2019年中考数学模拟测试卷150分
2019年中考数学模拟试题及答案分析177924
2019年中考数学模拟试题及答案分析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.从标有1,2,3,4的四张卡片中任取两张,卡片上的数字之和为奇数的概率是( )A .13B .12C .23D .342.甲、乙两个商店各进洗衣机若干台,若甲店拨给乙店 12 台,则两店的洗衣机一样 多;若乙店拨给甲店 12 台,则甲店的洗衣机比乙店的洗衣机数的 5 倍还多 6 台,求甲、乙两店各进洗衣机多少台?若设甲店进洗衣机x 台,乙店进洗衣机y 台,则列出方程组:(1) 245(12)612x y y x -=⎧⎨-+=+⎩;(2) 125(12)612x y y x -=⎧⎨-+=+⎩;(3) 12125612x y x x -=+⎧⎨+=+⎩其中正确的是( )A .(1)B . (2)C .(3)D .(1)(2)(3)3.若2682a a ⋅=,则a 的值为( )A .2B .-2C . 2±D .不确定 4.下列关于分式263x χ--的说法,正确的 ( ) A . 当3x =时,分式有意义B . 当3x ≠时,分式没有意义C . 当3x =时,分式的值为零D . 分式的值不可能为零5.把多项式224n m -+分解因式,其结果正确的是( )A .(2)(2)m n m n +-B .2(2)m n +C . 2(2)m n -D .(2)(2)n m n m +-6.下列多项式因式分解正确的是( )A .2244(2)x x x -+=-B .22144(12)x x x +-=-C .2214(12)x x +=+D .222()x xy y x y ++=+ 7.如图,在△ABC 中,DE 是边AB 的垂直平分线,BC=8cm ,AC=5cm 则△ADC 的周长为( )A .14 cmB .13 cmC .11 cmD .9 cm8.下列各式的因式分解中正确的是( )A .-a 2+ab-ac= -a (a+b-c )B .9xyz-6x 2y 2=3xyz (3-2xy )C .3a 2x-6bx+3x=3x (a 2-2b )D .21xy 2+21x 2y=21xy (x+y ) 9.若a b c x b c a c a b===+++,则x 等于( ) A .1-或21 B .1- C .21 D .不能确定10.下列计算正确的是( )A .(2a )3=6a 3B .a 2·a =a 2C .a 3+a 3=a 6D .(a 3)2=a 611.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )12.在“工、木、口、民、公、晶、离”这几个汉字中,是轴对称的有( )A .2个B .3个C .4个D .5个13.下列四个图案中,从对称的角度考虑,其中不同于其他三个的图案是( )14.一次课堂练习,小敏同学做了如下4道因式分解题,你认为小敏做得不够完整的一题是( )A .x 3-x =x (x 2-1)B .x 2-2xy +y 2=(x -y )2C .x 2y -xy 2=xy (x -y )D .x 2-y 2=(x -y )(x +y )15.一个三角形的三边长分别是5,6,7,另一个三角形和它是相似图形,其最长边长为10.5, 则另一个三角形的周长是( )A .23B .27C .29D .33 16.已知10x m =,10y n =,则2x 310y +等于( )A .23m n +B .22m n +C .6mnD .23m n 17.如图,在边长为 a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分。
四川省成都市2019年中考一模数学试题
2019年九年级第一次联合质质量抽测试卷数学注意事项:1.本试卷共4页,三个大题,满分120分,考试时间100分钟.2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上.答在试卷上的答案无效.一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.25-的绝对值是() A .25- B .25 C .52- D .522.“十三五”期间,河南将安排40.27亿元资金支持郑州大学.河南大学“双一流”建设.数据“40.27亿”用科学记数法表示为()A .104.02710⨯B .100.402710⨯C .94.02710⨯D .90.402710⨯3.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A .B .C .D .4.下表是我国近六年“两会”会期(单位:天)的统计结果:则我国近六年“两会”会期(天)的众数和中位数分别是() A .13,11B .13,13C .13,14D .14,13.55.程大位是我国明朝商人,珠算发明家.他60岁时完成的《直指算法统宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法.书中有如下问题:一百馒头百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,下列求解结果正确的是()A .大和尚25人,小和尚75人B .大和尚75人,小和尚25人C .大和尚50人,小和尚50人D .大.小和尚各100人6.将分别标有“学”“习”“强”“国”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸的球上的汉字组成“强国”的概率是() A .18 B .16 C .14 D .127.下列不等式组的解集,在数轴上表示为如图所示的是()A .1020x x ->⎧⎨+≤⎩ B .1020x x -≤⎧⎨+<⎩C .1020x x +≤⎧⎨->⎩D .1020x x +>⎧⎨-≤⎩8.已知函数y kx b =+的图象如图所示,则一元二次方程210x x k ++-=的根的情况是()A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定9.如图,已知矩形AOBC 的三个顶点的坐标分别为(0,0)O ,(0,3)A ,(4,0)B ,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交,OC OB 于点,D E ;②分别以点,D E 为圆心,大于12DE 的长为半径作弧,两弧在BOC ∠内交于点F ;③作射线OF ,交边BC 于点G ,则点G 的坐标为()A .44,3⎛⎫ ⎪⎝⎭ B .4,43⎛⎫ ⎪⎝⎭C .5,43⎛⎫ ⎪⎝⎭ D .54,3⎛⎫ ⎪⎝⎭10.如图1,在菱形ABCD 中,120A ∠=︒,点E 是BC 边的中点,点P 是对角线BD 上一动点,设PD 的长度为x ,PE 与PC 的长度和为y ,图2是y 关于x 的函数图象,其中H 是图象上的最低点,则a b +的值为()A .B .4CD 二、填空(每小题3分,共15分)11.计算:112-⎛⎫--= ⎪⎝⎭______.12.已知:如图,12355∠=∠=∠=︒,则4∠的度数是______.13.已知反比例函数2y x=,当1x <-时,y 的取值范围为_____. 14.如图,在菱形ABCD ,60B ∠=︒,2AB =,把菱形ABCD 绕BC 的中点E 顺时针旋转60︒得到菱形A B C D '''',其中点D 的运动路径为¼DD ',则图中阴影部分的面积为______.15.如图,ABC △中,90ACB ∠=︒,30A ∠=︒,1BC =,CD 是ABC △的中线,E 是AC 上一动点,将AED △沿ED 折叠,点A 落在点F 处,EF 与线段CD 交于点G ,若CEG △是直角三角形,则CE =_____.三、解答题(本大题共8道题,共75分)16.先化简,再求值:2443111m m m m m -+⎛⎫÷-- ⎪--⎝⎭,其中2m =. 17.贺岁片《流浪地球》被称为开启了中国科幻片的大门,2019也被称为中国科幻片的元年.某电影院为了全面了解观众对《流浪地球》的满意度情况,进行随机抽样调查,分为四个类别:A .非常满意;B .满意;C 基本满意;D .不满意.依据调查数据绘制成图1和图2的统计图(不完整).根据以上信息,解答下列问题:(1)本次接受调查的观众共有______人;(2)扇形统计图中,扇形C 的圆心角度数是_____; (3)请补全条形统计图;(4)春节期间,该电影院来观看《流浪地球》的观众约3000人,请估计观众中对该电影满意(A B C 、、类视为满意)的人数.18.如图,AB 为O e 的直径,DB AB ⊥于B ,点C 是弧AB 上的任一点,过点C 作O e 的切线交BD 于点E .连接OE 交O e 于F .(1)求证:CE ED =;(2)填空:①当D ∠=_____时,四边形OCEB 是正方形; ②当D ∠=_____时,四边形OACF 是菱形. 19.如图,反比例函数(0)ky x x=>的图象过格点(网格线的交点)A . (1)求反比例函数的解析式;(2)若点P 是该双曲线第一象限上的一点,且45AOP ∠=︒, 填空:①直线OP 的解析式为_______;②点P 的坐标为______.20.某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A 到地面的铅直高度AC 长度为15米,原坡面AB 的倾斜角ABC ∠为45︒,原坡脚B 与场馆中央的运动区边界的安全距离BD 为5米.如果按照施工方提供的设计方案施工,新座位区最高点E 到地面的铅直高度EG 长度保持15米不变,使A E 、两点间距离为2米,使改造后坡面EF 的倾斜角EFG ∠为37︒.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD 至少保持2.5米( 2.5FD …),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:3sin 375︒≈,3tan 374︒≈)21.某公司推出一款产品,成本价10元/千克,经过市场调查,该产品的日销售量y (千克)与销售单价x (元/克)之间满足一次函数关系,该产品的日销售量与销售单价之间的几组对应值如下表:(注:日销售利润=日销售量×(销售单价-成本单价)) (1)求y 关于x 的函数解析式(不要求写出x 的取值范围); (2)根据以上信息,填空: ①m =_____元;②当销售价格x =_____元时,日销售利润W 最大,最大值是______元;(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1025元,试确定该产品销售单价的范围.22.如图1,在ABC △中,90BAC ∠=︒,AB AC =,点,D E 分别在边,AB AC 上,AD AE =,连接DC 、BE ,点P 为DC 的中点.(1)观察猜想图1中,线段AP 与BE 的数量关系是______,位置关系是________; (2)探究证明把ADE △绕点A 逆时针方向旋转到图2的位置,小航猜想(1)中的结论仍然成立,请你证明小航的猜想; (3)拓展延伸把ADE △绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出线段AP 的取值范围.23.如图,抛物线23y ax bx =-+交x 轴于(1,0)B ,(3,0)C 两点,交y 轴于A 点,连接AB ,点P 为抛物线上一动点. (1)求抛物线的解析式; (2)当点P 到直线AB 时,求点P 的横坐标; (3)当ACP △和ABC △的面积相等时,请直接写出点P 的坐标.2019年九年级第一次联合质质量抽测试卷数学参考答案及评分标准一、选择题:(每小题3分,共30分) BCDBA BDCAC二、填空题:(每小题3分,共15分)11.4- 12.125︒ 13.20y -<< 14.76π 三、解答题:(本大题共8个小题,满分75分)16.解:原式22(2)31111m m m m m ⎛⎫--=÷- ⎪---⎝⎭22(2)411m m m m --=÷--2(2)11(2)(2)m m m m m --=⋅--+-22m m -=-+当2m =-时,原式=== 17解:(1)Q 被调查的总户数为6060%100÷=,故答案为100; (2)54︒;(3)补全图形如下:(4)观众对该电影的满意(A B C 、、类视为满意)的人数为:6020153000100%2850100++⨯⨯=(人)18.(1)证明:连接BC ,AB Q 为O e 的直径,DB AB ⊥于A ,CE 为O e 切线,EB EC ∴=,90DBA ACB ∠=∠=︒,ECB EBC ∴∠=∠,90EBC D ∠+∠=︒Q ,90ECB ECD ∠+∠=︒,D ECD ∴∠=∠. CE CD ∴=(2)①45︒②30︒19.解:(1)Q 反比例函数(0)ky x x =>的图象过格点(1,3)A ,133k ∴=⨯=, ∴反比例函数的解析式为3y x=;(2)①12y x =;②⎭20.解:施工方提供的设计方案不满足安全要求,理由如下:在Rt ABC △中,15AC m =,45ABC ∠=︒,15tan 45ACBC m ==︒.在Rt EFG △中,15EG m =,37EFC ∠=︒,15203tan374EG GF m =≈=︒15EG AC m ==Q ,AC BC ⊥,EG BC ⊥,EG AC ∴P ,∴四边形EGCA 是矩形,2GC EA m ∴==,201523BF GF GC BC m ∴=--≈--=. 5BD m =Q ,532 2.5FD BD BF ∴=-≈-=<,∴施工方提供的设计方案不满足安全要求.21.解:(1)设y 与x 的函数关系式为y kx b =+,则1424018180k b k b +=⎧⎨+=⎩解得:15k =-,450b =,15450y x ∴=-+,(2)60,20,1500(3)21001560045001001025W x x -=-+--=整理得:215(20)375x --=-,解得:115x =,225x =所以,当1525x 剟时,捐赠后每天的剩余利润不低于1025元 22.(1)12AP BE =,AP BE ⊥ (2)延长PA 交BE 于N 延长AP 到M 使PM AP =,连接CM ,则ADP MCP △≌△,AD CM AE ∴==,DAP M ∠=∠,AD CM ∴P ,M DAP ∴∠=∠,180DAC ACM ∠+∠=︒,又90BAC DAE ∠︒∠==Q ,180DAC BAE ∴∠+∠=︒,ACM BAE ∴∠=∠, 又AB AC =Q ,BAE ACM ∴△≌△,M AEB DAP ∴∠=∠=∠,BE AM =,12AP AM =Q ,12AP BE ∴= 又90EAN DAP ∠︒∠+=Q ,90EAN AEB ∴∠+∠=︒,90ENA ∴∠=︒即AP BE ⊥(3)37AP 剟23.解:(1)把(1,0)B ,(3,0)C 代入23y ax bx =-+得030933a b a b =-+⎧⎨=-+⎩解得:14a b =⎧⎨=⎩所以,抛物线的解析式为:243y x x =-+(2)过点P 作PQ AB ⊥于Q ,过点P 作PD y P 轴交直线AB 于D , 则OAB PDQ ∠=∠,(0,3)A Q ,(1,0)B3OA ∴=,1OB =,∴直线AB 的解析式为:33y x =-+AB ∴===sin sinOAB PDQ ∴∠=∠=又sin PQ PDQ PD∠=PQ PD ∴=PQ ∴=设点()2,43P m m m -+,(,33)D m m -+2243(33)PD m m m m m =-+--+=-,PQ =2|m m --=解得:173m =-,2103m = 故点P 的横坐标为73-或103(3)(2,1)-或⎝⎭或⎝⎭。
2019年四川省巴中市恩阳区茶坝中学中考数学模拟试卷(解析版)
2019年四川省巴中市恩阳区茶坝中学中考数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.下列说法:①如果a=﹣4,那么﹣a=4;②倒数等于它本身的有理数是1;③如果a是非正数,那么﹣a是负数;④如果a是负数,那么|a|+1是正数,其中正确的有()A.1个B.2个C.3个D.4个2.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()A.B.C.D.3.下列运算正确的是()A.2a+a=3a2B.C.(3a2)3=9a6D.a2•a3=a54.如图,直线AB、CD相交于点O,∠BOE=90°,OF平分∠AOE,∠1=15°30′,则下列结论不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD+∠1=180°D.∠EOD=75°30'5.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球6.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为()A.B.C.D.7.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,我市某校举行了“建设宜居成都,关注环境保护”的知识竞赛,某班学生的成绩统计如下:则该班学生成绩的众数和中位数分别是()A.70分,80分B.80分,80分C.90分,80分D.80分,90分8.下列各题估算正确的是()A.B.C.D.9.如图,⊙O是△ABC的外接圆,∠A=50°,则∠BOC的度数为()A.40°B.50°C.80°D.100°10.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个B.3个C.4个D.5个二.填空题(共10小题,满分30分,每小题3分)11.分解因式:x3y﹣2x2y+xy=.12.在函数y=+中,自变量x的取值范围是.13.将201800000用科学记数法表示为.14.已知关于x的方程x2+3x﹣m=0有两个相等的实数根,则m的值为.15.如图,已知抛物线l1:y=(x﹣2)2﹣2与x轴分别交于O、A两点,将抛物线L1向上平移得到L2,过点A作AB⊥x轴交抛物线L2于点B,如果由抛物线L1、L2、直线AB及y轴所围成的阴影部分的面积为16,则抛物线L2的函数表达式为.16.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,过E点作EH⊥CD于H,则EH的长为.17.已知扇形所在圆半径为4,弧长为6π,则扇形面积为18.若关于x的方程无解,则m的值是.19.如图,AB为⊙O的直径,弦CD⊥AB于点E,已知CD=6,EB=2,则⊙O的半径为.20.如果抛物线y=(k﹣2)x2+k的开口向上,那么k的取值范围是.三.解答题(共11小题,满分90分)21.(5分)计算:sin45°﹣|﹣3|+(2018﹣)0+()﹣122.(5分)解方程组(1)(2).23.(6分)方程与计算:(1)+1=;(2)先化简:÷(),然后再从﹣2<x≤2的范围内选取一个合适的x的整数值代入求值.24.(6分)如图,在平面直角坐标系中,△AOB的三个顶点坐标分别为A(1,0),O(0,0),B(2,2).以点O为旋转中心,将△AOB逆时针旋转90°,得到△A1OB1.(1)画出△A1OB1;(2)直接写出点A1和点B1的坐标;(3)求线段OB1的长度.25.(8分)我省有关部门要求各中小学要把“阳光体育”写入课表,为了响应这一号召,某校围绕着“你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行了随机抽样调查,从而得到一组数据,如图1是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:(1)该校对多少名学生进行了抽样调查?(2)本次抽样调查中,最喜欢足球活动的有多少人?占被调查人数的百分比是多少?(3)若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?26.