故选B.3.A解析:A【分析】作出如下图所示的辅助线,然后再利用平行线的性质即可求解.【详解】解:如图所示,作直线m∥n∥l1∥l2,此时有∠3=∠1=40°,∠6=180°-∠2,∠4=∠5,又∠α=∠3+∠4,∠β=∠5+∠6=∠5+(180°-∠2),且∠α=∠β,∴∠3+∠4=∠5+(180°-∠2),由于∠4=∠5,∴∠3=180°-∠2,代入数据:40°=180°-∠2,∴∠2=140°,故选:A.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.熟记性质并作辅助线是解题的关键.4.A解析:A【分析】根据B、D中条件结合“同旁内角互补,两直线平行”可以得出AB∥CD,根据C中条件结合“内错角相等,两直线平行”可得出AB∥CD,而根据A中条件结合“内错角相等,两直线平行”可得出AD∥BC.由此即可得出结论.【详解】解:A.∵∠1=∠3,∴AD∥BC(内错角相等,两直线平行);B.∵∠B+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行);C.∠2=∠4,∴AB∥CD(内错角相等,两直线平行);D.∠D+∠BAD=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.5.D解析:D【分析】根据E点有4中情况,分四种情况讨论分别画出图形,根据平行线的性质与三角形外角定理求解.【详解】E点有4中情况,分四种情况讨论如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α过点E2作AB的平行线,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度数可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故选D.【点睛】此题主要考查平行线的性质与外角定理,解题的关键是根据题意分情况讨论. 6.B解析:B【解析】因为AB∥DF,所以∠D+∠DEB=180°,因为∠DEB与∠AEC是对顶角,所以∠DEB=100°,所以∠D=180°﹣∠DEB=80°.故选B.7.D解析:D【解析】试题分析:延长TS,∵OP∥QR∥ST,∴∠2=∠4,∵∠3与∠ESR互补,∴∠ESR=180°﹣∠3,∵∠4是△FSR的外角,∴∠ESR+∠1=∠4,即180°﹣∠3+∠1=∠2,∴∠2+∠3﹣∠1=180°.故选D.考点:平行线的性质.8.C【解析】试题分析:根据等腰三角形的性质:等边对等角,可得∠B=∠ACB,然后根据三角形的内角和可求得∠B=75°,然后根据平行线的性质可得∠B=∠DCE=75°.故选:C.点睛:此题主要考查了等腰三角形的性质,解题关键是利用等腰三角形的性质求得两底角的值,然后根据平行线的性质可求解问题.9.C解析:C【解析】试题分析:BD是△ABC的角平分线, AB=BC,则BD是AC边上的高及中线,所以∠ABD=∠DBC ,BD⊥AC,2AD=AC, ∠A=∠BCA;因为DE∥BC,所以∠EDA=∠BCA,∠EDB=∠DBC,所以∠A=∠EDA, ∠ABD=∠EDB,所以BE=ED。
八年级数学第五章相交线与平行线单元测试卷测试卷(含答案解析)
八年级数学第五章相交线与平行线单元测试卷测试卷(含答案解析)一、选择题1.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .4 2.如图,在ABC 中,//EF BC ,ED 平分BEF ∠,且70∠︒=DEF ,则B 的度数为( )A .70°B .60°C .50°D .40°3.下列图形中,1∠与2∠是同位角的是( )A .B .C .D .4.已知AB CD ∥,点E F ,分别在直线AB CD ,上,点P 在AB CD ,之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则EPF ∠的度数为( )A .120︒B .135︒C .45︒或135︒D .60︒或120︒5.如图所示,直线c 截直线a ,b ,给出下列以下条件:①48∠=∠;②17∠=∠;③26∠=∠;④47180∠+∠=︒.其中能够说明a ∥b 的条件有A .1个B .2个C .3个D .4个6.佳佳将坐标系中一图案横向拉长2倍,又向右平移2个单位长度,若想变回原来的图案,需要变化后的图案上各点坐标( )A .纵坐标不变,横坐标减2B .纵坐标不变,横坐标先除以2,再均减2C .纵坐标不变,横坐标除以2D .纵坐标不变,横坐标先减2,再均除以27.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°8.下列命题中,属于真命题的是( )A .相等的角是对顶角B .一个角的补角大于这个角C .绝对值最小的数是0D .如果a b =,那么a=b 9.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm10.如图,下列说法错误的是( )A .若a∥b,b∥c,则a∥cB .若∠1=∠2,则a∥cC .若∠3=∠2,则b∥cD .若∠3+∠5=180°,则a∥c11.能说明命题“若a >b ,则3a >2b “为假命题的反例为( )A .a =3,b =2B .a =﹣2,b =﹣3C .a =2,b =3D .a =﹣3,b =﹣212.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC 沿着直线BC 的方向平移2.5cm 后得到DEF ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题13.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少40°,则∠α的度数为_______.14.小明将一副三角板中的两块直角三角尺的直角顶点C 按如图所示的方式叠放在一起,当∠ACE <180°且点E 在直线AC 的上方时,他发现若∠ACE =_____,则三角板BCE 有一条边与斜边AD 平行.15.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n 次移动n 格.则不停留棋子的格子的编号有_____.16.如图,直线MN∥PQ,点A 在直线MN 与PQ 之间,点B 在直线MN 上,连结AB .∠ABM 的平分线BC 交PQ 于点C ,连结AC ,过点A 作AD⊥PQ 交PQ 于点D ,作AF⊥AB 交PQ 于点F ,AE 平分∠DAF 交PQ 于点E ,若∠CAE=45°,∠ACB=∠DAE,则∠ACD 的度数是_____.17.已知∠ABC=70︒,点D 为BC 边上一点,过点D 作DP//AB ,若∠PBD=12∠ABC ,则∠DPB=_____︒.18.已知:如图放置的长方形ABCD 和等腰直角三角形EFG 中,∠F=90°,FE=FG=4cm ,AB=2cm ,AD=4cm ,且点F ,G ,D ,C 在同一直线上,点G 和点D 重合.现将△EFG 沿射线FC 向右平移,当点F 和点C 重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm 2,则△EFG 向右平移了____cm .19.设a 、b 、c 为平面上三条不同直线,(1)若//,//a b b c ,则a 与c 的位置关系是_________;(2)若,a b b c ⊥⊥,则a 与c 的位置关系是_________;(3)若//a b ,b c ⊥,则a 与c 的位置关系是________.20.小明用一副三角板自制对顶角的“小仪器”,第一步固定直角三角板ABC ,并将边AC 延长至点P ,第二步将另一块三角板CDE 的直角顶点与三角板ABC 的直角顶点C 重合,摆放成如图所示,延长DC 至点F ,PCD ∠与ACF ∠就是一组对顶角,若30ACF ∠=,则PCD ∠=__________,若重叠所成的(090)BCE n n ∠=<<,则PCF ∠的度数__________.三、解答题21.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.22.已知://AB DE ,//AC DF ,B C E F 、、、四点在同一直线上.(1)如图1,求证:12∠=∠;(2)如图2,猜想1,3,4∠∠∠这三个角之间有何数量关系?并证明你的结论; (3)如图3,Q 是AD 下方一点,连接,AQ DQ ,且13DAQ BAD ∠=∠,13ADQ ADF ∠=∠,若110AQD ∠=︒,求2∠的度数. 23.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明;(2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数. 24.问题情境(1)如图①,已知360B E D ∠+∠+∠=︒,试探究直线AB 与CD 有怎样的位置关系?并说明理由.小明给出下面正确的解法:直线AB 与CD 的位置关系是//AB CD .理由如下:过点E 作//EF AB (如图②所示)所以180B BEF ∠+∠=︒(依据1)因为360B BED D ∠+∠+∠=︒(已知)所以360B BEF FED D ∠+∠+∠+∠=︒所以180FED D ∠+∠=︒所以//EF CD (依据2)因为//EF AB所以//AB CD (依据3)交流反思上述解答过程中的“依据1”,“依据2”,“依据3”分别指什么?“依据1”:________________________________;“依据2”:________________________________;“依据3”:________________________________.类比探究(2)如图,当B 、E ∠、F ∠、D ∠满足条件________时,有//AB CD .拓展延伸(3)如图,当B 、E ∠、F ∠、D ∠满足条件_________时,有//AB CD .25.(1)如图1,已知直线//m n ,在直线n 上取A B 、两点,C P 、为直线m 上的两点,无论点C P 、移动到任何位置都有:ABC S ____________ABP S △(填“>”、“<”或“=”)(2)如图2,在一块梯形田地上分别要种植大豆(空白部分)和芝麻(阴影部分),若想把种植大豆的两块地改为一块地,且使分别种植两种植物的面积不变,请问应该怎么改进呢?写出设计方案,并在图中画出相应图形并简述理由.(3)如图3,王爷爷和李爷爷两家田地形成了四边形DEFG ,中间有条分界小路(图中折线ABC ),左边区域为王爷爷的,右边区域为李爷爷的。
第五章相交线与平行线单元试卷综合测试(Word版 含答案)
