对数及对数函数典型例题精讲

合集下载

对数运算、对数函数经典例题讲义全

对数运算、对数函数经典例题讲义全

1.对数的概念如果a x=N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______.2.常用对数与自然对数通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系若a >0,且a ≠1,则a x=N ⇔log a N =____.对数恒等式:a log a N =____;log a a x=____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数__________.1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3l o g 2x=14的解是( )A .x =19B .x =33 C .x = 3 D .x =95.若log a 5b =c ,则下列关系式中正确的是( )A .b =a 5cB .b 5=a cC .b =5a cD .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72 C .8 D.377.已知log 7[log 3(log 2x )]=0,那么12x -=________.8.若log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则b a=________. 10.(1)将下列指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1.(2)将下列对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1; ③lg 3=0.477 1.11.已知log a x =4,log a y =5,求A =12232x xy ⎡⎢⎥⎢⎥⎢⎥⎣的值.能力提升12.若log a 3=m ,log a 5=n ,则a 2m +n的值是( )A .15B .75C .45D .225 13.(1)先将下列式子改写成指数式,再求各式中x 的值:①log 2x =-25;②log x 3=-13.(2)已知6a=8,试用a 表示下列各式:①log 68;②log 62;③log 26.1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N ⇔log a N =b (a >0,且a ≠1),据此可得两个常用恒等式:(1)log a a b =b ;(2) log a Na =N .2.在关系式a x=N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运 算,两个式子实质相同而形式不同,互为逆运算. 3.指数式与对数式的互化1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=____________________;(2)log a M N =____________________;(3)log a M n=__________(n ∈R ).2.对数换底公式log a b =log c b log c a(a >0,且a ≠1,b >0,c >0,且c ≠1);特别地:log a b ·log b a =____(a >0,且a ≠1,b >0,且b ≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( ) A .log a x ·log a y =log a (x +y )B .(log a x )n=n log a x C.log a x n=log a n xD.log a x log a y=log a x -log a y 2.计算:log 916·log 881的值为( )A .18 B.118 C.83 D.383.若log 513·log 36·log 6x =2,则x 等于( )A .9 B.19 C .25 D.1254.已知3a =5b=A ,若1a +1b=2,则A 等于( )A .15 B.15 C .±15 D .2255.已知log 89=a ,log 25=b ,则lg 3等于( )A.a b -1B.32(b -1)C.3a 2(b +1)D.3(a -1)2b6.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg a b)2的值等于( ) A .2 B.12 C .4 D.147.2log 510+log 50.25+(325-125)÷425=_____________________________________.8.(lg 5)2+lg 2·lg 50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹. 三、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b=36,求2a +1b的值.11.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.能力提升12.下列给出了x 与10x的七组近似对应值:A .二B .四C .五D .七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)1.对数函数的定义:一般地,我们把______________________叫做对数函数,其中x 是自变量,函数的定义域是________.2.对数函数的图象与性质对数函数y =log a x (a >0且a ≠1)和指数函数__________________互为反函数. 1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2.设集合M ={y |y =(12)x,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1) 3.已知函数f (x )=log 2(x +1),若f (α)=1,则α等于( ) A .0 B .1 C .2 D .3 4.函数f (x )=|log 3x |的图象是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( )A .g (x )=4xB .g (x )=2xC .g (x )=9xD .g (x )=3x6.若log a 23<1,则a 的取值范围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)7.如果函数f (x )=(3-a )x,g (x )=log a x 的增减性相同,则a 的取值范围是______________. 8.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________.9.给出函数则f (log 23)=________.三、解答题10.求下列函数的定义域与值域: (1)y =log 2(x -2);(2)y =log 4(x 2+8).11.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求函数f (x )的最值. (2)求使f (x )-g (x )>0的x 的取值范围.能力提升12.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 113.若不等式x 2-log m x <0在(0,12)内恒成立,求实数m 的取值范围.1.函数y =log m x 与y =log n x 中m 、n 的大小与图象的位置关系.当0<n <m <1时,如图①;当1<n <m 时,如图②;当0<m <1<n 时,如图③.2.由于指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域为(0,+∞),再根据对数式与指数式的互化过程知道,对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞),值域为R ,它们互为反函数,它们的定义域和值域互换,指数函数y =a x的图象过(0,1)点,故对数函数图象必过(1,0)点.1.函数y =log a x 的图象如图所示,则实数a 的可能取值是( )A .5 B.15C.1eD.122.下列各组函数中,表示同一函数的是( )A .y =x 2和y =(x )2B .|y |=|x |和y 3=x 3C .y =log a x 2和y =2log a xD .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16]C .[116,14] D .[2,4]4.函数f (x )=log 2(3x+1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图象经过(-1,0)和(0,1)两点,则f (2)=________. 6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x)的定义域为[-1,1],则函数y =f (log 2x )的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x+log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12C .2D .4 5.已知函数f (x )=lg 1-x1+x,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1b D .-1b6.函数y =3x(-1≤x <0)的反函数是( )A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)7.函数f (x )=lg(2x-b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________. 8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是______________. 9.若log a 2<2,则实数a 的取值范围是______________.10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数.(1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.求实数m 的取值范围.能力提升12.设函数f (x )=log a x (a >0,a ≠1),若f (x 1x 2…x 2 010)=8,则f (x 21)+f (x 22)+…+f (x 22 010)的值等于( ) A .4 B .8C .16D .2log 48 13.已知log m 4<log n 4,比较m 与n 的大小.1.在对数函数y =log a x (a >0,且a ≠1)中,底数a 对其图象的影响无论a 取何值,对数函数y =log a x (a >0,且a ≠1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增. 2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或01.已知m =0.95.1,n =5.10.9,p =log 0.95.1,则这三个数的大小关系是( ) A .m <n <p B .m <p <n C .p <m <n D .p <n <m 2.已知0<a <1,log a m <log a n <0,则( ) A .1<n <m B .1<m <n C .m <n <1 D .n <m <13.函数y =x -1+1lg(2-x )的定义域是( )A .(1,2)B .[1,4]C .[1,2)D .(1,2]4.给定函数①y =12x ,②y =()12log 1x +,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.设函数f (x )=log a |x |,则f (a +1)与f (2)的大小关系是________________________. 6.若log 32=a ,则log 38-2log 36=________.一、选择题1.下列不等号连接错误的一组是( )A .log 0.52.7>log 0.52.8B .log 34>log 65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( )A.14B.22C. 2 D .43.设函数若f (3)=2,f (-2)=0,则b 等于( ) A .0 B .-1 C .1 D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12)5.若函数若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞)7.已知log a (ab )=1p ,则log ab ab=________.8.若log 236=a ,log 210=b ,则log 215=________.9.设函数若f (a )=18,则f (a +6)=________.10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},若A ∩B =∅,求实数a 的取值范围. 11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,求不等式log a (x -1)>0的解集.13.已知函数f (x )=log a (1+x ),其中a >1.(1)比较12[f (0)+f (1)]与f (12)的大小;(2)探索12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1)对任意x 1>0,x 2>0恒成立.Word格式1.比较同真数的两个对数值的大小,常有两种方法:(1)利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小;(2)利用对数函数图象的相互位置关系比较大小.2.指数函数与对数函数的区别与联系指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)是两类不同的函数.二者的自变量不同.前者以指数为自变量,而后者以真数为自变量;但是,二者也有一定的联系,y=a x(a>0,且a≠1)和y=log a x(a>0,且a≠1)互为反函数.前者的定义域、值域分别是后者的值域、定义域.二者的图象关于直线y=x对称.完美整理。

专题4.3 对数与对数函数(精讲精析篇)(解析版)

专题4.3 对数与对数函数(精讲精析篇)(解析版)

专题4.3 对数与对数函数(精讲精析篇)提纲挈领点点突破热门考点01 对数的概念与性质1. 对数式log a N=b是由指数式a b=N变化得来的,两式底数相同,对数式中的真数N就是指数式中的幂的值,而对数值b是指数式中的幂指数,对数式与指数式的关系如图:并非所有指数式都可以直接化为对数式.如(-3)2=9就不能直接写成log(-3)9=2,只有a>0且a≠1,N>0时,才有a x=N⇔x=log a N.2. 对数性质在计算中的应用(1)对数运算时的常用性质:log a a=1,log a1=0.(2)使用对数的性质时,有时需要将底数或真数进行变形后才能运用;对于多重对数符号的,可以先把内层视为整体,逐层使用对数的性质.3. 运用对数恒等式时注意事项(1)对于对数恒等式a log a N=N要注意格式:①它们是同底的;②指数中含有对数形式;③其值为对数的真数.(2)对于指数中含有对数值的式子进行化简,应充分考虑对数恒等式的应用.A.6 B.7 C.12 D.18【答案】C【解析】log 2,log 3m m a b ==,2,3a b m m ∴== 2222==()2312a b a b a b m m m m m +=⨯=故选:C【典例2】()52016? 1.2baa b a b log b log a a b 浙江卷已知>>若+=,=,则a = ,b = .【答案】4,2. 【解析】设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=,因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒==【典例3】对数式log (a -2)(5-a )=b 中,实数a 的取值范围是 ( ) A .(-∞,5) B .(2,5) C .(2,+∞) D .(2,3)∪(3,5)【错解】A由题意,得5-a >0,∴a <5. 【答案】D【解析】由题意,得⎩⎪⎨⎪⎧5-a >0,a -2>0,a -2≠1,∴2<a <3或3<a <5.故选D.【易错提醒】对数的底数和真数都有范围限制,不能只考虑真数范围而忽视底数的范围.热门考点02 对数的化简、求值1.对数运算的一般思路(1)拆:首先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后利用对数运算性质化简合并.(2)合:将对数式化为同底数的和、差、倍数运算,然后逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.2.应用换底公式应注意的事项(1)注意换底公式的正用、逆用以及变形应用.(2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式,注意转化与化归思想的运用. 3.对数式的条件求值问题要注意观察所给数字特征,分析找到实现转化的共同点进行转化. 4.利用换底公式计算、化简、求值的一般思路:思路一:用对数的运算法则及性质进行部分运算→换成同一底数. 思路二:一次性统一换为常用对数(或自然对数)→化简、通分、求值. A .14B .4C .1D .4或1【答案】B 【解析】因为2log (2)log log a a a M N M N -=+,所以2log (2)log a a M N MN -=(), 2(2)M N MN -=,2540M MN N-+=(), 解得=1(舍去),=4,故选B.【答案】1-. 【解析】原式=33332log 2(log 32log 9)3log 23--+-,3332log 25log 223log 23=-++-1=-.【规律方法】(1)换底公式的本质是化异底为同底,这是解决对数问题的基本方法.(2)在运用换底公式时,若能结合底数间的关系恰当选用一些重要的结论,如log a b =1log b a ;log a a n =n ,log am b n =nm log a b ;lg2+lg5=1等,将会达到事半功倍的效果. 【易错提醒】(1)对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)的错误. (2)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用.热门考点03 对数函数的图象及应用应用对数型函数的图象可求解的问题(1)对一些可通过平移、对称变换作出其图象的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.A .B .C .D .【答案】C 【解析】当1a >时,对数函数log ay x =为增函数,当1x =时函数y x a =-的值为负.无满足条件的图像.当01a <<时,对数函数log a y x =为减函数,当1x =时函数y x a =-的值为正.C 满足.故选:CA .B .C .D .【答案】D【解析】 对于A 、B 两图, ,而ax 2+bx=0的两根为0和,且两根之和为,由图知0<<1得-1<<0,矛盾,对于C 、D 两图,0<<1,在C 图中两根之和<-1,即>1矛盾,C 错,D 正确.故选:D .A .(1,0)(1,)-⋃+∞B .(,1)(1,)-∞-+∞C .(1,0)(0,1)-D .(,1)(0,1)-∞-【答案】A 【解析】由函数的解析式可得函数为奇函数,绘制函数图像如图所示,则不等式()()f m f m >-即()()f m f m >-,即()0f m >, 观察函数图像可得实数m 的取值范围是()()1,01,-⋃+∞. 故选:A . 【总结提升】log a y x =的底数变化,其图象具有如下变化规律:(1)上下比较:在直线1x =的右侧,1a >时,底大图低(靠近x 轴);01a <<时,底大图高(靠近x 轴).(2)左右比较(比较图象与1y =的交点):交点横坐标越大,对应的对数函数的底数越大.【特别提醒】对于对数概念要注意以下两点:(1)在函数的定义中,a>0且a≠1.(2)在解析式y=log a x中,log a x的系数必须为1,真数必须为x,底数a必须是大于0且不等于1的常数.热门考点04 对数函数的性质及应用1.对数值log a x的符号(x>0,a>0且a≠1)规律:“同正异负”.(1)当0<x<1,0<a<1或x>1,a>1时,log a x>0,即当真数x和底数a同大于(或小于)1时,对数log a x>0,即对数值为正数,简称为“同正”;(2)当0<x<1,a>1或x>1,0<a<1时,log a x<0,即当真数x和底数a中一个大于1,而另一个小于1时,也就是说真数x和底数a的取值范围“相异”时,对数log a x<0,即对数值为负数,简称为“异负”.因此对数的符号简称为“同正异负”.2.比较对数式大小的类型及相应的方法(1)若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论.(2)若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.(3)若底数与真数都不同,则常借助1,0,-1等中间量进行比较.3. 解对数不等式的类型及方法(1)形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a <1两种情况讨论.(2)形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+【答案】B 【解析】 求出0.2211log0.3,0.3log a b ==,得到11a b+的范围,进而可得结果. 详解:.0.30.3log0.2,2a b log ==0.2211log0.3,0.3log a b ∴== 0.3110.4log a b ∴+= 1101a b ∴<+<,即01a b ab+<<又a 0,b 0><ab 0∴<即ab a b 0<+<故选B. A .34a >B .304a <<或43a > C .304a <<或1a > D .1a >【答案】C 【解析】 因为1x y e -=与44y x =-都是R 上的增函数,所以1()44x f x x -=+-e 是R 上的增函数,又因为11(1)441f e -=+-=所以()3(log )114af f <=等价于3log 14a <, 由1log a a =,知3log log 4a a a <,当01a <<时,log a y x =在()0,∞+上单调递减,故34a <,从而304a <<;当1a >时,log a y x =在()0,∞+上单调递增,故34a >,从而1a >,综上所述, a 的取值范围是304a <<或1a >,故选C. 【答案】【解析】由题意可知20431x x <-≤,解得x ∈.【易错提醒】利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.热门考点05 对数函数、指数函数图象和性质的综合运用1. 对数函数y =log a x (a >0,且a ≠1)和指数函数y =a x (a >0,且a ≠1)互为反函数,它们的图象关于直线y=x 对称.2.复合函数y =f [g (x )]及其里层函数μ=g (x )与外层函数y =f (μ)的单调性之间的关系(见下表).函数 单调性 y =f (μ) 增函数 增函数 减函数 减函数 μ=g (x ) 增函数 减函数 增函数 减函数 y =f [g (x )]增函数减函数减函数增函数A. B.C. D.【答案】D 【解析】 当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D 选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【典例13】满足()()0f x f x --=,且在0,单调递减,若1479a -⎛⎫= ⎪⎝⎭,1597b ⎛⎫= ⎪⎝⎭,21log 9c =,则()f a ,()f b ,()f c 的大小关系为( )A .()()()f b f a f c <<B .()()()f c f b f a <<C .()()()f c f a f b <<D .()()()f b f c f a <<【答案】C 【解析】()()0()()f x f x f x f x --=∴=-∴()f x 为偶函数.21log 09c =<22211()(log )(log )(log 9)99f c f f f ∴==-=, 22log 9log 42>=,11114459799207977a b -⎛⎫⎛⎫⎛⎫⎛⎫>>==>=> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭2log 9a b ∴>>. ()f x 在0,单调递减,∴()()()2log 9f f a f b <<,即()()()f c f a f b <<.故选:C .【答案】-3 【解析】因为()f x 是奇函数,且当0x >时0x ->,()()axf x f x e -=--=.又因为ln 2(0,1)∈,(ln 2)8f =,所以ln 28a e -=,两边取以e 为底的对数得ln 23ln 2a -=,所以3a -=,即3a =-.【答案】[1,3)或(1)3, 【解析】由题意,令223u x x =-++,由0>u , 解得13x,即函数()f x 的定义域为(1,3)-又根据二次函数的图象与性质可知,函数223u x x =-++在区间(]1,1-上单调递增, 在区间[1,3)上单调递减,又由函数()12log f x u =为单调递减函数,根据复合函数同增异减可得,函数()f x 的单调递增区间为[1,3).故答案为:[1,3)或(1)3, 【易错提醒】解答对数函数型问题,易忽视函数的定义域而导致错误. 【总结提升】(1)已知某函数是奇函数或偶函数,求其中某参数值时,常用方法有两种: ①由f (-x )=f (x )或f (-x )=-f (x )直接列关于参数的方程(组),解之得结果.②由f (-a )=f (a )或f (-a )=-f (a )(其中a 是某具体数)得关于参数的方程(组),解之得结果,但此时需检验. (2)用定义证明形如y =log a f (x )函数的单调性时,应先比较与x 1,x 2对应的两真数间的大小关系,再利用对数函数的单调性,比较出两函数值之间的大小关系.巩固提升A.B.y =C.D.【答案】A 【解析】函数, 在区间上单调递减, 函数 在区间上单调递增,故选A .2.已知a ,b 均为不等于1的正数,且满足lg lg 0a b +=,则函数()x f x a =与函数()log b g x x =-的图象可能是( ) A. B. C. D.【答案】B【解析】lg lg 0a b +=,1ab ∴=,即1b a =, 1()log log a a g x x x ∴=-=,∴()f x 与()g x 互为反函数,图象关于y x =对称.故选B.A .(1,)+∞B .[1,)+∞C .(2,)+∞D .[2,)+∞【答案】C因为函数()lg f xx =,且由()()lg lg 1f a f b a b ab =⇔-=⇔=,(假设a<b ,)因此a+b 2ab ≥=2,但是等号取不到,因此选CA .ln(1)y x =-B .ln(2)y x =-C .ln(1)y x =+D .ln(2)y x =+【答案】B【解析】函数y lnx =过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有()y ln 2x =-过此点. 故选项B 正确A .B .C .D .【答案】B【解析】由()log a y x b =-的图象可知,1log (1)0log (2)0a a a b b >⎧⎪-<⎨⎪->⎩,所以101121a b b >⎧⎪<-<⎨⎪->⎩,得1a >,01b <<,所以01b a<<,所以幂函数b a y x =在第一象限的图象可能为B .A .B .C .D .【答案】D【解析】结合已知函数的图象可知,(1)1f b =<-,1a >, 则()g x 递增,且(0)10g b =+<,故D 符合题意. 故选:D.A.43-B.2332 C.34 D.38- 【答案】A【解析】由题意()(4)f x f x =+,故函数()f x 是周期为4的函数, 由23log 124<<,则21log 1240-<-<,即204log 121<-<,又函数()f x 是定义在R 上的奇函数,则()()()2244log 12222log 1224log 12log 1244log 12223f f f -=-=--=-=-=-, 故选:A.A .(]0,2B .[)0,2C .[0,2]D .(2,2)【答案】A【解析】 由题意可得,020x x >⎧⎨-≥⎩, 解得02x <≤.所以函数的定义域为(]0,2,故选:AA .1010.1B .10.1C .lg10.1D .10–10.1 【答案】A【解析】两颗星的星等与亮度满足12125lg 2E m m E -=,令211.45,26.7m m =-=-, ()10.111212222lg ( 1.4526.7)10.1,1055E E m m E E =⋅-=-+==. 故选:A.A.B. C.D.【答案】A【解析】;;. 故. 故选A.A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D【解析】 由题意可知:3337392log log log <<,即12a <<,103111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项.【答案】()1,2【解析】函数()()log 2a f x ax =-,所以真数位置上的20ax ->在[]0,1x ∈上恒成立, 由一次函数保号性可知,2a <,当01a <<时,外层函数log a y t =为减函数, 要使()()log 2a f x ax =-为减函数,则2t ax =-为增函数, 所以0a ->,即0a <,所以a ∈∅,当1a >时,外层函数log a y t =为增函数, 要使()()log 2a f x ax =-为减函数,则2t ax =-为减函数, 所以0a -<,即0a >,所以1a >,综上可得a 的范围为()1,2.故答案为:()1,2.【答案】(),3-∞【解析】要使函数表达式有意义,需满足: 30x ->,即:x <3,∴()2log 3y x =-的定义域为(),3-∞ 故答案为:(),3-∞14.函数log ()a y x k =+(0a >,且1a ≠)的图象恒过点()0,0,则函数1log ()a y x k =-的图象恒过点______.【答案】(2,0)【解析】由题意,得log 0a k =,1k ∴=,11log ()log (1)a ay x k x ∴=-=-的图象恒过点(2,0).故答案为:(2,0)【答案】13-【解析】 224222log 9log 3log 3log 10==>=,由题意得()221log log 3321log 3223f --===, 由于函数()y f x =是定义在R 上的奇函数, 因此,()()()4221log 9log 3log 33f f f ==--=-. 故答案为:13-.(1)求当0x <时,函数()f x 的表达式;(2)解不等式()3f x ≤.【答案】(1)()()1313log 20log 20x x f x x x >⎧⎪=⎨--<⎪⎩,,(2)27{02x x -≤<或1}54x ≥ 【解析】(1)解:函数()f x 为奇函数, 当0x >时,()13log 2f x x =,所以,当0x <时,0x >-, ()()()()1133log 2log 2f x f x x x =--=--=--,所以()()1313log 20log 20x x f x x x >⎧⎪=⎨--<⎪⎩,,, (2)解:由题意:当0x >时有13log 23x ≤,解得154x ≥; 当0x <时有()13log 23x --≤, 即()13log 23x -≥-,解得2702x -≤<; 综上,原不等式的解集为27{02x x -≤<或1}54x ≥。