(8分)如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.27.(10分)随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)28.(10分)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为i=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).29.(10分)如图,在▱ABCD中,BE⊥AD于点E,BF⊥CD于点F,AC与BE、BF分别交于点G、H.(1)求证:△BAE∽△BCF;(2)若BG=BH,求证:四边形ABCD是菱形.30.(10分)已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.(1)求证:DE是⊙O的切线;(2)若DE=6cm,AE=3cm,求⊙O的半径.31.(12分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年四川省巴中市恩阳区茶坝中学中考数学模拟试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】利用绝对值的性质以及非负数的定义分别分析得出即可.【解答】解:①如果a=﹣4,那么﹣a=﹣(﹣4)=4,故此说法正确;②倒数等于它本身的有理数是±1,故此说法错误;③如果a是非正数,那么么﹣a是非负数,故此说法错误;④如果a是负数,那么|a|+1是正数,故此说法正确;故选:B.【点评】此题主要考查了相反数的定义以及绝对值得性质,正确把握语句的意思是解题关键.2.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.故选:D.【点评】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.3.【分析】根据合并同类项、同底数幂的乘法和除法、幂的乘方与积的乘方、二次根式的乘法法则.【解答】解:A、错误,∵2a+a=3a;B、错误,∵=×,被开方数不能是负数;C、错误,∵(3a2)3=27a6;D、正确,符合底数幂的乘法法则.故选:D.【点评】(1)本题综合考查了整式运算的多个考点,包括合并同类项、同底数幂的乘法和除法、幂的乘方与积的乘方、二次根式的化简,需熟练掌握且区分清楚,才不容易出错.(2)同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.4.【分析】根据角平分线性质、对顶角性质、互余、互补角的定义,逐一判断.【解答】解:A、由OE⊥AB,可知∠AOE=90°,OF平分∠AOE,则∠2=45°,正确;B、∠1与∠3互为对顶角,因而相等,正确;C、∠AOD与∠1互为邻补角,正确;D、∠EOD=180°﹣15°30'﹣45°≠75°30',错误;故选:D.【点评】本题主要考查邻补角以及对顶角的概念,和为180°的两角互补,和为90°的两角互余.5.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.6.【分析】算出阴影部分的面积及大正方形的面积,这个比值就是所求的概率.【解答】解:设小正方形的边长为1,则其面积为1.∵圆的直径正好是大正方形边长,∴根据勾股定理,其小正方形对角线为,即圆的直径为,∴大正方形的边长为,则大正方形的面积为×=2,则小球停在小正方形内部(阴影)区域的概率为.故选:C.【点评】用到的知识点为:概率=相应的面积与总面积之比;难点是得到两个正方形的边长的关系.7.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这组数据从小到大排列,最中间的两个数都是80分,则这组数据的中位数是80分;80分出现了12次,出现的次数最多,则众数是80分.故选:B.【点评】此题考查了中位数和众数,将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数;众数是一组数据中出现次数最多的数.8.【分析】A、被开方数0.35接近于0.36,所以算术平方根接近于0.6,由此即可判定;B、2.6的立方为17.576,大于被开方数10很多,由此即可判定;C、35.1的平方约为1232.01,接近于被开方数,由此即可判定;D、26900接近于27000,立方根应接近于30,由此即可判定.【解答】解:A、∵0.35接近0.36,∴应接近0.6,故选项错误;B、∵2.53=>10,∴ 2.5,故选项错误;C、∵35.1的平方约为1232.01,接近于被开方数,故选项正确;D、∵26900<27000,∴<30,故选项错误;故选:C.【点评】此题主要考查了无理数的估算能力,应先算出算术平方根的平方立方根的立方,与所给的被开方数进行比较,得到相应的答案.注意区分开平方还是开立方.9.【分析】由⊙O是△ABC的外接圆,∠A=50°,根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠BOC的度数.【解答】解:∵⊙O是△ABC的外接圆,∠A=50°,∴∠BOC=2∠A=100°.故选:D.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,得到CE=CF;由正方形的性质就可以得出∠AEB=75°;设EC=x,由勾股定理得到EF,表示出BE,利用三角形的面积公式分别表示出S△CEF 和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,故①正确;∵∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°,∴∠AEB=75°,故②正确;设EC=x,由勾股定理,得EF=x,CG=x,AG=AE sin60°=EF sin60°=2×CG sin60°=x,∴AG≠2GC,③错误;∵CG=x,AG=x,∴AC=x∴AB=AC•=x,∴BE=x﹣x=x,∴BE+DF=(﹣1)x,∴BE+DF≠EF,故④错误;∵S△CEF=x2,S△ABE=×BE×AB=x×x=x2,∴2S△ABE ═S△CEF,故⑤正确.综上所述,正确的有3个,故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二.填空题(共10小题,满分30分,每小题3分)11.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=xy(x2﹣2x+1)=xy(x﹣1)2.故答案为:xy(x﹣1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【分析】根据二次根式的性质和的意义知,被开方数大于等于0.【解答】解:根据二次根式有意义得:x﹣1≥0且2﹣x≥0,解得:2≥x≥1.故答案为:2≥x≥1.【点评】考查了分式和根号有意义的知识.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.13.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:201800000用科学记数法表示为:2.018×108,故答案为:2.018×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【分析】根据方程有两个相等的实数根得出△=0,求出m的值即可.【解答】解:∵关于x的方程x2+3x﹣m=0有两个相等的实数根,∴△=32﹣4×1×(﹣m)=0,解得:m=﹣,故答案为:﹣.【点评】本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac 的关系是解答此题的关键.15.【分析】利用二次函数图象上点的坐标特征求出抛物线与x轴交点的横坐标,由阴影部分的面积等于矩形OABC的面积可求出AB的长度,再利用平移的性质“左加右减,上加下减”,即可求出抛物线L2的函数表达式.【解答】解:当y=0时,有(x﹣2)2﹣2=0,解得:x1=0,x2=4,∴OA=4.=OA•AB=16,∵S阴影∴AB=4,∴抛物线L2的函数表达式为y=(x﹣2)2﹣2+4=(x﹣2)2+2.故答案为:y=(x﹣2)2+2.【点评】本题考查了抛物线与x轴的交点、矩形的面积以及二次函数图形与几何变换,观察图形,找出阴影部分的面积等于矩形OABC的面积是解题的关键.16.【分析】先利用等边三角形的性质得到∠BAC=60°,AB=AC,再利用旋转的性质得∴∠DAE =∠BAC=60°,AD=AE=5,CE=BD=6,则可判断△ADE为等边三角形得到DE=AD=5,设DH=x,则CH=CD﹣DH=4﹣x,于是根据勾股定理得到EH2+x2=52①,EH2+(4﹣x)2=62②,然后利用加减消元法先求出x,再计算EH即可.【解答】解:∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,∴∠DAE=∠BAC=60°,AD=AE=5,CE=BD=6,∴△ADE为等边三角形,∴DE=AD=5,设DH=x,则CH=CD﹣DH=4﹣x,在Rt△DHE中,EH2+x2=52,①在Rt△CHE中,EH2+(4﹣x)2=62,②②﹣①得16﹣8x=11,解得x=,∴EH==.故答案为.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质.17.【分析】直接根据扇形的面积公式S=lR进行计算即可.扇形【解答】解:根据扇形的面积公式,得S=lR=×6π×4=12π.扇形故答案为:12π.【点评】本题考查了扇形面积的计算.熟记公式是解题的关键.18.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:x﹣5=m+2x﹣6,解得:x=1﹣m,由分式方程无解,得到x=3,即1﹣m=3,解得:m=﹣2,故答案为:﹣2【点评】此题考查了分式方程的解,始终注意分母不为0这个条件.19.【分析】连接OC,由垂径定理知,点E是CD的中点,CE=CD,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可.【解答】解:连接OC,∵AB为⊙O的直径,AB⊥CD,∴CE=DE=CD=×6=3,设⊙O的半径为xcm,则OC=xcm,OE=OB﹣BE=x﹣2,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣2)2,解得:x=,∴⊙O的半径为,故答案为:.【点评】本题考查了垂径定理和勾股定理,熟练掌握并应用定理是解题的关键.20.【分析】根据二次函数的图象与性质即可求出答案.【解答】解:由题意可知:k﹣2>0,∴k>2,故答案为:k>2.【点评】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.三.解答题(共11小题,满分90分)21.【分析】先代入三角函数值、计算绝对值、零指数幂和负整数指数幂,再进一步计算可得.【解答】解:原式=×﹣3+1+2=1﹣3+1+2=1.【点评】本题主要考查实数的运算,解题的关键是熟练掌握特殊锐角三角函数值、绝对值性质及零指数幂和负整数指数幂的运算法则.22.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),②﹣①得:8y=﹣8,解得:y=﹣1,把y=﹣1代入①得:x=1,则方程组的解为;(2)方程组整理得:,①﹣②得:4y=26,解得:y=,把y=代入①得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.【分析】(1)两边都乘以x(x﹣1)化分式方程为整式方程,解整式方程求得x的值,再检验即可得答案;(2)先根据分式混合运算顺序和运算法则化简原式,再根据分式有意义的条件得出x的值,代入计算可得.【解答】解:(1)两边都乘以x(x﹣1),得:3+x(x﹣1)=x2,解得:x=3,检验:x=3时,x(x﹣1)=6≠0,所以分式方程的解为x=3;(2)原式=÷[﹣]=÷=•=,∵x≠0且x≠±1,∴x=2,则原式==4.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及解分式方程的步骤.24.【分析】(1)分别作出点A和点B绕点O逆时针旋转90°所得对应点,再与点O首尾顺次连接即可得;(2)由所得图形可得点的坐标;(3)利用勾股定理可得答案.【解答】解:(1)画出△A1OB1,如图.(2)点A1(0,1),点B1(﹣2,2).(3)OB1=OB==2.【点评】本题主要考查作图﹣旋转变换,解题的关键是掌握旋转变换的定义和性质,并据此得出变换后的对应点.25.【分析】(1)根据条形图的意义,将各组人数依次相加可得答案;(2)根据表中的数据计算可得答案;(3)用样本估计总体,按比例计算可得.【解答】解:(1)4﹢8﹢10﹢18﹢10=50(名)答:该校对50名学生进行了抽样调查.(2)最喜欢足球活动的有10人,占被调查人数的20%.(3)全校学生人数:400÷(1﹣30%﹣24%﹣26%)=400÷20%=2000(人)则全校学生中最喜欢篮球活动的人数约为2000×=720(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.26.【分析】(1)把A(﹣1,n)代入y=﹣2x,可得A(﹣1,2),把A(﹣1,2)代入y=,可得反比例函数的表达式为y =﹣,再根据点B 与点A 关于原点对称,即可得到B 的坐标; (2)观察函数图象即可求解;(3)设P (m ,﹣),根据S 梯形MBPN =S △POB =1,可得方程(2+)(m ﹣1)=1或(2+)(1﹣m )=1,求得m 的值,即可得到点P 的横坐标.【解答】解:(1)把A (﹣1,n )代入y =﹣2x ,可得n =2,∴A (﹣1,2),把A (﹣1,2)代入y =,可得k =﹣2,∴反比例函数的表达式为y =﹣,∵点B 与点A 关于原点对称,∴B (1,﹣2).(2)∵A (﹣1,2),∴y ≤2的取值范围是x <﹣1或x >0;(3)作BM ⊥x 轴于M ,PN ⊥x 轴于N ,∵S 梯形MBPN =S △POB =1,设P (m ,﹣),则(2+)(m ﹣1)=1或(2+)(1﹣m )=1整理得,m 2﹣m ﹣1=0或m 2+m +1=0,解得m =或m =,∴P 点的横坐标为.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.27.【分析】(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.【解答】解:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量为y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.【点评】本题是增长率的问题,要记牢增长率计算的一般规律,然后读清题意找准关键语.28.【分析】作DF⊥AC于F.解直角三角形分别求出BE、EC即可解决问题;【解答】解:作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100(米),∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=DF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200(米),在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=100(米),∴BC=BE+EC=100+100(米).【点评】本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.29.【分析】(1)先利用已知里的两个垂直,可证一对角相等,都等于90°,再利用平行四边形的性质,对角相等,那么可证△BAE∽△BCF;(2)由BG=BH,可得∠3=∠4,那么∠AGE=∠CHF,利用等量减等量差相等,可证∠DAC=∠DCA,等角对等边,那么AD=DC,那么▱是菱形.【解答】证明:(1)∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°.又ABCD是平行四边形,∴∠BAE=∠BCF.∴△BAE∽△BCF.(2)∵△BAE∽△BCF,∴∠1=∠2.又BG=BH,∴∠3=∠4.∴∠BGA=∠BHC,BG=BH.∴△BGA≌△BHC(ASA).∴AB=BC.∴▱ABCD为菱形.【点评】本题利用了平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、菱形的判定等知识.30.【分析】(1)连接OD,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D在⊙O 上,故DE是⊙O的切线.(2)由直角三角形的特殊性质,可得AD的长,又有△ACD∽△ADE.根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.【解答】(1)证明:连接OD.∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)解:∵∠AED=90°,DE=6,AE=3,∴.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴.∴.则AC=15(cm).∴⊙O的半径是7.5cm.【点评】本题考查常见的几何题型,包括切线的判定,线段等量关系的证明及线段长度的求法,要求学生掌握常见的解题方法,并能结合图形选择简单的方法解题.31.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°,i .当∠ADQ =90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′,把D (2,3)代入可求得b ′=5,∴直线DQ 解析式为y =﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4);ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3), 设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t =,当t =时,﹣t 2+2t +3=,当t =时,﹣t 2+2t +3=,∴Q 点坐标为(,)或(,);综上可知Q 点坐标为(1,4)或(,)或(,). 【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2019年度初中数学中考模拟试卷02128
2019年度初中数学中考模拟试卷
数学科目模拟测试
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息
一、选择题
1.图象的顶点为(-2,-2 ),且经过原点的二次函数的关系式是()
A.y=1
2(x+2 )
2 -2 B y=1
2(x-2 )
2 -2. C y=2(x+2 )2 -2. D.y=2(x-2 )2 -2
2.在对50个数进行整理的频数分布表中,各组的频数之和与频率之和分别等于()A.50,1 B. 50,50 C.1,50 D.1,1
3.将直角三角形的三边都扩大3倍后,得到的三角形是()
A.直角三角形B.锐角三角形C.钝角三角形D.无法确定
4.如图,△A8C≌△BAD,A和B,C和D是对应点,若AB=4 cm,BD=3 cm,AD=2 cm,则BC的长度为()
A.4 cm B.3 cm C.2 cm D.不能确定
二、填空题
5.如图,△ABC是等边三角形,P是三角形内任一点,PD∥AB,PE∥BC,PF∥AC,若△ABC周长为12,PD+PE+PF= .