第五章相交线与平行线单元试卷综合测试(Word版含答案)一、选择题1.如图,AB//CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°2.如图,DE经过点A,DE∥BC,下列说法错误的是()A.∠DAB=∠EAC B.∠EAC=∠CC.∠EAB+∠B=180°D.∠DAB=∠B3.如图,修建一条公路,从王村沿北偏东75︒方向到李村,从李村沿北偏西25︒方向到张村,从张村到杜村的公路平行从王村到李村的公路,则张杜两村公路与李张两村公路方向夹角的度数为().A.100︒B.80︒C.75︒D.50︒4.如图,直角三角形ABC的直角边AB=6,BC=8,将直角三角形ABC沿边BC的方向平移到三角形DEF的位置,DE交AC于点G,BE=2,三角形CEG的面积为13.5,下列结论:①三角形ABC平移的距离是4;②EG=4.5;③AD∥CF;④四边形ADFC的面积为6.其中正确的结论是A .①②B .②③C .③④D .②④5.如图,直线//m n ,在Rt ABC 中,90B ∠=︒,点A 落在直线m 上,BC 与直线n 交于点D ,若2130∠=︒,则1∠的度数为( ).A .30°B .40°C .50°D .65° 6.如图,AB ∥CD ,BF ,DF 分别平分∠ABE 和∠CDE ,BF ∥DE ,∠F 与∠ABE 互补,则∠F 的度数为A .30°B .35°C .36°D .45°7.如图,已知AB ∥CD, EF ∥CD ,则下列结论中一定正确的是( )A .∠BCD= ∠DCE;B .∠ABC+∠BCE+∠CEF=360︒;C .∠BCE+∠DCE=∠ABC+∠BCD;D .∠ABC+∠BCE -∠CEF=180︒. 8.下列命题中,其逆命题为真命题的是( )A .若a =b ,则a 2=b 2B .同位角相等C .两边和一角对应相等的两个三角形全等D .等腰三角形两底角不相等 9.如图,1∠与2∠是同位角的共有( )个A .1个B .2个C .3个D .4个10.交换下列命题的题设和结论,得到的新命题是假命题的是( )A .两直线平行,同位角相等B .相等的角是对顶角C .所有的直角都是相等的D .若a=b ,则a ﹣3=b ﹣3 11.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°12.如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,∠B =90°,AB =8,DH =3,平移距离为4,求阴影部分的面积为( )A .20B .24C .25D .26二、填空题13.如图, 已知//AB CF ,//CF DE , 90BCD ∠=︒,则D B ∠-∠=_________14.如果1∠的两边分别平行于2∠的两边,且1∠比2∠的2倍少30,则1∠=________.15.已知:如图放置的长方形ABCD 和等腰直角三角形EFG 中,∠F=90°,FE=FG=4cm ,AB=2cm ,AD=4cm ,且点F ,G ,D ,C 在同一直线上,点G 和点D 重合.现将△EFG 沿射线FC 向右平移,当点F 和点C 重合时停止移动.若△EFG 与长方形重叠部分的面积是4cm 2,则△EFG 向右平移了____cm .16.如图,将一张长方形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点C′、D′处,C′E 交AF 于点G ,若∠CEF=64°,则∠GFD′=_____________.17.如图,现给出下列条件:①∠1=∠2,②∠B =∠5,③∠3=∠4,④∠5=∠D ,⑤∠B+∠BCD =180°,其中能够得到AD ∥BC 的条件是______(填序号);能够得到AB ∥CD 的条件是_______.(填序号)18.如图,CB ∥OA ,∠B =∠A =100°,E 、F 在CB 上,且满足∠FOC =∠AOC ,OE 平分∠BOF ,若平行移动AC ,当∠OCA 的度数为_____时,可以使∠OEB =∠OCA .19.如图,∠AOB =60°,在∠AOB 的内部有一点P ,以P 为顶点,作∠CPD ,使∠CPD 的两边与∠AOB 的两边分别平行,∠CPD 的度数为_______度.20.观察下列图形:已知a b ,在第一个图中,可得∠1+∠2=180°,则按照以上规律:112n P P ∠+∠+∠++∠=…_________度.三、解答题21.如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)①如图1,∠DPC=度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①CPDBPN∠∠为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.22.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.23.为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手:①一条直线把平面分成2部分;②两条直线可把平面最多分成4部分;③三条直线可把平面最多分成7部分;④四条直线可把平面最多分成11部分;……把上述探究的结果进行整理,列表分析:直线条数把平面最多 分成的部分数 写成和的形式 12 1+1 24 1+1+2 37 1+1+2+3 411 1+1+2+3+4 … … …(1)当直线条数为5时,把平面最多分成____部分,写成和的形式:______;(2)当直线条数为10时,把平面最多分成____部分;(3)当直线条数为n 时,把平面最多分成多少部分?24.如图1,//,AB CD 直线MN 分别交AB CD 、于点,E F BEF ∠、与EFD ∠的角平分线交于点P EP ,与CD 交于点G GH EG ⊥,交MN 于H .(1)求证:// ;PF GH (2)如图2,连接PH K ,为GH 上一动点,PHK HPK PO ∠=∠,平分EPK ∠交MN 于,Q 则HPQ ∠的大小是否发生变化?若不变,求出其值;若改变,请说明理由.25.(1)方法感悟如图①所示,求证:BCF B F ∠=∠+∠.证明:过点C 作//CD EF//AB EF (已知)//CD AB ∴(平行于同一条直线的两条直线互相平行)1,2B F ∴∠=∠∠=∠(两直线平行,内错角相等 )12B F ∴∠+∠=∠+∠即BCF B F ∠=∠+∠(2)类比应用如图②所示,//,AB EF 求证:360B BCF F ∠+∠+∠=︒.证明:(3)拓展探究如图③所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可). 如图④所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可).26.如图1.已知直线AB ED .点C 为AB ,ED 内部的一个动点,连接CB ,CD ,作ABC ∠的平分线交直线ED 于点E ,作CDE ∠的平分线交直线BA 于点A ,BE 和DA 交于点F .(1)若180FDC ABC ∠+∠=︒,猜想AD 和BC 的位置关系,并证明;(2)如图2,在(1)的基础上连接CF ,则在点C 的运动过程中,当满足CF AB ∥且32CFB DCF ∠=∠时,求BCD ∠的度数. 27.将一副三角板中的两个直角顶点C 叠放在一起(如图①),其中30A ∠=︒,60B ∠=︒,45D E ∠=∠=︒.(1)猜想BCD ∠与ACE ∠的数量关系,并说明理由;(2)若3BCD ACE ∠=∠,求BCD ∠的度数;(3)若按住三角板ABC 不动,绕顶点C 转动三角DCE ,试探究BCD ∠等于多少度时//CE AB ,并简要说明理由.28.阅读材料(1),并利用(1)的结论解决问题(2)和问题(3).(1)如图1,AB ∥CD ,E 为形内一点,连结BE 、DE 得到∠BED ,求证:∠E =∠B +∠D 悦悦是这样做的:过点E 作EF ∥AB .则有∠BEF =∠B .∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠D .∴∠BEF +∠FED =∠B +∠D .即∠BED =∠B +∠D .(2)如图2,画出∠BEF 和∠EFD 的平分线,两线交于点G ,猜想∠G 的度数,并证明你的猜想.(3)如图3,EG 1和EG 2为∠BEF 内满足∠1=∠2的两条线,分别与∠EFD 的平分线交于点G 1和G 2,求证:∠FG 1E +∠G 2=180°.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由平行线的性质可得∠ADC=∠BAD=35°,再由垂线的定义可得△ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD的度数.【详解】∵AB∥CD,∠BAD=35°,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.2.A解析:A【分析】根据两直线平行,内错角相等、同旁内角互补逐一判断可得.【详解】解:∵DE∥BC,∴∠DAB=∠ABC(两直线平行,内错角相等),A选项错误、D选项正确;∠EAC=∠C(两直线平行,内错角相等),B选项正确;∠EAB+∠B=180°(两直线平行,同旁内角互补),C选项正确;故选A.【点睛】本题考查平行线的性质,解题关键是掌握两直线平行,内错角相等、同旁内角互补.3.B解析:B【分析】根据平行线同位角相等和同旁内角互补的性质,即可完成求解.【详解】∵王村沿北偏东75︒方向到李村∴175∠=∵从张村到杜村的公路平行从王村到李村的公路,且从李村沿北偏西25︒方向到张村 ∴()()2180125180752580∠=-∠+=-+=∴张杜两村公路与李张两村公路方向夹角的度数为80︒故选:B .【点睛】本题考查了方位角、平行线的知识;解题的关键是熟练掌握平行线同位角相等和同旁内角互补的性质,从而完成求解.4.B解析:B【解析】分析:(1)对应线段的长度即是平移的距离;(2)根据EC 的长和△CEG 的面积求EG ;(3)平移前后,对应点的连线平行且相等;(4)根据平行四边形的面积公式求.详解:(1)因为点B ,E 是对应点,且BE =2,所以△ABC 平行的距离是2,则①错误; ②根据题意得,13.5×2=(8-2)EG ,解得EG =4.5,则②正确;③因为A ,D 是对应点,C ,F 是对应点,所以AD ∥CF ,则③正确;④平行四边形ADFC 的面积为AB ·CF =AB ·BE =6×2=12,则④错误.故选B .点睛:本题考查了平移的性质,平移的性质有:①平移只改变图形的位置,不改变图形的形状和大小;②平移得到的图形与原图形中的对应线段平行(或在同一条直线上)且相等,对应角相等;对应点连线平行(或在同一条直线上)且相等.5.B解析:B【分析】由题意过点B 作直线//l m ,利用平行线的判定定理和性质定理进行分析即可得出答案.【详解】l m,解:如图,过点B作直线//l m,∵直线m//n,//l n,∴//∴∠2+∠3=180°,∵∠2=130°,∴∠3=50°,∵∠B=90°,∴∠4=90°-50°=40°,l m,∵//∴∠1=∠4=40°.故选:B.【点睛】本题主要考查平行线的性质定理和判定定理,熟练掌握两直线平行,平面内其外一条直线平行于其中一条直线则平行于另一条直线是解答此题的关键.6.C解析:C【解析】【分析】延长BG交CD于G,然后运用平行的性质和角平分线的定义,进行解答即可.【详解】解:如图延长BG交CD于G∵BF∥ED∴∠F=∠EDF又∵DF 平分∠CDE,∴∠CDE=2∠F,∵BF∥ED∴∠CGF=∠EDF=2∠F,∵AB∥CD∴∠ABF=∠CGF=2∠F,∵BF平分∠ABE∴∠ABE=2∠ABF=4∠F,又∵∠F 与∠ABE 互补∴∠F +∠ABE =180°即5∠F=180°,解得∠F=36°故答案选C.【点睛】本题考查了平行的性质和角平分线的定义,做出辅助线是解答本题的关键. 7.D解析:D【解析】分析:根据平行线的性质,找出图形中的同旁内角、内错角即可判断.详解:延长DC到H∵AB∥CD,EF∥CD∴∠ABC+∠BCH=180°∠ABC=∠BCD∠CE+∠DCE=180°∠ECH=∠FEC∴∠ABC+∠BCE+∠CEF=180°+∠FEC∠ABC+∠BCE -∠CEF=∠ABC+∠BCH+∠ECH-∠CEF=180°.