带标准答案对数与对数函数经典例题

带标准答案对数与对数函数经典例题

经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a¹1,kÎR).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4].类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】(2011 天津理7)已知则()A.B.C.D.解读:另,,,在同一坐标系下作出三个函数图像,由图像可得又∵为单调递增函数,∴故选C.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性. (1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解读式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解读式的变形用到了分子有理化的技巧,要求掌握.类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.13.已知函数h(x)=2x(x∈R),它的反函数记作g(x),A、B、C三点在函数g(x)的图象上,它们的横坐标分别为a,a+4,a+8(a>1),记ΔABC的面积为S.(1)求S=f(a)的表达式;(2)求函数f(a)的值域;(3) 判断函数S=f(a)的单调性,并予以证明;(4)若S>2,求a的取值范围.解:(1)依题意有g(x)=log2x(x>0).并且A、B、C三点的坐标分别为A(a,log2a),B(a+4,log2(a+4)),C(a+8,log2(a+8)) (a>1),如图.∴A,C中点D的纵坐标为〔log2a+log2(a+8)〕∴S=|BD|·4·2=4|BD|=4log2(a+4)-2log2a-2log2(a+8).(2)把S=f(a)变形得:S=f(a)=2〔2log2(a+4)-log2a-log2(a+8)〕=2log2=2log2(1+).由于a>1时,a2+8a>9,∴1<1+<,又函数y=log2x在(0,+∞)上是增函数,∴0<2log2(1+)<2log2,即0<S<2log2.(3)S=f(a)在定义域(1,+∞)上是减函数,证明如下:任取a1,a2,使1<a1<a2<+∞,则:(1+)-(1+)=16()=16·,由a1>1,a2>1,且a2>a1,∴a1+a2+8>0,+8a2>0,+8a1>0,a1-a2<0,∴1<1+<1+,再由函数y=log2x在(0,+∞)上是增函数,于是可得f(a1)>f(a2)∴S=f(a)在(1,+∞)上是减函数.(4)由S>2,即得,解之可得:1<a<4-4.。

第06讲 对数与对数函数(原卷版)备战2023年高考数学一轮复习精讲精练

第06讲 对数与对数函数(原卷版)备战2023年高考数学一轮复习精讲精练

第06讲对数与对数函数 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:对数的运算;高频考点二:换底公式高频考点三:对数函数的概念;高频考点四:对数函数的定义域高频考点五:对数函数的值域①求对数函数在区间上的值域;②求对数型复合函数的值域③根据对数函数的值域求参数值或范围高频考点六:对数函数的图象①判断对数(型)函数的图象②根据对数(型)函数的图象判断参数③对数(型)函数图象过定点问题高频考点七:对数函数的单调性①对数函数(型)函数的单调性②由对数函数(型)函数的单调性求参数③由对数函数(型)函数的单调性解不等式④对数(指数)综合比较大小高频考点八:对数函数的最值①求对数(型)函数的最值②根据对数(型)函数的最值求参数③对数(型)函数的最值与不等式综合应用第四部分:高考真题感悟第五部分:第06讲对数与对数函数(精练)1、对数的概念(1)对数:一般地,如果x a N =(0,1)a a >≠且,那么数 x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数.(2)牢记两个重要对数:常用对数,以10为底的对数lg N ;自然对数,以无理数e=2.71828…为底数的对数ln N .(3)对数式与指数式的互化:log x a a N x N =⇔=. 2、对数的性质、运算性质与换底公式(1)对数的性质根据对数的概念,知对数log (0,1)a N a a >≠且具有以下性质:①负数和零没有对数,即0N >;②1的对数等于0,即log 10a =;③底数的对数等于1,即log 1a a =;④对数恒等式log (0)a N a N N =>.(2)对数的运算性质如果0,1,0,0a a M N >≠>>且,那么:①log ()log log a a a M N =M +N ⋅;②log log log a a a M =M N N-; ③log log ()n a a M =n M n ∈R .(3)对数的换底公式对数的换底公式:log log (0,1;0,1;0)log c a c b b a a c c b a=>≠>≠>且且. 换底公式将底数不同的对数转化为底数相同的对数,进而进行化简、计算或证明.换底公式应用时究竟换成什么为底,由已知条件来确定,一般换成以10为底的常用对数或以e 为底的自然对数.换底公式的变形及推广:①log log 01,0()且m n a a n b b a a b m =>≠>; ②(1log 01;01log )且且a b b a a b b a=>≠>≠;③log log log log a b c a b c d d ⋅⋅=(其中a ,b ,c 均大于0且不等于1,0d >).3、对数函数及其性质(1)对数函数的定义形如log x a y =(0a >,且1a ≠)的函数叫做对数函数,其中x 是自变量,函数的定义域是(0,)+∞.(2)对数函数的图象与性质定义域:(0,)+∞一、判断题1.(2022·江西·贵溪市实验中学高二期末)已知x y >,则不等式ln ln x y >成立 ( )2.(2021·江西·贵溪市实验中学高二阶段练习)32log 8log 99⨯=( )3.(2021·江西·贵溪市实验中学高三阶段练习)21log 3436+=.( )4.(2021·江西·贵溪市实验中学高二阶段练习)若lg 2,lg3,a b ==则12log 5=12a a b -+ ( ) 二、单选题1.(2022·北京·一模)下列函数中,定义域与值域均为R 的是( )A .ln y x =B .x y e =C .3y x =D .1y x = 2.(2022·海南·模拟预测)已知20.70.7log 3,log 0.3,0.7a b c ===,则a ,b ,c 的大小关系为( )A .b c a >>B .b a c >>C .a b c >>D .a c b >>3.(2022·湖南师大附中高一阶段练习)不等式()2log 311x +<成立的一个充分不必要条件是( )A .1133x -<< B .0x < C .113x -<< D .103x << 4.(2022·陕西西安·高一期末)函数()ln x f x x=的图像大致为( ) A . B .C .D .5.(2022·吉林·农安县教师进修学校高一期末)函数()1ln 34y x x =-+的定义域是( ) A .3,4⎛⎫-∞ ⎪⎝⎭ B .30,4⎛⎫ ⎪⎝⎭ C .()3,00,4⎛⎫-∞⋃ ⎪⎝⎭ D .3,4⎛⎫+∞ ⎪⎝⎭高频考点一:对数的运算1.(2022·甘肃平凉·二模(文))27log 7log 8⋅=______.2.(2022·北京师大附中高一期末)13331()log 5log 1527+-=______________. 3.(2022·浙江·杭州市富阳区第二中学高一阶段练习)计算7log 237log 27lg 25lg 47log 1++++=______.4.(2022·湖南·高一课时练习)计算:(1)()23log 279⨯;(2)101log 1000;(3)7775log 30log 12log 2--.高频考点二:换底公式1.(2022·贵州遵义·高三开学考试(理))已知lg 2,lg3a b ==,则4log 75=( )A .22a b a -+B .22b a a -+C .222b a a -+D .222a b a-+ 2.(2022·安徽·安庆市教育教学研究室高一期末)已知lg 2a =,lg3b =,用a ,b 表示36log 5,则36log 5=( )A .221a b a +-B .12a a b -+C .22a a b -+D .122a a b-+ 3.(2022·山东济南·二模)已知ln 2a =,ln3b =,那么3log 2用含a 、b 的代数式表示为( ) A .-a b B .a b C .b a D .a b +4.(2022·湖南·高一课时练习)计算:53611log log 6log 325⋅⋅=________.高频考点三:对数函数的概念1.(2021·河南·洛宁县第一高级中学高一阶段练习)已知函数()f x 满足①定义域为()0,∞+;②值域为R ;③()()22f x f x =.写出一个满足上述条件的函数:()f x =___________. 2.(2021·江苏·高一专题练习)对数函数f (x )的图象过点(3,-2),则f=________.3.(2021·江苏南通·高三期中)写出满足条件“函数()y f x =在()0,∞+上单调递增,且()()()f xy f x f y =+”的一个函数()f x =___________.4.(2021·全国·高一专题练习)若函数f (x )=(a 2+a -5)log ax 是对数函数,则a =________.高频考点四:对数函数的定义域1.(2022·甘肃·甘南藏族自治州合作第一中学高一期末)函数f (x )的定义域为( )A .(2,+∞)B .(0,2)C .(-∞,2)D .(0, 12)2.(2022·四川·模拟预测(文))函数y =___________.3.(2022·四川宜宾·高一期末)函数y =________.4.(2022·上海市控江中学高一期末)函数()2lg 1y x kx =++定义域为R ,则实数k 的取值范围为______.5.(2022·上海浦东新·高一期末)函数1ln 2x y x-=-的定义域为_____________.高频考点五:对数函数的值域①求对数函数在区间上的值域1.(2022·全国·高三专题练习)函数()222log log f x x x =+在1,24⎛⎫ ⎪⎝⎭上的值域为_______________________. 2.(2022·全国·池州市第一中学高一开学考试)已知函数()2122log log f x x x =+.(1)求()f x 在区间[]1,8上的值域;3.(2022·全国·高一课时练习)求函数2log ,[8,)y x x =∈+∞的值域.②求对数型复合函数的值域1.(2022·贵州·毕节市第一中学高一阶段练习)函数y =2+log 2(x 2+3)(x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[4,+∞)D .[3,+∞)2.(2022·青海·大通回族土族自治县教学研究室高一期末)函数()212log 8y x =+的值域是________.3.(2022·河南焦作·高一期末)已知函数()()()log 2log 4a a f x x x =++-(a >0且a ≠1)的图象过点()1,2.(1)求a 的值及()f x 的定义域;(2)求()f x 在[]0,3上的最小值.4.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;③根据对数函数的值域求参数值或范围1.(2022·河南信阳·高一期末)已知函数()23log y x m =+的值域为[2,)+∞,则实数m 的值为( )A .2B .3C .9D .272.(2022·陕西咸阳·高一期末)函数()log 1a f x x =+在[1,3]上的值域为[1,3],则实数a 的值是___________.3.(2022·全国·高一阶段练习)函数()()2lg 234f x mx x =-+的值域为R ,则实数m 的取值范围为______.4.(2022·河南·林州一中高一开学考试)若函数()2log 5242a y a x ax =--+⎡⎤⎣⎦有最小值,则a 的取值范围为______.5.(2022·山西省长治市第二中学校高一期末)已知函数212()log (23)f x x ax =-+ .(1)当1a =-时,求函数()f x 的值域;(2)若函数()f x 的值域为R ,求实数a 取值范围.高频考点六:对数函数的图象①判断对数(型)函数的图象1.(2022·广东汕尾·高一期末)当1a >时,在同一平面直角坐标系中,1xy a ⎛⎫= ⎪⎝⎭与()log a y x =-的图象是()A .B .C .D .2.(2022·广东·华南师大附中高一阶段练习)函数3x y -=与()3log y x =-的图象可能是( ) A . B .C .D .3.(2022·浙江·高三专题练习)已知lg lg 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()x f x a =与()1log bg x x =的图象可能是( )A .B .C .D .②根据对数(型)函数的图象判断参数1.(2022·新疆巴音郭楞·高一期末)如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b2.(2022·全国·高三专题练习(文))已知2(0,1)()log ,[1,2)aax x f x x x ⎧∈=⎨∈⎩,,若()2a f x =有两解,则a 的取值范围是( ) A .10,2⎛⎫ ⎪⎝⎭ B .10,2⎛⎤ ⎥⎝⎦ C .(1,2] D .(1,2)3.(2022·湖南师大附中高一期末)已知函数()log (21)(01)x a f x b a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<<B .101b a -<<<C .101b a -<<<D .1101a b --<<<4.(2022·黑龙江·双鸭山一中高一期末)已知310()log 0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()0f x a -=有四个根1234,,,x x x x 且1234x x x x <<<,则1234x x x x +++的取值范围是______.③对数(型)函数图象过定点问题1.(2022·黑龙江·双鸭山一中高一开学考试)函数()log (1)3,(0,1)a f x x a a =-++>≠且的图象一定过定点__________.2.(2022·湖北·江夏一中高一阶段练习)函数y =log a (2x -3)+8的图象恒过定点A ,且点A 在幂函数f (x )的图象上,则f (3)=________.3.(2022·四川南充·高一期末)函数log (1)2(0,1)a y x a a =-+>≠的图象恒过一定点是___________.高频考点七:对数函数的单调性①对数函数(型)函数的单调性1.(2022·北京房山·高一期末)下列函数中,既是奇函数又在区间(0,)+∞上单调递增的是( ) A .21y x =-+ B .2log y x = C .3y x = D.y =2.(2022·全国·高一课时练习)函数12()log f x x =的单调递增区间是( )A .10,2⎛⎤ ⎥⎝⎦B .(]0,1C .()0,∞+D .[)1,+∞ 3.(2022·北京·高三专题练习)函数()()212log 6f x x x =-++的单调递增区间是( )A .1,32⎛⎫ ⎪⎝⎭B .12,2⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭4.(2022·河北张家口·高一期末)函数()()22log 65f x x x =-+-的单调递减区间是( )A .(],3-∞B .(]1,3C .[)3,+∞D .[)3,55.(2022·河南新乡·高一期末)函数()217log 2223y x x =--的单调递增区间为( )A .()11,+∞B .(),11-∞C .()23,+∞D .(),1-∞-6.(2022·山西·怀仁市第一中学校高一期末)()()23log 28f x x x =--的单调递增区间为( )A .(),1-∞B .(),4-∞C .()2,-+∞D .()4,+∞②由对数函数(型)函数的单调性求参数1.(2022·陕西西安·高一期末)已知()log log 1a a b b <-,则a 的取值范围是( ) A .1a >B .01a <<C .a b >D .0a b <<2.(2022·黑龙江·双鸭山一中高一期末)已知函数()2()lg 1f x x ax =-+-在[2,3]上单调递减,则实数a 的取值范围是( ) A .[4,)+∞B .[6,)+∞C .10,43⎛⎤⎥⎝⎦D .10,43⎡⎤⎢⎥⎣⎦3.(2022·内蒙古赤峰·高一期末)已知函数()()314,1log ,1aa x a x f x x x ⎧-+<=⎨≥⎩在R 上是减函数,则实数a 的取值范围是( ) A .()0,1B .10,3⎛⎫⎪⎝⎭C .11,73⎡⎫⎪⎢⎣⎭D .1,17⎡⎤⎢⎥⎣⎦4.(2022·湖南岳阳·高一期末)已知函数()2ln 3y x ax a =-+在[2,)+∞上单调递增,则实数a 的取值范围为( ) A .()4,-+∞B .(]0,4C .[)4,+∞D .(]4,4-5.(2022·福建泉州·高一期末)若函数()ln(2)=-f x ax 在(1,)+∞单调递增,则实数a 的取值范围为( ) A .(0,)+∞B .(2,)+∞C .(0,2]D .[2,)+∞6.(2022·重庆·高一期末)已知关于x 的函数2log (2)y ax =-在[]0,1上是单调递减的函数,则a 的取值范围为( )A .()0-,∞ B .()0,+∞ C .(]0,2D .()02,7.(2022·河南南阳·高一期末)若函数()()217log 45f x x x =-++在区间()32,2m m -+上单调递增,则实数m的取值范围为( ) A .3,14⎡⎤⎢⎥⎣⎦B .43,32⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,23⎛⎫ ⎪⎝⎭③由对数函数(型)函数的单调性解不等式1.(2022·河南濮阳·高三开学考试(文))不等式()()2ln 1ln 35x x +>+的解集为( )A .()4,+∞B .()1,4-C .()5,14,3⎛⎫--⋃+∞ ⎪⎝⎭D .()(),14,-∞-⋃+∞2.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1)B .(0,1)C .(﹣∞,﹣2)∪(1,+∞)D .(1,+∞)3.(2022·北京房山·高一期末)设函数21,2()2log (1),2xx f x x x ⎧⎛⎫<⎪ ⎪=⎨⎝⎭⎪-≥⎩,若()1f x >,则x 的取值范围是( )A .(0,3)B .(,0)(3,)-∞⋃+∞C .(,1)(2,)-∞-⋃+∞D .(1,2)-4.(2022·四川绵阳·一模(理))设函数()211,,21log ,,2x f x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩则满足()()21f x f x -<的x 的取值范围是( )A .13,24⎛⎤⎥⎝⎦B .3,14⎡⎫⎪⎢⎣⎭C .3,4⎛⎤-∞ ⎥⎝⎦D .1,12⎛⎫⎪⎝⎭5.(2022·江西赣州·一模(文))设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩则满足()2f x ≤的x 取值范围是A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)④对数(指数)综合比较大小1.(2022·广东中山·高一期末)设2log 3a =,3log 4b =,5log 8c =,则( ) A .b a c << B .a b c << C .c b a <<D .b c a <<2.(2022·江西·南昌十五中高二阶段练习(理))设292log 3,log 5,15==a b c ,则( ) A .2a b <B .2log 180+>a cC .24+>a b cD .21316+<a a 3.(2022·福建·厦门双十中学高二阶段练习)设2ln1.01a =,ln1.02b =,0.02c =,则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<4.(2022·江西·九江一中高二阶段练习(理))已知 1.12a =,0.64b =,ln 7c =,则a ,b ,c 的大小关系为( ) A .a b c <<B .b c a <<C .c a b <<D .c b a <<5.(2022·江苏·南京市第一中学高三开学考试)已知0.2log 0.02a =,3log 30b =,ln 6c =,则( ) A .c b a <<B .b a c <<C .c a b <<D .a c b <<高频考点八:对数函数的最值①求对数(型)函数的最值1.(2021·江苏·沭阳县修远中学高一阶段练习)已知函数()21f x ax =-在区间[]0,2上的最大值为7,则()log a g x x =在区间[]1,4上的最大值为( )A .0B .1C .2D .42.(2021·天津市实验中学滨海学校高三期中(理))已知函数()420.5()log 46f x x x =-+,则( )A .()f x 有最小值,且最小值为-2B .()f x 有最小值,且最小值为-1C .()f x 有最大值,且最大值为-2D .()f x 有最大值,且最大值为-13.(2022·上海金山·高一期末)函数()12log 2y x =+,[]2,6x ∈的最大值为______. 4.(2021·山东·嘉祥县第一中学高三阶段练习)函数()()224log log 44xf x x =⋅的最小值为___________. 5.(2021·全国·高一课时练习)函数()23()log 9f x x =-的最大值是_______.②根据对数(型)函数的最值求参数1.(2022·河南平顶山·高一期末)已知函数()21log ,a f x x x a ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的最大值与最小值的差为2,则=a ( ) A .4B .3C .2D2.(2022·贵州·六盘水市第一中学模拟预测)若函数()2log 1a y x ax =-+有最小值,则a 的取值范围是( )A .12a <<B .02,1a a <<≠C .01a <<D .2a ≥3.(2022·贵州毕节·高一期末)已知函数()22,4,log ,4,x a x f x x x ⎧-<=⎨≥⎩若()f x 存在最小值,则实数a 的取值范围是( ) A .(,4]-∞ B .[2,)-+∞ C .(,2)-∞-D .(,2]-∞-4.(2022·全国·高三专题练习)若函数2()log (1)a f x x ax =-+(01)a a >≠且没有最小值,则a 的取值范围是____________.5.(2022·甘肃省会宁县第一中学高一期末)已知函数()log a f x x =(0a >且1a ≠),()f x 在1,23⎡⎤⎢⎥⎣⎦上的最大值为1. (1)求a 的值;(2)当函数()f x 在定义域内是增函数时,令()1122g x f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,判断函数()g x 的奇偶性,并证明,并求出()g x 的值域.6.(2022·河南信阳·高一期末)已知函数()log (4)a f x ax =-(0a >,且1a ≠). (1)求函数()f x 的定义域;(2)是否存在实数a ,使函数()f x 在区间31,2⎡⎤⎢⎥⎣⎦上单调递减,并且最大值为1?若存在,求出a 的值;若不存在,请说明理由.7.(2022·天津河北·高一期末)已知函数()()log 1a f x x =-(0a >,且1a ≠) (1)求()2f 的值及函数()f x 的定义域;(2)若函数()f x 在[]2,9上的最大值与最小值之差为3,求实数a 的值.③对数(型)函数的最值与不等式综合应用1.(2022·湖北·武汉中学高一阶段练习)已知函数()1lg 43x x f x m ⎛⎫=-- ⎪⎝⎭,若对任意的[]1,1x ∈-使得()1f x ≤成立,则实数m 的取值范围为 A .19,3⎡⎫-+∞⎪⎢⎣⎭B .11,4⎛⎫-∞ ⎪⎝⎭-C .1911,34⎡⎤--⎢⎥⎣⎦D .1911,34⎡⎫--⎪⎢⎣⎭2.(2022·吉林·长春市第二中学高一期末)已知函数()4412log 2log 2y x x ⎛⎫=-+ ⎪⎝⎭.(1)当[1,16]x ∈时,求该函数的值域;(2)若()4441log 2log log 2x x m x ⎛⎫++< ⎪⎝⎭,对于[4,16]x ∈恒成立,求实数m 的取值范围.3.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠. (1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.4.(2022·江苏·无锡市第一中学高一期末)设函数3()log (933)x xf x k =-⋅-,其中k 为常数.(1)当2k =时,求()f x 的定义域;(2)若对任意[1,)x ∈+∞,关于x 的不等式(x)x f ≥恒成立,求实数k 的取值范围.1.(2021·湖南·高考真题)函数3()log (1)f x x =+的定义域为( ) A .(,1)-∞-B .(1,)-+∞C .[1,)-+∞D .(0,)+∞2.(2021·天津·高考真题)若2510a b ==,则11a b+=( )A .1-B .lg 7C .1D .7log 103.(2021·天津·高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<4.(2021·全国·高考真题)已知5log 2a =,8log 3b =,12c =,则下列判断正确的是( ) A .c b a <<B .b a c <<C .a c b <<D .a b c <<5.(2021·全国·高考真题(文))青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )( 1.259≈) A .1.5B .1.2C .0.8D .0.6一、单选题1.(2021·江苏·高一专题练习)已知136a =,b log =21.2c =,则a b c ,,的大小关系是( ) A .b c a >> B .a c b >> C .a b c >>D .b a c >>2.(2021·江苏·高一专题练习)1182112416--⎛⎫⎛⎫⨯+= ⎪ ⎪ ⎪⎝⎭⎝⎭( ) A B C .D .3.(2021·江苏·高一专题练习)已知3log 2a =,那么33log 82log 6-用a 表示是( ) A .52a -B .2a -C .23(1)a a -+D .231a a --4.(2021·浙江·高一期中)已知(31)4,1()log ,1a a x a x f x x x -+≤⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是( ) A .11,73⎡⎫⎪⎢⎣⎭B .1,17⎡⎫⎪⎢⎣⎭C .()0,1D .10,3⎛⎫ ⎪⎝⎭5.(2021·新疆·石河子第二中学高一阶段练习)已知()212()log f x x ax a =-+的值域为R ,且()f x 在(3,1)--上是增函数,则实数a 的取值范围是( ) A .20a ≤≤ B .102a -≤≤或4a ≥C .20a -≤≤或4a ≥D .04a ≤≤6.(2021·陕西·武功县教育局教育教学研究室高一期中)函数()()1lg 4211x x f x +=-+的最小值是( ).A .10B .1C .11D .lg117.(2021·重庆市第七中学校高一阶段练习)函数21()log 1xf x x的图象大致为( )A .B .C .D .8.(2021·江苏·高一专题练习)设函数()f x 的定义域为D ,若函数()f x 满足条件:存在[]a b D ⊆,,使()f x 在[]a b ,上的值域为22a b ⎡⎤⎢⎥⎣⎦,,则称()f x 为“倍缩函数”.若函数()()2log 2x f x t =+(其中0t ≥)为“倍缩函数”,则t 的取值范围是( ) A .104⎛⎫ ⎪⎝⎭,B .()01,C .102⎛⎤⎥⎝⎦,D .14⎛⎫+∞ ⎪⎝⎭, 二、填空题9.(2021·河南·漯河实验高中高一阶段练习)()()log 4a f x ax =-在(]1,3上递减,则a 的范围是_________. 10.(2021·江苏·高一专题练习)已知()()2log 3(0a f x x ax a =-+>且1)a ≠,对任意12,(,]2a x x ∈-∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,则a 的取值范围是__________. 11.(2021·江苏·高一专题练习)已知函数()221log 2f x ax x ⎛⎫=-+ ⎪⎝⎭在31,2⎡⎤⎢⎥⎣⎦上恒正,则实数a 的取值范围是__________.12.(2021·江苏省太湖高级中学高一阶段练习)对于函数()f x ,若在定义域内存在实数0x 满足()()00f x f x -=-,则称函数()f x 为“K 函数”.设()()22log 21,23,2x mx x f x x ⎧-+≥⎪=⎨-<⎪⎩为其定义域上的“K 函数”,则实数m 的取值范围是___________. 三、解答题13.(2021·江苏·高一专题练习)计算求值 (1)()362189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++;(3)已知623a b ==,求11a b-的值.14.(2021·河北省博野中学高三阶段练习)已知函数()()212log f x x mx m =--. (1)若1m =,求函数()f x 的定义域.(2)若函数()f x 的值域为R ,求实数m 的取值范围.(3)若函数()f x 在区间(1-∞,上是增函数,求实数m 的取值范围.15.(2021·江苏·高一专题练习)已知函数22()log (21),()log (21)()x xf xg x f x =+=--(1)求()g x 的定义域并判断()g x 的奇偶性; (2)求函数()g x 的值域;(3)若关于x 的方程(),[0,1]f x x m x =+∈有实根,求实数m 的取值范围16.(2021·江苏·高一专题练习)已知函数22()log (1)21=+-f x x . (1)判断函数()f x 的奇偶性,并证明;(2)对任意的()0x ∈-∞,,不等式12(21)log (2)++>-x x f m 恒成立,求实数m 的取值范围.。