6.从围棋盒中抓出一大把棋子,所抓出棋子的个数是奇数的概率为.
7.如图,在△ABC中,AB=AC,AD、CE 分别平分∠BAC 与∠ACB,AD 与 CE相交于点 F .若∠B =62° , 则∠AFC = .。
2019-2020年中考数学模拟试卷(四)(I)
2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。
山东省临沂市郯城县2019年中考第一次模拟考试 数学试题(含答案)
山东省临沂市九年级中考第一次模拟考试试卷数学一、选择题)A. B. -3 C. 3 D.2.如图,用平行四边形纸条沿对边AB、CD上的点E、F所在的直线折成V字形图案,已知图中∠1=56∘,则∠2的度数为()A. 56°B. 66°C. 68°D. 112°3.下列计算正确的是()4. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()5.如图,点A(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x 轴上,点D在y轴上,则平行四边形ABCD的面积为()A. 1B. 3C. 6D. 126.如图,在矩形ABCD中,AB=5,BC=4,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则tan∠CBE=().7.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A. 90°﹣αB. αC. 180°﹣αD. 2α8.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135138142144140 147145145;则这组数据的中位数、平均数分别是()A. 142,142B. 143,142C. 143,143D. 144,1439.3的取值范围是()B.10.A、B两点,当A、B两点关于原点)A. 0B. -3C. 3D. 411.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0);(2)顶点是(1,﹣2);(3)在x轴上截得的线段的长度是2;(4)c=3a;正确的个数()A. 4个B. 3个C. 2个D. 1个12.如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D重合,折痕EF,点E、F分别在AC和BC上,若BF=1.25,则CE=()13.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. B. (r C. (r D.14.已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为x>0);④sin∠其中正确的结论有()个.A. 1B. 2C. 3D. 4二、填空题15.16.如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.17.18.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x时,两车相遇;③当x两车相距60km;④图2中C点坐标为(3,180);⑤当x时,两车相距200km.其中正确的有_____(请写出所有正确判断的序号)19.如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF 周长的最小值为______.三、解答题21.为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第天,这一路口的行人交通违章次数是多少次?这天中,行人交通违章次的有多少天?(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?22.如图,一次函数A,B 两点,且与x 轴交于点C,点B 的坐标为(-1,-2).(1)(2)连接OA ,OB ,求△OAB 的面积; (3).23.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC . (1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.24.下图是一个桌面会议话筒示意图,中间BC部分是一段可弯曲的软管,在弯曲时可形成一段圆弧,设圆弧所在圆的圆心为O,线段AB,CD均与圆弧相切,点B,C分别为切点,已知AB的长10cm,CD的长为25.2cm. CD水平时,距离桌面14cm.(1)求弧BC的长度;(2)当∠D=60∘时.求D点距桌面AM的高度(如图)25.己知:在菱形ABCD中,∠ABC=60°,对角线AC,BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作等边△AEF.(1)如图①,若点F落在线段BD上,线段AE、FD的数量关系是AE=FD;(2)如图②,若点F不在线段BD上,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;(3)BE与BD满足BE= BD时,AE∥FD.26.如图,直线y=2x-4与x轴交于点A,与y轴交于点B,以x轴上点M为圆心,过A、B两点作⊙M与x 轴交于另一点C.(1)求⊙M的半径及圆心M的坐标;(2)①求经过A、B、C三点的抛物线的顶点D的坐标;②求证:DB是⊙M的切线;(3)若半径为1的⊙P与x轴和直线BD都相切,请直接写出点P的坐标.答案解析一、选择题)A. B. -3 C. 3 D.【答案】A【解析】【分析】.故选:A【点睛】考核知识点:绝对值,相反数,倒数.2.如图,用平行四边形纸条沿对边AB、CD上的点E、F所在的直线折成V字形图案,已知图中∠1=56∘,则∠2的度数为()A. 56°B. 66°C. 68°D. 112°【答案】C【解析】【分析】首先延长DF,由折叠的性质可得∠1=∠3,继而求得答案.【详解】如图,延长DF,根据题意得:∠1=∠3=56°,且∠3+∠EFD=180°,∴∠2=180°-∠1-∠3=68°.故选:C.【点睛】此题考查了平行四边形的性质以及折叠的性质.注意准确作出辅助线是解此题的关键.3.下列计算正确的是()A.B.D.【答案】D【解析】【分析】根据0指数幂,负指数幂即单项式除法进行分析即可.【详解】只有a不等于0才成立,故错误;,故错误;C .,故错误;. 故选:D 【点睛】考核知识点:0指数幂,负指数幂即单项式除法. 4. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()【答案】A 【解析】试题解析:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选A.【此处有视频,请去附件查看】5.如图,点A(x<0)的图象上的一点,过点A作平行四边形ABCD,使B、C在x 轴上,点D在y轴上,则平行四边形ABCD的面积为()A. 1B. 3C. 6D. 12【答案】C【解析】如图,过点A作AE⊥x轴,垂足为点E,则□ABCD的面积=矩形ADOE的面积=AD×AE k=-6,根据k的几何意义可得AD×AE=|-6|=6,∴平行四边形ABCD的面积为6,故答案为C.6.如图,在矩形ABCD中,AB=5,BC=4,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则tan∠CBE=().A. B. D.【答案】A【解析】【分析】设BC的中点为O,连接AO,交BE于F.根据切线长定理得AB=AE,且∠BAF=∠EAF,得△ABF≌△AEF,在Rt△ABO中,BF⊥AO,则∠FBO=∠BAO,由tan∠BAO=tan∠CBE可得结论.【详解】设BC的中点为O,连接AO,交BE于F.由于AB、AE分别切⊙O于B、E,则AB=AE,且∠BAF=∠EAF.又∵AF=AF,∴△ABF≌△AEF.∴AO垂直平分BE.在Rt△ABO中,BF⊥AO,则∠FBO=∠BAO,易知BO=1,AB=3,∴tan∠BAO=tan∠故选:A【点睛】考核知识点:切线长性质定理,正切.添好辅助线构造直角三角形是关键.7.如图,将△ABC绕点B逆时针旋转α,得到△EBD,若点A恰好在ED的延长线上,则∠CAD的度数为()A. 90°﹣αB. αC. 180°﹣αD. 2α【解析】分析:根据旋转的性质和四边形的内角和是360°,可以求得∠CAD的度数,本题得以解决.详解:由题意可得,∠CBD=α,∠ACB=∠EDB,∵∠EDB+∠ADB=180°,∴∠ADB+∠ACB=180°,∵∠ADB+∠DBC+∠BCA+∠CAD=360°,∠CBD=α,∴∠CAD=180°−α,故选:C.点睛:本题考查旋转的性质,解答本题的关键是明确题意,利用数形结合的思想解答.8.某中学九年级二班的8名女同学在一次仰卧起坐测试中的成绩如下(单位:个),135138142144140 147145145;则这组数据的中位数、平均数分别是()A. 142,142B. 143,142C. 143,143D. 144,143【答案】B【解析】【分析】把数据从小到大排序,第4,5个数的平均数是中位数;根据平均数的公式求值.故选:A【点睛】考核知识点:中位数,算术平均数.理解定义是关键.9.3)A. B. D.【答案】A【分析】先解不等式组得4<x≤2-a,由整数解是5,6,7,得7≤2-a<8,可求a的取值范围.4<x≤2-a,因为不等式组有3个整数解,所以整数解是5,6,7所以,7≤2-a<8故选:A【点睛】考核知识点:求不等式组的整数解.解不等式是关键.10.A、B两点,当A、B两点关于原点)A. 0B. -3C. 3D. 4【答案】C【解析】试题分析:设A(t,﹣),根据关于原点对称的点的坐标特征得B(﹣t,),然后把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加消去t得2a﹣6=0,再解关于a的一次方程即可.解:设A(t,﹣),∵A、B两点关于原点对称,∴B(﹣t,),把A(t,﹣),B(﹣t,)分别代入y=﹣x+a﹣3得﹣=﹣t+a﹣3,=t+a﹣3,两式相加得2a﹣6=0,∴a=3.故选C.考点:反比例函数与一次函数交点问题;关于原点对称的点的坐标.11.由于被墨水污染,一道数学题仅能见到如下文字:已知二次函数y=ax2+bx+c的图象过点(1,0)…求证:这个二次函数的图象关于直线x=2对称,根据现有信息,题中的二次函数具有的性质:(1)过点(3,0);(2)顶点是(1,﹣2);(3)在x轴上截得的线段的长度是2;(4)c=3a;正确的个数()A. 4个B. 3个C. 2个D. 1个【答案】B【解析】(1)因为图象过点(1,0),且对称轴是直线x=2,由对称性可知图象还过点(3,0),正确;(2)由对称轴可知顶点的横坐标是2,而给的顶点的横坐标是1,故错误;(3)由抛物线与x轴两交点为(1,0),(3,0),可得在x轴上截得的线段长为2,正确;(4)由对称轴x=-=2,可得b=-4a,又图象过点(1,0),则有a-4c+c=0,所以c=3a,正确;故选B.点睛:本题主要考查了二次函数的性质,解答本题的关键是掌握二次函数图象的对称性.12.如图,D是等边△ABC边AB上的一点,且AD=1,BD=2,现将△ABC折叠,使点C与D重合,折痕EF,点E、F分别在AC和BC上,若BF=1.25,则CE=()A. B. D.【答案】A【解析】【分析】先求得AC=AB=3,由翻折的性质可知:EC=ED,然后证明△AED∽△BDF,利用相似三角形的性质可求得CE的长.【详解】∵△AB C为等边三角形,∴AC=AB=3,∠A=∠B=∠C=60°.由翻折的性质可知:∠EDF=60°.∴∠FDB+∠EDA=120°.∵∠EDA+∠AED=120°,∴∠AED=∠FDB.∴△AED∽△BDF.解得:AE=故选:A.【点睛】本题主要考查的是等边三角形的性质、翻折的性质、相似三角形的性质和判定,利用相似三角形的性质求得AE的长是解题的关键.13.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A. B. (r C. (r D.【答案】D【解析】分析:如图连接CD,AC,DG,AG.在直角三角形即可解决问题;详解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴,故选:D.点睛:本题考查作图-复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.14.已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB,AC相交于D点,双曲线x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①菱形OABC的面积为80;②E点的坐标是(4,8);③双曲线的解析式为x>0);④sin∠其中正确的结论有()个.A. 1B. 2C. 3D. 4【答案】C【解析】【分析】 作DH ⊥x 轴于H ,BG ⊥x 轴于G ,根据菱形的面积等于对角线乘积的一半得到菱形OABC 的面积=12OB•AC=12×160=80;则△ODA 的面积为20,根据三角形面积公式可计算出DA=4,再根据菱形的性质易得DH 为△OBG 的中位线,则BG=8,所以E 点的纵坐标为8;接着证明Rt △DOH ∽Rt △ADH ,得到DH2=OH•AH ,由于DH=4,AH=10-OH ,则OH (10-OH )=16,解得OH=8或OH=2(舍去),可确定D 点坐标为(8,4),利用待定系数法得到反比例函数解析式为y=32x ;同时可确定E 点坐标为(4,8);CM ⊥x 轴于M ,则CM=8,根据菱形性质得OC=OA=10,根据勾股定理可计算出OM=6,然后利用正弦的定义即可得到sin ∠COM=CMOC=45,于是有sin ∠COA=45.【详解】作DH ⊥x 轴于H ,BG ⊥x 轴于G ,如图,∵四边形OABC 为菱形,∴菱形OABC 的面积=,所以①正确; ∴DH•OA=菱形OABC80, 而A 点的坐标为(10,0),80, ∴DH=4,∵OB 与AC 互相垂直平分,∴∠ADO=90°,DH 为△OBG 的中位线,∴BG=2DH=8,∴E 点的纵坐标为8,∵∠DOH+∠ODH=∠ODH+∠ADH=90°,∴∠DOH=∠ADH ,∴Rt △DOH ∽Rt △ADH ,∴DH :AH=OH :DH ,即DH 2=OH•AH , ∵DH=4,AH=OA-OH=10-OH ,∴OH(10-OH)=16,解得OH=8或OH=2(舍去),∴D点坐标为(8,4),把D(8,4)代入得k=4×8=32,∴反比例函数解析式为把y=8,解得x=4,∴E点坐标为(4,8),所以②正确;CM⊥x轴于M,如图,∴CM=BG=8,∵四边形OABC为菱形,∴OC=OA=10,在Rt△OCM中,CM=8,OC=10,∴,∴sin∠即sin∠COA=,所以④正确.故选:C.【点睛】本题考查了反比例函数的综合题:反比例函数图象的点的坐标满足其函数解析式;熟练运用菱形的性质、相似三角形的相似比和勾股定理进行计算.二、填空题15.【解析】【分析】先提公因式x,再运用平方差公式.故答案为:【点睛】考核知识点:综合运用提公因式法和公式法因式分解.16.如图,正六边形卡片被分成六个全等的正三角形.若向该六边形内投掷飞镖,则飞镖落在阴影区域的概率为.【答案】.【解析】试题分析:阴影区域面积为总体面积的=,所以飞镖落在阴影区域的概率为.考点:求随机事件的概率.17.【解析】【分析】小括号内先通分,再根据分式除法法则进行计算.【详解】解:原式故答案为:【点睛】考核知识点:分式的加减乘除运算.掌握运算法则是关键.18.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,设快车离乙地的距离为y1(km),慢车离乙地的距离为y2(km),慢车行驶时间为x(h),两车之间的距离为s(km).y1,y2与x的函数关系图象如图1所示,s与x的函数关系图象如图2所示.则下列判断:①图1中a=3;②当x时,两车相遇;③当x两车相距60km;④图2中C点坐标为(3,180);⑤当x时,两车相距200km.其中正确的有_____(请写出所有正确判断的序号)【答案】①②④.【解析】【分析】根据S与x之间的函数关系式可以得到当位于C点时,两人之间的距离增加变缓,此时快车到站,此时a=3,故①正确;根据相遇可知y1=y2,列方程求解可得x后两车相距60km,x是相遇前的时间,故③正确;先确定b的值,根据函数的图象可以得到C的点的坐标,故④正确;分两车相遇前和两车相遇后两种情况讨论,即可求得x的值,当时不合题意,故⑤不正确.【详解】解:∵由S与x之间的函数的图象可知:当位于C点时,两车之间的距离增加变缓,∴由此可以得到a=3,故①正确;设y1=kx+b,将(0,300)、(3,0)代入,∴y1=﹣100x+300,设y2=mx,将点(5,300)代入,得:5m=300,解得:m=60,∴慢车离乙地的距离y2解析式为:y2=60x;∴当y1=y2时,两车相遇,可得:﹣100x+300=60x,解得:x,故②正确;分两种情况考虑,相遇前两车相距60km,﹣100x+300﹣60x=60,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=60,解得,h,∴当x时,两车相距60km,故③不正确;快车每小时行驶100千米,慢车每小时行驶60千米,两地之间的距离为300千米,∴b=300÷(100+60由函数的图象可以得到C的点的横坐标为3,即快车到达乙地,此时慢车所走的路程为3×60=180千米,∴C点坐标为(3,180),故④正确;分两种情况考虑,相遇前两车相距200km,﹣100x+300﹣60x=200,解得,h,相遇后两车相距60km,60x﹣(﹣100x+300)=200,解得,h,,∴当不合题意,舍去.∴当x=h时,两车相距200km,故⑤不正确.故答案为:①②④.【点睛】本题考查了一次函数的应用、二元一次方程组的解法、一次函数解析式的求法;主要根据待定系数法求一次函数解析式,根据图象准确获取信息是解题的关键,要注意要分情况讨论.19.如图,△ABD是边长为3的等边三角形,E,F分别是边AD,AB上的动点,若∠ADC=∠ABC=90°,则△CEF 周长的最小值为______.【解析】【分析】分别作点C关于AD、AB的对称点M、N,连接MN,MN与AD交于点E,与AB交于点F,连接CE、CF,则此时△CEF的周长最小.