点睛:此题主要考查了平行线的性质,关键是熟记平行线的性质:两直线平行,内错角相等,同旁内角互补,同位角相等.8.C解析:C【分析】根据互为逆命题的关系,将四个选项的题设和结论互换,逐一验证,A 是假命题,B 是假命题,C 是真命题,D 是假命题.故答案为C.【详解】根据互为逆命题的关系,题设和结论互换,可知:A 选项中,若a=b ,则a 2=b 2的逆命题为:若a 2=b 2,则a=b ,是假命题;B 选项中,同位角相等的逆命题为:相等的角是同位角,是假命题;C 选项中,两边和一角对应相等的两个三角形全等的逆命题是:全等三角形的对应边相等,对应角相等,是真命题;D 选项中,等腰三角形的两底角不相等的逆命题为:两个角不相等的三角形是等腰三角形,是假命题.故选C.【点睛】此题主要考查互为逆命题的关系,三角形的性质定理,熟练掌握即可得解.9.B解析:B【分析】根据同位角的概念对每个图形一一判断,选出正确答案即可.【详解】图1:1∠与2∠是同位角;图2:1∠与2∠不是同位角;图3:1∠与2∠不是同位角;图4:1∠与2∠是同位角;只有图1、图4中1∠与2∠是同位角.故选:B .【点睛】本题主要考查同位角的概念,熟记同位角的概念是解题关键.10.C【分析】写出原命题的逆命题,根据相关的性质、定义判断即可.【详解】解:交换命题A的题设和结论,得到的新命题是同位角相等,两直线平行是真命题;交换命题B的题设和结论,得到的新命题是对顶角相等是真命题;交换命题C的题设和结论,得到的新命题是所有的相等的角都是直角是假命题;交换命题D的题设和结论,得到的新命题是若a-3=b-3,则a=b是真命题,故选C.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.C解析:C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.12.D解析:D【解析】由平移的性质知,BE=4,DE=AB=8,可得HE=DE-DH=8-3=5,所以S四边形HDFC=S梯形ABEH=12(AB+EH)×BE=12(8+5)×4=26.故选D.二、填空题13.90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠解析:90°【分析】根据AB∥CF,可得出∠B和∠BCF的关系,根据CF∥DE,可得出∠FED和∠D的关系,合并即可得出∠D―∠B的大小【详解】∵AB∥CF,∴∠B=∠BCF∵CF∥DE∴∠FCD+∠D=180°∴∠FCD+∠D-∠B=180°-∠BCF,化简得:∠D-∠B=180°-(∠BCF+∠FCD)∵∠BCD=90°,∴∠BCF+∠FCD=90°∴∠D―∠B=90°故答案为:90°【点睛】本题考查平行线的性质,解题关键是将∠BCD分为∠BCF和∠FCD,然后利用平行线的性质进行角度转换.14.或【分析】由两个角的两边分别平行,画出图形可得这两个角相等或互补,依此列出方程,解方程即可得出结果.【详解】解:∵∠1比∠2的2倍少30°,∴∠1=2∠2-30°.根据∠1的两边与∠2的两解析:30或110【分析】由两个角的两边分别平行,画出图形可得这两个角相等或互补,依此列出方程,解方程即可得出结果.【详解】解:∵∠1比∠2的2倍少30°,∴∠1=2∠2-30°.根据∠1的两边与∠2的两边分别平行,分两种情况:如图①,根据平行可得,∠1=∠3,∠2=∠3,∴∠1=∠2,则2∠2-30°=∠2,解得∠2=30°,∴∠1=30°;如图②,根据平行可知,∠1=∠3,∠2+∠3=180°,∴∠1+∠2=180°,则2∠2-30°+∠2=180°,解得∠2=70°,∴∠1=110°.综上所述,∠1的度数为30°或110°.故答案为:30°或110°.【点睛】此题考查了平行线的性质.解题的关键是注意由两个角的两边分别平行,可得这两个角相等或互补,注意分类讨论思想的应用.15.3或2+【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=DG2=4,解得DG=,而DC<,故这种情况不成立;②如图解析:3或2+22【解析】分析:分三种情况讨论:①如图1,由平移的性质得到△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得DG=22DC<2,故这种情况不成立;②如图2,由平移的性质得到△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI,把各部分面积表示出来,解方程即可;③如图3,由平移的性质得到△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI,把各部分面积表示出来,解方程即可.详解:分三种情况讨论:①如图1.∵△EFG是等腰直角三角形,∴△HDG是等腰直角三角形,重合部分为△HDG,则重合面积=12DG2=4,解得:DG=2,而DC=2<2,故这种情况不成立;②如图2.∵△EFG是等腰直角三角形,∴△HDG、△CGI是等腰直角三角形,重合部分为梯形HDCI,则重合面积=S△HDG-S△CGI =12DG2-12CG2=4,即:12DG2-12(DG-2)2=4,解得:DG=3;③如图3.∵△EFG是等腰直角三角形,∴△CGI是等腰直角三角形,重合部分为梯形EFCI,则重合面积=S△EFG-S△CGI =12EF2-12CG2=4,即:12×42-12(DG-2)2=4,解得:DG=222+或222-(舍去).故答案为:3或222+.点睛:本题主要考查了平移的性质以及等腰三角形的知识,解题的关键是分三种情况作出图形,并表示出重合部分的面积.16.520【解析】因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠解析:520【解析】因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠EFD′-∠AFE=116°-64°=52°,故答案为52°.17.①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,解析:①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.18.60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答. 【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80解析:60°【分析】设∠OCA=a,∠AOC=x,利用三角形外角,内角和定理,平行线定理即可解答.【详解】解:设∠OCA=a,∠AOC=x,已知CB∥OA,∠B=∠A=100°,即a+x=80°,又因为∠OEB=∠EOC+∠ECO=40°+x.当∠OEB=∠OCA,a=80°-x,40°+x=a,解得∠OCA=60°.【点睛】本题考查角度变换和平行线定理的综合运用,熟悉掌握是解题关键.19.60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:(1)如图1,,(两直线平行,同位角相等),(两直线平行,内错解析:60或120【分析】根据题意分两种情况,如图所示(见解析),再分别根据平行线的性质即可得.【详解】由题意,分以下两种情况:PC OB PD OA,(1)如图1,//,//∴=∠=∠︒(两直线平行,同位角相等),AOBPDB60CPD∠︒(两直线平行,内错角相等);∴=∠=PDB60PC OB PD OA,(2)如图2,//,//∴=∠=∠︒(两直线平行,同位角相等),PDBAOB60∠=︒-∴∠=︒(两直线平行,同旁内角互补);DP D180120C P B∠的度数为60︒或120︒,综上,CPD故答案为:60或120.【点睛】本题考查了平行线的性质,依据题意,正确分两种情况讨论是解题关键.20.(n﹣1)×180【分析】分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=18解析:(n﹣1)×180【分析】分别过P1、P2、P3作直线AB的平行线P1E,P2F,P3G,由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180°于是得到∠1+∠2=10°,∠1+∠P1+∠2=2×180,∠1+∠P1+∠P2+∠2=3×180°,∠1+∠P1+∠P2+∠P3+∠2=4×180°,根据规律得到结果∠1+∠2+∠P1+…+∠P n=(n+1)×180°.【详解】解:如图,分别过P 1、P 2、P 3作直线AB 的平行线P 1E ,P 2F ,P 3G ,∵AB ∥CD ,∴AB ∥P 1E ∥P 2F ∥P 3G .由平行线的性质可得出:∠1+∠3=180°,∠5+∠6=180°,∠7+∠8=180°,∠4+∠2=180° ∴(1)∠1+∠2=180°,(2)∠1+∠P 1+∠2=2×180,(3)∠1+∠P 1+∠P 2+∠2=3×180°,(4)∠1+∠P 1+∠P 2+∠P 3+∠2=4×180°,∴∠1+∠2+∠P 1+…+∠P n =(n+1)×180°.故答案为:(n+1)×180.【点睛】本题考查的是平行线的性质,根据题意作出辅助线,利用两直线平行,同旁内角互补是解答此题的关键.三、解答题21.(1)①90;②t 为3s 或6s 或9s 或18s 或21s 或24s 或27s ;(2)①正确,②错误,证明见解析.【分析】(1)①由平角的定义,结合已知条件可得:180,DPC CPA DPB ∠=︒-∠-∠从而可得答案;②当//BD PC 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差求解旋转角,可得旋转时间;当//PA BD 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC DP 时,有两种情况,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BD 时,画出符合题意的图形,利用平行线的性质与角的和差关系求解旋转角,可得旋转时间;当//AC BP 时的旋转时间与//PA BD 相同;(2)分两种情况讨论:当PD 在MN 上方时,当PD 在MN 下方时,①分别用含t 的代数式表示,CPD BPN ∠∠,从而可得CPD BPN∠∠的值;②分别用含t 的代数式表示,CPD BPN ∠∠,得到BPN CPD ∠+∠是一个含t 的代数式,从而可得答案.