第06讲 对数与对数函数 (精讲+精练)(教师版)

第06讲 对数与对数函数 (精讲+精练)(教师版)

第06讲对数与对数函数 (精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:对数的运算;高频考点二:换底公式高频考点三:对数函数的概念;高频考点四:对数函数的定义域高频考点五:对数函数的值域①求对数函数在区间上的值域;②求对数型复合函数的值域③根据对数函数的值域求参数值或范围高频考点六:对数函数的图象①判断对数(型)函数的图象②根据对数(型)函数的图象判断参数③对数(型)函数图象过定点问题高频考点七:对数函数的单调性①对数函数(型)函数的单调性②由对数函数(型)函数的单调性求参数③由对数函数(型)函数的单调性解不等式④对数(指数)综合比较大小高频考点八:对数函数的最值①求对数(型)函数的最值②根据对数(型)函数的最值求参数③对数(型)函数的最值与不等式综合应用第四部分:高考真题感悟第五部分:第06讲对数与对数函数(精练)1、对数的概念(1)对数:一般地,如果x a N =(0,1)a a >≠且,那么数 x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数.(2)牢记两个重要对数:常用对数,以10为底的对数lg N ;自然对数,以无理数e=2.71828…为底数的对数ln N .(3)对数式与指数式的互化:log xa a N x N =⇔=.2、对数的性质、运算性质与换底公式(1)对数的性质根据对数的概念,知对数log (0,1)a N a a >≠且具有以下性质: ①负数和零没有对数,即0N >; ②1的对数等于0,即log 10a =; ③底数的对数等于1,即log 1a a =; ④对数恒等式log (0)a N a N N =>. (2)对数的运算性质如果0,1,0,0a a M N >≠>>且,那么: ①log ()log log a a a M N =M +N ⋅; ②log log log aa a M=M N N-; ③log log ()na a M =n M n ∈R . (3)对数的换底公式 对数的换底公式:log log (0,1;0,1;0)log c a c bb a ac c b a=>≠>≠>且且. 换底公式将底数不同的对数转化为底数相同的对数,进而进行化简、计算或证明.换底公式应用时究竟换成什么为底,由已知条件来确定,一般换成以10为底的常用对数或以e 为底的自然对数. 换底公式的变形及推广: ①log log 01,0()且m na a nb b a a b m=>≠>; ②(1log 01;01log )且且a b b a a b b a=>≠>≠; ③log log log log a b c a b c d d ⋅⋅=(其中a ,b ,c 均大于0且不等于1,0d >).3、对数函数及其性质(1)对数函数的定义形如log xa y =(0a >,且1a ≠)的函数叫做对数函数,其中x 是自变量,函数的定义域是(0,)+∞.(2)对数函数的图象与性质定义域:(0,)+∞一、判断题1.(2022·江西·贵溪市实验中学高二期末)已知x y >,则不等式ln ln x y >成立 ( ) 【答案】错误若1,2x y =-=-,则满足x y >,而ln ,ln x y 无意义,所以错误, 故答案为:错误2.(2021·江西·贵溪市实验中学高二阶段练习)32log 8log 99⨯=( ) 【答案】错误()()3232log 8log 93log 22log 36⨯=⨯=.故答案为:错误3.(2021·江西·贵溪市实验中学高三阶段练习)21log 3436+=.( ) 【答案】正确22221log 3log 3log 3444424936+=⨯=⨯=⨯=.故正确.4.(2021·江西·贵溪市实验中学高二阶段练习)若lg 2,lg3,a b ==则12log 5=12aa b-+ ( ) 【答案】错误因lg 2,lg3a b ==,则122lg51lg 21lg 21log 5lg12lg 2lg32lg 2lg32aa b---====+++, 所以命题不正确. 故答案为:错误 二、单选题1.(2022·北京·一模)下列函数中,定义域与值域均为R 的是( ) A .ln y x = B .x y e =C .3y x =D .1y x=【答案】CA. 函数ln y x =的定义域为()0,∞+,值域为R ;B. 函数x y e =的定义域为R ,值域为()0,∞+;C. 函数3y x =的定义域为R ,值域为R ;D. 函数1y x=的定义域为{}|0x x ≠,值域为{}|0y y ≠, 故选:C2.(2022·海南·模拟预测)已知20.70.7log 3,log 0.3,0.7a b c ===,则a ,b ,c 的大小关系为( ) A .b c a >> B .b a c >> C .a b c >> D .a c b >>【答案】A解:由0.7=log y x 在()0,∞+单调递减,得0.70.7log 3log 10<=,即0a <; 0.70.7log 0.3log 0.71>=,即1b >;由=0.7x y 在R 上单调递减,得200.7100.7<=<,即01c <<; 即b c a >>. 故选:A.3.(2022·湖南师大附中高一阶段练习)不等式()2log 311x +<成立的一个充分不必要条件是( )A .1133x -<<B .0x <C .113x -<<D .103x <<【答案】D由()211log 31133x x +<⇔-<<,由于1110333x x <<⇒-<<,而1133x -<<⇒103x <<,故不等式()2log 311x +<成立的一个充分不必要条件是103x <<,A 选项是充要条件,B 选项是既不充分也不必要条件,C 选项是必要不充分条件. 故选:D.4.(2022·陕西西安·高一期末)函数()ln xf x x=的图像大致为( ) A . B .C .D .【答案】C()f x 的定义域为{}|0x x ≠,()()ln xf x f x x-==--,所以()f x 是奇函数,图象关于原点对称,所以AD 选项错误. ()()ln 210,202f f ==>,所以B 选项错误. 故选:C5.(2022·吉林·农安县教师进修学校高一期末)函数()1ln 34y x x=-+的定义域是( ) A .3,4⎛⎫-∞ ⎪⎝⎭B .30,4⎛⎫⎪⎝⎭C .()3,00,4⎛⎫-∞⋃ ⎪⎝⎭D .3,4⎛⎫+∞ ⎪⎝⎭【答案】C由题意,340304x x x ->⎧⇒<⎨≠⎩且0x ≠,所以函数的定义域为()3,00,4⎛⎫-∞⋃ ⎪⎝⎭. 故选:C高频考点一:对数的运算1.(2022·甘肃平凉·二模(文))27log 7log 8⋅=______. 【答案】33272727log 7log 8log 7log 23log 7log 23⋅=⋅=⋅=.故答案为:3.2.(2022·北京师大附中高一期末)13331()log 5log 1527+-=______________.【答案】23-原式()13335123log 11533-=+=-=-. 故答案为:23-.3.(2022·浙江·杭州市富阳区第二中学高一阶段练习)计算7log 237log 27lg 25lg 47log 1++++=______.【答案】7解:7log 237log 27lg 25lg 47log 1++++()3lg 2542=+⨯+52=+7=.故答案为:7.4.(2022·湖南·高一课时练习)计算:(1)()23log 279⨯;(2)101log 1000;(3)7775log 30log 12log 2--. 【答案】(1)7;(2)3-;(3)0. (1)由()()2437333log 279log 33log 37⨯=⨯==.(2) 由310101log log 1031000-==-. (3)由7777777530552log 30log 12log log log log ()log 10212225--=-=⨯==. 高频考点二:换底公式1.(2022·贵州遵义·高三开学考试(理))已知lg 2,lg3a b ==,则4log 75=( ) A .22a b a-+ B .22b a a-+ C .222b a a-+ D .222a b a-+ 【答案】C 4lg75lg32lg52(1)22log 75lg 42lg 222b a b a a a++--+====. 故选:C2.(2022·安徽·安庆市教育教学研究室高一期末)已知lg 2a =,lg3b =,用a ,b 表示36log 5,则36log 5=( ) A .221a b a+- B .12aa b-+ C .22aa b-+ D .122aa b-+【答案】D 由题意知()36lg51lg21log 5lg362lg2lg322aa b--===++, 故选:D .3.(2022·山东济南·二模)已知ln 2a =,ln3b =,那么3log 2用含a 、b 的代数式表示为( ) A .-a bB .abC .b aD .a b +【答案】B由换底公式,3ln 2log 2ln 3ab==. 故选:B.4.(2022·湖南·高一课时练习)计算:53611log log 6log 325⋅⋅=________. 【答案】2原式()()11lglglg32lg5lg 6lg 63252lg5lg3lg 6lg5lg3lg 6--=⋅⋅=⋅⋅=.故答案为:2.高频考点三:对数函数的概念1.(2021·河南·洛宁县第一高级中学高一阶段练习)已知函数()f x 满足①定义域为()0,∞+;②值域为R ;③()()22f x f x =.写出一个满足上述条件的函数:()f x =___________.【答案】ln x (答案不唯一)因为()ln f x x =满足①定义域为()0,∞+;②值域为R ; ()()22ln 2ln 2f x x x x f ===,所以()ln f x x =符合题意, 故答案为:ln x ,(答案不唯一).2.(2021·江苏·高一专题练习)对数函数f (x )的图象过点(3,-2),则f=________. 【答案】-1设f (x )=log ax ,则log a 3=-2,∴a -2=3, ∴a,∴f (x )=x ,∴f=log1.故答案为:-13.(2021·江苏南通·高三期中)写出满足条件“函数()y f x =在()0,∞+上单调递增,且()()()f xy f x f y =+”的一个函数()f x =___________. 【答案】2log x()()()f xy f x f y =+是对数函数模型,()2log f x x =满足条件.故答案为:2log x .4.(2021·全国·高一专题练习)若函数f (x )=(a 2+a -5)log ax 是对数函数,则a =________. 【答案】2因为函数f (x )=(a 2+a -5)log ax 是对数函数,、 所以a 2+a -5=1得3a =-或a =2又a >0且a ≠1,所以a =2. 故答案为:2高频考点四:对数函数的定义域1.(2022·甘肃·甘南藏族自治州合作第一中学高一期末)函数f (x )的定义域为( )A .(2,+∞)B .(0,2)C .(-∞,2)D .(0,12)【答案】B 12log 10x +>,解得(0,2)x ∈故选:B2.(2022·四川·模拟预测(文))函数y =___________. 【答案】13,24⎡⎫⎪⎢⎣⎭由已知可得()lg 340x --≥,即()lg 340x -≤,可得0341x <-≤,解得1324x ≤<.故原函数的定义域为13,24⎡⎫⎪⎢⎣⎭.故答案为:13,24⎡⎫⎪⎢⎣⎭.3.(2022·四川宜宾·高一期末)函数y =________. 【答案】[)1,+∞##{}|1x x ≥由题意知()320ln 320x x ->⎧⎨-≥⎩,所以23321x x ⎧>⎪⎨⎪-≥⎩,所以1≥x ,所以函数y =[)1,+∞. 故答案为:[)1,+∞.4.(2022·上海市控江中学高一期末)函数()2lg 1y x kx =++定义域为R ,则实数k 的取值范围为______.【答案】22k -<<解:因为函数()2lg 1y x kx =++定义域为R ,所以210x kx ++>在R 上恒成立, 所以240k ∆=-<,解得22k -<<. 故答案为:22k -<<.5.(2022·上海浦东新·高一期末)函数1ln 2x y x-=-的定义域为_____________. 【答案】()1,2 【解析】要使函数1ln2x y x-=-有意义,则有102x x ->-,即()()120x x -->,解得12x << 故答案为:()1,2高频考点五:对数函数的值域①求对数函数在区间上的值域1.(2022·全国·高三专题练习)函数()222log log f x x x =+在1,24⎛⎫⎪⎝⎭上的值域为_______________________.【答案】(–2,3)函数2log y x =在定义域上单调递增.当[)1,2x ∈时,[)()[)22log 0,1,3log 0,3x f x x ∈=∈; 当1,14x ⎡⎫∈⎪⎢⎣⎭时,()2log 2,0x ∈-,()()2log 2,0f x x =∈-,所以()f x 的值域为(–2,3). 故答案为:(–2,3)2.(2022·全国·池州市第一中学高一开学考试)已知函数()2122log log f x x x =+.(1)求()f x 在区间[]1,8上的值域; 【答案】(1)[]0,3(2)1,2⎡⎫+∞⎪⎢⎣⎭(1)∴()2122222log log 2log log log f x x x x x x =+=-=,∴()f x 在[]1,8上单调递增,∴()[]0,3f x ∈.3.(2022·全国·高一课时练习)求函数2log ,[8,)y x x =∈+∞的值域. 【答案】[3,)+∞2log y x =为增函数,[8,)x ∈+∞,322log 8log 23y ∴==,所以函数的值域为[3,)+∞.②求对数型复合函数的值域1.(2022·贵州·毕节市第一中学高一阶段练习)函数y =2+log 2(x 2+3)(x ≥1)的值域为( ) A .(2,+∞) B .(-∞,2) C .[4,+∞) D .[3,+∞)【答案】C 令234t x =+≥,又因为22log y t =+在[4,)+∞上递增,所以22log 44y ≥+=,所以y =2+log 2(x 2+3)(x ≥1)的值域为 [4,+∞), 故选:C2.(2022·青海·大通回族土族自治县教学研究室高一期末)函数()212log 8y x =+的值域是________.【答案】(,3]-∞-##{}|3y y ≤- 288x +≥,而12log y x=在定义域上递减,max 12log 83y ∴==-,无最小值,∴函数的值域为(,3]-∞-.故答案为:(,3]-∞-.3.(2022·河南焦作·高一期末)已知函数()()()log 2log 4a a f x x x =++-(a >0且a ≠1)的图象过点()1,2. (1)求a 的值及()f x 的定义域; (2)求()f x 在[]0,3上的最小值.【答案】(1)3a =,定义域()2,4-(2)3log 5 (1)()f x 的图象过点()1,2,可得:()()()1log 21log 412log 32a a a f =++-==解得:3a =则有:()()()33log 2log 4f x x x =++-定义域满足:2040x x +>⎧⎨->⎩解得:24x -<<故()f x 的定义域为()2,4- (2)令()228219t x x x =+-=--+,[]0,3x ∈故当x =3时,min 5t = 可得:()3min log 5f x =4.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;【答案】[]4,0-解:()()()()()2444444log 3log 4log 3log 1log 2log 3f x x x x x x x =-⋅=-⋅+--=, 令4log t x =,由1,164x ⎡⎤∈⎢⎥⎣⎦,则[]1,2t ∈-,所以有()222314y t t t =--=--,[]1,2t ∈-,所以当1t =时,max 4y =-,当1t =-时,min 0y =所以函数()f x 的值域为[]4,0-.③根据对数函数的值域求参数值或范围1.(2022·河南信阳·高一期末)已知函数()23log y x m =+的值域为[2,)+∞,则实数m 的值为( )A .2B .3C .9D .27【答案】C解:因为函数()23log y x m =+的值域为[2,)+∞,所以2y x m =+的最小值为9,所以9m =;故选:C2.(2022·陕西咸阳·高一期末)函数()log 1a f x x =+在[1,3]上的值域为[1,3],则实数a 的值是___________.若01a <<,()log 1a f x x =+在[1,3]上单调递减,则3()1log 1a f x ≤≤+,不符合题意;若1a >,()log 1a f x x =+在[1,3]上单调递增,则1log 1()3a f x ≤≤+,当值域为[1,3]时,可知3log 13a +=,解得a =3.(2022·全国·高一阶段练习)函数()()2lg 234f x mx x =-+的值域为R ,则实数m 的取值范围为______.【答案】90,32⎡⎤⎢⎥⎣⎦解:由题可知,函数()()2lg 234f x mx x =-+的值域为R ,令2234u mx x =-+,由题意可知()0,∞+为函数34u x =-+的值域的子集. ①当0m =时,34u x =-+,此时()()lg 34f x x =-+, 函数34u x =-+的值域为R ,合乎题意;②当0m ≠时,若()0,∞+为函数2234u mx x =-+的值域的子集,则0Δ9320m m >⎧⎨=-≥⎩,解得9032m <≤.综上所述,实数m 的取值范围是90,32⎡⎤⎢⎥⎣⎦.故答案为:90,32⎡⎤⎢⎥⎣⎦.4.(2022·河南·林州一中高一开学考试)若函数()2log 5242a y a x ax =--+⎡⎤⎣⎦有最小值,则a 的取值范围为______.【答案】()20,1,25⎛⎫⋃ ⎪⎝⎭当01a <<时,外层函数log a y u =为减函数,要使函数有最小值,对于内层函数2(52)42u a x ax =--+,()25202Δ1685205a a a a -<⎧⇒<⎨=-->⎩,又01a <<,所以205a <<; 当1a >时,外层函数log a y u =为增函数,要使函数有最小值,对于内层函数2(52)42u a x ax =--+,则2Δ(4)8(52)01a a a ⎧=---<⎨>⎩,解得12a <<.综上所述,实数a 的取值范围是()2(0,)1,25⋃.故答案为:()2(0,)1,25⋃.5.(2022·山西省长治市第二中学校高一期末)已知函数212()log (23)f x x ax =-+ . (1)当1a =-时,求函数()f x 的值域; (2)若函数()f x 的值域为R ,求实数a 取值范围.【答案】(1)(],1-∞-;(2)(),-∞⋃+∞.(1)当1a =-时,212()log (+23)f x x x =+, ∴()2223122x x x ++=++≥,∴()21122log 23log 21x x ++≤=-,∴函数()f x 的值域(],1-∞-; (2)要使函数()f x 的值域为R ,则223y x ax =-+的值域包含()0,∞+, ∴()224130a ∆=--⨯⨯≥,解得a ≤a ≥∴实数a 取值范围为(),-∞⋃+∞.高频考点六:对数函数的图象①判断对数(型)函数的图象1.(2022·广东汕尾·高一期末)当1a >时,在同一平面直角坐标系中,1xy a ⎛⎫= ⎪⎝⎭与()log ay x =-的图象是( )A .B .C .D .【答案】B()log a y x =-的定义域为(,0)-∞,故AD 错误;BC 中,又因为1a >,所以101a<<,故C 错误,B 正确.故选:B2.(2022·广东·华南师大附中高一阶段练习)函数3x y -=与()3log y x =-的图象可能是( )A .B .C .D .【答案】C函数133xxy -⎛⎫== ⎪⎝⎭为R 上的减函数,排除AB 选项,函数()3log y x =-的定义域为(),0∞-,内层函数u x =-为减函数,外层函数3log y u =为增函数, 故函数()3log y x =-为(),0∞-上的减函数,排除D 选项. 故选:C.3.(2022·浙江·高三专题练习)已知lg lg 0a b +=(0a >且1a ≠,0b >且1b ≠),则函数()xf x a =与()1log bg x x =的图象可能是( )A .B .C .D .【答案】B∴lg lg 0a b +=(0a >且1a ≠,0b >且1b ≠), ∴1ab =,∴1b a=,∴()1log log ba g x x x ==,函数()xf x a =与函数()1log bg x x =互为反函数,∴函数()xf x a =与()1log bg x x =的图象关于直线y x =对称,且具有相同的单调性.故选:B .②根据对数(型)函数的图象判断参数1.(2022·新疆巴音郭楞·高一期末)如图是三个对数函数的图象,则a 、b 、c 的大小关系是( )A .a >b >cB .c >b >aC .c >a >bD .a >c >b【答案】Dy =log ax 的图象在(0,+∞)上是上升的,所以底数a >1,函数y =log bx ,y =log cx 的图象在(0,+∞)上都是下降的,因此b ,c ∴(0,1),又易知c >b ,故a >c >b . 故选:D .2.(2022·全国·高三专题练习(文))已知2(0,1)()log ,[1,2)a ax x f x x x ⎧∈=⎨∈⎩,,若()2a f x =有两解,则a 的取值范围是( )A .10,2⎛⎫⎪⎝⎭B .10,2⎛⎤ ⎥⎝⎦C .(1,2]D .(1,2)【答案】D由条件可知0a >且1a ≠,当()0,1x ∈时,22a ax =,解得:x =,成立, 当[)1,2x ∈时,若01a <<,log 0a x <,02a >,log 2a a x ≠, ∴log 2a ax =有解,则1a >,如图,当log 22a a >时,有交点,a 越大,log 2a 越小,2a 越大,当2a =时,log 22a a =, ()1,2a ∴∈故选:D3.(2022·湖南师大附中高一期末)已知函数()log (21)(01)xa f xb a a =+->≠,的图象如图所示,则a b ,满足的关系是( )A .101a b -<<<B .101b a -<<<C .101b a -<<<D .1101a b --<<<【答案】A由图易得1a >,101a -∴<<;取特殊点01log 0a x y b =⇒-<=<, 11log log log 10aa ab a⇒-=<<=,101a b -∴<<<.选A . 4.(2022·黑龙江·双鸭山一中高一期末)已知310()log 0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()0f x a -=有四个根1234,,,x x x x 且1234x x x x <<<,则1234x x x x +++的取值范围是______. 【答案】403⎛⎤⎥⎝⎦,由题意,作出函数310()log 0x x f x x x ⎧+≤⎪=⎨>⎪⎩的图象,如图所示, 因为方程()0f x a -=有四个根1234,,,x x x x 且1234x x x x <<<, 由图象可知122x x +=-,3334log log x x -=,可得341x x =,则1234342x x x x x x +++=-++,设3334log ,log x t x t =-=,所以3433t tx x -+=+,因为01t <≤,所以133t <≤,所以102333t t-<+≤, 所以402333t t-<-++≤,即1234403x x x x <+++≤, 即1234x x x x +++的取值范围是403⎛⎤⎥⎝⎦,.故答案为:403⎛⎤⎥⎝⎦,.③对数(型)函数图象过定点问题1.(2022·黑龙江·双鸭山一中高一开学考试)函数()log (1)3,(0,1)a f x x a a =-++>≠且的图象一定过定点__________. 【答案】()0,3 令11x -+=,则0x = 所以()0log 133a f =+= 所以()f x 过定点()0,3 故答案为:()0,32.(2022·湖北·江夏一中高一阶段练习)函数y =log a (2x -3)+8的图象恒过定点A ,且点A 在幂函数f (x )的图象上,则f (3)=________. 【答案】27由题意231x -=,2x =,则8y =,定点A 为(2,8), 设f (x )=xα,则2α=8,α=3,∴f (x )=x 3,∴f (3)=33=27. 故答案为:273.(2022·四川南充·高一期末)函数log (1)2(0,1)a y x a a =-+>≠的图象恒过一定点是___________. 【答案】试题分析:对数函数过定点()1,0,令112x x -=∴=,此时2y =,所以过定点高频考点七:对数函数的单调性①对数函数(型)函数的单调性1.(2022·北京房山·高一期末)下列函数中,既是奇函数又在区间(0,)+∞上单调递增的是( )A .21y x =-+B .2log y x =C .3y x =D .y =【答案】C解:对于A 选项,函数为偶函数,故错误; 对于B 选项,对数函数为非奇非偶函数,故错误;对于C 选项,由幂函数性质知为在区间(0,)+∞上单调递增,且为奇函数,故正确; 对于D 选项,函数定义域为[)0,∞+,为非奇非偶函数,故错误.故选:C2.(2022·全国·高一课时练习)函数12()log f x x =的单调递增区间是( )A .10,2⎛⎤ ⎥⎝⎦B .