分别证△ADC≌△ABC,△ACD≌△MCP,得MP=AD=3,∠MPC=∠ADC=90°,MN=2MP=6.C关于AD、AB的对称点M、N,连接MN,MN 与AD交于点E,与AB交于点F,连接CE、CF,则此时△CEF的周长最小,连接AC,交MN于点P,由作图可知CE=ME、CF=FN,∴△CEF的周长:CE+CF+EF=MN,∵△ABD是等边三角形,∴AB=AD=3,∠DAB=∠ADB=∠ABD=60°,∵∠ADC=∠ABC=90°,∴∠CDB=∠CBD=30°,∴CD=CB,∵DM=CD,BN=CB,∴CM=2CD=2BC=CN,MN//BD,∴∠M=∠N=∠CDB=30°,又∵AC=AC,∴△ADC≌△ABC,∴CD=CB,∠DAC=∠DAB=30°,∴AC=2CD,∠M=∠DAC,∴AC=CM,又∵∠ACD=∠MCP,∴△ACD≌△MCP,∴MP=AD=3,∠MPC=∠ADC=90°,∴MN=2MP=6,即△CEF周长的最小值是6,故答案为:6.【点睛】本题考查了最短路径问题,涉及到等边三角形的性质,全等三角形的判定与性质,轴对称的性质等,正确根据轴对称的性质作出符合条件的图形是解题的关键.三、解答题【答案】2【解析】【分析】先求锐角三角函数值,绝对值,负指数幂,0指数幂,再算加减.【详解】解:原式【点睛】考核知识点:锐角三角函数值,绝对值,负指数幂,0指数幂.21.为积极创建全国文明城市,某市对某路口的行人交通违章情况进行了天的调查,将所得数据绘制成如下统计图(图2不完整):请根据所给信息,解答下列问题:(1)第天,这一路口的行人交通违章次数是多少次?这天中,行人交通违章次的有多少天?(2)请把图2中的频数直方图补充完整;(温馨提示:请画在答题卷相对应的图上)(3)通过宣传教育后,行人的交通违章次数明显减少.经对这一路口的再次调查发现,平均每天的行人交通违章次数比第一次调查时减少了次,求通过宣传教育后,这一路口平均每天还出现多少次行人的交通违章?【答案】(1)8,5(2)图像见解析(3)3次【解析】试题分析:(1)直接根据折线统计图可读出数据;(2)求出8次的天数,补全图形即可;(3)求出这20天的平均数,然后再算出交通违章次数即可.试题解析:(1)第7天,这一路口的行人交通违章次数是8次.这20天中,行人交通违章6次的有5天.(2)补全的频数直方图如图所示:(3)第一次调查,平均每天行人的交通违章次数为:=7(次)∵7-4=3(次)∴通过宣传教育后,这一路口平均每天还出现3次行人的交通违章. 考点:1、折线统计图,2、频数分布直方图22.如图,一次函数的A,B两点,且与x轴交于点C,点B的坐标为(-1,-2).(1)(2)连接OA,OB,求△OAB的面积;(3).【解析】【分析】(1)把B的坐标分别代入解析式,可求得结果;(2)通过解方程组求出交点坐标,再求面积;(3)根据函数图象比较函数值大小.【详解】(1)由题意可得:点B(-1,-2)在函数y=x+m的图象上,∴-1+m=-2即m=-1;∵B(-1,-2)在反比例函数,∴k=2;(2)∵一次函数y=x+m的图象与反比例函数A,B两点,解得,∴A(2,1),令y=x-1中y=0,得x=1,∴C(1,0)∴S△OAB=S△OAC+S△OCB,∴△OAB的面积=1.5;(3)由图象可知不等式组1<x≤2.【点睛】考核知识点:反比例函数与一次函数的综合.熟记函数的基本性质是关键.23.如图,四边形ABCD内接于⊙O,∠BAD=90°,点E在BC的延长线上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AC∥DE,当AB=8,CE=2时,求AC的长.【答案】(1)证明见解析;(2)AC【解析】分析:(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BCD∽△DCE,求出CD,再用勾股定理求出BD,最后判断出△CFD∽△BCD,即可得出结论.详解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°.∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°.∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)∵DE∥AC.∵∠BDE=90°,∴∠BFC=90°,∴CB=AB=8,,∵∠CDE+∠BDC=90°,∠BDC+∠CBD=90°,∴∠CDE=∠CBD.∵∠DCE=∠BCD=90°,∴△BCD∽△DCE,,∴CD=4.在Rt△BCD中,同理:△CFD∽△BCD,∴CF=,∴AC=2AF=点睛:此题主要考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,勾股定理,求出BC=8是解本题的关键.24.下图是一个桌面会议话筒示意图,中间BC部分是一段可弯曲的软管,在弯曲时可形成一段圆弧,设圆弧所在圆的圆心为O,线段AB,CD均与圆弧相切,点B,C分别为切点,已知AB的长10cm,CD的长为25.2cm. CD水平时,距离桌面14cm.(1)求弧BC的长度;(2)当∠D=60∘时.求D点距桌面AM的高度(如图)【答案】(1)2π;(2)27.8【解析】【分析】(1)先求得∠BOC=90°,圆弧的半径OC=4,根据弧长公式求得即可;(2)作CN⊥AM,则CN∥OB,进而求得∠NCD=30°,根据正弦函数求得DN,作CG⊥OB,根据正弦函数求得CG,从而求得话筒顶端D到桌面AM的距离.【详解】解:(1)如图1,∵线段AB,CD均与圆弧相切,∴OB⊥AB,OC⊥CD,∴CD∥OB∥AM,∴∠BOC=∠OCD=90°,∵CD距离桌面14cm,AB的长10cm,∴半径OC为4cm,(2)如图2,作CN⊥AM,则CN∥OB,∴∠OCN=60°,∵∠OCD=90°,∴∠NCD=30°,∴,作CG⊥OB,2π;∴∴OB=OC=6,∴∴DM=DN+CG+AB=12.6+5.2+10=27.8.【点睛】本题考查了解直角三角形的应用以及弧长的计算,主要是三角函数及运算,关键把实际问题转化为数学问题加以计算.25.己知:在菱形ABCD中,∠ABC=60°,对角线AC,BD相交于点O,点E是线段BD上一动点(不与点B,D重合),连接AE,以AE为边在AE的右侧作等边△AEF.(1)如图①,若点F落在线段BD上,线段AE、FD的数量关系是AE=FD;(2)如图②,若点F不在线段BD上,(1)中的结论是否成立?若成立,请证明:若不成立,请说明理由;(3)BE与BD满足BE= BD时,AE∥FD.【答案】(1)AE=FD;(2)成立;(3【解析】【分析】(1)先利用菱形的性质得出∠ABO=∠ADO=30°,AC⊥BD,即可求出∠FAD=30°即可得出结论;(2)先判断出△ACD是等边三角形,再用△AEF是等边三角形,进而得出∠CAE=∠DAF,即可判断出△ACE≌△ADF,即可得出结论;(3)先判断出四边形AEDF是菱形,进而求出∠EAD=30°,即可求出∠BAE=90°,即可得出BE=2DE,即可得出结论.【详解】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=1212∠ABC=30°,∠ADO=30°,∴∠OAD=60°,∵△AEF是等边三角形,边EF在BD上,∴AE=AF,∠OAE=∠OAF=30°,∴∠DAF=30°=∠ADO,∴AF=FD,∵AE=AF,∴AE=FD;故答案为AE=FD;(2)成立,如图1,连接CE,∵四边形ABCD是菱形,∴AD=CD,BD垂直平分AC,∠ABC=∠ADC=60°,∴∠ADC=60°,∴△ACD是等边三角形,∴AC=AD,∠CAD=60°,∵△AEF是等边三角形,∴AE=AF=EF,∠EAF=60°=∠CAD∴∠CAE=∠DAF,在△ACE和△ADF中,△ACE≌△ADF,∴EC=DF,∵BD垂直平分AC,∴EC=AE,∴DF=AE,(3)如图2,由(2)知,AE=FD,∵AE∥FD,∴四边形AEDF是平行四边形,∵△AEF是等边三角形,∴AE=AF,∴四边形AEDF是菱形,∴AE=ED,∴∠EAD=∠ADE=30°,∵∠BAD=180°-∠ABC=120°,∴∠BAE=∠BAD-∠EAD=90°,在Rt△ABE中,∠ABE=30°,∴BE=2AE,∴BE=2DE,∴BD=BE+DE=3DE,∴,【点睛】此题是四边形综合题,主要考查了菱形的性质,等边三角形的性质,等腰三角形的判定和性质,解(1)的关键是判断出AF=FD,解(2)的关键是判断出△ACE≌△ADF,解(3)的关键是判断出BE=2AE,是一道中等难度的中考常考题.26.如图,直线y=2x-4与x轴交于点A,与y轴交于点B,以x轴上点M为圆心,过A、B两点作⊙M与x 轴交于另一点C.(1)求⊙M的半径及圆心M的坐标;(2)①求经过A、B、C三点的抛物线的顶点D的坐标;②求证:DB是⊙M的切线;(3)若半径为1的⊙P与x轴和直线BD都相切,请直接写出点P的坐标.【答案】(1)(-3,0);(2)①(-3,;②详见解析;(3)P11)、P2-1)、P3-1)、P4(5,1)【解析】【分析】(1)根据题意,连接BC 可得AC 是⊙O 直径,进而可得OB 2=OA•OC ,进而可得圆心的坐标与半径的大小;(2)设出其解析式,并用三点式求抛物线解析可得答案;(3)根据题意,半径为1的⊙P 与x 轴相切,故P 的纵坐标的绝对值为1,即为±1,将其值代入抛物线解析式,即可得到其横坐标,综合可以写出P 的坐标.【详解】解:(1)y=2x-4与x 轴交于点A (2,0),与y 轴交于点B (0,-4).连接BC ,∵AC 是⊙O 直径,∴∠ABC=90°,OB ⊥AC .∴OB 2=OA•OC .即42=2OC .∴OC=8.∴直径AC=8+2=10.∴半径R=5,圆心M 坐标(-3,0).(2)①设过A (2,0),B (0,-4),C (-8,0)的解析式为y=a (x-2)(x+8),∴-4=a (0-2)(0+8).∴. ∴x-2)(x+8)2(x+3)2∴顶点D 的坐标为(-3,. ②连MD 、MB,∴MD 2=MB 2+BD 2 ∴∠MBD=90°.∴BD 是⊙M 的切线.(3)因为半径为1的⊙P 与x 轴相切,故P 的纵坐标的绝对值为1,即为±1,将其值代入抛物线解析式,即可得到其横坐标,即:当y=1时(x+3)2解得x=5; 当y=-1时(x+3)2解得或所以:P11)、P2-1)、P3-1)、P4(5,1)【点睛】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.。
2019年最新广东省中考数学模拟试卷及答案解析
2019年最新广东省中考数学模拟试卷及答案解析广东省中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.数字1的倒数是()。
A。
-2.B。
2.C。
1.D。
-12.下列图案中既是中心对称图形,又是轴对称图形的是()。
A。
B。
C。
D。
3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为xxxxxxxx00人,这个数用科学记数法表示为()。
A。
44×10^8.B。
4.4×10^9.C。
4.4×10^8.D。
4.4×10^104.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是()。
A。
32,31.B。
31,32.C。
31,31.D。
32,355.如图,直线a∥b,若∠2=55°,∠3=100°,则∠1的度数为()。
A。
35°。
B。
45°。
C。
50°。
D。
55°6.下列运算正确的是()。
A。
2a+3b=5ab。
B。
a^2·a^3=a^5.C。
(2a)^3=6a^3.D。
a^6+a^3=a^97.一元二次方程x^2-4x+2=0的根的情况是()。
A。
有两个不相等的实数根。
B。
有两个相等的实数根C。
只有一个实数根。
D。
没有实数根8.若等腰三角形的两边长为3和7,则该等腰三角形的周长为()。
A。
10.B。
13.C。
17.D。
13或179.不等式组的解集在数轴上表示正确的是()。
A。
B。
C。
D。
10.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC-CD-DA运动,到达点A停止运动,另一动点N同时从点B出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm^2),则y关于x的函数图象是()。
2019年最新云南省中考数学模拟试卷含答案解析
九年级数学中考模拟试卷一、填空题:1.若|2x﹣1|=3,则x= .2.如图,已知AF∥EC,AB∥CD,∠A=65°,则∠C= 度.3.分解因式:x2+2x-3=____________.4.正多边形的一个外角等于20°,则这个正多边形的边数是______.5.设x,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22= .16.如图所示,正方形ABCD对角线AC所在直线上有一点O,OA=AC=2,将正方形绕O点顺时针旋转60°,在旋转过程中,正方形扫过的面积是.二、选择题:7.据统计2014年我国高新技术产品出口总额40570亿元,将数据40570亿用科学记数法表示为()A.4.0570×109B.0.40570×1010C.40.570×1011D.4.0570×10128.小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x之间的关系的大致图象是()A. B. C. D.9.沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是()10.计算÷=()A. B.5 C. D.11.已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大概是( )12.已知一组数据:3,4,6,7,8,8,下列说法正确的是()A.众数是2B.众数是8C.中位数是6D.中位数是713.下列图形中不是中心对称图形的是()14.如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是( )A.(,3)、(﹣,4)B.()、(﹣)C.()、(﹣)D.()、(﹣)三、解答题:15.解不等式组:,并把解集在数轴上表示出来.16.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.17.倡导健康生活,推进全民健身,某社区要购进A,B两种型号的健身器材若干套,A,B两种型号健身器材的购买单价分别为每套310元,460元,且每种型号健身器材必须整套购买.(1)若购买A,B两种型号的健身器材共50套,且恰好支出20000元,求A,B两种型号健身器材各购买多少套?(2)若购买A,B两种型号的健身器材共50套,且支出不超过18000元,求A种型号健身器材至少要购买多少套?18.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?19.某校为了了解本校九年级女生体育项目跳绳的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟跳绳测试,同时统计每个人跳的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥180),良好(150≤x≤179),及格(135≤x≤149)和不及格(x≤134),并将统计结果绘制成如下两幅不完整的统计图。
2019年最新中考数学模拟试卷及答案126362
中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图,直线1l 、2l 、3l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A .一处B .两处C .三处D .四处2.已知数据13、、0.618、125、34-,任意抽取一个数是负数的概率为( ) A .20% B .40% C .60% D .80%3.如图,在边长为 a 的正方形上剪去一个边长为b 的小正方形(a b >),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .2()a ab a a b -=- 4.某种商品在降价x %后,单价为a 元,则降价前它的单价为( )A .%a xB .%a x ⋅C .1%a x -D .(1%)a x -5. 下列方程中,是二元一次方程的是( )A .230x +=B .122x y -=C .351x y -=D .3xy =6. 某风景点的周长约为 3578 m ,若按比例尺 1:2000缩小后,其周长大约相当于( )A .一个篮球场的周长B .一张乒乓球台台面的周长C .《中国日报》的一个版面的周长D .《数学》课本封面的周长7. 如图,AD=BC ,AC=BD ,AC ,BD 交于点E ,则图中全等三角形共有( )A .1对B .2对C .3对D .4对8.用一个 5倍的放大镜去观察一个三角形,对此,四位同学有如下说法. 甲说:三角形的每个内角都扩大到原来的5倍;乙说:三角形每条边都扩大到原来的5倍;丙说:三角形的面积扩大到原来的5倍;丁说:三角形的周长扩大到原来的5倍.上述说法中,正确的个数是( )A .1B .2C .3D . 39.如图所示的一些交通标志中,是轴对称图形的有( ).A . 1个B . 2个C .3个D .4个10.在多项式222x y +,22x y -,22x y -+,22x y --中,能用平方差公式分解的是( )A .1个B .2个C .3个D .4个11.如图,下列推理中,错误的是( )A . 因为 AB ∥CD ,所以∠ABC +∠LC = 180°B . 因为∠1=∠2,所以AD ∥BCC . 因为 AD ∥BC ,所以∠3 =∠4D . 因为 ∠A +∠ADC = l80°,所以 AB ∥CD12.如图,已知∠1 =∠2 = ∠3 =55°,则∠4的度数为( )A .110°B . 115°C . 120°D .125°。
2019年最新中考数学模拟试卷及答案445843