【详解】解:(1)①∵∠DPC =180°﹣∠CPA ﹣∠DPB ,∠CPA =60°,∠DPB =30°,∴∠DPC =180﹣30﹣60=90°,故答案为90;②如图1﹣1,当BD ∥PC 时,∵PC∥BD,∠DBP=90°,∴∠CPN=∠DBP=90°,∵∠CPA=60°,∴∠APN=30°,∵转速为10°/秒,∴旋转时间为3秒;如图1﹣2,当PC∥BD时,PC BD∠PBD=90°,∵//,∴∠CPB=∠DBP=90°,∵∠CPA=60°,∴∠APM=30°,∵三角板PAC绕点P逆时针旋转的角度为180°+30°=210°,∵转速为10°/秒,∴旋转时间为21秒,如图1﹣3,当PA∥BD时,即点D与点C重合,此时∠ACP=∠BPD=30°,则AC∥BP,∵PA∥BD,∴∠DBP=∠APN=90°,∴三角板PAC绕点P逆时针旋转的角度为90°,∵转速为10°/秒,∴旋转时间为9秒,如图1﹣4,当PA∥BD时,∵∠DPB=∠ACP=30°,∴AC∥BP,∵PA∥BD,∴∠DBP=∠BPA=90°,∴三角板PAC绕点P逆时针旋转的角度为90°+180°=270°,∵转速为10°/秒,∴旋转时间为27秒,如图1﹣5,当AC∥DP时,∵AC∥DP,∴∠C=∠DPC=30°,∴∠APN=180°﹣30°﹣30°﹣60°=60°,∴三角板PAC绕点P逆时针旋转的角度为60°,∵转速为10°/秒,∴旋转时间为6秒,AC DP时,如图1﹣6,当//AC DP,//DPA PAC∴∠=∠=︒,90∠+∠=︒-︒+︒=︒,DPN DPA1803090240∴三角板PAC绕点P逆时针旋转的角度为240︒,∵转速为10°/秒,∴旋转时间为24秒,如图1﹣7,当AC∥BD时,∵AC∥BD,∴∠DBP=∠BAC=90°,∴点A在MN上,∴三角板PAC绕点P逆时针旋转的角度为180°,∵转速为10°/秒,∴旋转时间为18秒,当//AC BP时,如图1-3,1-4,旋转时间分别为:9s,27s.综上所述:当t为3s或6s或9s或18s或21s或24s或27s时,这两个三角形是“孪生三角形”;(2)如图,当PD在MN上方时,①正确,理由如下:设运动时间为t秒,则∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=30°﹣2t,∠APN=3t.∴∠CPD=180°﹣∠DPM﹣∠CPA﹣∠APN=90°﹣t,21802,BPN CPD t∴∠=∠=︒-∴1.2 CPD BPN∠=∠②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.当PD在MN下方时,如图,①正确,理由如下:设运动时间为t秒,则∠BPM=2t,∴∠BPN=180°﹣2t,∠DPM=230,t-︒∠APN=3t.∴∠CPD=360CPA APN DPB BPN︒-∠-∠-∠-∠() 360603301802t t=︒-︒--︒-︒-=90t︒-21802,BPN CPD t∴∠=∠=︒-∴1.2 CPD BPN∠=∠②∠BPN+∠CPD=180°﹣2t+90°﹣t=270°﹣3t,可以看出∠BPN+∠CPD随着时间在变化,不为定值,结论错误.综上:①正确,②错误.【点睛】本题考查的是角的和差倍分关系,平行线的性质与判定,角的动态定义(旋转角)的理解,掌握分类讨论的思想是解题的关键.22.见解析【解析】分析:(1)求出∠ADE+∠FEB=180°,根据平行线的判定推出即可;(2)根据角平分线定义得出∠BAD=∠CAD,推出HD∥AC,根据平行线的性质得出∠H=∠CGH,∠CAD=∠CGH,推出∠BAD=∠F即可.详解:(1)AD∥EF.理由如下:∵∠BDA+∠CEG=180°,∠ADB+∠ADE=180°,∠FEB+∠CEF=180°∴∠ADE+∠FEB=180°,∴AD∥EF;(2)∠F=∠H,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD.∵∠EDH=∠C,∴HD∥AC,∴∠H=∠CGH.∵AD∥EF,∴∠CAD=∠CGH,∴∠BAD=∠F,∴∠H=∠F.点睛:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较好的题目,难度适中.23.(1) 16; (2) 56; (3)(1)12n n+⎡⎤+⎢⎥⎣⎦部分【分析】(1)根据已知探究的结果可以算出当直线条数为5时,把平面最多分成16部分; (2)通过已知探究结果,写出一般规律,当直线为n 条时,把平面最多分成1+1+2+3+…+n ,求和即可.【详解】(1)16;1+1+2+3+4+5.(2)56.根据表中规律知,当直线条数为10时,把平面最多分成56部分,即1+1+2+3+…+10=56.(3)当直线条数为n 时,把平面最多分成1+1+2+3+…+n=(1)12n n +⎡⎤+⎢⎥⎣⎦部分. 【点睛】本题考查了图形的变化,通过直线分平面探究其中的隐含规律,运用了从特殊到一般的数学思想,解决此题关键是写出和的形式.24.(1)详见解析;(2)HPQ ∠的大小不发生变化,一直是45︒.【分析】(1)利用平行线的性质推知180BEF EFD ∠+∠=︒;然后根据角平分线的性质、三角形内角和定理证得90EPF ∠=︒,即EG PF ⊥,故结合已知条件GH EG ⊥,易证//PF GH ;(2)利用三角形外角定理、三角形内角和定理求得49039022∠=︒-∠=︒-∠;然后由邻补角的定义、角平分线的定义推知14522QPK EPK ∠=∠=︒+∠;最后根据图形中的角与角间的和差关系求得HPQ ∠的大小不变,是定值45︒.【详解】解:(1)证明:如图1,//AB CD ,180BEF EFD ∴∠+∠=︒.又BEF ∠与EFD ∠的角平分线交于点P ,1()902FEP EFP BEF EFD ∴∠+∠=∠+∠=︒, 90EPF ∴∠=︒,即EG PF ⊥.GH EG ⊥,//PF GH ∴;(2)HPQ ∠的大小不发生变化,理由如下:如图2,12∠=∠, 322∠=∠∴. 又GH EG ⊥,49039022∠=︒-∠=︒-∠∴.18049022EPK ∠=︒-∠=︒+∠∴.PQ ∵平分EPK ∠, 14522QPK EPK ∴∠=∠=︒+∠. ∴245HPQ QPK ∠=∠-∠=︒,∴HPQ ∠的大小不发生变化,一直是45︒.【点睛】本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////b c a c ⇒.25.(2)见解析;(2)BCF F B ∠=∠-∠,BCF B F ∠=∠-∠.【分析】(2)过点C 作CD ∥AB ,由平行线的性质,得到180B BCD ∠+∠=︒,180DCF F ∠+∠=︒,即可得到结论成立;(3)①过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案; ②过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案;【详解】()2证明:过点C 作//CD AB//AB EF (已知)//CD EF ∴(平行于同一条直线的两条直线互相平行)180,180B BCD DCF F ∴∠+∠=︒∠+∠=︒(两相线平行,同旁内角补),∵BCF BCD DCF ∠=∠+∠,∴360B BCF F ∠+∠+∠=︒;(3)①过点C 作//CD AB ,如图:∵AB ∥CD ∥EF ,∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,∵BCD BCF DCF ∠=∠+∠,∴BCF F B ∠=∠-∠;故答案为:BCF F B ∠=∠-∠;②过点C 作//CD AB ,如图:∵AB ∥CD ∥EF ,∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,∵BCD BCF DCF ∠+∠=∠,∴BCF B F ∠=∠-∠.故答案为:BCF B F ∠=∠-∠.【点睛】本题考查了平行线的判定和性质,解题的关键是熟练掌握题意,以及掌握平行线的判定和性质进行证明.26.(1)AD BC ∥,见解析;(2)108°【分析】(1)//AD BC ,根据角平分线的性质可知EDF FDC ∠=∠,又因为//AB ED ,因此EDF DAB ∠=∠,推出FDC DAB ∠=∠,再结合已知条件即可得出结论;(2)设DCF x ,则32CFB x ∠=,根据平行线的的性质有32ABF CFB x ∠=∠=,再根据角平分线性质可得23ABC ABF x ∠=∠=,又因为//AD BC ,推出3BCD ABC x ∠=∠=,2BCF x ∠=,由//CF AB 得180ABC BCF ∠+∠=︒,从而可解得x 的值,即可得出答案.【详解】解:(1)//AD BC .证明如下:∵//AB ED ,∴EDF DAB ∠=∠,∵DF 平分EDC ∠,∴EDF FDC ∠=∠,∴FDC DAB ∠=∠,∵180FDC ABC ∠+∠=︒,∴180DAB ABC ∠+∠=︒,∴//AD BC .(2)∵32CFB DCF ∠=∠, ∴设DCF x ,则32CFB x ∠=, ∵//CF AB , ∴32ABF CFB x ∠=∠=, ∵BE 平分ABC ∠,∴23ABC ABF x ∠=∠=,由(1)得//AD BC ,∴180FDC BCD ∠+∠=︒,∵180FDC ABC ∠+∠=︒,∴3BCD ABC x ∠=∠=,∴2BCF x ∠=,∵//CF AB ,∴180ABC BCF ∠+∠=︒,即32180x x +=︒,解得36x =︒,∴3108BCD x ∠==︒.【点睛】本题考查的主要知识点是平行线的判定及性质以及角平分线的性质,根据图形找准角与角之间的关系 是解此题的关键.27.(1)180BCD ACE ∠+∠=︒,理由详见解析;(2)135°;(3)BCD ∠等于150︒或30时,//CE AB .【分析】(1)依据∠BCD=∠ACB+∠ACD=90°+∠ACD ,即可得到∠BCD+∠ACE 的度数;(2)设∠ACE=α,则∠BCD=3α,依据∠BCD+∠ACE=180°,即可得到∠BCD 的度数; (3)分两种情况讨论,依据平行线的性质,即可得到当∠BCD 等于150°或30°时,CE//4B.【详解】解:(1)180BCD ACE ∠+∠=︒,理由如下:90BCD ACB ACD ACD ∠=∠+∠=︒+∠,∴90BCD ACE ACD ACE ∠+∠=︒+∠+∠9090180=︒+︒=︒;(2)如图①,设ACE α∠=,则3BCD α∠=,由(1)可得180BCD ACE ∠+∠=︒,∴3180αα+=︒,∴45α=,∴3135BCD α∠==︒;(3)分两种情况:①如图1所示,当//AB CE 时,180120BCE B ∠=︒-∠=︒, 又90DCE ∠=︒,∴36012090150BCD ∠=︒-︒-︒=︒;②如图2所示,当//AB CE 时,60BCE B ∠=∠=︒, 又90DCE ∠=︒,∴906030BCD ∠=︒-︒=︒.综上所述,BCD ∠等于150︒或30时,//CE AB .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.28.(2)∠EGF =90°;(3)详见解析.【解析】【分析】(2)如图2所示,猜想:∠EGF=90°;由结论(1)得∠EGF=∠BEG+∠GFD ,根据EG 、FG 分别平分∠BEF 和∠EFD ,得到∠BEF=2∠BEG ,∠EFD=2∠GFD ,由于BE ∥CF 到∠BEF+∠EFD=180°,于是得到2∠BEG+2∠GFD=180°,即可得到结论;(3)如图3,过点G 1作G 1H ∥AB 由结论(1)可得∠G 2=∠1+∠3,∠EG 1F=∠BEG 1+∠G 1FD ,得到∠3=∠G 2FD ,由于FG 2平分∠EFD 求得∠4=∠G 2FD ,由于∠1=∠2,于是得到∠G 2=∠2+∠4,由于∠EG 1F=∠BEG 1+∠G 1FD ,得到∠EG 1F+∠G 2=∠2+∠4+∠BEG 1+∠G 1FD=∠BEF+∠EFD ,然后根据平行线的性质即可得到结论.【详解】证明:(2)如图2所示,猜想:∠EGF =90°;由结论(1)得∠EGF =∠BEG+∠GFD ,∵EG 、FG 分别平分∠BEF 和∠EFD ,∴∠BEF =2∠BEG ,∠EFD =2∠GFD ,∵BE ∥CF ,∴∠BEF+∠EFD =180°,∴2∠BEG+2∠GFD =180°,∴∠BEG+∠GFD=90°,∵∠EGF=∠BEG+∠GFD,∴∠EGF=90°;(3)证明:如图3,过点G1作G1H∥AB,∵AB∥CD,∴G1H∥CD,由结论(1)可得∠G2=∠1+∠3,∠EG1F=∠BEG1+∠G1FD,∴∠3=∠G2FD,∵FG2平分∠EFD,∴∠4=∠G2FD,∵∠1=∠2,∴∠G2=∠2+∠4,∵∠EG1F=∠BEG1+∠G1FD,∴∠EG1F+∠G2=∠2+∠4+∠BEG1+∠G1FD=∠BEF+∠EFD,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EG1F+∠G2=180°.【点睛】本题考查了平行线的性质,角平分线的性质,熟练掌握平行线的性质定理是解题的关键.。