(]0,1C .()0,∞+D .[)1,+∞【答案】D由112211222log ,01log ,01()log log ,1log ,1x x x x f x x x x x x <<⎧<<⎧⎪⎪===⎨⎨-≥⎪⎪≥⎩⎩, 而对数函数12log y x=在()0,1上是减函数,2log y x =在[)1,+∞上是增函数,所以函数f (x )单调递增区间为[)1,+∞. 故选:D.3.(2022·北京·高三专题练习)函数()()212log 6f x x x =-++的单调递增区间是( )A .1,32⎛⎫ ⎪⎝⎭B .12,2⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭D .1,2⎛⎫+∞ ⎪⎝⎭【答案】A由题意,()2260602,3x x x x x -++>⇒--<⇒∈-,()212125log 24f x x ⎡⎤⎛⎫=--+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,按照“同增异减”的原则可知,函数的单调递增区间是1,32⎛⎫⎪⎝⎭.故选:A.4.(2022·河北张家口·高一期末)函数()()22log 65f x x x =-+-的单调递减区间是( )A .(],3-∞B .(]1,3C .[)3,+∞D .[)3,5【答案】D2log y t =,()226534t x x x =-+-=--+,令22650650x x x x -+->⇔-+<,解得:15x <<,根据复合函数单调性可知,内层函数的单调性可知()1,3x ∈函数单调递增,在区间[)3,5函数单调递减,外出函数单调递增,所以函数的但到底就区间是[)3,5. 故选:D5.(2022·河南新乡·高一期末)函数()217log 2223y x x =--的单调递增区间为( )A .()11,+∞B .(),11-∞C .()23,+∞D .(),1-∞-【答案】D由222230x x -->,得1x <-或23x >.因为函数17log y t=单调递减,且函数22223t x x =--在(),1-∞-上单调递减,所以函数()217log 2223y x x =--在(),1-∞-上单调递增.故选:D6.(2022·山西·怀仁市第一中学校高一期末)()()23log 28f x x x =--的单调递增区间为( )A .(),1-∞B .(),4-∞C .()2,-+∞D .()4,+∞【答案】D 【解析】由题设可得2280x x -->,故2x <-或4x >, 故函数的定义域为()(),24,-∞-+∞, 令()()228,,24,t x x x =--∈-∞-+∞,则()222819t x x x =--=--在(),2-∞-为减函数,在()4,+∞上为增函数, 因为3log y t =在()0,+∞上为增函数,故()f x 的增区间为()4,+∞, 故选:D.②由对数函数(型)函数的单调性求参数1.(2022·陕西西安·高一期末)已知()log log 1a a b b <-,则a 的取值范围是( ) A .1a > B .01a << C .a b > D .0a b <<【答案】B由对数及不等式的性质知:10b b >->,而()log log 1a a b b <-, 所以01a b <<<. 故选:B2.(2022·黑龙江·双鸭山一中高一期末)已知函数()2()lg 1f x x ax =-+-在[2,3]上单调递减,则实数a 的取值范围是( ) A .[4,)+∞ B .[6,)+∞C .10,43⎛⎤ ⎥⎝⎦D .10,43⎡⎤⎢⎥⎣⎦【答案】C由于函数()()2ln 1f x x ax =-+-在[]2,3上单调递减,ln y x =在定义域内是增函数,所以根据复合函数的单调性法则“同增异减”得: 21y x ax =-+-在[]2,3上单调递减,且0y >,所以22a ≤且9310a -+->,解得:1043a <≤.故a 的取值范围是10,43⎛⎤⎥⎝⎦故选:C.3.(2022·内蒙古赤峰·高一期末)已知函数()()314,1log ,1a a x a x f x x x ⎧-+<=⎨≥⎩在R 上是减函数,则实数a 的取值范围是( )A .()0,1B .10,3⎛⎫⎪⎝⎭C .11,73⎡⎫⎪⎢⎣⎭D .1,17⎡⎤⎢⎥⎣⎦【答案】C由条件可知,函数()()314,1log ,1a a x a x f x x x ⎧-+<=⎨≥⎩在R 上是减函数,需满足()31001314log 1a a a a a ⎧-<⎪<<⎨⎪-+≥⎩,解得:1173a ≤<.故选:C4.(2022·湖南岳阳·高一期末)已知函数()2ln 3y x ax a =-+在[2,)+∞上单调递增,则实数a 的取值范围为( )A .()4,-+∞B .(]0,4C .[)4,+∞D .(]4,4-【答案】D根据复合函数的单调性可知,若函数在区间[)2,+∞上单调递增,需满足2222230aa a ⎧≤⎪⎨⎪-+>⎩,解得:44a -<≤.故选:D5.(2022·福建泉州·高一期末)若函数()ln(2)=-f x ax 在(1,)+∞单调递增,则实数a 的取值范围为( ) A .(0,)+∞ B .(2,)+∞C .(0,2]D .[2,)+∞【答案】D函数()ln(2)=-f x ax 中,令2u ax =-,函数ln y u =在(0,)+∞上单调递增,而函数()ln(2)=-f x ax 在(1,)+∞上单调递增,则函数2u ax =-在(1,)+∞上单调递增,且1,20x ax ∀>->,因此,020a a >⎧⎨-≥⎩,解得2a ≥,所以实数a 的取值范围为[2,)+∞. 故选:D6.(2022·重庆·高一期末)已知关于x 的函数2log (2)y ax =-在[]0,1上是单调递减的函数,则a 的取值范围为( )A .()0-,∞ B .()0,+∞ C .(]0,2 D .()02,【答案】D令()20=-≥t ax t ,则2log y t =,因为2log y t =的单调递增函数,函数2log (2)y ax =-在[]0,1上是单调递减的函数 由复合函数的单调性判断方法可得()20=-≥t ax t 是单调递减函数,所以0a >,又2log (2)y ax =-在[]0,1上是单调递减的函数,所以20200->⎧⎨->⎩a ,得02a <<,故选:D.7.(2022·河南南阳·高一期末)若函数()()217log 45f x x x =-++在区间()32,2m m -+上单调递增,则实数m 的取值范围为( ) A .3,14⎡⎤⎢⎥⎣⎦B .43,32⎡⎤⎢⎥⎣⎦C .4,23⎡⎫⎪⎢⎣⎭D .4,23⎛⎫ ⎪⎝⎭【答案】C()()217log 45f x x x =-++的定义域为2{|450}{|15}x x x x x -++>=-<<,令245(15)t x x x =-++-<<,则函数为17log y t=,外层函数单调递减,由复合函数的单调性为同增异减,要求函数()f x 的增区间,即求t 的减区间,当(2,5)x ∈,t 单调递减,则()()217log 45f x x x =-++ 在(2,5)x ∈上单调递增,即()32,2m m -+是(2,5)的子集,则423234253233222m m m m m m m m ⎧≤⎪≤-⎧⎪⎪+≤⇒≤⇒≤<⎨⎨⎪⎪-<+<⎩⎪⎩.故选:C.③由对数函数(型)函数的单调性解不等式1.(2022·河南濮阳·高三开学考试(文))不等式()()2ln 1ln 35x x +>+的解集为( )A .()4,+∞B .()1,4-C .()5,14,3⎛⎫--⋃+∞ ⎪⎝⎭D .()(),14,-∞-⋃+∞【答案】C原不等式等价于21350x x +>+>,解得,513x -<<-或4x >.故选:C2.(2022·全国·高三专题练习)已知函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,则不等式()2f x +<()22f x x +的解集是( ) A .(﹣2,1) B .(0,1) C .(﹣∞,﹣2)∴(1,+∞) D .(1,+∞)【答案】C函数()f x =()21,02,0ln x x x x ⎧+≥⎨-<⎩,可得x ≥0,()f x 递增;当x <0时,()f x 递增;且x =0时函数连续, 所以()f x 在R 上递增,不等式()2f x +<()22f x x +,可化为x +2<x 2+2x ,即x 2+x ﹣2>0,解得x >1或x <﹣2, 则原不等式的解集为(﹣∞,﹣2)∴(1,+∞). 故选:C3.(2022·北京房山·高一期末)设函数21,2()2log (1),2xx f x x x ⎧⎛⎫<⎪ ⎪=⎨⎝⎭⎪-≥⎩,若()1f x >,则x 的取值范围是( )A .(0,3)B .(,0)(3,)-∞⋃+∞C .(,1)(2,)-∞-⋃+∞D .(1,2)-【答案】B由题意,函数21,2()2log (1),2xx f x x x ⎧⎛⎫<⎪ ⎪=⎨⎝⎭⎪-≥⎩,且()1f x >,当2x <时,令1()12x>,解得0x <;当2x ≥时,令2log (1)1x ->,可得12x ->,解得3x >, 所以不等式()1f x >的解集为(,0)(3,)-∞⋃+∞. 故选:B.4.(2022·四川绵阳·一模(理))设函数()211,,21log ,,2x f x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩则满足()()21f x f x -<的x 的取值范围是( )A .13,24⎛⎤⎥⎝⎦B .3,14⎡⎫⎪⎢⎣⎭C .3,4⎛⎤-∞ ⎥⎝⎦D .1,12⎛⎫⎪⎝⎭【答案】D由题意,2log y x =在1[,)2+∞单调递增,且21log 12=-故()()121212f x f x x x -<⇔-<<或1212x x ≤-< 解得:112x << 故选:D5.(2022·江西赣州·一模(文))设函数122,1()1log ,1x x f x x x -⎧≤=⎨->⎩则满足()2f x ≤的x 取值范围是A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)【答案】D由1122x x -≤⎧⎨≤⎩,可得01x ≤≤;或211log 2x x >⎧⎨-≤⎩,可得1x >;综上,()2f x ≤的x 取值范围是[0,)+∞. 故选:D④对数(指数)综合比较大小1.(2022·广东中山·高一期末)设2log 3a =,3log 4b =,5log 8c =,则( ) A .b a c << B .a b c << C .c b a << D .b c a <<【答案】D 因为35lg 42lg 2lg83lg 2log 4,log 8lg3lg3lg5lg5b c ======, 则2lg 23lg 22lg 2lg53lg 2lg3lg 2(2lg53lg3)lg 2(lg 25lg 27)0lg3lg5lg3lg5lg3lg5lg3lg5b c ⋅-⋅---=-===<⋅⋅⋅,所以b c <,又因为3255553log 5log 8log log 52<<==,所以312c <<,又由322223log 3log log 22a =>=,所以32a >,所以b c a <<. 故选:D.2.(2022·江西·南昌十五中高二阶段练习(理))设292log 3,log 5,15==a b c ,则( ) A .2a b < B .2log 180+>a cC .24+>a b cD .21316+<a a 【答案】C因为2443log 3log 9log 82a ==>=,所以99log 27log 252ab >>=,A 错误; 因为函数13()2f x x x x ⎛⎫=+> ⎪⎝⎭为增函数,所以13213236a a +>+=,所以21316a a +>,D 错误;因为(()1.522222log 3log 315log (45log (454)log 180a c +=⨯<⨯=<⨯=,所以2log 180a c +<,B 错误;因为232110,0,log 3log 5log 5122a b ab >>=⨯=>,所以22415a b c +≥=>>=,所以24+>a b c ,C 正确.故选:C.3.(2022·福建·厦门双十中学高二阶段练习)设2ln1.01a =,ln1.02b =,0.02c =,则( ) A .a b c << B .b c a << C .b a c << D .c a b <<【答案】C2222ln1.01ln1.01ln(10.01)ln(120.010.01)ln1.02a b ===+=+⨯+>=,令()()()()ln 10,1f x x x x =+-∈,则()1101f x x'=-<+,所以()f x 在()0,1x ∈上递减,则()()00f x f <=,即()()()ln 10,1x x x +<∈, 则()ln1.02ln 10.020.02b c ==+<=,()2ln1.012ln 10.0120.01a c ==+<⨯=, 所以b a c <<, 故选:C4.(2022·江西·九江一中高二阶段练习(理))已知 1.12a =,0.64b =,ln 7c =,则a ,b ,c 的大小关系为( ) A .a b c << B .b c a << C .c a b << D .c b a <<【答案】C因为0.6 1.2 1.14222a b ==>=>,2ln7lne 2c =<=,所以c a b << 故选:C.5.(2022·江苏·南京市第一中学高三开学考试)已知0.2log 0.02a =,3log 30b =,ln 6c =,则( ) A .c b a << B .b a c << C .c a b << D .a c b <<【答案】C∴0.020.04<,∴0.2log 0.042a >=,∴26e <,∴2ln e 2c <=,∴c a <, 又lg 0.02lg 2211lg 0.2lg 211lg 2a -===+--,lg301lg311lg3lg3lg3b +===+,∴lg 2lg3lg 61+=<,∴1lg 2lg3->,∴a b <. 故选:C.高频考点八:对数函数的最值①求对数(型)函数的最值1.(2021·江苏·沭阳县修远中学高一阶段练习)已知函数()21f x ax =-在区间[]0,2上的最大值为7,则()log a g x x =在区间[]1,4上的最大值为( ) A .0 B .1 C .2 D .4【答案】C由()log a g x x =可知:0a >且1a ≠,所以函数()21f x ax =-是实数集上单调递增函数, 因为函数()21f x ax =-在区间[]0,2上的最大值为7,所以有()24172f a a =-=⇒=,因为函数()2log g x x =是[]1,4上的增函数 所以()log a g x x =在区间[]1,4上的最大值为()24log 42g ==, 故选:C2.(2021·天津市实验中学滨海学校高三期中(理))已知函数()420.5()log 46f x x x =-+,则( )A .()f x 有最小值,且最小值为-2B .()f x 有最小值,且最小值为-1C .()f x 有最大值,且最大值为-2D .()f x 有最大值,且最大值为-1 【答案】D解: ()()24220.50.50.5()log 46log 22log 21f x x x x ⎡⎤=-+=-+≤=-⎢⎥⎣⎦,所以()f x 有最大值,且最大值为1-,但无最小值. 故选:D3.(2022·上海金山·高一期末)函数()12log 2y x =+,[]2,6x ∈的最大值为______. 【答案】-2因为[]26x ∈,,则()[]248x +∈,, 由于12log y x = 是减函数,所以max 12log 42y ==-,故答案为:-24.(2021·山东·嘉祥县第一中学高三阶段练习)函数()()224log log 44xf x x =⋅的最小值为___________. 【答案】94-##124-函数定义域是(0,)+∞,2log R x ∈,()()224log log 44xf x x =⋅22422(log 2)(1log )(log 2)(1log )x x x x =-+=-+ 2222219log log 2(log )24x x =--=--,所以x =min 9()4f x =-.故答案为:94-.5.(2021·全国·高一课时练习)函数()23()log 9f x x =-的最大值是_______.【答案】2设29t x =-,则09t <≤,即求3log y t =在(]0,9上的最大值, 由3log y t =在(]0,9上是单调递增函数, 所以当9t =,即0x =时,函数有最大值2. 故答案为:2.②根据对数(型)函数的最值求参数1.(2022·河南平顶山·高一期末)已知函数()21log ,a f x x x a ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的最大值与最小值的差为2,则=a ( )A .4B .3C .2D 【答案】C由题意得()f x 在1,a a ⎡⎤⎢⎥⎣⎦上为单调递增函数,所以min 211()log f x f a a ⎛⎫== ⎪⎝⎭,()max 2()log f x f a a ==,所以22221log log log 2a a a-==,解得24a =,2a =± 又0a >,所以2a =. 故选:C2.(2022·贵州·六盘水市第一中学模拟预测)若函数()2log 1a y x ax =-+有最小值,则a 的取值范围是( )A .12a <<B .02,1a a <<≠C .01a <<D .2a ≥【答案】A令2()1u x x ax =-+,函数()2log 1a y x ax =-+有最小值, 1a ∴>,且2min ()0,40,12u x a a >∴∆=-<∴<<,所以a 的取值范围是12a <<. 故选:A.3.(2022·贵州毕节·高一期末)已知函数()22,4,log ,4,x a x f x x x ⎧-<=⎨≥⎩若()f x 存在最小值,则实数a 的取值范围是( )A .(,4]-∞B .[2,)-+∞C .(,2)-∞-D .(,2]-∞-【答案】D∴函数()22,4,log ,4,x a x f x x x ⎧-<=⎨≥⎩∴当4x <时,()2x f x a =-的范围是(,16)a a --;当4x ≥时,2()log f x x =,min ()2f x =, 由题意()f x 存在最小值,则2-≥a , 解得2a ≤-. 故选:D .4.(2022·全国·高三专题练习)若函数2()log (1)a f x x ax =-+(01)a a >≠且没有最小值,则a 的取值范围是____________. 【答案】[)(0,1)2,+∞分类讨论:当01a <<时,()2lim 1x x ax →+∞-+=+∞,函数没有最小值, 当1a >时,应满足210x ax -+≤有解,故2402a a ∆=-≥⇒≥, 综上可得,a 的取值范围是(0,1)[2,)+∞.5.(2022·甘肃省会宁县第一中学高一期末)已知函数()log a f x x =(0a >且1a ≠),()f x 在1,23⎡⎤⎢⎥⎣⎦上的最大值为1.(1)求a 的值;(2)当函数()f x 在定义域内是增函数时,令()1122g x f x f x ⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭,判断函数()g x 的奇偶性,并证明,并求出()g x 的值域.【答案】(1)2或13(2)()g x 为偶函数,证明见解析,(],2-∞-. (1)当1a >时,()f x 为增函数,()()max 2log 21a f x f ∴===,解得:2a =; 当01a <<时,()f x 为减函数,()max 11log 133a f x f ⎛⎫∴=== ⎪⎝⎭,解得:13a =;综上所述:2a =或13.(2)当函数()f x 在定义域内是增函数时,1a >,由(1)知:()2log f x x =; ()221111log log 2222g x f x f x x x ⎛⎫⎛⎫⎛⎫⎛⎫=++-=++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 由102102x x ⎧+>⎪⎪⎨⎪->⎪⎩得:1122x -<<,即()g x 定义域为11,22⎛⎫- ⎪⎝⎭;又()()2211log log 22g x x x g x ⎛⎫⎛⎫-=-++= ⎪ ⎪⎝⎭⎝⎭,()g x ∴是定义在11,22⎛⎫- ⎪⎝⎭上的偶函数;()2222111log log log 224g x x x x ⎛⎫⎛⎫⎛⎫=++-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴当1122x -<<时,2110,44x ⎛⎤-∈ ⎥⎝⎦,()(],2g x ∴∈-∞-,即()g x 的值域为(],2-∞-.6.(2022·河南信阳·高一期末)已知函数()log (4)a f x ax =-(0a >,且1a ≠). (1)求函数()f x 的定义域;(2)是否存在实数a ,使函数()f x 在区间31,2⎡⎤⎢⎥⎣⎦上单调递减,并且最大值为1?若存在,求出a 的值;若不存在,请说明理由.【答案】(1)4,a ⎛⎫-∞ ⎪⎝⎭(2)2a =(1)由题意可得40ax ->,即4ax <, 因为0a >,所以解得4x a<. 故()f x 的定义域为4,a ⎛⎫-∞ ⎪⎝⎭.(2)假设存在实数a ,使函数()f x 在区间31,2⎡⎤⎢⎥⎣⎦上单调递减,并且最大值为1.设函数()4g x ax =-,由0a >,得0a -<,所以()g x 在区间31,2⎡⎤⎢⎥⎣⎦上为减函数且()0g x >恒成立,因为()f x 在区间31,2⎡⎤⎢⎥⎣⎦上单调递减,所以1a >且3402a ->,即813a <<.又因为()f x 在区间31,2⎡⎤⎢⎥⎣⎦上的最大值为1,所以()()()max 1log 41a f x f a ==-=, 整理得4a a =-,解得2a =. 因为8123<<,所以32,81a ⎛⎫=∈ ⎪⎝⎭,所以存在实数2a =,使函数()f x 在区间31,2⎡⎤⎢⎥⎣⎦上单调递减,并且最大值为17.(2022·天津河北·高一期末)已知函数()()log 1a f x x =-(0a >,且1a ≠) (1)求()2f 的值及函数()f x 的定义域;(2)若函数()f x 在[]2,9上的最大值与最小值之差为3,求实数a 的值. 【答案】(1)0;(1,)+∞;(2)12或2. (1)函数()()log 1a f x x =-,则()2log 10a f ==,由10x ->解得:1x >, 所以()2f 的值是0,()f x 的定义域是(1,)+∞. (2)当01a <<时,()()log 1a f x x =-在[]2,9上单调递减,()max (2)0f x f ==,()min (9)log 8a f x f ==, 于是得0log 83a -=,即38a -=,解得12a =,则12a =, 当1a >时,()()log 1a f x x =-在[]2,9上单调递增,()min (2)0f x f ==,()max (9)log 8a f x f ==, 于是得log 803a -=,即38a =,解得2a =,则2a =, 所以实数a 的值为12或2.③对数(型)函数的最值与不等式综合应用1.(2022·湖北·武汉中学高一阶段练习)已知函数()1lg 43x x f x m ⎛⎫=-- ⎪⎝⎭,若对任意的[]1,1x ∈-使得()1f x ≤成立,则实数m 的取值范围为 A .19,3⎡⎫-+∞⎪⎢⎣⎭B .11,4⎛⎫-∞ ⎪⎝⎭-C .1911,34⎡⎤--⎢⎥⎣⎦D .1911,34⎡⎫--⎪⎢⎣⎭【答案】D若对任意的[]1,1x ∈-使得()1f x ≤成立,即1lg 413x x m ⎛⎫--≤ ⎪⎝⎭,得104103xx m <--≤,14314103xx x x m m ⎧<-⎪⎪∴⎨⎪≥--⎪⎩,由于函数14xy =在[]1,1-上为增函数,函数213xy =在[]1,1-上为减函数, 所以,函数143xx y =-在[]1,1-上为增函数,min 111344y ∴=-=-,max111433y =-=, 11111034m ∴-≤<-,即191134m -≤<-, 因此,实数m 的取值范围是1911,34⎡⎫--⎪⎢⎣⎭.故选:D.2.(2022·吉林·长春市第二中学高一期末)已知函数()4412log 2log 2y x x ⎛⎫=-+ ⎪⎝⎭.(1)当[1,16]x ∈时,求该函数的值域;(2)若()4441log 2log log 2x x m x ⎛⎫++< ⎪⎝⎭,对于[4,16]x ∈恒成立,求实数m 的取值范围.【答案】(1)9,58⎡⎤-⎢⎥⎣⎦(2)5m >(1)令4log t x =,[]1,16x ∈,则[]0,2t ∈, 函数转化为()1222y t t ⎛⎫=-+ ⎪⎝⎭,[]0,2t ∈,则二次函数()2119222248y t t t ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭,[]0,2t ∈,当14t =时,min 98y =-,当2t =时,max 5y =, 故当[]1,16x ∈时,函数的值域为9,58⎡⎤-⎢⎥⎣⎦.(2)由于()4441log 2log log 2x x m x ⎛⎫++< ⎪⎝⎭对于[]4,16x ∈上恒成立,令4log t x =,[]4,16x ∈,则[]1,2t ∈即()122t t mt ⎛⎫++< ⎪⎝⎭在[]1,2t ∈上恒成立,所以152m t t >++在[]1,2t ∈上恒成立,由对勾函数的性质知15()2h t t t =++在[]1,2上单调递增,所以当2t =时,max ()5h t =,。