中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.把等边三角形ABC 一边AB 延长一倍到D ,则∠ADC 是( )A .等腰三角形B .直角三角形C .等边三角形D .不能确定 2.以11x y =⎧⎨=-⎩为解的二元一次方程组是( ) A .01x y x y +=⎧⎨-=⎩B .01x y x y +=⎧⎨-=-⎩C .02x y x y +=⎧⎨-=⎩D .02x y x y +=⎧⎨-=-⎩ 3.一次课堂练习,小敏同学做了如下4道因式分解题,你认为小敏做得不够完整的一题是( )A .x 3-x =x (x 2-1)B .x 2-2xy +y 2=(x -y )2C .x 2y -xy 2=xy (x -y )D .x 2-y 2=(x -y )(x +y )4.如图所示,在4×4的正方形网格中,∠1,∠2,∠3的大小关系是( )A .∠1>∠2>∠3B .∠l<∠2=∠3C .∠1=∠2>∠3D .∠1=∠2=∠35. 已知0x y +=,6xy =-, 则33x y xy +的值是( )A .72B .16C .0D .-726.下面计算正确的是( )A .22(1)1a a +=+B .2(1)(1)1b b b ---=-C .22(21)441a a a -+=++D .2(1)(2)32x x x x ++=++ 7.下列是二元一次方程的是( )A .36x x -=B .32x y =C .10x y -=D .23x y xy -=8.4张扑克牌如图①所示放在桌子上,小敏把其中一张旋转l80°后得到如图②所示的图形,则她所旋转的牌从左数起是( )A .第一张B .第二张C .第三张D .第四张 9. 已知x 是整数,且222218339x x x x ++++--为整数,则所有符合条件的x 的值的和为( )A .12B .15C .18D .20 10.小华和小明到同一早餐店买馒头和豆浆. 已知小华买了 5 个馒头和 6 杯豆浆;小明买 了 7个馒头和 3杯豆浆,且小华花的钱比小明少1元.关于馒头与豆浆的价钱,下列叙述正确的是( )A .4个馒头比6杯豆浆少2元B .4个馒头比 6 杯豆浆多 2元C .12个馒头比 9 杯豆浆少 1 元D .12个馊头比 9杯豆浆多 1 元11.为迎接图书馆的标准化检查,某中学图书馆将添置图书,用250无购进一种科普书,同时用 140元购进一种文学书. 由于科普书的单价比文学书的单价高出一半,因此学校所购买的文学书比科普书多6本,求文学书的单价. 设这种文学书的单价为x 元,则根据题意,列方程正确的是( )A .1.51402506x x ⨯-= B .14025061.5x x -= C .25014061.5x x-= D .1.51402506x x ⨯=+ 12.在多项式222x y +,22x y -,22x y -+,22x y --中,能用平方差公式分解的是( )A .1个B .2个C .3个D .4个13.下列各曲线中不表示y 是x 的函数的是( )A .B .C .D .。
泉州市南安市2019年中考数学模拟试卷(五)含答案解析
福建省泉州市南安市2019年中考数学模拟试卷(五)(解析版)一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a23.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.965.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<26.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A .,B .,﹣C .,﹣D .﹣,二、填空题:.8.16的算术平方根是______.9.计算:﹣=______.10.分解因式:4x 2﹣6x=______.11.如图,已知AB ∥ED ,∠B=58°,∠C=35°,则∠D 的度数为______度.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为______.13.方程组的解为______.14.如图,已知AB 是⊙O 的直径,OD ⊥AC ,OD=3,则弦BC 的长为______.15.一个扇形的半径为6cm ,弧长是4πcm ,这个扇形的面积是______cm 2.16.如图,菱形ABCD 中,点O 是对角线AC 、BD 的交点,已知AB=5,OB=3,则菱形ABCD 的面积是______.17.在平面直角坐标系中,点A (0,6),点B (t ,0)是x 轴正半轴上的点,连结AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .(1)点C 的坐标为______;(2)△ABC 的面积为______.(均用含t 的代数式表示)三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为______.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.2019年福建省泉州市南安市中考数学模拟试卷(五)参考答案与试题解析一、选择题:.1.有理数﹣的倒数是()A.B.﹣C.D.﹣【考点】倒数.【分析】根据倒数的定义:乘积是1的两数互为倒数,可得出答案.【解答】解:,故选:D.【点评】本题考查了倒数的知识,属于基础题,解答本题的关键是掌握倒数的定义.2.下列计算正确的是()A.4a+5b=9ab B.(a3)5=a15C.a4•a2=a8D.a6÷a3=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】分别利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则化简求出答案.【解答】解:A、4a+5b无法计算,故此选项错误;B、(a3)5=a15,正确;C、a4•a2=a6,故此选项错误;D、a6÷a3=a3,故此选项错误.故选:B.【点评】此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算等知识,掌握运算法则是解题关键.3.下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【解答】解:A、圆柱主视图是矩形,俯视图是圆,故A选项错误;B、圆锥主视图是等腰三角形,俯视图是圆,故B选项错误;C、三棱柱主视图是矩形,俯视图是三角形,故C选项错误;D、长方体主视图和俯视图都为矩形,故D选项正确;故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.某合作学习小组的6名同学在一次数学测试中,成绩分布为76,88,96,82,78,96,这组数据的中位数是()A.82 B.85 C.88 D.96【考点】中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将这组数据按从小到大的顺序排列为:76,78,82,88,96,96,处于中间位置的两个数是82和88,那么由中位数的定义可知,这组数据的中位数是(82+88)÷2=85.故选B.【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.不等式组的解集是()A.x>﹣1 B.﹣1<x<2 C.x>2 D.x<2【考点】不等式的解集.【分析】根据x的取值范围画出数轴即可得出不等式组的解集.【解答】解:如图所示:,故不等式组的解集是:x>2.故选:C.【点评】此题主要考查了不等式的解集,正确在数轴上表示出解集是解题关键.6.如图,点A、B、C都在⊙O上,若∠C=34°,则∠AOB的度数为()A.34°B.56°C.60°D.68°【考点】圆周角定理.【分析】由圆周角定理知,∠AOB=2∠C=68°.【解答】解:∵∠C=34°,∴∠AOB=2∠C=68°.故选D.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.如图,在平面直角坐标系中,抛物线y=x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为,则a、b的值分别为()A.,B.,﹣C.,﹣D.﹣,【考点】二次函数图象与几何变换.【分析】确定出抛物线y=ax2+bx的顶点坐标,然后求出抛物线的对称轴与原抛物线的交点坐标,从而判断出阴影部分的面积等于三角形的面积,再根据三角形的面积公式列式计算即可得解.【解答】解:如图,∵y=ax2+bx=x2+bx=(x+)2﹣,∴平移后抛物线的顶点坐标为(﹣,﹣),对称轴为直线x=﹣,当x=﹣时,y=,∴平移后阴影部分的面积等于如图三角形的面积,×(+)×(﹣)=.解得b=﹣,故选:C.【点评】本题考查了二次函数图象与几何变换,确定出与阴影部分面积相等的三角形是解题的关键.二、填空题:.8.16的算术平方根是4.【考点】算术平方根.【分析】根据算术平方根的定义即可求出结果.【解答】解:∵42=16,∴=4.故答案为:4.【点评】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.9.计算:﹣=1.【考点】分式的加减法.【分析】原式利用同分母分式的减法法则计算即可得到结果.【解答】解:原式==1.故答案为:1【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.10.分解因式:4x2﹣6x=2x(2x﹣3).【考点】因式分解-提公因式法.【分析】直接提取公因式法分解因式得出答案.【解答】解:原式=2x(2x﹣3).故答案为:2x(2x﹣3).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.11.如图,已知AB∥ED,∠B=58°,∠C=35°,则∠D的度数为23度.【考点】平行线的性质;三角形的外角性质.【分析】要求∠D的度数,只需根据三角形的外角的性质求得该三角形的外角∠1的度数.显然根据平行线的性质就可解决.【解答】解:∵AB∥ED,∠B=58°,∠C=35°,∴∠1=∠B=58°.∵∠1=∠C+∠D,∴∠D=∠1﹣∠C=58°﹣35°=23°.故答案为:23.【点评】根据两直线平行同位角相等和三角形外角的性质解答.12.泉州湾跨海大桥全长26700米,将26700用科学记数法记为 2.67×104.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将26700用科学记数法表示为2.67×104.故答案为:2.67×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.方程组的解为.【考点】二元一次方程组的解.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:4x=4,解得:x=1,将x=1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.如图,已知AB是⊙O的直径,OD⊥AC,OD=3,则弦BC的长为6.【考点】圆周角定理;垂径定理.【分析】先根据圆周角定理求出∠C的度数,再由OD⊥AC,点O是直径AB的中点可得出OD是△ABC的中位线,根据中位线定理即可得出结论.【解答】解:∵AB是⊙O的直径,∴∠C=90°.∵OD⊥AC,∴OD∥BC.∵OD=3,点O是AB的中点,∴OD是△ABC的中位线,∴BC=2OD=6.故答案为:6.【点评】本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.15.一个扇形的半径为6cm,弧长是4πcm,这个扇形的面积是12πcm2.【考点】扇形面积的计算;弧长的计算.【分析】直接根据扇形的面积公式即可得出结论.【解答】解:∵扇形的半径为6cm,弧长是4πcm,∴这个扇形的面积=×4π×6=12πcm2..故答案为:12π.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键.16.如图,菱形ABCD中,点O是对角线AC、BD的交点,已知AB=5,OB=3,则菱形ABCD的面积是24.【考点】菱形的性质.【分析】根据菱形的面积公式,求出菱形的对角线的长即可解决问题.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC,OB=OD,∴∠AOB=90°,∵AB=5,OB=3,∴AO===4,∴AC=8,BD=6,=•AC•BD=×6×8=24.∴S菱形ABCD【点评】本题考查菱形的性质、菱形的面积公式、勾股定理等知识,解题的关键是记住菱形的面积公式,灵活应用菱形的性质解决问题,属于中考常考题型.17.在平面直角坐标系中,点A(0,6),点B(t,0)是x轴正半轴上的点,连结AB,取AB的中点M,将线段MB绕着点B按顺时针方向旋转90°,得到线段BC.(1)点C的坐标为(t+3,);(2)△ABC的面积为.(均用含t的代数式表示)【考点】坐标与图形变化-旋转;三角形的面积.【分析】(1)根据点A和点B的坐标可以求得点M的坐标,从而可以求得点C的坐标;(2)根据点A和点B的坐标可以求得AB的长,从而可以求得BM的长,进而求得△ABC 的面积.【解答】解:(1)∵点A(0,6),点B(t,0),点M是线段AB的中点,∴点M的坐标是(),又∵将线段MB绕着点B按顺时针方向旋转90°,得到线段BC,∴点C的坐标为:(t+3,),故答案为:(t+3,);(2)∵点A(0,6),点B(t,0),点M的坐标是(),∠ABC=90°,∴AB=,BM==,∴BC=,∴△ABC的面积是:,故答案为:.【点评】本题考查坐标与图形的变化﹣旋转,三角形的面积,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题:(共89分).18.计算:2cos60°﹣(﹣1)0+|﹣3|﹣()﹣2.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】利用零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质分别化简求出答案.【解答】解:原式=2×﹣1+3﹣﹣4=﹣1﹣.【点评】此题主要考查了零指数幂的性质以及特殊角的三角函数值和负整数指数幂的性质、绝对值的性质等知识,正确化简各数是解题关键.19.先化简,再求值:a(a﹣2)﹣(a+3)(a﹣3),其中a=﹣3.【考点】整式的混合运算—化简求值.【分析】根单项式乘以多项式、平方差公式对所求式子化简,然后将a=﹣3代入即可解答本题.【解答】解:a(a﹣2)﹣(a+3)(a﹣3)=a2﹣2a﹣a2+9=﹣2a+9,当a=﹣3时,原式=﹣2×(﹣3)+9=15.【点评】本题考查整式的混合运算﹣化简求值,解题的关键是明确整式的混合运算的计算方法.20.如图,在△ABC中,AB=AC.D是BC上一点,且AD=BD.将△ABD绕点A逆时针旋转得到△ACE,连接DE.(1)求证:AE∥BC;(2)连接DE,判断四边形ABDE的形状,并说明理由.【考点】旋转的性质;平行四边形的判定.【分析】(1)由于△ABD、△ABC都是等腰三角形,易求得∠BAD=∠ACB=∠B,由旋转的性质可得到∠BAD=∠CAE,通过等量代换,即可证得所求的两条线段所在直线的内错角相等,由此得证.(2)由旋转的性质易知:AD=AE=BD,且已证得AE∥BD,根据一组对边平行且相等的四边形是平行四边形,即可判定四边形ABDE是平行四边形.【解答】(1)证明:由旋转性质得∠BAD=∠CAE,∵AD=BD,∴∠B=∠BAD,∵AB=AC,∴∠B=∠DCA;∴∠CAE=∠DCA,∴AE∥BC.(2)解:四边形ABDE是平行四边形,理由如下:由旋转性质得AD=AE,∵AD=BD,∴AE=BD,又∵AE∥BC,∴四边形ABDE是平行四边形.【点评】此题主要考查了旋转的性质以及平行四边形的判定和性质,难度不大.21.某校为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(2019•南安市模拟)在一个不透明的口袋里装有四个小球,四个小球上分别标有数字:1、3、5、7,它们除了所标数字不同之外,没有其它区别.(1)随机地从口袋里抽取一个小球,求取出的小球上的数字为5的概率;(2)若小刚先随机地从口袋里抽取一个小球后,小丽再从剩余的三个球中随机地抽取一个小球.以小刚取出的小球上所标的数作为等腰三角形的腰,以小丽取出的小球上所标的数作为等腰三角形的底.请你用画树状图或列表的方法表示所有等可能的结果,并求出能构成等腰三角形的概率.【考点】列表法与树状图法;等腰三角形的判定与性质;概率公式.【分析】(1)由概率公式容易得出结果;(2)画出树状图,所有等可能结果共有12种,其中能构成等腰三角形有8种,即可求出概率.【解答】解:(1)P(取出的小球上的数字为5)=;(2)画出树状图如下所有等可能结果共有12种,其中能构成等腰三角形有8种,∴P(能构成等腰三角形)==.【点评】本题考查的是用列表法或画树状图法求概率、概率公式、等腰三角形的判定与性质.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.23.如图,某学校数学兴趣小组想了解“第25届世界技巧锦标赛倒计时”广告牌的高度,他们在A点处测得广告牌底端C点的仰角为30°,然后向广告牌前进10m到达点B处,又测得C点的仰角为60°.请你根据以上数据求广告牌底端C点离地面的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】过C点作CD⊥AB于D,根据三角形外角的性质得出∠CBD=∠CAB+∠ACB,故可得出∠ACB=30°,BC=AB=10.在Rt△BCD中根据sin60°=即可得出CD的长.【解答】解:过C点作CD⊥AB于D,∵∠CBD=∠CAB+∠ACB,∴∠ACB=30°,∴∠ACB=∠CAB,∴BC=AB=10.在Rt△BCD中,sin60°=,∴CD=10×=5(m).因此C点离地面的高度为5m.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.24.在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地;乙骑自行车从B地到A地,到达A地后立即按原路返回,如图是甲、乙两人距B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)写出A、B两地之间的距离;(2)求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间保持的距离不超过3km时,能够用无线对讲机保持联系,请直接写出甲、乙两人能够用无线对讲机保持联系时x的取值范围.【考点】一次函数的应用.【分析】(1)根据x=0时,甲距离B地30千米,由此即可解决问题.(2)根据相遇时间=即可解决.