八年级数学第五章相交线与平行线单元测试卷综合测试卷(word含答案)
八年级数学第五章相交线与平行线单元测试卷综合测试卷(word 含答案)一、选择题1.如图,O 是直线AB 上一点,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,添加一个条件,仍不能判定AB ∥CD ,添加的条件可能是( )A .∠BOE =55°B .∠DOF =35°C .∠BOE +∠AOF =90°D .∠AOF =35° 2.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106°3.如图所示,下列说法不正确的是( )A .∠1和∠2是同旁内角B .∠1和∠3是对顶角C .∠3和∠4是同位角D .∠1和∠4是内错角 4.如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x z y5.如图所示,若AB ∥EF ,用含α、β、γ的式子表示x ,应为( )A .αβγ++B .βγα+-C .180αγβ︒--+D .180αβγ︒++-6.如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A .540°B .180°nC .180°(n-1)D .180°(n+1)7.三条互不重合的直线的交点个数可能是( )A .0,1,3B .0,2,3C .0,1,2,3D .0,1,28.已知两个角的两边两两互相平行,则这两个角的关系是( )A .相等B .互补C .相等或互补D .相等且互补9.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( )A .35°B .45°C .55°D .125°10.如图,下列说法错误的是( )A .若a∥b,b∥c,则a∥cB .若∠1=∠2,则a∥cC .若∠3=∠2,则b∥cD .若∠3+∠5=180°,则a∥c11.如图,一副直角三角板图示放置,点C 在DF 的延长线上,点A 在边EF 上,//AB CD ,90ACB EDF ∠=∠=︒,则CAF ∠=( )A.10︒B.15︒C.20︒D.25︒12.如图,若∠1=70°,∠2=110°,∠3=70°,则有().A.a∥b B.c∥d C.a⊥d D.任两条都无法判定是否平行二、填空题13.已知直线AB∥CD,点P、Q分别在AB、CD上,如图所示,射线PB按顺时针方向以每秒4°的速度旋转至PA便立即回转,并不断往返旋转;射线QC按顺时针方向每秒1°旋转至QD停止,此时射线PB也停止旋转.(1)若射线PB、QC同时开始旋转,当旋转时间30秒时,PB'与QC'的位置关系为_____;(2)若射线QC先转45秒,射线PB才开始转动,当射线PB旋转的时间为_____秒时,PB′∥QC′.14.如图,已知AD//BC,BD平分∠ABC,∠A=112°,且BD⊥CD,则∠ADC=_____.15.如图,△ABC的边长AB =3 cm,BC=4 cm,AC=2 cm,将△ABC沿BC方向平移a cm(a <4 cm),得到△DEF,连接AD,则阴影部分的周长为_______cm.16.如图①:MA1∥NA2,图②:MA11NA3,图③:MA1∥NA4,图④:MA1∥NA5,……,则第n 个图中的∠A 1+∠A 2+∠A 3+…+∠A n+1______.(用含n 的代数式表示)17.如图,把直角梯形ABCD 沿AD 方向平移到梯形EFGH ,28HG cm =,5MG cm =,4MC cm =,则阴影部分的面积是___18.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.19.如图,已知AB ,CD ,EF 互相平行,且∠ABE =70°,∠ECD =150°,则∠BEC =________°.20.如图,∠AOB =60°,在∠AOB 的内部有一点P ,以P 为顶点,作∠CPD ,使∠CPD 的两边与∠AOB 的两边分别平行,∠CPD 的度数为_______度.三、解答题21.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN ∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)22.已知:如图所示,直线MN ∥GH ,另一直线交GH 于A ,交MN 于B ,且∠MBA =80°,点C 为直线GH 上一动点,点D 为直线MN 上一动点,且∠GCD =50°.(1)如图1,当点C 在点A 右边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(2)如图2,当点C 在点A 右边且点D 在点B 右边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(3)当点C 在点A 左边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线所在直线交于点P ,请直接写出∠BPC 的度数,不说明理由.23.如图,直线MN ∥GH ,直线l 1分别交直线MN 、GH 于A 、B 两点,直线l 2分别交直线MN 、GH 于C 、D 两点,且直线l 1、l 2交于点E ,点P 是直线l 2上不同于C 、D 、E 点的动点.(1)如图①,当点P 在线段CE 上时,请直写出∠NAP 、∠HBP 、∠APB 之间的数量关系: ;(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 .24.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______. 问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.25.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.26.如图1,直线AB 与直线OC 交于点O ,()090BOC αα∠=︒<<.小明将一个含30的直角三角板PQD 如图1所示放置,使顶点P 落在直线AB 上,过点Q 作直线MN AB 交直线OC 于点H (点H 在Q 左侧).(1)若PD OC ∥,45NQD ∠=︒,则α=__________︒.(2)若PQH ∠的角平分线交直线AB 于点E ,如图2.①当QE OC ∥,60α=︒时,求证:OC PD . ②小明将三角板保持PD OC ∥并向左平移,运动过程中,PEQ ∠=__________.(用α表示). 27.在△ABC 中,∠BAC =90°,点D 是BC 上一点,将△ABD 沿AD 翻折后得到△AED ,边AE 交BC 于点F .(1)如图①,当AE ⊥BC 时,写出图中所有与∠B 相等的角: ;所有与∠C 相等的角: .(2)若∠C -∠B =50°,∠BAD =x °(0<x ≤45) .① 求∠B 的度数;②是否存在这样的x 的值,使得△DEF 中有两个角相等.若存在,并求x 的值;若不存在,请说明理由.28.如图`,已知:直线AD BC ∥,且直线AB 、CD 与AD 、BC 分别交于A 、D 和B 、C 两点,点P 在直线AB 上.∠、(1)如图1,当点P在A、B两点之间时(点P不与点A、B重合),探究ADP、DPC ∠之间的关系,并说明理由.BCP∠、(2)若点P不在A、B两点之间,在备用图中画出图形,直接写出ADP、DPC∠之间的关系,不需说理.BCP【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定定理判断即可.【详解】解:∵OE平分∠BOD,∠BOE=55°,∴∠BOD=2∠BOE=110°,∵∠D=110°,∴∠BOD=∠D,∴CD∥AB,故A不符合题意;∵OF⊥OE,∴∠FOE=90°,∠DOF=35°,∴∠DOE=55°,∵OE平分∠BOD,∴∠DOB=2∠DOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故B不符合题意;∵∠BOE+∠AOF=90°,∴∠EOF=90°,但不能判断AB∥CD,故C符合题意;∵OF⊥OE,∴∠FOE=90°,∠AOF=35°,∴∠BOE=55°,∵OE平分∠BOD,∴∠DOB=2∠BOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故D不符合题意;故选:C.【点睛】本题考查了角平分线的性质和平行线的判定定理,熟练掌握平行线的判定定理即可得到结论.2.D解析:D【解析】分析:由折叠可得:∠DGH=12∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.详解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得:∠DGH=12∠DGE=74°.∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°.故选D.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.3.A解析:A【分析】根据对顶角、邻补角、同位角、内错角定义判断即可.【详解】A. ∠1和∠2是邻补角,故此选项错误;B. ∠1和∠3是对顶角,此选项正确;C. ∠3和∠4是同位角,此选项正确;D. ∠1和∠4是内错角,此选项正确;故选A.【点睛】此题考查对顶角,邻补角,同位角,内错角,同旁内角,解题关键在于掌握各性质定义. 4.B解析:B【分析】根据平行线的性质可得∠CEF=180°-y,x=z+∠CEF,利用等量代换可得x=z+180°-y,再变形即可.【详解】解:∵CD∥EF,∴∠C+∠CEF=180°,∴∠CEF=180°-y,∵AB∥CD,∴x=z+∠CEF,∴x=z+180°-y,∴x+y-z=180°,故选:B.5.C解析:C【分析】过C作CD∥AB,过M作MN∥EF,推出AB∥CD∥MN∥EF,根据平行线的性质得出α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,求出∠BCD=180°-α,∠DCM=∠CMN=β-γ,即可得出答案.【详解】过C作CD∥AB,过M作MN∥EF,∵AB∥EF,∴AB∥CD∥MN∥EF,∴α+∠BCD=180°,∠DCM=∠CMN,∠NMF=γ,∴∠BCD=180°-α,∠DCM=∠CMN=β-γ,︒--+,∴x=∠BCD+∠DCM=180αγβ故选:C.【点睛】本题考查了平行线的性质的应用,主要考查了学生的推理能力.6.C解析:C根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,由两直线平行,同旁内角互补,即可求出答案.