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析1、对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 2、以10为底的对数叫做常用对数,log 10N 记作lg N .3、以无理数e=2.718 28…为底的对数称为自然对数,logeN 记作ln N4、对数的性质: (1)log 10,log 1a a a ==(2)对数恒等式①a log aN =N ;②log a a N =N (a >0,且a ≠1).5、对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a M M N N-= ③数乘:log log ()na a n M M n R =∈⑤log a m M n =n mlog a M . ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且特殊情形:log a b =1log b a,推广log a b ·log b c ·log c d =log a d .类型一、指数式与对数式互化及其应用例1、将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5);(6).例2、求下列各式中x 的值:(1) (2) (3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x =100=102,于是x=2; (4)由例3、若x=log43,则(2x-2-x)2等于( )A.94B.54C.103D.43解由x=log43,得4x=3,即2x=3,2-x=33,所以(2x-2-x)2=⎝⎛⎭⎪⎫2332=43.类型二、利用对数恒等式化简求值例4、求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数例5、求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数例6、已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a例7、(1) (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.例8、已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.例9、设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.例10、已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即 .类型四、换底公式的运用例11、(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x,;方法二:.例12、求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用例13、求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)例14、已知:log23=a,log37=b,求:log4256=?解:∵∴,。

高中数学对数与对数函数知识点与经典例题讲解

高中数学对数与对数函数知识点与经典例题讲解

对数与对数函数1.对数(1)对数的定义:如果 a b=N (a > 0,a ≠ 1),那么 b 叫做以 a 为底 N 的对数,记作 log a N=b. (2)指数式与对数式的关系: a b=N log a N=b (a >0,a ≠ 1,N >0).两个式子表示的 a 、b 、N 三个数之间的关系是一样的,并且可以互化 .(3)对数运算性质 : ① log a (MN )=log a M+log a N.② log a M=log a M -log a N.N③ log a M n =nlog a M.(M >0,N > 0,a > 0,a ≠1)④对数换底公式: log b N= loglog a a N (a >0,a ≠1,b >0,b ≠1,N >0).b 2.对数函数(1)对数函数的定义函数 y=log a x (a >0,a ≠ 1)叫做对数函数,其中 x 是自变量,函数的定义域是( 0,+∞) .注意: 真数式子没根号那就只要求真数式大于零 ,如果有根号 ,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0, 或=1 的时候是会有相应 b 的值的。

但是,根据对数定义 : log a a=1 ;如果 a=1 或 =0 那么 log a a 就可以等于一切实数(比如 log 1 1 也可以等于 2 ,3, 4,5,等等)第二,根据定义1运算公式: log a M^n = nlog a M 如果 a<0, 那么这个等式两边就不会成立(比如, log(-2)4^(-2) 就不等于 (-2)*log (-2) 4 ;一个等于 1/16 ,另一个等于 -1/16 )(2)对数函数的图象y yy=l og a x(a> 1)1O 1 x O xy=l og a x(0<a<1)底数互为倒数的两个对数函数的图象关于x 轴对称 .(3)对数函数的性质 :①定义域:( 0,+∞).②值域: R .③过点( 1, 0),即当 x=1 时, y=0.④当 a>1 时,在( 0,+∞)上是增函数;当0<a<1 时,在( 0,+∞)上是减函数 .基础例题1.函数 f(x)=|log2x|的图象是 ?2.若 f -1(x)为函数 f(x)=lg(x+1)的反函数,则 f -1(x)的值域为___________________.23.已知 f( x)的定义域为[ 0,1],则函数 y=f[log 1 ( 3-x)]的定义2域是 __________.4.若 log x 7 y =z,则 x、y、z 之间满足A. y7=x zB.y=x7zC.y=7x zD.y=z x5.已知 1<m<n,令 a=(log n m)2,b=log n m2,c=log n(log n m),则A. a<b< cB.a<c<bC.b<a<cD.c< a<b6.若函数f( x)=logax( 0<a<1)在区间[ a,2a]上的最大值是最小值的 3 倍,则 a 等于A. 2B. 2C. 1D. 14 2 4 27.函数 y=log2|ax-1|( a≠0)的对称轴方程是x=- 2,那么 a 等于(x=-2 非解 )A. 1B.-1C.2D.-22 28.函数 f(x)=log2|x|,g(x) =-x2+2,则 f(x)·g( x)的图象只可能是y yO xOxA By yO x O x C D39.设 f -1(x)是 f(x)=log2( x+1)的反函数,若[ 1+ f -1(a)][1+ f -1(b)]=8,则 f(a+b)的值为A.1B.2C.3D.log2310.方程 lgx+lg (x+3)=1 的解 x=___________________.典型例题【例 1】已知函数 f(x)= (1x2), x4, 则 f(2+log23)的值为f( x 1), x 4 ,A. 1B. 1C. 1D. 13 6 12 24【例 2】求函数 y= log2| x|的定义域,并画出它的图象,指出它的单调区间 .【例 3】已知 f(x)=log 1[3-( x- 1)2],求 f(x)的值域及单调3区间 .4【例 4】已知 y=log a(3-ax)在[ 0,2]上是 x 的减函数,求 a 的取值范围 .【例 5】设函数 f(x)=lg(1- x),g(x)=lg(1+x),在 f(x)和g(x)的公共定义域内比较 |f(x)|与 |g( x)|的大小 .【例 6】求函数 y=2lg(x-2)- lg( x-3)的最小值 .1【例 7】在 f1(x)=x 2 , f2(x)=x2,f3(x) =2x,f4(x)=log 1x 四2个函数中, x > x >1 时,能使1[f(x )+f(x )]< f(x1 x 2)成1 2 1 22 2立的函数是1A. f1(x) =x 2 (平方作差比较 )B.f2 (x)=x2C.f3(x)=2xD.f4(x) =log 1 x25探究创新1.若 f(x)=x2-x+b,且 f(log2a)=b, log2[ f( a)]=2(a≠1).(1)求 f(log2x)的最小值及对应的 x 值;(2)x 取何值时, f(log2x)> f( 1)且 log2[f(x)]< f(1)?2.已知函数 f(x)=3x+k(k 为常数),A(- 2k,2)是函数 y= f -1(x)图象上的点 .(1)求实数 k 的值及函数 f -1(x)的解析式;(2)将 y= f -1( x)的图象按向量a=(3, 0)平移,得到函数y=g(x)的图象,若 2 f -1(x+ m -3)- g(x)≥ 1 恒成立,试求实数 m 的取值范围 .6。

基本初等函数之对数与对数函数,附练习题

基本初等函数之对数与对数函数,附练习题

对数与对数函数(讲义)知识点睛一、对数与对数的运算1.对数(1)如果x a N =(a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做对数的底数,N 叫做真数.常用对数:10log lg N N =;自然对数:e log ln N N =.(2)当a >0,且a ≠1时,x a N =⇔log a x N =.(3)负数和零没有对数;log 10a =,log 1a a =.2.对数的运算性质(1)如果a >0,且a ≠1,M >0,N >0,那么①log ()log log a a a M N M N ⋅=+;②log log log aa a MM N N=-;③log log ()n a a M n M n =∈R .(2)换底公式:log log log c a c bb a=(a >0,且a ≠1;c >0,且c ≠1;b >0).(3)log (010)a b a b a a b =>≠>,;.二、对数函数及其性质1.定义:一般地,函数log (0,1)a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数log (0,1)a y x a a =>≠且的图象和性质:0<a <1a >1图象定义域(0,+∞)值域R性质①过定点(1,0),即x =1时,y =0②在(0,+∞)上是减函数②在(0,+∞)上是增函数3.对数函数底数变化与图象分布规律1log a y x =;②log b y x =;③log c y x =;④log d y x =,则有0<b <a <1<d <c ,即:x ∈(1,+∞)时,log log log log a b c d x x x x <<<;x ∈(0,1)时,log log log log a b c d x x x x >>>.4.反函数对数函数与指数函数互为反函数,互为反函数的两个函数的图象关于直线y x =对称.精讲精练1.把下列指数式化为对数式,对数式化为指数式.(1)32=8_______________;(2)415625-=_______________;(3)13127=3-_______________;(4)lg 0.0013=-_____________;(5)0.3log 2=a _____________;(6)ln x =_____________.2.求下列各式的值.(1)43log (927)⨯(2)1lg lg 4lg 52++(3)661log 12log 2-(4)22333399(log 2)(log )log log 422++⋅(5)2345log 3log 4log 5log 2⋅⋅⋅(6)48525(log 5log 5)(log 2log 2)++3.已知234log [log (log )]0x =,则x 的值为_________.4.已知3485log 4log 8log log 25m ⋅⋅=,那么m 的值为()A .9B .18C .12D .275.已知4823log 3x y ==,,则x +2y 的值为()A .3B .8C .4D .log 486.已知log 3a m =,log 2a n =,那么a 2m +3n =()A .17B .72C .108D .317.已知lg lg 2lg(2)x y x y +=-,则xy的值为_________.8.设lg a ,lg b 是方程2x 2-4x +1=0的两个实根,则2(lg )ab的值等于()A .2B .12C .4D .149.已知函数()lg f x x =.若()1f ab =,则22()()f a f b +=_____.10.下列函数表达式中是对数函数的是()A .0.01log (0)y x x =>B .22log y x =C .2log (2)(2)y x x =+>-D .2ln(1)y x =+11.若点(a ,b )在lg y x =图象上,且a ≠1,则下列点也在此图象上的是()A .1()b a ,B .(10a ,1-b )C .10(1)b a+,D .(a 2,2b )12.若函数log ()a y x b =+(a >0,a ≠1)的图象过两点(-1,0)和(0,1),则()A .a =2,b =2B .2a b ==C .a =2,b =1D .a b ==13.直接写出下列函数的定义域:311log (2)_______________2345log (3)_______________16_______________ln(1)x y x y y y y x y x -=-====-=+=+();();();();();().14.已知()f x 的定义域为[0,1],则函数12[log (3)]y f x =-的定义域是_____________.15.函数212log (613)y x x =++的值域为()A .RB .[8,+∞)C .(-∞,-2]D .[-3,+∞)16.函数log a y x =在区间[2,π]上最大值比最小值大1,则a =__________.17.下列判断不正确的是()A .22log 3.4log 4.3<B .0.20.3log 0.4log 0.4<C .67log 7log 6>D .30.3log log 4π<18.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点()A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度19.函数21log (01)1a x y a a x +=>≠-,的图象过定点P ,则点P 的坐标为()A .(1,0)B .(-2,0)C .(2,0)D .(-1,0)20.已知函数()log (1)a f x x =+,()log (1)a g x x =-(a >0,且a ≠1).(1)求函数()()f x g x +的定义域;(2)判断函数()()f x g x +的奇偶性,并说明理由.21.设a ,b ∈R 且a ≠2,定义在区间(-b ,b )上的函数1()lg12axf x x+=+满足:()()0f x f x +-=.(1)求实数a 的值;(2)求b 的取值范围.22.已知关于x 的方程212log 210x a x ⋅--=有实数根,求a 的取值范围.23.已知函数2log [(21)]a y x a x a =--+的定义域为R ,求实数a 的取值范围.回顾与思考________________________________________________________________________________________________________________________________________________________________________【参考答案】1.(1)2log 83=;(2)51log 4625=-;(3)2711log 33=-;(4)3100.001-=;(5)0.32a =;(6)e x =2.(1)11;(2)1;(3)12;(4)4;(5)1;(6)543.644.A 5.A 6.B 7.48.A 9.210.A 11.D 12.A13.(1)(2)+∞,;(2)(0)+∞,;(3)2(1]3,;(4)(0;(5)(12)(23)⋃,,;(6)(10)(02]-⋃,,14.5[22,15.C16.2π或2π17.D18.C 19.B20.(1)(-1,1);(2)偶函数,证明()()()()f x g x f x g x -+-=+21.(1)2a =-;(2)102b ≤<22.02a ≤<23.33(11)(1122,-⋃+对数与对数函数(随堂测试)1.函数22()log (2)f x x x a =-+的值域为[0,+∞),则正实数a 等于()A .1B .2C .3D .42.求函数2log (4)(01)a y x x a a =->≠,且的单调递减区间.【参考答案】1.B2.当01a <<时,f (x )的单调递减区间为(0,2];当1a >时,f (x )的单调递减区间为[2,4)对数与对数函数(作业)1.求下列各式的值.(1)lg +(2)553log 10log 0.125+(3)22(lg 2)(lg 5)lg 4lg 5++⋅(4)22lg 5lg83+(5)20321log log ()52-+-(6)231lg 25lg 2lg log 9log 22+-⨯2.下列对数运算中,一定正确的是()A .lg()lg lg M N M N +=⋅B .ln ln n M n M =C .lg()lg lg M N M N⋅=+D .lg log lg a b b a=3.已知3log 2a =,那么33log 22log 6-用a 表示是()A .5a -2B .-a -2C .3a -(1+a )2D .3-a 2-14.设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是()A .log log log a c c b b a ⋅=B .log log log a c c b a b ⋅=C .log ()log log a a a bc b c =⋅D .log ()log log a a a b c b c+=+5.已知x ,y 为正实数,则下列式子中正确的是()A .lg lg lg lg 222x y x y +=+B .lg()lg lg 222x y x y +=⋅C .lg lg lg lg 222x y x y⋅=+D .lg()lg lg 222x y x y⋅=⋅6.设方程22(lg )lg 30x x --=的两实根是a ,b ,则log log a b b a +等于()A .1B .-2C .-4D .103-7.在(2)log (5)a y a -=-中,实数a 的取值范围是()A .5a >或2a <B .23a <<或35a <<C .25a <<D .34a <<8.函数()ln1xf x x =+-的定义域为()A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)9.已知函数12()2log f x x =的值域为[-1,1],则函数()f x 的定义域为()A .22B .[11]-,C .1[2]2,D .2(])2-∞⋃∞,+10.已知3log 6a =,5log 10b =,7log 14c =,则()A .c b a >>B .b c a >>C .a c b >>D .a b c>>11.已知2log 3.45a =,4log 3.65b =,3log 0.31()5c =,则()A .a b c >>B .b a c >>C .a c b >>D .c a b>>12.函数12log 2y x =+的单调增区间为()A .()-∞∞,+B .(2)-∞-,C .(2)-∞+,D .(2)(2)-∞-⋃∞,,+13.若函数log (01)a y x a =<<在区间[a ,2a ]上的最大值是最小值的3倍,则a的值为()A .22B .24C .12D .1414.函数log (2)5a y x =-+过定点()A .(1,0)B .(3,1)C .(3,5)D .(1,5)15.当a >1时,在同一坐标系中,函数x y a -=与log a y x =的图象大致是()A .B .C .D .16.设函数()(01)x x f x ka a a a -=->≠,在()-∞+∞,上既是奇函数又是增函数,则()log ()a g x x k =+的图象是()A .B .C .D .17.已知函数e 1(1)()ln (1)x x f x x x ⎧-=⎨>⎩≤,则(ln 2)f 的值为_________.18.函数12log (1)()2(1)x x x f x x ⎧⎪=⎨⎪<⎩≥的值域是_________________.19.已知13log 2a =,0.62b =,4log 3c =,则a ,b ,c 的大小关系为_____________.20.给出下列命题:12log 2log a a x x =;2函数2log (1)y x =+是对数函数;3函数1ln1xy x+=-与ln(1)ln(1)y x x =+--的定义域相同;4若log log a a m n <,则m n <.其中正确的命题是_________.21.已知函数()f x 在[0)+∞,上是增函数,()(||)g x f x =-,若(lg )(1)g x g >,求x 的取值范围.22.设函数212log (0)()log ()(0)xx f x x x >⎧⎪=⎨-<⎪⎩,若()()f a f a >-,求实数a 的取值范围.23.已知函数3()2log f x x =+(1≤x ≤9),求函数22[()]()y f x f x =+的最大值.【参考答案】24.(1)1;(2)3;(3)1;(4)2;(5)4;(6)12-25.D26.B27.B28.D29.D30.B31.B32.A33.D34.C35.B36.B37.C38.A39.C40.141.(2)-∞,42.a <c <b43.③44.11010x <<45.1a >或10a -<<46.22阅读材料反函数趣谈在指数函数2x y =中,x 为自变量,y 为因变量.如果把y 当成自变量,x 当成因变量,同学们思考一下,x 是不是y 的函数?在指数函数2x y =中,过y 轴正半轴上任意一点作x 轴的平行线,与2x y =的图象有且只有一个交点.另一方面,根据指数与对数的关系,由指数式2x y =可得到对数式2log x y =.这样,对于任意一个(0)y ∈+∞,,通过式子2log x y =,在R 中都有唯一确定的x 和它对应.此时,可以把y 作为自变量,x 作为y 的函数,这时我们就说2log x y =((0))y ∈+∞,是函数2x y =()x ∈R 的反函数.注意到,在函数2log x y =中,y 是自变量,x 是函数,但是习惯上,我们通常用x 表示自变量,y 表示函数,因此我们对调函数2log x y =中的字母,把它写成2log y x =,这样,对数函数2log y x =((0))x ∈+∞,是指数函数2x y =()x ∈R 的反函数.由前面的讨论可知,指数函数2x y =()x ∈R 与对数函数2log y x =((0))x ∈+∞,是互为反函数的.类似地,我们可以得到对数函数log (01)a y x a a =>≠,且和指数函数x y a =(01)a a >≠,且互为反函数.在上面的讨论过程中我们发现,过y 轴正半轴上任意一点作x 轴的平行线,与2x y =的图象有且只有一个交点,这就保证了对于任意一个(0)y ∈+∞,,都有唯一确定的2log x y =和它对应,进而才能得到反函数.这就启发我们,不是任意的函数都存在反函数的,只有一一对应的函数才存在反函数.一一对应的函数是指值域中的每一个元素y 只有定义域中的唯一的一个元素x 和它相对应,即定义域中的元素x 和值域中的元素y ,通过对应法则y=f (x )存在着一一对应关系.清楚了反函数存在的条件后,我们接下来讨论反函数的性质.通过画出指数函数2x y =与对数函数2log y x =的图象后,我们发现它们是关于直线y=x 对称的,也就是互为反函数的两个函数的图象是关于直线y=x 对称的.这与我们前面的分析也是一致的,原函数与反函数是定义域、值域互换,对应法则互逆.研究反函数的性质离不开函数的单调性和奇偶性,下面的结论同学们可以自己尝试证明.一个函数与它的反函数在相应区间上单调性是一致的,也就是说如果原函数在某个区间上是单调递增(减)的,那么它的反函数在相应区间上也是单调递增(减)的.关于奇偶性,如果一个奇函数存在反函数,那么它的反函数也是奇函数;一般情况下偶函数是不存在反函数的,例外情况是f (x )=C (C 为常数).学习了反函数这种重要的工具,它可以帮助我们解决很多问题.当原函数的性质不容易研究时,我们可以考虑研究它的反函数.比如当直接求原函数的值域比较困难时,可以通过求其反函数的定义域来确定原函数的值域,来看一道具体的例题.【例】已知函数10110x xy =+,求它的值域.解析:先计算它的反函数,由10110x x y =+得到(110)10x x y +=,解得101x y y =-,反函数即为lg 1y x y =-,反函数的定义域为原函数的值域,也就是01y y >-,原函数的值域即为(01),.练习题1.下列函数中,有反函数的是()A .22y x x=+B .||y x =C .2lg y x =D .11y x =-2.函数21x y =-的反函数为_____________.3.已知函数1212x x y -=+,求它的值域.【参考答案】1.D2.2log (1)y x =+3.(-1,1)。