(3)分三个时间段求出时间即可,①是相遇前,则15x+30x=30﹣3,②是相遇后,则15x+30x=30+3,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,分别解方程即可.【解答】解:(1)x=0时,甲距离B地30千米,所以,A、B两地的距离为30千米;(2)由图可知,甲的速度:30÷2=15千米/时,乙的速度:30÷1=30千米/时,30÷(15+30)=,×30=20千米,所以,点M的坐标为(,20),表示甲、乙两人出发小时后相遇,此时距离B地20千米;(3)设x小时甲、乙两人相距3km,①若是相遇前,则15x+30x=30﹣3,解得x=,②若是相遇后,则15x+30x=30+3,解得x=,③若是甲到达B地前,而乙到达A地后按原路返回时,则15x﹣30(x﹣1)=3,解得x=,所以,当≤x≤或≤x≤2时,甲、乙两人能够用无线对讲机保持联系.【点评】本题考查一次函数的应用、相遇问题等知识,理解题意是解题的关键,考虑问题要全面,不能漏解,属于中考常考题型.25.(13分)(2019•南安市模拟)如图1,在平面直角坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A,B两点间的距离为.AB=.我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xOy 中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x﹣0|2+|y﹣0|2,当⊙O的半径为r时,⊙O的方程可写为:x2+y2=r2.(1)问题拓展:如果圆心坐标为P(a,b),半径为r,那么⊙P的方程可以写为(x﹣a)2+(y﹣b)2=r2.(2)综合应用:如图3,⊙P与x轴相切于原点O,P点坐标为(0,6),A是⊙P上一点,连接OA,使tan ∠POA=,作PD⊥OA,垂足为D,延长PD交x轴于点B,连结AB.①证明AB是⊙P的切线;②是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的⊙Q的方程;若不存在,说明理由.【考点】圆的综合题.【分析】(1)问题拓展:设A(x,y)为⊙P上任意一点,则有AP=r,根据阅读材料中的两点之间距离公式即可求出⊙P的方程;(2)综合应用:①由PO=PA,PD⊥OA可得∠OPD=∠APD,从而可证到△POB≌△PAB,则有∠POB=∠PAB.由⊙P与x轴相切于原点O可得∠POB=90°,即可得到∠PAB=90°,由此可得AB是⊙P的切线;②当点Q在线段BP中点时,根据直角三角形斜边上的中线等于斜边的一半可得QO=QP=BQ=AQ.易证∠OBP=∠POA,则有tan∠OBP==.由P点坐标可求出OP、OB.过点Q作QH⊥OB于H,易证△BHQ∽△BOP,根据相似三角形的性质可求出QH、BH,进而求出OH,就可得到点Q的坐标,然后运用问题拓展中的结论就可解决问题.【解答】解:(1)问题拓展:设A(x,y)为⊙P上任意一点,∵P(a,b),半径为r,∴AP2=(x﹣a)2+(y﹣b)2=r2.故答案为(x﹣a)2+(y﹣b)2=r2;(2)综合应用:①∵PO=PA,PD⊥OA,∴∠OPD=∠APD.在△POB和△PAB中,,∴△POB≌△PAB(SAS),∴∠POB=∠PAB.∵⊙P与x轴相切于原点O,∴∠POB=90°,∴∠PAB=90°,∴AB是⊙P的切线;②存在到四点O,P,A,B距离都相等的点Q.当点Q在线段BP中点时,∵∠POB=∠PAB=90°,∴QO=QP=BQ=AQ.此时点Q到四点O,P,A,B距离都相等.∵∠POB=90°,OA⊥PB,∴∠OBP=90°﹣∠DOB=∠POA,∴tan∠OBP==tan∠POA=.∵P点坐标为(0,6),∴OP=6,OB=OP=8.过点Q作QH⊥OB于H,如图3,则有∠QHB=∠POB=90°,∴QH∥PO,∴△BHQ∽△BOP,∴===,∴QH=OP=3,BH=OB=4,∴OH=8﹣4=4,∴点Q的坐标为(4,3),∴OQ==5,∴以Q为圆心,以OQ为半径的⊙Q的方程:(x﹣4)2+(y﹣3)2=25.【点评】此题考查了圆的综合、全等三角形的判定与性质、相似三角形的判定与性质、等腰三角形的性质、勾股定理、切线的判定与性质、直角三角形斜边上的中线等于斜边的一半、三角函数的定义等知识,正确应用相关定理是解题关键.26.(13分)(2019•乐山)如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【考点】二次函数综合题.【分析】(1)利用tan∠ABC=3,得出C但坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF=(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c=0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.【点评】此题主要考查了二次函数综合以及待定系数法求二次函数解析式和直角三角形中线的性质等知识,用AD表示出△PEF的周长是解题关键.。
【2019年中考数学】山东省青岛市2019年中考数学模拟试卷(一)(含答案)
山东省青岛市2019年中考数学模拟试卷(一)(解析版)一、选择题(共9小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.52.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×109元 C.523×109元D.5.23×109元4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,955.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.19个B.15个C.12个D.10个6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.49.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x 的函数图象可能为()A.B.C.D.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH ⊥AB于H,连接OH,则∠DHO=度.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是个.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.三、解答题(共9题,94分)16.(9分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.19.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)19.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.99,tan15°≈0.29,sin95°≈0.99,cos95°≈0.26,tan95°≈3.93)20.(9分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.21.(9分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过190元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=.∴=,=.∴=.同理,过点A作AH⊥BC于H,可证=.∴==的.请将上面的过程补充完整.(3)运用上述结论解答问题①如图4,在△ABC中,如果∠B=60°,∠C=45°,AB=2,那么AC=..②在锐角△ABC中,若∠B=30°,AB=2,AC=2,求S△ABC24.(12分)已知:矩形ABCD,DA=3cm,DC=4cm,点M从点A出发沿AB向终点B运动,点N从点C出发沿CA向终点A运动,点M、N同时出发,且运动的速度均为1cm/秒,当其中一个点到达终点时,另一点即停止运动.设运动的时间为t秒.(1)当点N运动1秒时,求线段DN的长;(2)试求出多边形DAMN的面积S与t的函数关系式;(3)t为何值时,D,N,M三点共线?(4)t为何值时,以△DAN的一边所在直线为对称轴翻折△DAN,翻折前后的两个三角形所组成的四边形为菱形?2019年山东省青岛市中考数学模拟试卷(一)参考答案与试题解析一、选择题(共9小题,每小题3分,满分24分)1.﹣0.2的倒数等于()A.0.2 B.﹣5 C.﹣ D.5【分析】根据倒数的意义,乘积是1的两个数互为倒数,0 没有倒数,求一个数的倒数,把这个数的分子和分母掉换位置即可.【解答】解:﹣0.2的倒数等于﹣5,故选B【点评】此题考查的目的是理解倒数的意义,掌握求倒数的方法及应用,明确:1的倒数是1,0没有倒数.2.如图是几个小立方块所搭的几何体俯视图,小正方形中的数字表示该位置上小立方块的个数,则这个几何体的主视图是()A.B.C.D.【分析】由主视图的定义可得.【解答】解:这个几何体的主视图是,故选:D【点评】本题主要考查简单几何体的三视图,熟练掌握三视图的定义是解题的关键.3.为了响应中央号召,2016年某市加大财政支农力度,全市农业支出累计约达到53200万元,其中53200万元用科学记数法可表示为()A.5.23×104元 B.5.23×109元 C.523×109元D.5.23×109元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:53200万=5.23×109,故选D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某校在“校园十佳歌手”比赛上,六位评委给1号选手的评分如下:90,96,91,96,95,94.那么,这组数据的众数和中位数分别是()A.96,94.5 B.96,95 C.95,94.5 D.95,95【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:在这一组数据中96是出现次数最多的,故众数是96;而将这组数据从小到大的顺序排列(90,91,94,95,96,96),处于中间位置的那个数是94、95,那么由中位数的定义可知,这组数据的中位数是(94+95)÷2=94.5.故这组数据的众数和中位数分别是96,94.5.故选:A.【点评】本题为统计题,考查众数与中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,…,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有()A.19个B.15个C.12个D.10个【分析】小明共摸了100次,其中20次摸到黑球,则有90次摸到白球;摸到黑球与摸到白球的次数之比为1:4,由此可估计口袋中黑球和白球个数之比为1:4;即可计算出白球数.【解答】解:3=12(个).故选:C.【点评】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.6.如图,将△AOB绕点O逆时针旋转90°,得到△A′OB′.若点A的坐标为(a,b),则点A′的坐标为()A.(﹣a,﹣b)B.(b,a)C.(﹣b,a)D.(b,﹣a)【分析】根据旋转前后的三角形全等及所在象限符号的特点可得所求点的坐标.【解答】解:∵△AOB≌△A′OB′,∴A′B′=AB=b,OB′=OB=a,∵A′在第二象限,∴A′坐标为(﹣b,a),故选C.【点评】考查点的旋转问题;用到的知识点为:旋转前后图形的形状不变.9.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,一季度共获利36.4万元,已知2月份和3月份利润的月增长率相同.设2,3月份利润的月增长率为x,那么x满足的方程为()A.10(1+x)2=36.4 B.10+10(1+x)2=36.4C.10+10(1+x)+10(1+2x)=36.4 D.10+10(1+x)+10(1+x)2=36.4【分析】等量关系为:一月份利润+一月份的利润×(1+增长率)+一月份的利润×(1+增长率)2=34.6,把相关数值代入计算即可.【解答】解:设二、三月份的月增长率是x,依题意有10+10(1+x)+10(1+x)2=36.4,故选D.【点评】主要考查一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1±x)2=b.9.如图,点E、F、G、H分别是正方形ABCD边AB、BC、CD、DA上的点,且AE=BF=CG=DH.设A、E两点间的距离为x,四边形EFGH的面积为y,则y与x 的函数图象可能为()A.B.C.D.【分析】本题需先设正方形的边长为m,然后得出y与x、m是二次函数关系,从而得出函数的图象.【解答】解:设正方形的边长为m,则m>0,∵AE=x,∴DH=x,∴AH=m﹣x,∵EH2=AE2+AH2,∴y=x2+(m﹣x)2,y=x2+x2﹣2mx+m2,y=2x2﹣2mx+m2,=2[(x﹣m)2+],=2(x﹣m)2+m2,∴y与x的函数图象是A.故选A.【点评】本题主要考查了二次函数的图象和性质,在解题时要能根据几何图形求出解析式,得出函数的图象.二、填空题(本题满分21分,共有6道小题,每小题3分)9.计算:(﹣1)2﹣×(2013﹣π)0+()﹣1=2.【分析】直接利用绝对值的性质以及特殊角的三角函数值和二次根式的性质化简求出答案.【解答】解:(﹣1)2﹣×(2013﹣π)0+()﹣1=1﹣2×1+3=2,故答案为:2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.10.将正面分别标有数字1,2,3,背面花色相同的三张卡片洗匀后,背面朝上放在桌面上.随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,两张卡片组成的数恰好为“12”的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片组成的数恰好为“12”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,两张卡片组成的数恰好为“12”的只有1种情况,∴两张卡片组成的数恰好为“12”的概率是:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.11.王师傅检修一条长600米的自来水的管道,计划用若干小时完成,在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务.设王师傅原计划每小时检修管道x米,依题意列方程是﹣=2.【分析】设王师傅原计划每小时检修管道x米,根据在实际检修过程中,每小时检修管道长度是原计划的1.2倍,结果提前2小时完成任务,列方程即可.【解答】解:设王师傅原计划每小时检修管道x米,由题意得,﹣=2.故答案为﹣=2.【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,找出等量关系,列出方程.12.如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB=45°.【分析】连接OA,OB.根据正方形的性质,得∠AOB=90°再根据圆周角定理,即可求解.【解答】解:连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°,故答案为:45°.【点评】此题主要考查了圆周角定理,综合运用了正方形的性质以及圆周角定理是解答此题的关键.13.如图,四边形ABCD是菱形,∠DAB=50°,对角线AC,BD相交于点O,DH ⊥AB于H,连接OH,则∠DHO=25度.【分析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等解答即可.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO==25°,故答案为:25.【点评】本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.14.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最小是5个.【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行2个小正方体,第一列第二行2个小正方体,第二列第三行1个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:2+2+1=5个.故答案为:5.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.15.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.在一块三角形废料上,要裁下一个半圆形的材料,使直径在线段BC上,并且要尽可能的充分利用好原三角形废料,请画出这个半圆形.【分析】如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.【解答】解:如图作∠BAC的平分线AM交BC于O,作ON⊥AB于D,以O为圆心,OD为半径画半圆即可.半圆O即为所求.【点评】本题考查作图﹣应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.三、解答题(共9题,94分)16.(9分)计算(1)求一次函数y=﹣2x+2和y=x=1的交点坐标.(2)化简:(﹣)•.【分析】(1)通过解方程组可得到两直线的交点坐标;(2)先把括号内通分后进行同分母的减法运算,然后把分子因式分解后约分即可.【解答】解:(1)解方程组得,所以一次函数y=﹣2x+2和y=x﹣1的交点坐标为(1,0);(2)原式=•=•=a+3.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了分式的混合运算.19.(6分)初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)【分析】(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200﹣120﹣50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1﹣25%﹣60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=95%,再估计该市近20000名初中生中达标的学习态度就很容易了.