【详解】解:根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,∵1n //AB CB ,∴121180B B D ∠+∠=︒,2323180DB B B B E ∠+∠=︒,3434180EB B B B F ∠+∠=︒,……∴122323343411803B B D DB B B B E EB B B B F ∠+∠+∠+∠+∠+∠=︒⨯,……∴123180(1)n n ∠+∠+∠++∠=︒⨯-;故选:C .【点睛】本题考查了平行线的性质,解题的关键是正确作出辅助线,熟练运用两直线平行同旁内角互补进行证明. 7.C解析:C【解析】分四种情况:①三条直线平行,有0个交点;②三条直线相交于同一点,有1个交点;③一条直线截两条平行线有2个交点;④三条直线两两相交有3个交点.故选C . 点睛:本题没有明确平面上三条不重合直线的相交情况,需要运用分类讨论思想,解答时要分各种情况解答,要考虑到可能出现的所有情形,不要遗漏,否则讨论的结果就不全面.8.C解析:C【解析】分类讨论:两个角的两边方向是否相同.若相同,则相等;否则互补.故选C. 9.C解析:C【解析】试题分析:根据图示可得:∠1和∠2是同位角,根据两直线平行,同位角相等可得:∠2=∠1=55°.考点:平行线的性质10.C解析:C试题分析:根据平行线的判定进行判断即可.解:A 、若a ∥b ,b ∥c ,则a ∥c ,利用了平行公理,正确;B 、若∠1=∠2,则a ∥c ,利用了内错角相等,两直线平行,正确;C 、∠3=∠2,不能判断b ∥c ,错误;D 、若∠3+∠5=180°,则a ∥c ,利用同旁内角互补,两直线平行,正确;故选C .考点:平行线的判定.11.B解析:B【分析】根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章相交线与平行线单元试卷测试卷(word版,含解析)一、选择题1.如图,A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n.则下列说法正确的是()A.AC=BP B.△ABC的周长等于△BCP的周长C.△ABC的面积等于△ABP的面积D.△ABC的面积等于△PBC的面积2.如图,O是直线AB上一点,OE平分∠BOD,OF⊥OE,∠D=110°,添加一个条件,仍不能判定AB∥CD,添加的条件可能是()A.∠BOE=55°B.∠DOF=35°C.∠BOE+∠AOF=90°D.∠AOF=35°3.如图,修建一条公路,从王村沿北偏东75︒方向到李村,从李村沿北偏西25︒方向到张村,从张村到杜村的公路平行从王村到李村的公路,则张杜两村公路与李张两村公路方向夹角的度数为().A.100︒B.80︒C.75︒D.50︒∥,只需要添加一个条件,这个条件可以是4.如图,在四边形ABCD中,要得到AB CD()A .13∠=∠B .24∠∠=C .BD ∠=∠ D .12180B ∠+∠+∠=︒5.下列说法中,正确的有( )①等腰三角形的两腰相等; ②等腰三角形底边上的中线与底边上的高相等; ③等腰三角形的两底角相等; ④等腰三角形两底角的平分线相等.A .1个B .2个C .3个D .4个6.如图,AB ∥CD ,BC 平分∠ABD ,∠1=50°,则∠2的度数是( )A .50B .60C .70D .807.如图,下列推理所注的理由正确的是( )A .∵AB CD ∥,∴ ∠1=∠2(内错角相等,两直线平行)B .∵∠3=∠4,∴ AB CD ∥(内错角相等,两直线平行)C .∵AB CD ∥,∴∠3=∠4(两直线平行,内错角相等)D .∵∠1=∠2,∴ AB CD ∥(内错角相等,两直线平行)8.下列说法:①两点确定一条直线;②连接两点的线段叫做两点的距离;③两点之间,线段最短;④由两条射线组成的图形叫做角;⑤若AB =BC ,则点B 是线段AC 的中点.其中正确的有( )A .1个B .2个C .3个D .4个9.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°10.如图是郝老师的某次行车路线,总共拐了三次弯,最后行车路线与开始的路线是平行的,已知第一次转过的角度120︒,第三次转过的角度135︒,则第二次拐弯的角度是( )A .75︒B .120︒C .135︒D .无法确定11.如图,若∠1=70°,∠2=110°,∠3=70°,则有( ).A .a ∥bB .c ∥dC .a ⊥dD .任两条都无法判定是否平行 12.如图,直线l 与直线AB 、CD 分别相交于点E 、点F ,EG 平分BEF ∠交直线CD 与点G ,若168BEF ∠=∠=︒,则EGF ∠的度数为( ).A .34°B .36°C .38°D .68°二、填空题13.如果1∠的两边分别平行于2∠的两边,且1∠比2∠的2倍少30,则1∠=________.14.某段铁路两旁安置了两座可旋转探照灯,主道路是平行,即PQ ∥MN . 如图所示,灯A 射线从AM 开始顺时针旋转至AN 便立即回转,灯B 射线从BP 开始顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 转动的速度是每秒2度,灯B 转动的速度是每秒1度. 若灯B 射线先转动30秒,灯A 射线才开始转动,在灯B 射线到达BQ 之前,A 灯转动_________秒,两灯的光束互相平行.15.如图,AB //CD BED 110BF ,,∠=平分ABE DF ∠,平分CDE ∠,则BFD ∠= ______ .16.如图,将一张长方形纸片ABCD 沿EF 折叠,使顶点C ,D 分别落在点C′、D′处,C′E 交AF 于点G ,若∠CEF=64°,则∠GFD′=_____________.17.如图,长方形ABCD 的周长为30,则图中虚线部分总长为____________.18.如图,点A 、B 为定点,直线l ∥AB,P 是直线l 上一动点,对于下列各值:①线段AB 的长;②△PAB 的周长;③△PAB 的面积;④∠APB 的度数,其中不会随点P 的移动而变化的是(填写所有正确结论的序号)______________.19.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.20.如图,//AB CD ,GF 与AB 相交于点H ,与CD 于F ,FE 平分HFD ∠,若50EHF ∠=︒,则HFE ∠的度数为______.三、解答题21.问题情境(1)如图1,已知AB ∥CD ,∠PBA =125°,∠PCD =155°,求∠BPC 的度数.佩佩同学的思路:过点P 作PG ∥AB ,进而PG ∥CD ,由平行线的性质来求∠BPC ,求得∠BPC =问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,∠ACB =90°,DF ∥CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记∠PED =∠α,∠PAC =∠β.①如图2,当点P 在C ,D 两点之间运动时,请直接写出∠APE 与∠α,∠β之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,∠APE 与∠α,∠β之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若∠PED ,∠PAC 的角平分线EN ,AN 相交于点N ,请直接写出∠ANE 与∠α,∠β之间的数量关系.22.如图,//AB CD ,EG 平分DEF ∠,FG 平分BFE ∠.(1)求证:90EFG GEF ∠+∠=︒;(2)在(1)问的条件下,过点G 作GH AB ⊥,垂足为H ,FGH ∠的平分线GI 交AB 于点I ,EGH ∠的平分线GJ 交AB 于点J ,求IGJ ∠的度数.23.如图,已知:点A C 、、B 不在同一条直线,AD BE . (1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有AC QB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.24.(1)方法感悟如图①所示,求证:BCF B F ∠=∠+∠.证明:过点C 作//CD EF//AB EF (已知)//CD AB ∴(平行于同一条直线的两条直线互相平行)1,2B F ∴∠=∠∠=∠(两直线平行,内错角相等 )12B F ∴∠+∠=∠+∠即BCF B F ∠=∠+∠(2)类比应用如图②所示,//,AB EF 求证:360B BCF F ∠+∠+∠=︒.证明:(3)拓展探究如图③所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可). 如图④所示,//,AB EF BCF ∠与B F ∠∠、的关系是 (直接写出结论即可).25.如图,已知C 为两条相互平行的直线AB ,ED 之间一点,ABC ∠和CDE ∠的角平分线相交于F ,180FDC ABC ∠+∠=︒.(1)求证://AD BC ;(2)连结CF ,当//CF AB ,且32CFB DCF ∠=∠时,求BCD ∠的度数;(3)若DCF CFB ∠=∠时,将线段BC 沿直线AB 方向平移,记平移后的线段为PQ (B ,C 分别对应P ,Q ,当20PQD QDC ∠-∠=︒时,请直接写出DQP ∠的度数______.26.如图,已知直线12//l l ,直线3l 交1l 于C 点,交2l 于D 点,P 是线段CD 上的一个动点,(1)若P 点在线段CD (C 、D 两点除外)上运动,问PAC ∠,APB ∠,PBD ∠之间的关系是什么?这种关系是否变化?(2)若P 点在线段CD 之外时,PAC ∠,APB ∠,PBD ∠之间的关系怎样?说明理由27.如图`,已知:直线AD BC ∥,且直线AB 、CD 与AD 、BC 分别交于A 、D 和B 、C 两点,点P 在直线AB 上.∠、(1)如图1,当点P在A、B两点之间时(点P不与点A、B重合),探究ADP、DPC ∠之间的关系,并说明理由.BCP∠、(2)若点P不在A、B两点之间,在备用图中画出图形,直接写出ADP、DPC∠之间的关系,不需说理.BCP28.在平面直角坐标系中,如图1,将线段AB平移至线段CD,连接AC、BD.(1)已知A(﹣3,0)、B(﹣2,﹣2),点C在y轴的正半轴上,点D在第一象限内,且三角形ACO的面积是6,求点C、D的坐标;(2)如图2,在平面直角坐标系中,已知一定点M(1,0),两个动点E(a,2a+1)、F (b,﹣2b+3).①请你探索是否存在以两个动点E、F为端点的线段EF平行于线段OM且等于线段OM,若存在,求出点E、F两点的坐标;若不存在,请说明理由;②当点E、F重合时,将该重合点记为点P,另当过点E、F的直线平行于x轴时,是否存在△PEF的面积为2?若存在,求出点E、F两点的坐标;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据平行线之间的距离及三角形的面积即可得出答案.【详解】解:∵A、P是直线m上的任意两个点,B、C是直线n上的两个定点,且直线m∥n,根据平行线之间的距离相等可得:△ABC与△PBC是同底等高的三角形,故△ABC的面积等于△PBC的面积.故选D.【点睛】本题考查平行线之间的距离;三角形的面积.2.C解析:C【分析】根据平行线的判定定理判断即可.