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解知识梳理: 一、对数1、定义:一般地,如果()0,1x a N a a =>≠,那么实数x 叫做以a 为底N 的对数,记作a x log N =,其中a 叫做对数的底数,N 叫做对数的真数.2、特殊对数⑴通常以10为底的对数叫做常用对数,并把10log N 记为lgN ; ⑵通常以e 为底的对数叫做自然对数,并把e log N 记为lnN . 3、对数的运算⑴运算性质:如果0,1,0,0a a M N >≠>>且,那么:①()a a a log MN log M log N =+;②a a a Mlog log M log N N=-;③()n a a log M nlog M n R =∈;④(),0m na a n log M log M n R m m=∈≠;⑤1a b log b log a =;⑥a log N a N =.⑵换底公式:c a c log blog b log a=.二、对数函数1、定义:一般地,函数()01a y log x a a =>≠,且叫做对数函数,其中x 是自变量,函数的定义域是()0,+∞.2、图像和性质1>a10<<a图像性质定义域: 值域:过定点 ,即当1=x 时,0=y在R 上是在R 上是非奇非偶函数3、同底的指数函数xa y =与对数函数x y a log =互为反函数,它们的图像关于直线x y =对称.【课前小测】1、2193-⎛⎫= ⎪⎝⎭写成对数式,正确的是( )A 、9123log =- B 、1392log =- C 、()1329log -= D 、()9123log -= 2、函数()0,1a y log x a a =>≠的图像过定点( )A 、()1,1B 、()1,0C 、()0,1D 、()0,0 3、49343log 等于( ) A 、7 B 、2 C 、23 D 、324、函数()()31f x lg x =+的定义域是( )A 、1,3⎛⎫-+∞ ⎪⎝⎭ B 、()0,+∞ C 、(),0-∞ D 、1,3⎛⎫-∞- ⎪⎝⎭5、函数()21f x log x =+的定义域是( )A 、(),-∞+∞B 、()0,+∞C 、1,2⎡⎫+∞⎪⎢⎣⎭D 、10,2⎛⎤ ⎥⎝⎦考点一、化简和求值例1、⑴552log 10log 0.25+=( ) A 、0 B 、1 C 、2 D 、4 解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2 ⑵计算:3948(log 2log 2)(log 3log 3)+⋅+. 解:原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+3lg 25lg 352lg 36lg 24=⋅=. 变式、⑴(辽宁卷文10)设25abm +=,且112a b+=,则m =( ) A 、10 B 、10 C 、20 D 、100 ⑵已知32a=,用a 表示33log 4log 6-;⑶已知3log 2a =,35b=,用a 、b 表示 30log 3.考点二、比较大小例2、较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6; ⑵3log π,2log 0.8; ⑶0.91.1, 1.1log 0.9,0.7log 0.8; ⑷5log 3,6log 3,7log 3. 答案:⑴>;⑵>;⑶>,>;⑷>,>.变式、⑴已知函数()|lg |f x x =,若11a b c>>>,则()f a 、()f b 、()f c 从小到大依次为 ;a c b <<⑵已知log 4log 4m n <,比较m ,n 的大小. 解:∵log 4log 4m n <, ∴4411log log m n <,当1m >,1n >时,得44110log log m n<<,∴44log log n m <, ∴1m n >>.当01m <<,01n <<时,得44110log log m n<<,∴44log log n m <, ∴01n m <<<.当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<.综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 考点三、解与对数相关的不等式 例3、⑴解不等式2)1(log 3≥--x x .解:原不等式等价于⎪⎩⎪⎨⎧-≥->->-2)3(11301x x x x 或⎪⎩⎪⎨⎧-≤-<-<>-2)3(113001x x x x解之得:4<x ≤5 ∴原不等式的解集为{x |4<x ≤5}⑵解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a . 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x(其实中间一个不等式可省,为什么?让学生思考)当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴当a >1时不等式的解集为221<<x ;当0<a <1时不等式的解集为42<<x ⑶解不等式24log ax x xxa > 解:两边取以a 为底的对数:当0<a <1时原不等式化为:2log 29)(log 2-<x x a a ∴0)1log 2)(4(log <--x x a a ,4log 21<<x a , ∴a x a <<4 当a >1时原不等式化为:2log 29)(log 2->x x a a ∴0)1log 2)(4(log >--x x a a ,∴ 21log 4log <>x x a a 或 ,∴a x a x <<>04或 ∴原不等式的解集为}10,|{4<<<<a a x a x 或}1,0|{4><<>a a x a x x 或考点四、对数型函数的性质 ① 定义域、值域例4、⑴函数2()lg(31)f x x ++的定义域是( ) A 、1(,)3-+∞ B 、1(,1)3- C 、11(,)33- D 、1(,)3-∞-⑵函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭⑶函数()()2log 31xf x =+的值域为( )A 、()0,+∞B 、[)0,+∞C 、()1,+∞D 、[)1,+∞ 变式、求函数y =的定义域.② 单调性、奇偶性例5、⑴函数y =log 3(x 2-2x )的单调减区间是________. 解: 令u =x 2-2x ,则y =log 3u . ∵y =log 3u是增函数,u =x 2-2x >0的减区间是(-∞,0),∴y =log 3(x 2-2x )的减区间是(-∞,0).⑵设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( ) A 、(-∞,0) B 、(0,+∞) C 、(-∞,log a 3)D 、(log a 3,+∞)解:由f (x )<0,即a 2x -2a x -2>1,整理得(a x -3)(a x +1)>0,则a x >3.∴x <log a 3. ⑶函数y =log 22-x2+x 的图象( )A 、关于原点对称B 、关于直线y =-x 对称C 、关于y 轴对称D 、关于直线y =x 对称解:∵f (x )=log 22-x 2+x ,∴f (-x )=log 22+x 2-x =-log 22-x2+x∴f (-x )=-f (x ),∴f (x )是奇函数.故选A .变式、⑴若011log 22<++aa a,则a 的取值范围是( ) A 、),21(+∞ B 、),1(+∞ C 、)1,21( D 、)21,0(⑵若02log )1(log 2<<+a a a a ,则a 的取值范围是 .⑶若函数)2(log )(22a x x x f a ++= 是奇函数,则a = .③综合应用例6、设函数f (x )=log a ⎝⎛⎭⎫1-ax ,其中0<a <1. ⑴证明:f (x )是(a ,+∞)上的减函数; ⑵解不等式f (x )>1.解析:⑴证明:设0<a <x 1<x 2,g (x )=1-ax ,则g (x 1)-g (x 2)=1-a x 1-1+a x 2=a (x 1-x 2)x 1x 2<0,∴g (x 1)<g (x 2).又∵0<a <1,∴f (x 1)>f (x 2). ∴f (x )在(a ,+∞)上是减函数.⑵∵log a ⎝⎛⎭⎫1-a x >1,∴0<1-ax <a ,解得:⎩⎪⎨⎪⎧x >a ,x <a 1-a ,∴不等式的解集为:{x |a <x <a1-a}.变式、已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求证()f x 在(1,3)x ∈上是减函数;⑶求函数()f x 的值域. 随堂巩固1、6632log log +等于( )A 、6B 、5C 、1D 、65log 2、在()23a b log -=中,实数a 的取值范围是( )A 、2a <B 、2a >C 、23,3a a <<>或D 、3a > 3、下列格式中成立的是( )A 、22a a log b log b = B 、a a a log xy log x log y =+C 、()()()a a a log xy log x log y =•D 、a a a xlog log y log x y=- 4、213alog > ,则a 的取值范围是( ) A 、312a <<B 、30112a a <<<<或C 、213a <<D 、2013a a <<>或 5、已知ab M =()0,0,1a b M >>≠,且log M b x =,则log M a 等于( ) A 、1x - B 、1x + C 、1xD 、1x - 6、(08山东济宁)已知8log 9a =,2log 5b =,则lg 3等于( ) A 、1ab - B 、()321a b - C 、()321a b + D 、()312a b -7、已知函数()()32f x lg x =+的定义域为F ,函数()()()12g x lg x lg x =-+-的定义域为G ,那么( )A 、G F ≠⊂B 、G F =C 、F G ⊆D 、FG =∅8、(08山东)已知函数()2300x x f x log x x ⎧≤=⎨>⎩,,,12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦( ) A 、1- B、log CD 、139、若()6430log log log x =⎡⎤⎣⎦,则12x -等于( )A 、9B 、91C 、3D 、3310、若M =⋅32log 4log 3log 3132 ,则M 的值是( ) A 、5 B 、6 C 、7 D 、8 11、已知3log 2a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、5a -C 、23(1)a a -+ D 、231a a -- 12、已知偶函数()x f 在[]4,2上单调递减,那么)8(log 21f 与)(π-f 的大小关系是( )A 、)8(log 21f >)(π-f B 、)8(log 21f =)(π-fC 、)8(log 21f < )(π-f D 、不能确定13、若312log 19x-=,则x = ; 14、已知:lg 21.3a =,则lg0.213=___________;15、()2211log log 1a a x x -->+,则a 的取值范围为________________; 16、比较大小⑴8.1log 3 7.2log 3;⑵5log 6 7log 6; 17、若14log 3=x ,则=+-xx44___________;18、已知log 1a x =,log 2b x =,log 4c x =,则log abc x =____________; 19、(08山东) 知()lg lg 2lg 2x y x y +=-,求的值.20、⑴已知a =2lg ,b =3lg ,试用b a 、表示5log 12;⑵已知a =3log 2,b =7log 3,试用b a 、表示56log 14.21、已知())lgf x x =.⑴求()f x 的定义域; ⑵求证:()f x 是奇函数.22、解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴ 当a >1时不等式的解集为221<<x ; 当0<a <1时不等式的解集为42<<x课后巩固1、()0,1,0log >≠>=N b b a N b 对应的指数式是( )A 、N a b =B 、N b a =C 、b a N= D 、a b N =2、设255lg =x,则x 的值等于( )A 、10B 、0.01C 、100D 、1000 3、()[]0log log log 234=x ,那么21-x等于( )A 、2B 、21C 、4D 、414、化简9log 8log 5log 4log 8543•••的结果是( ) A 、1 B 、23C 、2D 、3 5、函数()1log 21-=x y 的定义域是( )A 、()+∞,1B 、()2,∞-C 、()+∞,2D 、(]2,1 6、若09log 9log <<n m ,那么n m ,满足的条件是( )A 、1>>n mB 、1>>m nC 、10<<<m nD 、10<<<n m7、若132log <a ,则a 的取值范围是( )A 、()+∞⎪⎭⎫ ⎝⎛,132,0B 、⎪⎭⎫ ⎝⎛+∞,32C 、⎪⎭⎫⎝⎛1,32 D 、⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛,3232,08、函数()176log 221+-=x x y 的值域是( )A 、RB 、[)+∞,8C 、()3,-∞-D 、[)+∞,39、函数⎪⎭⎫⎝⎛--=112lg x y 的图像关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、直线x y =对称 10、图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为( )A 、103,51,34,2B 、51,103,34,2C 、2,34,103,51D 、51,103,2,3411、比较两个对数值的大小:7ln 12ln ;7.0log 5.0 8.0log 5.0. 12、计算()=•+50lg 2lg 5lg 2.13、函数()()x xx f -+=1lg2是 函数.(填“奇”、“偶”或“非奇非偶”).14、函数xa y =的反函数的图像经过点()2,9,则a 的值为 . 15、已知函数()()1log +=x x f a ,()()x x g a -=1log ()10≠>a a ,且 ⑴求函数()()x g x f +的定义域;(10分) ⑵判断函数()()x g x f +的奇偶性.(10分)16、已知log 4log 4m n <,比较m ,n 的大小。

对数与对数函数知识点及例题讲解

对数与对数函数知识点及例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b . (2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质: ①log a (MN )=log a M +log a N . ②log a NM =log a M -log a N .③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象x y> Oxy<a <y = l o g x a 111()) x 轴对称.(3)对数函数的性质: ①定义域:(0,+∞). ②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是11xy y y y OA BC D解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25. 答案:[2,25]4.若log x 7y =z ,则x 、y 、z 之间满足A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z =7y ⇒x 7z=y ,即y =x 7z . 答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b解析:∵1<m <n ,∴0<log n m <1. ∴log n (log n m )<0. 答案:D6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于 A.42B.22C.41D.21解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a . ∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42. 答案:A7.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A.21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a1)|,对称轴为x =a1,由a1=-2 得a =-21. 答案:B注意:此题还可用特殊值法解决,如利用f (0)=f (-4), 可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1. ∵a ≠0,∴a =-21.8.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是xyxyx yxyABC D解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C9.设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f -1(a )][1+ f -1(b )]=8,则f (a +b )的值为 A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b =8,∴a +b =3. 答案:C10.方程lg x +lg (x +3)=1的解x =___________________. 解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2.∵x >0,∴x =2. 答案:2典型例题【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为 A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4, ∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241. 答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).1-1O xy注意:研究函数的性质时,利用图象会更直观.【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x-1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.注意:讨论复合函数的单调性要注意定义域.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围. 解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小. 解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0. 综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|. 【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例7】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f (x 2)]<f (221x x +)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A探究创新1.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)? 解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b . 由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2, 从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47.∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 2.已知函数f (x )=3x +k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点, ∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3. ∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3). (2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数 y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +xm +2m ≥3在x >0时恒成立,只要(x +xm +2m )min ≥3.又x +xm ≥2m (当且仅当x =xm ,即x =m 时等号成立),∴(x +xm +2m )min =4m ,即4m ≥3.∴m ≥169.小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.。

高中数学对数和对数函数知识点与例题讲解

高中数学对数和对数函数知识点与例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:a b=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a(MN)=log a M+log a N.②log aMN=log a M-log a N.③logaM n=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN= l oglogaaNb(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的定义函数y=log a x(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里a<0,或=1的时候是会有相应b的值的。

但是,根据对数定义:log a a=1;如果a=1或=0那么log a a就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n=nlogaM如果a<0,那么这个等式两边就不会成立(比如,log(-2)4^(-2)就不等于(-2)*log(-2)4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象yyy =l ogxa>(1)a1O1xOxy =l o g a x (<a <1) 0底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R.③过点(1,0),即当x=1时,y=0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算) 1.求下列各式的值. (1)35 log +25log2-1 21 50log - 514 log ;(2)log5 2 1 25 ×lo g 3 1 8 ×lo g 5 1 9. 练习题1.计算:lg 1 2 -lg5 8 +lg12.5-log 89·log 278;3.log535+21log2-log51502 -log514;3.log2125×log318×log519.1loglog4log3 4.399222.5.lg5lg2lg41(6).log24lglog27lg2log33222 7.2lg2lg3111lg0.36lg823例2.已知实数x、y、z满足3x=4y=6z>1.(1)求证:2x+1y=2z;(2)试比较3x、4y、6z的大小.练习题.已知log189=a,18b=5,用a、b表示log3645.题型二:(对数函数定义域值域问题)例1.已知函数fxlog22xx1aax的定义域为集合A,关于x的不等式22 的解集为B,若AB,求实数a的取值范围.2.设函数2ylog(ax2x2)定义域为A.2(1)若AR,求实数a的取值范围;(2)若2log(ax2x2)2在x[1,2]上恒成立,求实数a的取值范围.2练习题1.已知函数2 fxlgax2x1(1)若fx的定义域是R,求实数a的取值范围及fx的值域;(2)若fx的值域是R,求实数a的取值范围及fx的定义域2求函数y=2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及性) 例题1.已知定义域为R 的函数f (x )为奇函数足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x -1.(1)求f(x)在[-1,0)上的解析式; (2)求f(1 log24)的值. 2 4.已知f (x )=l o g 1[3-(x -1)2],求f (x )的值域.3 5.已知y =l o g a (3-a x )在[0,2]上是x 的减函数,求a 的围.4.已知函数f(x)lg(2x)lg(2x).(Ⅰ)求函数yf(x)的定义域;(Ⅱ)判断函数yf(x)的奇偶性;(Ⅲ)若f(m2)f(m),求m的取值范围.练习题1.已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a>1时,求使f(x)>0的x的取值范围2.函数f(x)是定义在R上的偶函数,f(0)0,当x0时,1f(x)logx.2 (1)求函数f(x)的解析式;(2)解不等式2f(x1)2;3.已知f(x)是定义在R上的偶函数,且x0时,1f(x)log(x1).2 (Ⅰ)求f(0),f(1);(Ⅱ)求函数f(x)的表达式;(Ⅲ)若f(a1)1,求a的取值范围.题型4(函数图像问题)例题1.函数f(x)=|log2x|的图象是yy111x-11xOOAByy111x1xOOCD6.求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.f(x)=|lgx|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2fa b2,求证:a·b=1,a b2 >1.练习题:1.已知a0且a1,函数f(x)log(x1)a,1g(x)log a,记F(x)2f(x)g(x)1x(1)求函数F(x)的定义域及其零点;(2)若关于x的方程2 F2.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log44xa?237.函数y=log2|ax-1|(a≠0)的对称轴方程是x=-2,那么a等于题型五:函数方程1方程lgx+lg(x+3)=1的解x=___________________.5.已知函数f(x)= 1()2x,x4,则f(2+log23)的值为f(x1),x4,4.已知函数f(x)log a(axx)(a0,a1为常数). (Ⅰ)求函数f(x)的定义域;(Ⅱ)若a2,x1,9,求函数f(x)的值域;(Ⅲ)若函数f(x)ya的图像恒在直线y2x1的上方,求实数a的取值范围.1xxyloglog(2x8).5.已知函数22242(Ⅰ)令tlog2x,求y关于t的函数关系式及t的取值范围;(Ⅱ)求函数的值域,并求函数取得最小值时的x的值.8.设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。