【解答】解:(1)50÷25%=200(人);故答案为:200;(2)C级人数:200﹣120﹣50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1﹣25%﹣60%)=54°.(4)20000×(25%+60%)=19000(名).答:估计该市初中生中大约有19000名学生学习态度达标.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.(6分)某商场设定了一个可以自由转动的转盘(转盘被等分成16个扇形),并规定:顾客在商场消费每满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红、黄和蓝色区域,顾客就可以分别获得50元、30元和10元的购物券.如果顾客不愿意转转盘,则可以直接获得购物券15元.(1)转动一次转盘,获得50元、30元、10元购物券的概率分别是多少?(2)如果有一名顾客在商场消费了200元,通过计算说明转转盘和直接获得购物券,哪种方式对这位顾客更合算?【分析】(1)由转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,直接利用概率公式求解即可求得答案;(2)首先求得转转盘获得购物券的平均值,再与15元比较,即可知哪种方式对这位顾客更合算.【解答】解:(1)∵转盘被等分成16个扇形,红色扇形有1个,黄色扇形有3个,蓝色扇形有5个,∴P(获得50元购物券)=,P(获得30元购物券)=,P(获得10元购物券)=;(2)转转盘:×50+×30+×10=<15,∴直接获得购物券的方式对这位顾客更合算.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)如图1,圆规两脚形成的角α称为圆规的张角.一个圆规两脚均为12cm,最大张角150°,你能否画出一个半径为20cm的圆?请借助图2说明理由.(参考数据:sin15°≈0.26,cos15°≈0.99,tan15°≈0.29,sin95°≈0.99,cos95°≈0.26,tan95°≈3.93)【分析】先根据等腰三角形的性质求出∠B的度数,过点A作AD⊥BC于点D,根据锐角三角函数的定义可求出BD的长,故可得出结论.【解答】解:∵△ABC是等腰三角形,∠A=150°,∴∠B=∠C==15°,过点A作AD⊥BC于点D,∴BD=AB•cos∠B≈12×0.99≈11.6cm,∴BC≈23.2>20cm,∴能画出一个半径为20cm的圆.【点评】本题考查的是解直角三角形的应用,熟知锐角三角函数的定义是解答此题的关键.20.(9分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.【分析】(1)设直拍球拍每副x元,横拍球每副y元,根据题意列出二元一次方程组,解方程组即可;(2)设购买直拍球拍m副,根据题意列出不等式,解不等式求出m的范围,根据题意列出费用关于m的一次函数,根据一次函数的性质解答即可.【解答】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40﹣m)副,由题意得,m≤3(40﹣m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40﹣m)=﹣40m+11200,∵﹣40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为﹣40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.【点评】本题考查的是列二元一次方程组、一元一次不等式解实际问题,正确列出二元一次方程组和一元一次不等式并正确解出方程组和不等式是解题的关键.21.(9分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点D作DE⊥BC于E,过点C作AB的平行线与DE的延长线交于点F,连接BF,AE.(1)求证:BF=CF.(2)当三角形ABC满足什么条件时,四边形BDCF为菱形并说明理由.【分析】(1)求出四边形ADFC是平行四边形,推出CF=AD=BD,根据平行四边形的判定得出四边形BDCF是平行四边形,求CD=BD,进而可证明BF=CF;(2)当AC=BC时,四边形BCFD为菱形,根据菱形的判定得出即可;【解答】解:(1)证明:DE⊥BC,∠ACB=90°,∴∠BED=∠ACB,∴DF∥AC,∵CF∥AB,∴四边形ADFC是平行四边形,∴AD=CF,∵D为AB的中点,∴AD=BD,∴BD=CF,∵BD∥CF,∴四边形BDCF是平行四边形,∴CD=BF,∴BF=CF;(2)当AC=BC时,四边形BDCF为菱形,∵∠ACB=90°,D为AB的中点,∴DC=BD,∵四边形BDCF是平行四边形,∴四边形BDCF是菱形.【点评】本题考查了平行四边形的判定和性质,菱形的判定,直角三角形的性质的应用,能熟记菱形的性质和判定定理是解此题的关键.22.(10分)杰瑞公司成立之初投资1500万元购买新生产线生产新产品,此外,生产每件该产品还需要成本60元.按规定,该产品售价不得低于100元/件且不得超过190元/件,该产品销售量y(万件)与产品售价x(元)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出x的取值范围;(2)第一年公司是盈利还是亏损?求出当盈利最大或者亏损最小时的产品售价;(3)在(2)的前提下,即在第一年盈利最大或者亏损最小时,第二年公司重新确定产品售价,能否使两年共盈利达1340万元?若能,求出第二年产品售价;若不能,请说明理由.【分析】(1)设y=kx+b,则由图象可求得k,b,从而得出y与x之间的函数关系式,并写出x的取值范围100≤x≤190;(2)设公司第一年获利W万元,则可表示出W=﹣(x﹣190)2﹣60≤﹣60,则第一年公司亏损了,当产品售价定为190元/件时,亏损最小,最小亏损为60万元;(3)假设两年共盈利1340万元,则﹣x2+36x﹣1900﹣60=1340,解得x的值,根据100≤x≤190,则x=160时,公司两年共盈利达1340万元.【解答】解:(1)设y=kx+b,则由图象知:,解得k=﹣,b=30,∴y=﹣x+30,100≤x≤190;(2)设公司第一年获利W万元,则W=(x﹣60)y﹣1500=﹣x2+36x﹣3300=﹣(x﹣190)2﹣60≤﹣60,∴第一年公司亏损了,当产品售价定为190元/件时,亏损最小,最小亏损为60万元;(3)若两年共盈利1340万元,因为第一年亏损60万元,第二年盈利的为(x﹣60)y=﹣x2+36x﹣1900,则﹣x2+36x﹣1900﹣60=1340,解得x1=200,x2=160,∵100≤x≤190,∴x=160,∴每件产品的定价定为160元时,公司两年共盈利达1340万元.【点评】本题是一道一次函数的综合题,考查了二次函数的应用,还考查了用待定系数法求一次函数的解析式.23.(10分)阅读材料,回答问题:小明学完了“锐角三角函数”的相关知识后,通过研究发现:如图1,在Rt△ABC中,如果∠C=90°,∠A=30°,BC=a=1,AC=b=,AB=c=2,那么==2.通过上网查阅资料,他又知“sin90°=1”,因此他得到“在含30°角的直角三角形中,存在着==的关系.”这个关系对于一般三角形还适用吗?为此他做了如下的探究:(1)如图2,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.请判断此时“==”的关系是否成立?(2)完成上术探究后,他又想“对于任意的锐角△ABC,上述关系还成立吗?”因此他又继续进行了如下的探究:如图3,在锐角△ABC中,BC=a,AC=b,AB=c.过点C作CD⊥AB于D.∵在Rt△ABC和Rt△BDC中,∠ADC=∠BDC=90°,∴sinA=,sinB=.∴=CD,=CD.∴=.同理,过点A作AH⊥BC于H,可证=.∴==的.请将上面的过程补充完整.。
2019中考数学一模试题及答案(上海杨浦、静安、闵行、松江、崇明)
上海市部分学校九年级数学抽样测试试卷2019.1.5(测试时间:100分钟,满分:150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.3.本次测试可使用科学计算器.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列函数中,属于二次函数的是 (A )32-=x y ; (B )22)1(x x y -+=; (C )x x y 722-=;(D )22xy -=. 2.抛物线422-+-=x x y 一定经过点 (A )(2,-4); (B )(1,2);(C )(-4,0); (D )(3,2).3.已知在Rt △ABC 中,∠C =90°,∠A =α,AC =3,那么AB 的长为 (A )αsin 3; (B )αcos 3; (C )αsin 3; (D )αcos 3. 4.在平面直角坐标系xOy 中有一点P (8,15),那么OP 与x 轴正半轴所夹的角的正弦值等于 (A )178; (B )1715; (C )158; (D )815. 5.如果△ABC ∽△DEF ,且△ABC 的三边长分别为3、5、6,△DEF 的最短边长为9,那么△DEF 的周长等于(A )14;(B )5126; (C )21; (D )42.6.下列五幅图均是由边长为1的16个小正方形组成的正方形网格,网格中的三角形的顶点都在小正方形的顶点上,那么在下列右边四幅图中的三角形,与左图中的△ABC 相似的个数有(A )1个; (B )2个; (C )3个; (D )4个.二、填空题:(本大题共12题,每题4分,满分48分) 7.如果35=y x ,那么y x yx -+3= ▲ .8.已知在△ABC 中,点D 、E 分别在边AB 、AC 上,DE //BC ,53=AB AD ,那么CEAE的值等于 ▲ . 9.已知P 是线段AB 的一个黄金分割点,且AB =20cm ,AP >BP ,那么AP = ▲ cm . 10.如果抛物线k x k y ++=2)4(的开口向下,那么k 的取值范围是 ▲ . 11.二次函数m x x y ++=62图像上的最低点的横坐标为 ▲ .12.一个边长为2厘米的正方形,如果它的边长增加x 厘米,面积随之增加y 平方厘米,那么y 关于x 的函数解析式是 ▲ .13.如图,已知在△ABC 中,AB =3,AC =2,D 是边AB 上的一点,∠ACD =∠B ,∠BAC 的平分线AQ 与CD 、BC 分别相交于点P 和点Q ,那么AQAP的值等于 ▲ .14.已知在△ABC 中,AB =AC =5cm ,BC =35,那么∠A = ▲ 度.15.已知在△ABC 中,∠C =90°,BC =8,AB =10,点G 为重心,那么GCB ∠tan 的值为 ▲ . 16.向量a 与单位向量e 的方向相反,且长度为5,那么用向量e 表示向量a 为 ▲ . 17.如果从灯塔A 处观察到船B 在它的北偏东35°方向上,那么从船B 观察灯塔A 的方向是 ▲ .18.将等腰△ABC 绕着底边BC 的中点M 旋转30°后,如果点B 恰好落在原△ABC 的边AB 上,那么∠A 的余切值等于 ▲ .三、解答题:(本大题共7题,满分78分)19.(本题满分10分,其中第(1)小题4分,第(2)小题6分)(第13题图)已知抛物线32++=mx x y 的对称轴为x =-2. (1)求m 的值;(2)如果将此抛物线向右平移5个单位后,求所得抛物线与y 轴的交点坐标.20.(本题满分10分,其中第(1)小题6分,第(2)小题4分)如图,已知在△ABC 中,点D 在边AC 上,CD ∶AD =1∶2,=,=. (1)试用向量,表示向量;(2)求作:-21.(不要求写作法,但要指出所作图中表示结论的向量)21.(本题满分10分,其中每小题各5分)已知:如图,在△ABC 中,AB =6,BC =8,∠B =60°. 求:(1)△ABC 的面积; (2)∠C 的余弦值.22.(本题满分10分)已知:如图,矩形DEFG 的一边DE 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上,AH 是边BC 上的高,AH 与GF 相交于点K ,已知BC =12,AH =6,EF ∶GF =1∶2,求矩形DEFG 的周长.C(第22题图)ABC(第21题图)(第20题图)23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)已知:如图,斜坡AP 的坡度为1∶2.4,坡长AP 为26米,在坡顶A 处的同一水平面上有一座古塔BC ,在斜坡底P 处测得该塔的塔顶B 的仰角为45°,在坡顶A 处测得该塔的塔顶B 的仰角为76°.求:(1)坡顶A 到地面PQ 的距离;(2)古塔BC 的高度(结果精确到1米).(参考数据:sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)24.(本题满分12分,其中第(1)小题5分,第(2)小题7分)已知:如图,在△ABC 中,AD 是边BC 上的中线,点E 在线段BD 上,且BE =ED ,过点B 作BF ∥AC ,交线段AE 的延长线于点F .(1)求证:AC =3BF ;(2)如果ED AE 3=,求证:BE AC AE AD ⋅=⋅.25.(本题满分14分,其中第(1)、(2)小题各4分,第(3)小题6分)已知:如图,在平面直角坐标系xOy 中,二次函数c bx x y ++-=231的图像经过点A (-1,1)和点B (2,2),该函数图像的对称轴与直线OA 、OB 分别交于点C 和点D .(第24题图)C(第23题图)(1)求这个二次函数的解析式和它的对称轴;(2)求证:∠ABO=∠CBO;(3)如果点P在直线AB上,且△POB与△BCD相(第25题图)上海市部分学校九年级数学抽样测试参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分) 1.C ; 2.A ; 3.D ; 4.B ; 5.D ; 6.B . 二、填空题:(本大题共12题,每题4分,满分48分) 7.9; 8.23; 9.10510-; 10.k <-4; 11.-3; 12.xx y 42+=;13.32; 14.120; 15.43; 16.5-; 17.南偏西35°;18.3.三、解答题:(本大题共7题,满分78分) 19.解:(1)由题意,得22-=-m.……………………………………………………(2分)∴m =4.…………………………………………………………………………(2分) (2)此抛物线的表达式为1)2(3422-+=++=x x x y .……………………(2分) ∵向右平移5个单位后,所得抛物线的表达式为1)3(2--=x y ,即862+-=x x y .………………………………………………………………(2分) ∴它与y 轴的交点坐标为(0,8).……………………………………………(2分)20.解:(1)∵CD ∶AD =1∶2,∴CA CD 31=,得CA CD 31=.…………(2分)M∵-=-=. ………………(2分)∴3131)(31-=-=………………(1分) ∴b a b a b CD BC BD 3231)(31+=-+=+=.…………………………(1分)(2)a b AM -=21.……………………………………(画图正确3分,结论1分)21.解:(1)作AH ⊥BC ,垂足为点H .在Rt △ABH 中,∵∠AHB =90°,∠B =60°,AB =6,∴BH =3,33=AH .………(2分,2分) ∴S △ABC =31233821=⨯⨯.…………………………………………………(1分)(2)∵BC =8,BH =3,∴CH =5. ………………………………………………(1分) 在Rt △ACH 中,∵33=AH ,CH =5,∴132=AC .………………………………………(2分) ∴261351325cos ===AC CH C .………………………………………………(2分) 22.解:设EF =x ,则GF =2x .∵GF ∥BC ,AH ⊥BC ,∴AK ⊥GF .∵GF ∥BC ,∴△AGF ∽△ABC .………………………………………………(2分)∴BCGFAH AK =.…………………………………………………………………(2分) ∵AH =6,BC =12,∴12266xx =-.……………………………………………(2分) 解得x =3.………………………………………………………………………(2分) ∴矩形DEFG 的周长为18.……………………………………………………(2分)23.解:(1)过点A 作AH ⊥PQ ,垂足为点H .∵斜坡AP 的坡度为1∶2.4,∴125=PH AH .…………………………………(2分)设AH =5k ,则PH =12k ,由勾股定理,得AP =13k . ∴13k =26. 解得k =2.∴AH =10.………………………………………………………………………(2分)答:坡顶A 到地面PQ 的距离为10米.………………………………………(1分) (2)延长BC 交PQ 于点D .∵BC ⊥AC ,AC ∥PQ ,∴BD ⊥PQ .…………………………………………(1分) ∴四边形AHDC 是矩形,CD =AH =10,AC =DH .……………………………(1分) ∵∠BPD =45°,∴PD =BD . …………………………………………………(1分) 设BC =x ,则x +10=24+DH . ∴AC =DH =x -14. 在Rt △ABC 中,AC BC =︒76tan ,即0.414≈-x x.…………………………(2分) 解得356=x ,即19≈x .………………………………………………………(1分) 答:古塔BC 的高度约为19米.………………………………………………(1分)24.证明:(1)∵BF ∥AC ,∴BECEBF AC =.………………………………………………(2分) ∵BD =CD ,BE =DE ,∴CE =3BE .……………………………………………(2分) ∴AC =3BF .………………………………………………………………………(1分) (2)∵ED AE 3=,∴223ED AE =.…………………………………………(1分) 又∵CE =3ED ,∴CE ED AE ⋅=2.……………………………………………(1分) ∴CEAEAE ED =.……………………………………………………………………(1分) ∵∠AED =∠CEA ,∴△AED ∽△CEA .………………………………………(1分)∴AEEDAC AD =.…………………………………………………………………(1分) ∵ED =BE ,∴AEBEAC AD =.……………………………………………………(1分) ∴BE AC AE AD ⋅=⋅.…………………………………………………………(1分)25.解:(1)由题意,得⎪⎩⎪⎨⎧++-=+--=.2342,311c b c b ………………………………………………(1分)解得⎪⎩⎪⎨⎧==.2,32c b ……………………………………………………………………(1分)∴所求二次函数的解析式为232312++-=x x y .……………………………(1分)对称轴为直线x =1.……………………………………………………………(1分)证明:(2)由直线OA 的表达式y =-x ,得点C 的坐标为(1,-1).…………………(1分)∵10=AB ,10=BC ,∴AB =BC .………………………………………(1分) 又∵2=OA ,2=OC ,∴OA =OC .………………………………………(1分) ∴∠ABO =∠CBO .………………………………………………………………(1分) 解:(3)由直线OB 的表达式y =x ,得点D 的坐标为(1,1).………………………(1分)由直线AB 的表达式3431+=x y , 得直线与x 轴的交点E 的坐标为(-4,0).……………………………………(1分) ∵△POB 与△BCD 相似,∠ABO =∠CBO ,∴∠BOP =∠BDC 或∠BOP =∠BCD . (i )当∠BOP =∠BDC 时,由∠BDC ==135°,得∠BOP =135°.∴点P 不但在直线AB 上,而且也在x 轴上,即点P 与点E 重合.∴点P 的坐标为(-4,0).………………………………………………………(2分) (ii )当∠BOP =∠BCD 时, 由△POB ∽△BCD ,得BCBDBO BP =. 而22=BO ,2=BD ,10=BC ,∴1052=BP . 又∵102=BE ,∴1058=PE . 作PH ⊥x 轴,垂足为点H ,BF ⊥x 轴,垂足为点F .∵PH ∥BF ,∴EFEHBE PE BF PH ==. 而BF =2,EF =6,∴58=PH ,524=EH .∴54=OH .∴点P 的坐标为(54,58).……………………………………………………(2分)综上所述,点P 的坐标为(-4,0)或(54,58).。