【详解】解:∵OE平分∠BOD,∠BOE=55°,∴∠BOD=2∠BOE=110°,∵∠D=110°,∴∠BOD=∠D,∴CD∥AB,故A不符合题意;∵OF⊥OE,∴∠FOE=90°,∠DOF=35°,∴∠DOE=55°,∵OE平分∠BOD,∴∠DOB=2∠DOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故B不符合题意;∵∠BOE+∠AOF=90°,∴∠EOF=90°,但不能判断AB∥CD,故C符合题意;∵OF⊥OE,∴∠FOE=90°,∠AOF=35°,∴∠BOE=55°,∵OE平分∠BOD,∴∠DOB=2∠BOE=110°,∵∠D=110°,∴∠DOB=∠D,∴AB∥CD,故D不符合题意;故选:C.【点睛】本题考查了角平分线的性质和平行线的判定定理,熟练掌握平行线的判定定理即可得到结论.3.B解析:B【分析】根据平行线同位角相等和同旁内角互补的性质,即可完成求解.【详解】∵王村沿北偏东75︒方向到李村∴175∠=∵从张村到杜村的公路平行从王村到李村的公路,且从李村沿北偏西25︒方向到张村 ∴()()2180125180752580∠=-∠+=-+=∴张杜两村公路与李张两村公路方向夹角的度数为80︒故选:B .【点睛】本题考查了方位角、平行线的知识;解题的关键是熟练掌握平行线同位角相等和同旁内角互补的性质,从而完成求解.4.B解析:B【解析】A 不可以;∵∠1=∠3,∴AD ∥BC(内错角相等,两直线平行),不能得出AB ∥CD ,∴A 不可以;B 可以;∵∠2=∠4,∴AB ∥CD(内错角相等,两直线平行);∴B 可以;C 、D 不可以;∵∠B=∠D,不能得出AB ∥CD ;∵∠1+∠2+∠B=180°,∴AD∥BC(同旁内角互补,两直线平行),不能得出AB∥BC;∴C、D不可以;故选B.5.D解析:D【解析】分析:等腰三角形中顶角平分线,底边中线及高互相重合,即三线合一,两腰上的角平分线、中线及高都相等.详解:①等腰三角形的两腰相等;正确;②等腰三角形底边上的中线与底边上的高相等;正确;③等腰三角形的两底角相等;正确;④等腰三角形两底角的平分线相等.正确.故选D.点睛:本题主要考查了等腰三角形的性质以及命题与定理的概念,能够熟练掌握.6.D解析:D【分析】利用角平分线和平行的性质即可求出.【详解】∵AB∥CD∴∠ABC=∠1=50°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=100°,∴∠BDC=180°-∠ABD=80°,∴∠2=∠BDC=80°.故选D.【点睛】本题考查的是平行,熟练掌握平行的性质和角平分线的性质是解题的关键.7.D解析:D【分析】根据平行线的性质定理和判定定理,即可作出判断.【详解】解:A、∵AB∥CD,∴∠1=∠2(两直线平行,内错角相等),所以原题错误;B、∵∠3=∠4,∴AD∥BC,故选项错误;C、∠3和∠4不是AB和CD被直线所截形成的角,故选项错误;D、正确.故选D.【点睛】本题考查平行线的性质定理和判定定理,正确理解同位角、内错角的定义是关键.8.B解析:B【解析】分析:根据直线公理对①进行判断;根据两点之间的距离的定义对②进行判断;根据线段公理对③进行判断;根据角的定义对④进行判断;根据线段的中点的定义对⑤进行判断.详解:根据直线公理:两点确定一条直线,所以①正确;连接两点的线段的长度叫做两点的距离,所以②错误;两点之间,线段最短,所以③正确;有一个公共端点的两条射线组成的图形叫做角,所以④错误;若AB=BC,且B点在AB上,则点B是AC的中点,所以⑤错误.故选B.点睛:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质10.A解析:A【解析】分析:根据两直线平行,内错角相等,得到∠BFD的度数,进而得出∠CFD的度数,再由三角形外角的性质即可得到结论.详解:如图,延长ED交BC于F.∵DE∥AB,∴∠DFB=∠ABF=120°,∴∠CFD=60°.∵∠CDE=∠C+∠CFD,∴∠C=∠CDE-∠CFD=135°-60°=75°.故选A.点睛:本题考查了平行线的性质及三角形外角的性质.解题的关键是理解题意,灵活应用平行线的性质解决问题,属于中考常考题型.11.A解析:A【详解】解:∵∠4=∠1=70°,∠2=110°,∴∠4+∠2=180°;∴a∥b.∵∠2≠∠3,∴c与d不平行.故选A.12.A解析:A【分析】由角平分线的性质可得∠GEB=12∠BEF=34°,由同位角相等,两直线平行可得CD∥AB,即可求解.【详解】∵EG平分∠BEF,∴∠GEB=12∠BEF=34°,∵∠1=∠BEF=68°,∴CD∥AB,∴∠EGF=∠GEB=34°,故选:A.【点睛】本题考查了平行线的判定和性质,角平分线的定义,灵活运用这些性质进行推理是本题的关键.二、填空题13.或【分析】由两个角的两边分别平行,画出图形可得这两个角相等或互补,依此列出方程,解方程即可得出结果.【详解】解:∵∠1比∠2的2倍少30°,∴∠1=2∠2-30°.根据∠1的两边与∠2的两解析:30或110【分析】由两个角的两边分别平行,画出图形可得这两个角相等或互补,依此列出方程,解方程即可得出结果.【详解】解:∵∠1比∠2的2倍少30°,∴∠1=2∠2-30°.根据∠1的两边与∠2的两边分别平行,分两种情况:如图①,根据平行可得,∠1=∠3,∠2=∠3,∴∠1=∠2,则2∠2-30°=∠2,解得∠2=30°,∴∠1=30°;如图②,根据平行可知,∠1=∠3,∠2+∠3=180°,∴∠1+∠2=180°,则2∠2-30°+∠2=180°,解得∠2=70°,∴∠1=110°.综上所述,∠1的度数为30°或110°.故答案为:30°或110°.【点睛】此题考查了平行线的性质.解题的关键是注意由两个角的两边分别平行,可得这两个角相等或互补,注意分类讨论思想的应用.14.30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当解析:30或110【分析】分两种情况讨论:两束光平行;两束光重合之后(在灯B射线到达BQ之前)平行,然后利用平行线的性质求解即可.【详解】解:设灯转动t秒,两灯的光束互相平行,即AC∥BD,①当0<t≤90时,如图1所示:∵PQ∥MN,则∠PBD=∠BDA,∵AC∥BD,则∠CAM=∠BDA,∴∠PBD=∠CAM有题意可知:2t=30+t解得:t=30,②当90<t<150时,如图2所示:∵PQ∥MN,则∠PBD+∠BDA=180°,∵AC∥BD,则∠CAN=∠BDA,∴∠PBD+∠CAN=180°,∴30+t+(2t-180)=180解得:t=110综上所述,当t=30秒或t=110秒时,两灯的光束互相平行.故答案为:30或110【点睛】本题主要考查补角、角的运算、平行线的性质的应用,解题的关键是熟练掌握平行线的性质,注意分两种情况谈论.15.【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=25解析:125【解析】【分析】首先过点E作EM∥AB,过点F作FN∥AB,由AB∥CD,即可得EM∥AB∥CD∥FN,然后根据两直线平行,同旁内角互补,由∠BED=110°,即可求得∠ABE+∠CDE=250°,又由BF平分∠ABE,DF平分∠CDE,根据角平分线的性质,即可求得∠ABF+∠CDF的度数,又由两只线平行,内错角相等,即可求得∠BFD的度数.【详解】过点E作EM∥AB,过点F作FN∥AB,∵AB∥CD,∴EM∥AB∥CD∥FN,∴∠ABE+∠BEM=180°,∠CDE+∠DEM=180°,∴∠ABE+∠BED+∠CDE=360°,∵∠BED=110°,∴∠ABE+∠CDE=250°,∵BF平分∠ABE,DF平分∠CDE,∴∠ABF=12∠ABE,∠CDF=12∠CDE,∴∠ABF+∠CDF=12(∠ABE+∠CDE)=125°,∵∠DFN=∠CDF,∠BFN=∠ABF,∴∠BFD=∠BFN+∠DFN=∠ABF+∠CDF=125°.故答案为125°【点睛】此题考查了平行线的性质与角平分线的定义.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.16.520【解析】因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠解析:520【解析】因为AD∥BC,所以∠CEF=∠AFE=64°,∠DFE=180°-∠CEF=180°-64°=116°,由折叠得∠EFD=∠EFD′,所以∠EFD′=116°,所以∠GFD′=∠EFD′-∠AFE=116°-64°=52°,故答案为52°.17.15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:130152AB BC+=⨯=.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.18.①③【分析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长解析:①③【分析】求出AB长为定值,P到AB的距离为定值,再根据三角形的面积公式进行计算即可;根据运动得出PA+PB不断发生变化、∠APB的大小不断发生变化.【详解】解:∵A、B为定点,∴AB长为定值,∴①正确;∵点A,B为定点,直线l∥AB,∴P到AB的距离为定值,故△APB的面积不变,∴③正确;当P点移动时,PA+PB的长发生变化,∴△PAB的周长发生变化,∴②错误;当P点移动时,∠APB发生变化,∴④错误;故选A.【点睛】本题考查了平行线的性质,等底等高的三角形的面积相等,平行线间的距离的运用,熟记定理是解题的关键.19.【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35解析:035【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.20.65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵∴∠EHF+∠HFD=180°∵∴∠HFD=130°∵平分,∴∠HFE=∠HFD=解析:65°【分析】由AB//CD 可得∠HFD=130︒,再由FE 平分∠HFD 可求出∠HFE .【详解】∵//AB CD∴∠EHF+∠HFD=180°∵50EHF ∠=︒∴∠HFD=130°∵FE 平分HFD ∠,∴∠HFE=12∠HFD=1130652⨯︒=︒ 故答案为:65°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,熟练掌握平行线的性质以及角平分线的定义是解题的关键.三、解答题21.(1)80°;(2)①∠APE =∠α+∠β;②∠APE =∠β﹣∠α,理由见解析;(3)∠ANE =12(∠α+∠β) 【分析】(1)过点P 作PG ∥AB ,则PG ∥CD ,由平行线的性质可得∠BPC 的度数;(2)①过点P 作FD 的平行线,依据平行线的性质可得∠APE 与∠α,∠β之间的数量关系;②过P作PQ∥DF,依据平行线的性质可得∠β=∠QPA,∠α=∠QPE,即可得到∠APE=∠APQ﹣∠EPQ=∠β﹣∠α;(3)过P和N分别作FD的平行线,依据平行线的性质以及角平分线的定义,即可得到∠ANE与∠α,∠β之间的数量关系为∠ANE=12(∠α+∠β).【详解】解:(1)如图1,过点P作PG∥AB,则PG∥CD,由平行线的性质可得∠B+∠BPG=180°,∠C+∠CPG=180°,又∵∠PBA=125°,∠PCD=155°,∴∠BPC=360°﹣125°﹣155°=80°,故答案为:80°;(2)①如图2,∠APE与∠α,∠β之间的数量关系为∠APE=∠α+∠β;理由如下:作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA,∠α=∠QPE,∴∠APE=∠APQ+∠EPQ=∠β+∠α;②如图3,∠APE与∠α,∠β之间的数量关系为∠APE=∠β﹣∠α;理由如下:过P作PQ∥DF,∵DF∥CG,∴PQ∥CG,∴∠β=∠QPA ,∠α=∠QPE ,∴∠APE =∠APQ ﹣∠EPQ =∠β﹣∠α;(3)如图4,∠ANE 与∠α,∠β之间的数量关系为∠ANE =12(∠α+∠β).