(完整word版)对数与对数函数知识点与例题讲解

(完整word版)对数与对数函数知识点与例题讲解

第1页 共22页第2页 对数与对数函数知识点与例题讲解知识梳理: 一、对数1、定义:一般地,如果()0,1x a N a a =>≠,那么实数x 叫做以a 为底N 的对数,记作a x log N =,其中a 叫做对数的底数,N 叫做对数的真数.2、特殊对数⑴通常以10为底的对数叫做常用对数,并把10log N 记为lgN ; ⑵通常以e 为底的对数叫做自然对数,并把e log N 记为lnN . 3、对数的运算⑴运算性质:如果0,1,0,0a a M N >≠>>且,那么:①()a a a log MN log M log N =+;②aa a Mlog log M log N N=-;③()na a log M nlog M n R =∈;④(),0m n a a n log M log M n R m m =∈≠;⑤1a b log b log a=;⑥a log N a N =.⑵换底公式:c a c log blog b log a=.二、对数函数1、定义:一般地,函数()01a y log x a a =>≠,且叫做对数函数,其中x 是自变量,函数的定义域是()0,+∞.1>a 10<<a图像性质定义域: 值域:过定点 ,即当1=x 时,0=y 在R 上是在R 上是非奇非偶函数x a y =与对数函数x y a log =互为反函数,它们的图像关于直线x y =对称.【课前小测】1、2193-⎛⎫= ⎪⎝⎭写成对数式,正确的是( )A 、9123log =- B 、1392log =- C 、()1329log -= D 、()9123log -=2、函数()0,1a y log x a a =>≠的图像过定点( )第3页 共22页第4页 A 、()1,1 B 、()1,0 C 、()0,1 D 、()0,0 3、49343log 等于( ) A 、7 B 、2 C 、23D 、324、函数()()31f x lg x =+的定义域是( )A 、1,3⎛⎫-+∞ ⎪⎝⎭ B 、()0,+∞ C 、(),0-∞ D 、1,3⎛⎫-∞- ⎪⎝⎭5、函数()f x = )A 、(),-∞+∞B 、()0,+∞C 、1,2⎡⎫+∞⎪⎢⎣⎭D 、10,2⎛⎤⎥⎝⎦ 考点一、化简和求值例1、⑴552log 10log 0.25+=( )A 、0B 、1C 、2D 、4解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2 ⑵计算:3948(log 2log 2)(log 3log 3)+⋅+.解:原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+3lg 25lg352lg36lg 24=⋅=. 变式、⑴(辽宁卷文10)设25a b m +=,且112a b+=,则m =( ) AB 、10C 、20D 、100 ⑵已知32a =,用a 表示33log 4log 6-;⑶已知3log 2a =,35b =,用a 、b 表示 30log 3.考点二、比较大小例2、较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6; ⑵3log π,2log 0.8; ⑶0.91.1, 1.1log 0.9,0.7log 0.8; ⑷5log 3,6log 3,7log 3. 答案:⑴>;⑵>;⑶>,>;⑷>,>.变式、⑴已知函数()|lg |f x x =,若11a b c>>>,则()f a 、()f b 、()f c第5页 共22页第6页 从小到大依次为 ;a c b << ⑵已知log 4log 4m n <,比较m ,n 的大小.解:∵log 4log 4m n <, ∴4411log log m n <,当1m >,1n >时,得44110log log m n<<, ∴44log log n m <, ∴1m n >>.当01m <<,01n <<时,得44110log log m n<<,∴44log log n m <, ∴01n m <<<.当01m <<,1n >时,得4log 0m <,40log n <,∴01m <<,1n >, ∴01m n <<<.综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 考点三、解与对数相关的不等式 例3、⑴解不等式2)1(log 3≥--x x .解:原不等式等价于⎪⎩⎪⎨⎧-≥->->-2)3(11301x x x x 或⎪⎩⎪⎨⎧-≤-<-<>-2)3(113001x x x x解之得:4<x ≤5 ∴原不等式的解集为{x |4<x ≤5} ⑵解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a .解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x(其实中间一个不等式可省,为什么?让学生思考)当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴当a >1时不等式的解集为221<<x ;当0<a <1时不等式的解集为42<<x ⑶解不等式24log axx xxa > 解:两边取以a 为底的对数:第7页 共22页第8页当0<a <1时原不等式化为:2log 29)(log 2-<x x a a ∴0)1log 2)(4(log <--x x a a ,4log 21<<x a , ∴a x a <<4当a >1时原不等式化为:2log 29)(log 2->x x a a∴0)1log 2)(4(log >--x x a a ,∴ 21log 4log <>x x a a 或 ,∴a x a x <<>04或∴原不等式的解集为}10,|{4<<<<a a x a x或}1,0|{4><<>a a x a x x 或考点四、对数型函数的性质 ① 定义域、值域 例4、⑴函数2()lg(31)f x x =+的定义域是( )A 、1(,)3-+∞B 、1(,1)3-C 、11(,)33-D 、1(,)3-∞-⑵函数(21)log x y -= )A 、()2,11,3⎛⎫+∞ ⎪⎝⎭ B 、()1,11,2⎛⎫+∞ ⎪⎝⎭ C 、2,3⎛⎫+∞ ⎪⎝⎭D 、1,2⎛⎫+∞ ⎪⎝⎭⑶函数()()2log 31x f x =+的值域为( )A 、()0,+∞B 、[)0,+∞C 、()1,+∞D 、[)1,+∞ 变式、求函数y =的定义域.② 单调性、奇偶性例5、⑴函数y =log 3(x 2-2x )的单调减区间是________. 解: 令u =x 2-2x ,则y =log 3u .∵y =log 3u 是增函数,u =x 2-2x >0的减区间是(-∞,0), ∴y =log 3(x 2-2x )的减区间是(-∞,0).⑵设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( ) A 、(-∞,0)B 、(0,+∞)C 、(-∞,log a 3)D 、(log a 3,+∞)解:由f (x )<0,即a 2x -2a x -2>1,整理得(a x -3)(a x +1)>0,则a x >3.∴x <log a 3.第9页 共22页第10页⑶函数y =log 22-x2+x 的图象( )A 、关于原点对称B 、关于直线y =-x 对称C 、关于y 轴对称D 、关于直线y =x 对称解:∵f (x )=log 22-x2+x ,∴f (-x )=log 22+x2-x =-log 22-x2+x ∴f (-x )=-f (x ),∴f (x )是奇函数.故选A. 变式、⑴若011log 22<++aaa,则a 的取值范围是( ) A 、),21(+∞ B 、),1(+∞ C 、)1,21( D 、)21,0(⑵若02log )1(log 2<<+a a a a ,则a 的取值范围是 . ⑶若函数)2(log )(22a x x x f a ++= 是奇函数,则a = . ③综合应用例6、设函数f (x )=log a ⎝ ⎛⎭⎪⎪⎫1-a x ,其中0<a <1. ⑴证明:f (x )是(a ,+∞)上的减函数; ⑵解不等式f (x )>1.解析:⑴证明:设0<a <x 1<x 2,g (x )=1-a x,则g (x 1)-g (x 2)=1-a x 1-1+a x 2=a (x 1-x 2)x 1x 2<0,∴g (x 1)<g (x 2).又∵0<a <1,∴f (x 1)>f (x 2). ∴f (x )在(a ,+∞)上是减函数.⑵∵log a ⎝ ⎛⎭⎪⎪⎫1-a x >1,∴0<1-a x <a ,解得:⎩⎪⎨⎪⎧x >a ,x <a 1-a ,∴不等式的解集为:{x |a <x <a1-a}.变式、已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求证()f x 在(1,3)x ∈上是减函数;⑶求函数()f x 的值域.随堂巩固第11页 共22页第12页1、6632log log +等于( )A 、6B 、5C 、1D 、65log 2、在()23a b log -=中,实数a 的取值范围是( )A 、2a <B 、2a >C 、23,3a a <<>或D 、3a >3、下列格式中成立的是( )A 、22a a log b log b =B 、a a a log xy log x log y =+C 、()()()a a a log xy log x log y =•D 、a a a xlog log y log x y=- 4、213alog > ,则a 的取值范围是( ) A 、312a << B 、30112a a <<<<或 C 、213a << D 、2013a a <<>或5、已知ab M =()0,0,1a b M >>≠,且log M b x =,则log M a 等于( ) A 、1x - B 、1x + C 、1xD 、1x - 6、(08山东济宁)已知8log 9a =,2log 5b =,则lg 3等于( ) A 、1a b - B 、()321a b - C 、()321ab + D 、()312a b - 7、已知函数()()32f x lg x =+的定义域为F ,函数()()()12g x lg x lg x =-+-的定义域为G ,那么( )A 、G F ≠⊂B 、G F = C 、F G ⊆ D 、F G =∅8、(08山东)已知函数()2300x x f x log x x ⎧≤=⎨>⎩,,,12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦( ) A 、1- B、log CD 、139、若()6430log log log x =⎡⎤⎣⎦,则12x-等于( )A 、9B 、91C 、3D 、3310、若M =⋅32log 4log 3log 3132 ,则M 的值是( ) A 、5 B 、6 C 、7 D 、8 11、已知3log 2a =,那么33log 82log 6-用a 表示是( )第13页 共22页第14页A 、2a -B 、5a -C 、23(1)a a -+D 、231a a --12、已知偶函数()x f 在[]4,2上单调递减,那么)8(log 21f 与)(π-f 的大小关系是( )A 、)8(log 21f >)(π-f B 、)8(log 21f =)(π-fC 、)8(log 21f < )(π-f D 、不能确定13、若312log 19x-=,则x = ; 14、已知:lg 21.3a =,则lg 0.213=___________;15、()2211log log 1a a x x -->+,则a 的取值范围为________________; 16、比较大小⑴8.1log 3 7.2log 3;⑵5log 6 7log 6; 17、若14log 3=x ,则=+-x x 44___________;18、已知log 1a x =,log 2b x =,log 4c x =,则log abc x =____________; 19、(08山东) 知()lg lg 2lg 2x y x y +=-,求xy的值.20、⑴已知a =2lg ,b =3lg ,试用b a 、表示5log 12; ⑵已知a =3log 2,b =7log 3,试用b a 、表示56log 14.21、已知())lgf x x =.⑴求()f x 的定义域; ⑵求证:()f x 是奇函数.22、解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a解:原不等式可化为)12(2log )34(log 2->-+x x x a a第15页 共22页第16页当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或 ∴ 当a >1时不等式的解集为221<<x ;当0<a <1时不等式的解集为42<<x课后巩固1、()0,1,0log >≠>=N b b a N b 对应的指数式是( ) A 、N a b = B 、N b a = C 、b a N = D 、a b N =2、设255lg =x ,则x 的值等于( )A 、10B 、0.01C 、100D 、10003、()[]0log log log 234=x ,那么21-x 等于( )A 、2B 、21 C 、4 D 、41 4、化简9log 8log 5log 4log 8543•••的结果是( ) A 、1 B 、23C 、2D 、3 5、函数()1log 21-=x y 的定义域是( )A 、()+∞,1B 、()2,∞-C 、()+∞,2D 、(]2,1 6、若09log 9log <<n m ,那么n m ,满足的条件是( )A 、1>>n mB 、1>>m nC 、10<<<m nD 、10<<<n m 7、若132log <a,则a 的取值范围是( ) A 、()+∞⎪⎭⎫⎝⎛,132,0 B 、⎪⎭⎫ ⎝⎛+∞,32 C 、⎪⎭⎫⎝⎛1,32 D 、⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛,3232,0 8、函数()176log 221+-=x x y 的值域是( )(完整word 版)对数与对数函数知识点与例题讲解第17页 共22页第18页A 、RB 、[)+∞,8C 、()3,-∞-D 、[)+∞,39、函数⎪⎭⎫⎝⎛--=112lg x y 的图像关于( )A 、y 轴对称B 、x 轴对称C 、原点对称D 、直线x y =对称10、图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为( )A 、103,51,34,2B 、51,103,34,2C 、2,34,103,51D 、51,103,2,3411、比较两个对数值的大小:7ln 12ln ;7.0log 5.08.0log 5.0.12、计算()=•+50lg 2lg 5lg 2.13、函数()()x x x f -+=1lg 2是 函数.(填“奇”、“偶”或“非奇非偶”).14、函数x a y =的反函数的图像经过点()2,9,则a 的值为 .15、已知函数()()1log +=x x f a ,()()x x g a -=1log ()10≠>a a ,且 ⑴求函数()()x g x f +的定义域;(10分) ⑵判断函数()()x g x f +的奇偶性.(10分)16、已知log 4log 4m n <,比较m ,n 的大小。

对数运算、对数函数经典例题讲义

对数运算、对数函数经典例题讲义

1.对数的概念 如果a x =N (a >0,且a ≠1),那么数x 叫做__________________,记作____________,其中a 叫做__________,N 叫做______.2.常用对数与自然对数通常将以10为底的对数叫做____________,以e 为底的对数叫做____________,log 10N 可简记为______,log e N 简记为________. 3.对数与指数的关系若a >0,且a ≠1,则a x =N ⇔log a N =____.对数恒等式:a log a N =____;log a a x =____(a >0,且a ≠1). 4.对数的性质(1)1的对数为____; (2)底的对数为____; (3)零和负数__________.1.有下列说法:①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的个数为( )A .1B .2C .3D .42.有以下四个结论:①lg(lg 10)=0;②ln(ln e)=0;③若10=lg x ,则x =100;④若e =ln x ,则x =e 2.其中正确的是( )A .①③B .②④C .①②D .③④ 3.在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <44.方程3l o g 2x=14的解是( )A .x =19B .x =33 C .x =3 D .x =95.若log a 5b =c ,则下列关系式中正确的是( ) A .b =a 5c B .b 5=a c C .b =5a c D .b =c 5a6.0.51log 412-+⎛⎫ ⎪⎝⎭的值为( )A .6 B.72 C .8 D.377.已知log 7[log 3(log 2x )]=0,那么12x -=________.8.若log 2(log x 9)=1,则x =________.9.已知lg a =2.431 0,lg b =1.431 0,则ba=________.10.(1)将下列指数式写成对数式:①10-3=11 000;②0.53=0.125;③(2-1)-1=2+1.(2)将下列对数式写成指数式:①log 26=2.585 0;②log 30.8=-0.203 1;③lg 3=0.477 1.11.已知log a x=4,log a y=5,求A=121232xxy-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦的值.能力提升12.若log a3=m,log a5=n,则a2m+n的值是()A.15 B.75 C.45 D.22513.(1)先将下列式子改写成指数式,再求各式中x的值:①log2x=-25;②log x3=-13.(2)已知6a=8,试用a表示下列各式:①log68;②log62;③log26.1.对数概念与指数概念有关,指数式和对数式是互逆的,即a b=N⇔log a N=b(a>0,且a≠1),据此可得两个常用恒等式:(1)log a a b=b;(2)log a Na=N.2.在关系式a x=N中,已知a和x求N的运算称为求幂运算;而如果已知a和N求x的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.3.指数式与对数式的互化1.对数的运算性质如果a>0,且a≠1,M>0,N>0,那么:(1)log a(M·N)=____________________;(2)log aMN=____________________;(3)log a M n=__________(n∈R).2.对数换底公式log a b=log c blog c a(a>0,且a≠1,b>0,c>0,且c≠1);特别地:log a b·log b a=____(a>0,且a≠1,b>0,且b≠1).一、选择题1.下列式子中成立的是(假定各式均有意义)( ) A .log a x ·log a y =log a (x +y ) B .(log a x )n =n log a xC.log a x n =log a n xD.log a x log a y=log a x -log a y 2.计算:log 916·log 881的值为( )A .18 B.118 C.83 D.383.若log 513·log 36·log 6x =2,则x 等于( )A .9 B.19 C .25 D.1254.已知3a =5b =A ,若1a +1b=2,则A 等于( )A .15 B.15 C .±15 D .2255.已知log 89=a ,log 25=b ,则lg 3等于( )A.a b -1B.32(b -1)C.3a2(b +1)D.3(a -1)2b6.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则(lg ab)2的值等于( )A .2 B.12 C .4 D.147.2log 510+log 50.25+(325-125)÷425=_____________________________________. 8.(lg 5)2+lg 2·lg 50=________.9.2008年5月12日,四川汶川发生里氏8.0级特大地震,给人民的生命财产造成了巨大的损失.里氏地震的等级最早是在1935年由美国加州理工学院的地震学家里特判定的.它与震源中心释放的能量(热能和动能)大小有关.震级M =23lg E -3.2,其中E (焦耳)为以地震波的形式释放出的能量.如果里氏6.0级地震释放的能量相当于1颗美国在二战时投放在广岛的原子弹的能量,那么汶川大地震所释放的能量相当于________颗广岛原子弹. 三、解答题10.(1)计算:lg 12-lg 58+lg 12.5-log 89·log 34;(2)已知3a =4b =36,求2a +1b的值.11.若a 、b 是方程2(lg x )2-lg x 4+1=0的两个实根,求lg(ab )·(log a b +log b a )的值.能力提升12.下列给出了x 与10x 的七组近似对应值:A .二B .四C .五D .七13.一种放射性物质不断变化为其他物质,每经过一年的剩余质量约是原来的75%,估计约经过多少年,该物质的剩余量是原来的13?(结果保留1位有效数字)(lg 2≈0.301 0,lg 3≈0.477 1)1.对数函数的定义:一般地,我们把______________________叫做对数函数,其中x 是自变量,函数的定义域是________.2.对数函数的图象与性质对数函数y =log a x (a >0且a ≠1)和指数函数__________________互为反函数. 1.函数y =log 2x -2的定义域是( )A .(3,+∞)B .[3,+∞)C .(4,+∞)D .[4,+∞)2.设集合M ={y |y =(12)x ,x ∈[0,+∞)},N ={y |y =log 2x ,x ∈(0,1]},则集合M ∪N 等于( )A .(-∞,0)∪[1,+∞)B .[0,+∞)C .(-∞,1]D .(-∞,0)∪(0,1) 3.已知函数f (x )=log 2(x +1),若f (α)=1,则α等于( )A .0B .1C .2D .3 4.函数f (x )=|log 3x |的图象是( )5.已知对数函数f (x )=log a x (a >0,a ≠1),且过点(9,2),f (x )的反函数记为y =g (x ),则g (x )的解析式是( ) A .g (x )=4x B .g (x )=2x C .g (x )=9x D .g (x )=3x6.若log a 23<1,则a 的取值范围是( )A .(0,23)B .(23,+∞)C .(23,1)D .(0,23)∪(1,+∞)7.如果函数f (x )=(3-a )x ,g (x )=log a x 的增减性相同,则a 的取值范围是______________. 8.已知函数y =log a (x -3)-1的图象恒过定点P ,则点P 的坐标是________.9.给出函数则f (log 23)=________.三、解答题10.求下列函数的定义域与值域: (1)y =log 2(x -2); (2)y =log 4(x 2+8).11.已知函数f (x )=log a (1+x ),g (x )=log a (1-x ),(a >0,且a ≠1). (1)设a =2,函数f (x )的定义域为[3,63],求函数f (x )的最值. (2)求使f (x )-g (x )>0的x 的取值范围.能力提升12.已知图中曲线C 1,C 2,C 3,C 4分别是函数y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,则a 1,a 2,a 3,a 4的大小关系是( )A .a 4<a 3<a 2<a 1B .a 3<a 4<a 1<a 2C .a 2<a 1<a 3<a 4D .a 3<a 4<a 2<a 113.若不等式x 2-log m x <0在(0,12)内恒成立,求实数m 的取值范围.1.函数y =log m x 与y =log n x 中m 、n 的大小与图象的位置关系.当0<n <m <1时,如图①;当1<n <m 时,如图②;当0<m <1<n 时,如图③.2.由于指数函数y =a x(a >0,且a ≠1)的定义域是R ,值域为(0,+∞),再根据对数式与指数式的互化过程知道,对数函数y =log a x (a >0,且a ≠1)的定义域为(0,+∞),值域为R ,它们互为反函数,它们的定义域和值域互换,指数函数y =a x 的图象过(0,1)点,故对数函数图象必过(1,0)点.1.函数y =log a x 的图象如图所示,则实数a 的可能取值是( )A .5 B.15C.1eD.12 2.下列各组函数中,表示同一函数的是( ) A .y =x 2和y =(x )2 B .|y |=|x |和y 3=x 3C .y =log a x 2和y =2log a xD .y =x 和y =log a a x3.若函数y =f (x )的定义域是[2,4],则y =f (12log x )的定义域是( )A .[12,1] B .[4,16]C .[116,14] D .[2,4]4.函数f (x )=log 2(3x +1)的值域为( )A .(0,+∞)B .[0,+∞)C .(1,+∞)D .[1,+∞)5.函数f (x )=log a (x +b )(a >0且a ≠1)的图象经过(-1,0)和(0,1)两点,则f (2)=________. 6.函数y =log a (x -2)+1(a >0且a ≠1)恒过定点____________.一、选择题1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c2.已知函数y =f (2x )的定义域为[-1,1],则函数y =f (log 2x )的定义域为( )A .[-1,1]B .[12,2]C .[1,2]D .[2,4]3.函数f (x )=log a |x |(a >0且a ≠1)且f (8)=3,则有( ) A .f (2)>f (-2) B .f (1)>f (2) C .f (-3)>f (-2) D .f (-3)>f (-4)4.函数f (x )=a x +log a (x +1)在[0,1]上的最大值与最小值之和为a ,则a 的值为( ) A.14 B.12C .2D .4 5.已知函数f (x )=lg 1-x1+x,若f (a )=b ,则f (-a )等于( )A .bB .-b C.1b D .-1b6.函数y =3x(-1≤x <0)的反函数是( ) A .y =13log x (x >0)B .y =log 3x (x >0)C .y =log 3x (13≤x <1)D .y =13log x (13≤x <1)7.函数f (x )=lg(2x -b ),若x ≥1时,f (x )≥0恒成立,则b 应满足的条件是________. 8.函数y =log a x 当x >2时恒有|y |>1,则a 的取值范围是______________. 9.若log a 2<2,则实数a 的取值范围是______________.10.已知f (x )=log a (3-ax )在x ∈[0,2]上单调递减,求a 的取值范围.11.已知函数f (x )=121log 1axx --的图象关于原点对称,其中a 为常数. (1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+12log (1)x -<m 恒成立.求实数m 的取值范围.能力提升12.设函数f (x )=log a x (a >0,a ≠1),若f (x 1x 2…x 2 010)=8,则f (x 21)+f (x 22)+…+f (x 22 010)的值等于( ) A .4 B .8 C .16 D .2log 48 13.已知log m 4<log n 4,比较m 与n 的大小.1.在对数函数y =log a x (a >0,且a ≠1)中,底数a 对其图象的影响 无论a 取何值,对数函数y =log a x (a >0,且a ≠1)的图象均过点(1,0),且由定义域的限制,函数图象穿过点(1,0)落在第一、四象限,随着a 的逐渐增大,y =log a x (a >1,且a ≠1)的图象绕(1,0)点在第一象限由左向右顺时针排列,且当0<a <1时函数单调递减,当a >1时函数单调递增.2.比较两个(或多个)对数的大小时,一看底数,底数相同的两个对数可直接利用对数函数的单调性来比较大小,对数函数的单调性由“底”的范围决定,若“底”的范围不明确,则需分“底数大于1”和“底数大于0且小于1”两种情况讨论;二看真数,底数不同但真数相同的两个对数可借助于图象,或应用换底公式将其转化为同底的对数来比较大小;三找中间值,底数、真数均不相同的两个对数可选择适当的中间值(如1或0等)来比较.1.已知m =0.95.1,n =5.10.9,p =log 0.95.1,则这三个数的大小关系是( ) A .m <n <p B .m <p <n C .p <m <n D .p <n <m 2.已知0<a <1,log a m <log a n <0,则( )A .1<n <mB .1<m <nC .m <n <1D .n <m <13.函数y =x -1+1lg (2-x )的定义域是( )A .(1,2)B .[1,4]C .[1,2)D .(1,2]4.给定函数①y =12x ,②y =()12log 1x +,③y =|x -1|,④y =2x +1,其中在区间(0,1)上单调递减的函数序号是( )A .①②B .②③C .③④D .①④5.设函数f (x )=log a |x |,则f (a +1)与f (2)的大小关系是________________________. 6.若log 32=a ,则log 38-2log 36=________.一、选择题1.下列不等号连接错误的一组是( )A .log 0.52.7>log 0.52.8B .log 34>log 65C .log 34>log 56D .log πe>log e π2.若log 37·log 29·log 49m =log 412,则m 等于( )A.14B.22C. 2 D .43.设函数若f (3)=2,f (-2)=0,则b 等于( ) A .0 B .-1 C .1 D .24.若函数f (x )=log a (2x 2+x )(a >0,a ≠1)在区间(0,12)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(-∞,-14)B .(-14,+∞)C .(0,+∞)D .(-∞,-12)5.若函数若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)6.已知f (x )是定义在R 上的奇函数,f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (log 18x )<0的解集为( )A .(0,12)B .(12,+∞)C .(12,1)∪(2,+∞)D .(0,12)∪(2,+∞)7.已知log a (ab )=1p ,则log ab ab=________.8.若log 236=a ,log 210=b ,则log 215=________.9.设函数若f (a )=18,则f (a +6)=________.10.已知集合A ={x |x <-2或x >3},B ={x |log 4(x +a )<1},若A ∩B =∅,求实数a 的取值范围. 11.抽气机每次抽出容器内空气的60%,要使容器内的空气少于原来的0.1%,则至少要抽几次?(lg 2≈0.301 0)能力提升12.设a >0,a ≠1,函数f (x )=log a (x 2-2x +3)有最小值,求不等式log a (x -1)>0的解集.13.已知函数f (x )=log a (1+x ),其中a >1.(1)比较12[f (0)+f (1)]与f (12)的大小;(2)探索12[f (x 1-1)+f (x 2-1)]≤f (x 1+x 22-1)对任意x 1>0,x 2>0恒成立.1.比较同真数的两个对数值的大小,常有两种方法:(1)利用对数换底公式化为同底的对数,再利用对数函数的单调性和倒数关系比较大小; (2)利用对数函数图象的相互位置关系比较大小. 2.指数函数与对数函数的区别与联系指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)是两类不同的函数.二者的自变量不同.前者以指数为自变量,而后者以真数为自变量;但是,二者也有一定的联系,y =a x (a >0,且a ≠1)和y =log a x (a >0,且a ≠1)互为反函数.前者的定义域、值域分别是后者的值域、定义域.二者的图象关于直线y =x 对称.。