理由如下:作NQ ∥DF ,∵DF ∥CG ,∴NQ ∥CG ,∴∠DEN =∠QNE ,∠CAN =∠QNA ,∵EN 平分∠DEP ,AN 平分∠CAP ,∴∠DEN =12∠α,∠CAN =12∠β, ∴∠QNE =12∠α,∠QNA =12∠β, ∴∠ANE =∠QNE +∠QNA =12∠α+12∠β=12(∠α+∠β); 【点睛】本题主要考查了平行线的判定和性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论.22.(1)证明见解析;(2)45IGJ ∠=︒.【分析】(1)根据平行线的性质可得180DEF BFE ∠+∠=︒,再利用角平分线的定义即可得证; (2)过点G 作//GK AB ,则////AB GK CD ,根据平行线的性质可得DEG EGK ∠=∠,KGF GFB ∠=∠,再结合(1)的结论易得90EGK KGF ∠+∠=︒,利用角平分线的定义及垂线的定义即可求解.【详解】(1)证明:∵//AB CD ,∴180DEF BFE ∠+∠=︒.∵EG 平分DEF ∠,FG 平分BFE ∠,∴22DEF GEF DEG ∠=∠=∠,22BFE EFG GFB ∠=∠=∠,∴22180GEF EFG ∠+∠=︒,∴90EFG GEF ∠+∠=︒.(2)解:过点G 作//GK AB .∵//AB CD ,∴////AB GK CD ,∴DEG EGK ∠=∠,KGF GFB ∠=∠.由(1)得90DEG GFB ∠+∠=︒,∴90EGK KGF ∠+∠=︒.∵GH AB ⊥,∴GH KG ⊥,即90KGH KGF HGF ∠=∠+∠=︒,∴EGK HGF ∠=∠.∵GJ 平分EGH ∠,∴EGJ HGJ ∠=∠.又KGJ EGJ EGK ∠=∠-∠,FGJ HGJ HGF ∠=∠-∠,∴KGJ FGJ ∠=∠,∴2KGF FGJ ∠=∠.∵GI 平分HGF ∠,∴2HGF FGI ∠=∠,∴2290FGJ FGI ∠+∠=︒,即45FGJ FGI ∠+∠=︒,∴45IGJ FGJ FGI ∠=∠+∠=︒.【点睛】本题考查平行线的性质、角平分线的定义等内容,掌握平行线的性质是解题的关键.23.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒ (2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.24.(2)见解析;(2)BCF F B ∠=∠-∠,BCF B F ∠=∠-∠.【分析】(2)过点C 作CD ∥AB ,由平行线的性质,得到180B BCD ∠+∠=︒,180DCF F ∠+∠=︒,即可得到结论成立;(3)①过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案; ②过点C 作CD ∥AB ,由平行线的性质和(2)的证明方法,即可得到答案;【详解】()2证明:过点C 作//CD AB//AB EF (已知)//CD EF ∴(平行于同一条直线的两条直线互相平行)180,180B BCD DCF F ∴∠+∠=︒∠+∠=︒(两相线平行,同旁内角补),∵BCF BCD DCF ∠=∠+∠,∴360B BCF F ∠+∠+∠=︒;(3)①过点C 作//CD AB ,如图:∵AB ∥CD ∥EF ,∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,∵BCD BCF DCF ∠=∠+∠,∴BCF F B ∠=∠-∠;故答案为:BCF F B ∠=∠-∠;②过点C 作//CD AB ,如图:∵AB ∥CD ∥EF ,∴180,180B BCD DCF F ∠+∠=︒∠+∠=︒,∵BCD BCF DCF ∠+∠=∠,∴BCF B F ∠=∠-∠.故答案为:BCF B F ∠=∠-∠.【点睛】本题考查了平行线的判定和性质,解题的关键是熟练掌握题意,以及掌握平行线的判定和性质进行证明.25.(1)证明见解析;(2)∠BCD =108°;(3)70°【分析】(1)根据两直线平行,内错角相等得出∠EDF =∠DAB ,由角平线的定义得出∠EDF =∠FDC ,最后根据同旁内角互补,两直线平行进行求证;(2)设∠DCF =x ,则∠CFB =1.5x ,由两直线平行,内错角相等得出∠ABF =1.5x ,由角平分线的定义得出∠ABC =3x ,最后利用两直线平行,同旁内角互补得出关于x 的方程,求解即可;(3)画出图形,根据两直线平行,同旁内角互补得出∠CDF =∠CBF ,由角平分线的定义与已知条件可求出∠ABC 与∠FDC ,由平移的性质与平行公理的推论得出AD ∥PQ ,最后根据两直线平行,同旁内角互补列式求解.【详解】解:(1)证明:∵AB ∥DE ,∴∠EDF =∠DAB ,∵DF 平分∠EDC ,∴∠EDF =∠FDC ,∴∠FDC =∠DAB ,∵∠FDC +∠ABC =180°,∴∠DAB +∠ABC =180°,∴AD ∥BC ;(2)∵32CFB DCF ∠=∠,设∠DCF =x ,则∠CFB =1.5x , ∵CF ∥AB ,∴∠ABF=∠CFB=1.5x,∵BE平分∠ABC,∴∠ABC=2∠ABF=3x,∵AD∥BC,∴∠FDC+∠BCD=180°,∵∠FDC+∠ABC=180°,∴∠BCD=∠ABC=3x,∴∠BCF=2x,∵CF∥AB,∴∠ABC+∠BCF=180°,∴3x+2x=180°,∴x=36°,∴∠BCD=3×36°=108°;(3)如图,∵∠DCF=∠CFB,∴BF∥CD,∴∠CDF +∠BFD=180°,∵AD∥BC,∴∠CBF +∠BFD=180°,∴∠CDF=∠CBF,∵AD,BE分别平分∠ABC,∠CDE,∴∠ABC=2∠CBF,∠CDE=2∠FDC,∴∠ABC=∠CDE=2∠FDC,∵∠FDC+∠ABC=180°,∴∠ABC=120°,∠FDC=60°,∵线段BC沿直线AB方向平移得到线段PQ,∴BC∥PQ,∵AD∥BC,∴AD∥PQ,∵∠PQD﹣∠QDC=20°,∴∠QDC=∠PQD﹣20°,∴∠FDC+∠QDC +∠PQD=60°+∠PQD﹣20°+∠PQD=180°,∴∠PQD=70°,即∠DQP=70°.故答案为:70°.【点睛】本题考查平行线的判定与性质,平行公理的推论,角平分线的定义,平移的性质,熟练运用平行线的判定与性质是解题的关键.26.(1)∠APB=∠PAC +∠PBD,不会变化;(2)∠PBD=∠PAC+∠APB或∠PAC=∠PBD+∠APB,理由见解析.【分析】(1)当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等以及三角形外角的性质,即可求得∠PAC,∠APB,∠PBD之间的关系.【详解】(1)如图①,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2,∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD,即∠APB、∠PAC、∠PBD之间的关系不发生变化;(2)如图②,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下:∵l1∥l2,∴∠PEC=∠PBD,∵∠PEC=∠PAC+∠APB,∴∠PBD=∠PAC+∠APB.当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.如图③,理由如下:∵l1∥l2,∴∠PED=∠PAC,∵∠PED=∠PBD+∠APB,∴∠PAC=∠PBD+∠APB.【点睛】本题主要考查平行线的性质与三角形外角的性质.解题的关键是掌握:两直线平行,内错角相等与两直线平行,同位角相等,注意辅助线的作法.27.(1)∠ADP+∠BCP=∠DPC,理由见解析;(2)∠ADP=∠DPC+∠BCP,理由见解析【分析】(1)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;(2)过P作直线PQ∥AD,交CD于点Q,根据平行线的性质进行推理;【详解】解:(1)过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ,∠BCP=∠CPQ,∴∠ADP+∠BCP=∠DPC;(2)∠ADP=∠DPC+∠BCP.过P作直线PQ∥AD,交CD于点Q,∵AD∥BC,∴PQ∥AD∥BC,∴∠ADP=∠DPQ=∠DPC+∠CPQ,∠BCP=∠CPQ,∴∠ADP=∠DPC+∠BCP.【点睛】本题考查了平行线的性质,利用平行线的性质得出角的和差关系是解题的关键.28.(1)C的坐标为(0,4),点D的坐标为(1,2);(2)①点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在△PEF 的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E(,4)、F(﹣,4).【解析】【分析】(1)由点A和点C在y轴上确定出向右平移3个单位,再根据△ACD的面积求出向上平移的单位,然后写出点C、D的坐标即可.(2)①根据线段EF平行于线段OM且等于线段OM,得出2a+1=﹣2b+3,|a﹣b|=1,解答即可;②首先根据题意求出点P的坐标为(,2),设点E在F的左边,由EF∥x轴得出a+b=1,求出△PEF的面积=(b﹣a)×|2a+1﹣2|=2,得出(b﹣a)|2a﹣1|=4,当EF在点P 的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+b=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)即可.【详解】解:(1)∵A(﹣3,0),点C在y轴的正半轴上,∴向右平移3个单位,设向上平移x个单位,∵S△ACO=OA×OC=6,∴×3x=6,解得:x=4,∴点C的坐标为(0,4),﹣2+3=1,﹣2+4=2,故点D的坐标为(1,2).(2)①存在;理由如下:∵线段EF平行于线段OM且等于线段OM,∴2a+1=﹣2b+3,|a﹣b|=1,解得:a=1,b=0或a=0,b=1,即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在,理由如下:如图2所示:当点E、F重合时,,解得:,∴2a+1=2,∴点P的坐标为(,2),设点E在F的左边,∵EF∥x轴,∴2a+1=﹣2b+3,∴a+b=1,∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,即(b﹣a)|2a﹣1|=4,当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)得:E(﹣,0)、F(,0),或E(,4)、F(﹣,4);综上所述,存在△PEF的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E (,4)、F(﹣,4).【点睛】本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.。