对数函数知识点及典型例题

对数函数知识点及典型例题
解:先证明 (x)是单调函数.设-1<x <x <1,则
( x )- ( x ) = lg + -lg - = lg + ,
∵-1<x <x <1,∴ x -x >0, 1-x >1-x >0,1 + x >1 + x >0,
∴ >1, >0,即 ( x )- ( x )>0,
∴函数 (x)是单调递减函数.
(3) lg - lg +lg .
解:(1)方法一 利用对数定义求值
设 =x, 则(2+ )x=2- = =(2+ )-1,∴x=-1.
方法二 利用对数的运算性质求解
= = (2+ )-1=-1.
(2)原式=lg (2lg +lg5)+ =lg (lg2+lg5)+|lg -1|
=lg +(1-lg )=1.
⑴当-4<a<0时, <0,恒有g(x)>0,函数y的定义域为R,又y与g(x)单调性一致.所以在(-∞, ]上,y单调递减;在[ ,+∞)上,y单调递增;
⑵当a=-4时, = 0,y = lg(x + 1) ,其定义域为{x | x≠-1,x∈R},
∴在(-∞,-1)上y单调递减;在(-1,+∞)上,y单调递增;
⑶当a= 0时, = 0,y = lg(x-1) ,其定义域为{x | x≠1,x∈R},
∴在(-∞,1)上y单调递减;在(1,+∞)上,y单调递增;
⑷当a<-4或a>0时, >0,函数的定义域为:
(-∞, )∪( ,+∞).
∴在(-∞, )上,y单调递减;在( ,+∞)上,y单调递增.
例7 已知函数 (x) = lg + ,x∈(-1,1 ),问y = (x) 的图象上是否存在两个不同的点A、B,使AB⊥y轴,若存在,求A、B的坐标,若不存在,说明理由.

高中数学对数与对数函数知识点及经典例题讲解

高中数学对数与对数函数知识点及经典例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N .②log a =log a M -log a N .NM ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =(a >0,a ≠1,b >0,b ≠1,N >0).bN a a log log 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质:①定义域:(0,+∞).②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是?2.若f-1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.3.已知f (x )的定义域为[0,1],则函数y =f [log(3-x )]的定21义域是__________.4.若log x =z ,则x 、y 、z 之间满足7y A.y 7=x z B.y =x 7z C.y =7x zD.y =z x5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.B.C. D.422241217.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 (x=-2非解)A.B.-C.2D.-221218.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是AB9.设f-1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 2310.方程lg x +lg (x +3)=1的解x =___________________.典型例题【例1】 已知函数f (x )=则f (2+log 23)的值为⎪⎩⎪⎨⎧<+≥,4),1(,4,21(x x f x xA.B.C.D.3161121241【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.【例3】已知f (x )=log [3-(x -1)2],求f (x )的值域及单31调区间.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.【例7】 在f 1(x )=x ,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log x 四2121个函数中,x 1>x 2>1时,能使[f (x 1)+f (x 2)]<f ()成21221x x 立的函数是A.f 1(x )=x(平方作差比较)B.f 2(x )21=x 2C.f3(x)=2xD.f4(x)=log x12探究创新1.若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?2.已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f -1(x)图象上的点.(1)求实数k的值及函数f-1(x)的解析式;(2)将y= f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求m实数m的取值范围.。

对数与对数函数_及经典题

对数与对数函数_及经典题

对数与对数函数二、知识要点梳理知识点一、对数及其运算我们在学习过程遇到2x=4的问题时,可凭经验得到x=2的解,而一旦出现2x=3时,我们就无法用已学过的知识来解决,从而引入出一种新的运算——对数运算.(一)对数概念:1. 如果,那么数b叫做以a为底N的对数,记作:log a N=b.其中a叫做对数的底数,N叫做真数.2. 对数恒等式:3. 对数具有下列性质:(1)0和负数没有对数,即;(2)1的对数为0,即;(3)底的对数等于1,即.(二)常用对数与自然对数通常将以10为底的对数叫做常用对数,.以e为底的对数叫做自然对数,.(三)对数式与指数式的关系由定义可知:对数就是指数变换而来的,因此对数式与指数式联系密切,且可以互相转化.它们的关系可由下图表示.由此可见a,b,N三个字母在不同的式子中名称可能发生变化.(四)积、商、幂的对数已知(1);推广:(2);(3).(五)换底公式同底对数才能运算,底数不同时可考虑进行换底,在a>0,a≠1,M>0的前提下有:(1)令log a M=b,则有a b=M,(a b)n=M n,即,即,即:.(2) ,令log a M=b,则有a b=M,则有即,即,即当然,细心一些的同学会发现(1)可由(2)推出,但在解决某些问题(1)又有它的灵活性.而且由(2)还可以得到一个重要的结论:.知识点二、对数函数1. 函数y=log a x(a>0,a≠1)叫做对数函数.2. 在同一坐标系内,当a>1时,随a的增大,对数函数的图像愈靠近x轴;当0<a<1时,对数函数的图象随a的增大而远离x轴.(见图1)(1)对数函数y=log a x(a>0,a≠1)的定义域为(0,+∞),值域为R(2)对数函数y=log a x(a>0,a≠1)的图像过点(1,0)(3)当a>1时,三、规律方法指导容易产生的错误(1)对数式log a N=b中各字母的取值范围(a>0 且a≠1,N>0,b∈R)容易记错.(2)关于对数的运算法则,要注意以下两点:一是利用对数的运算法则时,要注意各个字母的取值范围,即等式左右两边的对数都存在时等式才能成立.如:log2(-3)(-5)=log2(-3)+log2(-5)是不成立的,因为虽然log2(-3)(-5)是存在的,但log2(-3)与log2(-5)是不存在的.二是不能将和、差、积、商、幂的对数与对数的和、差、积、商、幂混淆起来,即下面的等式是错误的:log a(M±N)=log a M±log a N,log a(M·N)=log a M·log a N,loga.(3)解决对数函数y=log a x (a>0且a≠1)的单调性问题时,忽视对底数a的讨论.(4)关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考.以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0.经典例题透析类型一、指数式与对数式互化及其应用1.将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化.解:(1);(2);(3);(4);(5);(6).总结升华:对数的定义是对数形式和指数形式互化的依据,而对数形式和指数形式的互化又是解决问题的重要手段.举一反三:【变式1】求下列各式中x的值:(1)(2)(3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x=100=102,于是x=2;(4)由.类型二、利用对数恒等式化简求值2.求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数.举一反三:【变式1】求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数3.已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a举一反三:【变式1】求值(1)(2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.【变式2】已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.【变式3】设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.【变式4】已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即.类型四、换底公式的运用4.(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x∴,∴;方法二:.举一反三:【变式1】求值:(1);(2);(3).解:(1);(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用5.求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)举一反三:【变式1】求值:解:另解:设=m (m>0).∴,∴,∴,∴lg2=lgm,∴2=m,即.【变式2】已知:log23=a,log37=b,求:log4256=?解:∵∴,类型六、函数的定义域、值域求含有对数函数的复合函数的定义域、值域,其方法与一般函数的定义域、值域的求法类似,但要注意对数函数本身的性质(如定义域、值域及单调性)在解题中的重要作用.6. 求下列函数的定义域:(1);(2).思路点拨:由对数函数的定义知:x2>0,4-x>0,解出不等式就可求出定义域.解:(1)因为x2>0,即x≠0,所以函数;(2)因为4-x>0,即x<4,所以函数.举一反三:【变式1】求下列函数的定义域.(1) y=(2) y=ln(a x-k·2x)(a>0且a≠1,k∈R).解:(1)因为,所以,所以函数的定义域为(1,)(,2).(2)因为a x-k·2x>0,所以()x>k.[1]当k≤0时,定义域为R;[2]当k>0时,(i)若a>2,则函数定义域为(k,+∞);(ii)若0<a<2,且a≠1,则函数定义域为(-∞,k);(iii)若a=2,则当0<k<1时,函数定义域为R;当k≥1时,此时不能构成函数,否则定义域为.【变式2】函数y=f(2x)的定义域为[-1,1],求y=f(log2x)的定义域.思路点拨:由-1≤x≤1,可得y=f(x)的定义域为[,2],再由≤log2x≤2得y=f(log2x)的定义域为[,4].类型七、函数图象问题7.作出下列函数的图象:(1) y=lgx,y=lg(-x),y=-lgx;(2) y=lg|x|;(3) y=-1+lgx.解:(1)如图(1);(2)如图(2);(3)如图(3).类型八、对数函数的单调性及其应用利用函数的单调性可以:①比较大小;②解不等式;③判断单调性;④求单调区间;⑤求值域和最值.要求同学们:一是牢固掌握对数函数的单调性;二是理解和掌握复合函数的单调性规律;三是树立定义域优先的观念.8. 比较下列各组数中的两个值大小:(1)log23.4,log28.5(2)log0.31.8,log0.32.7(3)log a5.1,log a5.9(a>0且a≠1)思路点拨:由数形结合的方法或利用函数的单调性来完成.(1)解法1:画出对数函数y=log2x的图象,横坐标为3.4的点在横坐标为8.5的点的下方,所以,log23.4<log28.5;解法2:由函数y=log2x在R+上是单调增函数,且3.4<8.5,所以log23.4<log28.5;解法3:直接用计算器计算得:log23.4≈1.8,log28.5≈3.1,所以log23.4<log28.5;(2)与第(1)小题类似,log0.3x在R+上是单调减函数,且1.8<2.7,所以log0.31.8>log0.32.7;(3)注:底数是常数,但要分类讨论a的范围,再由函数单调性判断大小.解法1:当a>1时,y=log a x在(0,+∞)上是增函数,且5.1<5.9,所以,log a5.1<log a5.9当0<a<1时,y=log a x在(0,+∞)上是减函数,且5.1<5.9,所以,log a5.1>log a5.9 解法2:转化为指数函数,再由指数函数的单调性判断大小,令b1=log a5.1,则,令b2=log a5.9,则当a>1时,y=a x在R上是增函数,且5.1<5.9所以,b1<b2,即当0<a<1时,y=a x在R上是减函数,且5.1<5.9所以,b1>b2,即.举一反三:【变式1】若log m3.5>log n3.5(m,n>0,且m≠1,n≠1),试比较m ,n的大小.解:(1)当m>1,n>1时,∵3.5>1,由对数函数性质:当底数和真数都大于1时,对同一真数,底数大的对数值小,∴n>m>1.(2)当m>1,0<n<1时,∵log m3.5>0,log n3.5<0,∴0<n<1<m也是符合题意的解.(3)当0<m<1,0<n<1时,∵3.5>1,由对数函数性质,此时底数大的对数值小,故0<m<n<1.综上所述,m,n的大小关系有三种:1<m<n或0<n<1<m或0<m<n<1.9. 证明函数上是增函数.思路点拨:此题目的在于让学生熟悉函数单调性证明通法,同时熟悉利用对函数单调性比较同底数对数大小的方法.证明:设,且x1<x2则又∵y=log2x在上是增函数即f(x1)<f(x2)∴函数f(x)=log2(x2+1)在上是增函数.举一反三:【变式1】已知f(log a x)=(a>0且a≠1),试判断函数f(x)的单调性.解:设t=log a x(x∈R+,t∈R).当a>1时,t=log a x为增函数,若t1<t2,则0<x1<x2,∴f(t1)-f(t2)=,∵0<x1<x2,a>1,∴f(t1)<f(t2),∴f(t)在R上为增函数,当0<a<1时,同理可得f(t)在R上为增函数.∴不论a>1或0<a<1,f(x)在R上总是增函数.10.求函数y=(-x2+2x+3)的值域和单调区间.解:设t=-x2+2x+3,则t=-(x-1)2+4.∵y=t为减函数,且0<t≤4,∴y≥=-2,即函数的值域为[-2,+∞.再由:函数y=(-x2+2x+3)的定义域为-x2+2x+3>0,即-1<x<3.∴t=-x2+2x+3在-1,1)上递增而在[1,3)上递减,而y=t为减函数.∴函数y=(-x2+2x+3)的减区间为(-1,1),增区间为[1,3.类型九、函数的奇偶性11. 判断下列函数的奇偶性.(1)(2).(1)思路点拨:首先要注意定义域的考查,然后严格按照证明奇偶性基本步骤进行.解:由所以函数的定义域为:(-1,1)关于原点对称又所以函数是奇函数;总结升华:此题确定定义域即解简单分式不等式,函数解析式恒等变形需利用对数的运算性质.说明判断对数形式的复合函数的奇偶性,不能轻易直接下结论,而应注意对数式的恒等变形.(2)解:由所以函数的定义域为R关于原点对称又即f(-x)=-f(x);所以函数.总结升华:此题定义域的确定可能稍有困难,函数解析式的变形用到了分子有理化的技巧,要求掌握. 类型十、对数函数性质的综合应用12.已知函数f(x)=lg(ax2+2x+1).(1)若函数f(x)的定义域为R,求实数a的取值范围;(2)若函数f(x)的值域为R,求实数a的取值范围.思路点拨:与求函数定义域、值域的常规问题相比,本题属非常规问题,关键在于转化成常规问题.f(x)的定义域为R,即关于x的不等式ax2+2x+1>0的解集为R,这是不等式中的常规问题.f(x)的值域为R与ax2+2x+1恒为正值是不等价的,因为这里要求f(x)取遍一切实数,即要求u=ax2+2x+1取遍一切正数,考察此函数的图象的各种情况,如图,我们会发现,使u 能取遍一切正数的条件是.解:(1)f(x)的定义域为R,即:关于x的不等式ax2+2x+1>0的解集为R,当a=0时,此不等式变为2x+1>0,其解集不是R;当a≠0时,有a>1.∴a的取值范围为a>1.(2)f(x)的值域为R,即u=ax2+2x+1能取遍一切正数a=0或0≤a≤1,∴a的取值范围为0≤a≤1.11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数与对数函数
一、选择题(本大题共6小题,每小题6分,共36分) 1.方程lg x +lg(x +3)=1的解x 为
( ) A .1 B .2 C .10
D .5
解析 B ∵lg x +lg(x +3)=lg 10,∴x (x +3)=10.∴x 2+3x -10=0.
解得x =2或-5(舍去).
2.“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的
( )
A .充分必要条件
B .必要不充分条件
C .充分不必要条件
D .既不充分也不必要条件
解析 C 显然函数f (x )=lg(x +1),g (x )=lg(2x +1)在(0,+∞)上均单调递增,所以“a =1”是“函数f (x )=lg(ax +1)在(0,+∞)上单调递增”的充分不必要条件.
则a ,b ,c
的大小关系是
( )
A .a <b <c
B .c <b <a
C .b <a <c
D .b <c <a
解析
4.(2013·蚌埠模拟)函数y =log 0.5⎝ ⎛⎭
⎪⎫x +1x -1+1(x >1)的值域是
( )
A .(-∞,-2]
B .[-2,+∞)
C .(-∞,2]
D .[2,+∞) 解析 A ∵x +
1x -1+1=x -1+1
x -1
+2≥2(x -1)·1
x -1
+2=4,∴y ≤-2.
5.函数f (x )=2|log2x |的图象大致是
( )
解析 C f (x )=2|log2x |=⎩⎪⎨⎪

x ,x ≥1,1
x
,0<x <1,故选C.
6.(2013·潍坊质检)设函数f (x )=log 2x 的反函数为y =g (x ),若g ⎝ ⎛⎭⎪⎫1a -1=1
4,则a

( )
A .-2
B .-12 C.1
2
D .2
解析 C 因为对数函数y =log 2x 与指数函数y =2x 互为反函数,所以g (x )=2x .所以g ⎝ ⎛⎭⎪⎫
1a -1=21a -1=14,即1a -1=-2,解得a =12.故选C.
7.已知函数f(x)=⎩

⎧>≤-1,01
,88x x x ,g(x)=x 2log , 则f(x)与g(x)两函数的
图象的交点个数为 ( )
A 1
B 2
C 3
D 4 答案:B
8.函数f(x)=x a log (a>0,a ≠1),若)()(21x f x f -=1,则)()(2
221x f x f -等于 ( )
A 2
B 1
C 2
1
D 2log a 答案A
二、填空题(本大题共3小题,每小题8分,共24分) 9.lg 25+lg 2×lg 50+(lg 2)2=________.
解析 lg 25+lg 2×lg 50+(lg 2)2=2lg 5+lg 2×(2-lg 2)+(lg 2)2=2lg 5+2lg 2=2(lg 5+lg 2)=2. 【答案】 2
10.已知0<a <b <1<c ,m =log a c ,n =log b c ,则m 与n 的大小关系是 (m>n)
11.已知f(x)=x 2log ,则)2
3
()83(f f += 2
12.已知)2(log ax y a -=在[]1,0上是x 的减函数,则a 的取值范围是 ()2,1
13.设m 为常数,如果)34lg(2-+-=m x mx y 的定义域为R ,则m 的取值范围是(]4,0
14.函数f (x )=log 1
2(2x 2
-3x +1)的增区间是____________.
解析 ∵2x 2
-3x +1>0,∴x <1
2或x >1.∵二次函数y =2x 2-3x +1的减区间是
⎝ ⎛⎭⎪⎫-∞,34, ∴f (x )的增区间是⎝ ⎛⎭⎪⎫-∞,12. 【答案】 ⎝ ⎛

⎪⎫-∞,12
三、解答题(本大题共3小题,共40分) 15.(12分)(2013·昆明模拟)求函数
的定义域.
解析 要使函数有意义必须
即⎩⎨⎧
3x -2x 2>0,3x -2x 2≤1,
解得0<x ≤12或1≤x <
3
2, ∴函数的定义域是⎩
⎪⎨⎪⎧⎭⎪
⎬⎪⎫
x ⎪⎪⎪
0<x ≤1
2
或1≤x <32.
16.(12分)计算:(1)(log 32+log 92)(log 43+log 83);
(2)15⎝ ⎛
⎭⎪⎫lg 32+log 416+6lg 12+15lg 15.
解析
17.已知二次函数f(x)是偶函数,且f(4) = 4f(2) =16
(1)求f(x)的解析式;(2)若g(x)=[])1()(log >-a ax x f a 在区间[]3,2上为增函数,求实数a 的取值范围。

(1,2)
解析:(1)设f(x)=ax 2
+c,则 ⎩⎨⎧=+=+441616c a c a ,解得 ⎩⎨⎧==0
1
c a 2)(x x f =∴
(2) g(x)= []3,2)(log 2在ax x a -上单调递增 解得,102422⎪⎪⎩

⎪⎨⎧>>-≤∴a a a 1<a <2
18. 已知函数f (x )=log a
x +b
x -b
(a >0,b >0,a ≠1). (1)求f (x )的定义域;(2)讨论f (x )的奇偶性;(3)讨论f (x )的单调性; 解析 (1)令
x +b
x -b
>0, 解得f (x )的定义域为(-∞,-b )∪(b ,+∞).
(2)因f (-x )=log a -x +b -x -b =log a ⎝ ⎛⎭⎪⎫x +b x -b -1
=-log a x +b x -b =-f (x ),
故f (x )是奇函数.
(3)令u (x )=x +b x -b ,则函数u (x )=1+2b
x -b 在(-∞,-b )和(b ,+∞)上是减函
数,所以当0<a <1时,f (x )在(-∞,-b )和(b ,+∞)上是增函数;当a >1时,f (x )在(-∞,-b )和(b ,+∞)上是减函数.。

相关文档
最新文档