2019年深圳市中考数学模拟试卷题集及参考答案
技术改进后
施工天数(天) (用含 a 的代数式表示) ②若甲、乙两队同时完成施工任务,求乙工程队平均每天施工的米数 a 和施工的天数。
37.初三年(4)班要举行一场毕业联欢会,主持人同时转动下图中的两个转盘(每个转盘分别被四等分和三等分), 由一名同学在转动前来判断两个转盘上指针所指的两个数字之和是奇数还是偶数,如果判断错误,他就要为大家 表演一个节目;如果判断正确,他可以指派别人替自己表演节目.现在轮到小明来选择,小明不想自己表演,于 是他选择了偶数。小明的选择合理吗?从概率的角度进行分析(要求用树状图或列表方法求解)
并评出了一、二、三等奖各若干名,学校将获奖情况绘成如图所示的不完整的条形统计图和扇形统计图,请你根
据图中信息解答下列问题:
(1)填写下表:
正方形 ABCD 内点的个数 1
40.如图,正方形 ABCD 内部有若干个点,用这些点以及正方形 ABCD 的顶点 A,B,C,D 把原正方形分割成一些 三角形(互相不重叠)。
c.两个学期测试成绩的平均数、中位数、众数如下:
学期
平均数
中位数
众数
上学期
26.75
26.75
26
本学期
28.50
m
30
根据以上信息,回答下列问题:
(1)请补全折线统计图,并标明数据;
B.大于 1 米
C.小于 1 米
D.以上都不对
19.如图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角
形 ABC 的斜边 BC,直角边 AB,AC,△ABC 的三边所围成的区域面积记为 S1,黑色部分面积记为 S2,其余部分
面积记为 S3,则( )
A.S1=S2
宁波市慈溪市2019年中考数学一模试卷含答案解析
2019年浙江省宁波市慈溪市中考数学一模试卷一、选择题1.﹣2的绝对值是( )A .2B .﹣2C .D .2.太阳中心的温度是19200000℃,用科学记数法可将19200000℃表示为()A .1.92×106B .19.2×106C .1.92×107D .0.192×1073.若3a=4b ,则=( )A .B .C .D .4.下列图形的三视图中,主视图和左视图不一样的是( )A .球 B .圆锥 C .圆柱 D .长方体5.已知△ABC ∽△A ′B ′C ′,且相似比为3,则下列结论正确的是( )A .AB 是A ′B ′的3倍 B .A ′B ′是AB 的3倍C .∠A 是∠A ′的3倍D .∠A ′是∠A 的3倍6.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是( )A .图象开口向上B .图象的对称轴是直线x=1C.图象有最低点 D.图象的顶点坐标为(﹣1,2)7.下列说法正确的是()A.同圆或等圆中弧相等,则它们所对的圆心角也相等B.90°的圆心角所对的弦是直径C.平分弦的直径垂直于这条弦D.三点确定一个圆8.如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x为()A.144°B.135°C.136°D.108°9.如图,在△ABC中,DE∥BC,且=,则=()A.1:4 B.1:9 C.3:4 D.8:910.在Rt△ABC中,∠C=90°,AC=3,AB=5,则它的内切圆与外接圆半径分别为()A.1.5,2.5 B.2,5 C.1,2.5 D.2,2.511.如图,⊙O的半径为20,A是⊙O上一点.以OA为对角线作矩形OBAC,且OC=12.延长BC,与⊙O分别交于D,E两点,则CE﹣BD的值等于()A.B.C.D.12.如图,有一张△ABC纸片,AC=8,∠C=30°,点E在AC边上,点D在边AB上,沿着DE对折,使点A落在BC边上的点F处,则CE的最大值为()A.B.C.4 D.4二、填空题13.根式中x的取值范围是.14.分解因式:x3﹣4x=.15.如图,在△ABC中,中线AD、BE交于O,若S△BOD=5,则S△BOA=.16.若圆锥母线长为6,底面半径为2,则它的侧面积为.17.已知⊙O的直径为,锐角△ABC内接于⊙O,且AB=2,BE⊥AC于E,则sin∠CBE=.18.如图,在边长为的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B 运动(任何一个点到达即停止),在运动过程中,则线段CP的最小值为.三、解答题(第19题6分,第20、21、22题各8分,第23题10分,第24、25题各12分,第26题14分,共78分)19.计算:tan260°﹣2sin45°+cos60°.20.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.22.某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成如表如下:请根据以上图表提供的信息,解答下列问题:(1)表中m和n所表示的数分别为:m=,n=;(2)请在图中补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段?(4)若比赛成绩不低于80分可以获奖,则获奖率为多少?23.某电影上映前,一大型影院的楼顶挂起了一块广告牌CD.李老师目高MA=1.6m,他站在离大楼底部H点45m的A处测得大楼顶端点D的仰角为30°.接着他向大楼前进14m,站在B处,测得广告牌顶端C 的仰角为45°.(1)求这幢大楼的高DH;(2)求这块广告牌CD的高度.24.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?25.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”(保留作图痕迹,不写作法);(2)如图1,Rt△ABC中,BC<AC<AB,∠C=90°,当△ABC是“好玩三角形”时,求BC:AC:A的值;(3)如图2,所示直角坐标系中,A(﹣3,0),B(3,0),M(﹣5,0),点D是以点M为圆心4为半径的圆上除x轴外的任意一点,且D为AC中点.求证:△ABC是好玩三角形;(4)如图3,已知正方形ABCD的边长为a,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.若△APQ是“好玩三角形”,试求的值.26.在平面直角坐标系中△ABC的边AB在x轴上,且OA>OB,以AB为直径的⊙P过点C,若C的坐标为(0,2),AB=5,经过A、B、C三点的抛物线为y=ax2+bx+c.(1)求点A、B的坐标及抛物线的解析式.(2)若∠ACB的平分线所在的直线l交x轴于点D,交圆于点E.①求证:PE⊥x轴;②试求直线l对应的一次函数的解析式.(3)过点D任作一直线l分别交射线CA,CB(点C除外)于点M,N,则+的值是否为定值?若是,求出定值;若不是,请说明理由.2019年浙江省宁波市慈溪市中考数学一模试卷参考答案与试题解析一、选择题1.﹣2的绝对值是()A.2 B.﹣2 C.D.【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.【点评】本题考查了绝对值的性质:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.2.太阳中心的温度是19200000℃,用科学记数法可将19200000℃表示为()A.1.92×106B.19.2×106C.1.92×107D.0.192×107【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于19200000有8位,所以可以确定n=8﹣1=7.【解答】解:19 200 000=1.92×107.故选C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.3.若3a=4b,则=()A.B.C.D.【考点】比例的性质.【分析】根据等式的性质,可得答案.【解答】解:两边都除以3b,得=,故选:B.【点评】本题考查了比例的性质,利用了等式的性质2,等式的两边都除以同一个不为零的数或者整式,结果不变.4.下列图形的三视图中,主视图和左视图不一样的是()A.球B.圆锥C.圆柱D.长方体【考点】简单几何体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、球的主视图和左视图都是圆,故此选项错误;B、圆锥的主视图和左视图都是等腰三角形,故此选项错误;C、圆柱的主视图和左视图都是长方形,故此选项错误;D、长方体的主视图是长方形,左视图是长方形,但是大小不一样,故此选项正确,故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.5.已知△ABC∽△A′B′C′,且相似比为3,则下列结论正确的是()A.AB是A′B′的3倍B.A′B′是AB的3倍C.∠A是∠A′的3倍D.∠A′是∠A的3倍【考点】相似三角形的性质.【分析】根据相似三角形对应边的比等于相似比以及对应角相等即可求解.【解答】解:∵△ABC∽△A′B′C′,且相似比为3,∴=3,∠A=∠A′,故C与D都错误;∴AB=3A′B′,故A正确,B错误.故选A.【点评】本题考查了相似三角形的性质,主要利用了相似三角形对应边的比等于相似比,相似三角形的对应角相等,比较简单,熟记性质是解题的关键.6.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上 B.图象的对称轴是直线x=1C.图象有最低点 D.图象的顶点坐标为(﹣1,2)【考点】二次函数的性质.【分析】二次函数的一般形式中的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k).【解答】解:∵﹣1<0,∴函数的开口向下,图象有最高点,∵这个函数的顶点是(﹣1,2),∴对称轴是x=﹣1,故选D.【点评】本题考查了二次函数的性质,掌握抛物线的开口方向,对称轴,顶点坐标是解题的关键.7.下列说法正确的是()A.同圆或等圆中弧相等,则它们所对的圆心角也相等B.90°的圆心角所对的弦是直径C.平分弦的直径垂直于这条弦D.三点确定一个圆【考点】圆心角、弧、弦的关系;垂径定理;圆周角定理;确定圆的条件.【分析】利用等弧和弦的概念,垂径定理以及弧,弦与圆心角之间的关系进行判断.【解答】解:A、弧的度数与所对圆心角的度数相等,所以同圆或等圆中弧相等,则它们所对的圆心角也相等,故本选项正确;B、90°的圆周角所对的弦是直径,故本选项错误;C、应强调这条弦不是直径,故本选项错误;D、不在同一直线上的三点确定一个圆,故本选项错误.故选:A.【点评】本题考查了圆周角定理,垂径定理以及确定圆的条件.熟练掌握相关概念是解题的关键.8.如图,扇子的圆心角为x°,余下扇形的圆心角为y°,x与y的比通常按黄金比来设计,这样的扇子外形比较美观,若黄金比取0.6,则x为()A.144°B.135°C.136°D.108°【考点】黄金分割.【分析】由题意得到x与y的比值应为黄金比,根据黄金比为0.6,得到x与y比值为0.6,即为3:5,又根据扇子的圆心角与余下的圆心角刚好构成周角,即x与y之和为360,根据比例性质即可求出x的值.【解答】解:由扇子的圆心角为x°,余下扇形的圆心角为y°,黄金比为0.6,根据题意得:x:y=0.6=3:5,又∵x+y=360,则x=360×=135.故选B.【点评】此题考查了黄金分割,以及比例的性质,解题的关键是根据题意列出x与y的关系式.9.如图,在△ABC中,DE∥BC,且=,则=()A.1:4 B.1:9 C.3:4 D.8:9【考点】相似三角形的判定与性质.【分析】因为DE∥BC,所以可得△ADE∽△ABC,根据相似三角形的面积比等于相似比的平方解答即可.【解答】解:∵D、E分别是△ABC的AB、AC边上的点,DE∥BC∴△ADE∽△ABC∵AE:EC=1:2∴AE:AC=1:3∴S△ADE:S△ABC=1:9∴=.故选D.【点评】本题考查了相似三角形的面积的比等于相似比的平方的运用,熟记定理是解题的关键.10.在Rt△ABC中,∠C=90°,AC=3,AB=5,则它的内切圆与外接圆半径分别为()A.1.5,2.5 B.2,5 C.1,2.5 D.2,2.5【考点】三角形的内切圆与内心;勾股定理;三角形的外接圆与外心.【分析】直角三角形的内切圆半径和其三边有特殊关系:三边中a b为直角边,c为斜边,内切圆半径为r,则r=;外接圆的半径就是斜边的一半.【解答】解:∵AB=5,AC=3,∴BC==4,∴外接圆半径==2.5,∵四边形ODCE是正方形,且⊙O是△ABC的内切圆,∴内切圆半径==1.故选C.【点评】解决此题的关键是熟练掌握直角三角形的三边与外接圆半径,内切圆半径之间的关系.11.如图,⊙O的半径为20,A是⊙O上一点.以OA为对角线作矩形OBAC,且OC=12.延长BC,与⊙O分别交于D,E两点,则CE﹣BD的值等于()A.B.C.D.【考点】垂径定理;矩形的性质;相似三角形的判定与性质.【分析】连接OE,作ON⊥DE,由垂径定理得EN=DN,在Rt△AOB中利用勾股定理求出OB的长,利用三角形的面积公式求出ON的长,在Rt△OCN中,利用勾股定理求出CN的长,进而可得出BN的长,由CE﹣BD=(EN﹣CN)﹣(DN﹣BN)=BN﹣CN即可得出结论.【解答】解:如图,连接OE,作ON⊥DE,∴EN=DN,∵在Rt△AOB中,OA=20,AB=OC=12,∴OB===16,∴ON===,在Rt△OCN中,CN==,∵BN=BC﹣CN=20﹣=,∴CE﹣BD=(EN﹣CN)﹣(DN﹣BN)=BN﹣CN=﹣=,故选B.【点评】本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理进行解答是解答此题的关键.12.如图,有一张△ABC纸片,AC=8,∠C=30°,点E在AC边上,点D在边AB上,沿着DE对折,使点A落在BC边上的点F处,则CE的最大值为()A.B.C.4 D.4【考点】翻折变换(折叠问题).【分析】认真审题,可以发现,AC=CE+AE,若要使CE最大,只要使AE最小即可,连接EF,则:EF=AE,过只要EF最小即可,据此即可得解.【解答】解:如图,连接EF,当EF⊥BC时,EF最短,即CE最长,∵∠C=30°,∴EF=CE,∵沿着DE对折,使点A落在BC边上的点F处,∴EF=AE,∴EF+CE=AC=8,即:=8,解得:CE=,∴CE的最大值为.故选B.【点评】本题主要考查了垂线段最短,以及在翻折变换时,变换前后的线段和角度不变,还考查了解直角三角形的知识,有一定的综合性,要注意认真总结.二、填空题13.根式中x的取值范围是x≤3.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3﹣x≥0,解得x≤3.故答案为:x≤3.【点评】本题考查的知识点为:二次根式中的被开方数必须是非负数,否则二次根式无意义.14.分解因式:x3﹣4x=x(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次因式分解,分解因式一定要彻底,直到不能再分解为止.15.如图,在△ABC中,中线AD、BE交于O,若S△BOD=5,则S△BOA=10.【考点】三角形的重心.【分析】根据三角形的重心到顶点的长度等于到对边中点的长度的2倍可得OD=AO,再根据等高的三角形的面积等于底边的比求出△AOB的面积.【解答】解:∵中线AD、BE相交于点O,∴O是△ABC的重心,∴OD=AO,∵S△BOD=5,∴S△AOB=2S△BOD=2×5=10.故答案为:10.【点评】本题考查了三角形的重心,三角形的重心到顶点的长度等于到对边中点的长度的2倍,等高的三角形的面积等于底边的比是解题的关键.16.若圆锥母线长为6,底面半径为2,则它的侧面积为12π.【考点】圆锥的计算.【分析】根据圆锥的底面半径为2,母线长为6,直接利用圆锥的侧面积公式求出它的侧面积.【解答】解:根据圆锥的侧面积公式:πrl=π×2×6=12π,故答案为:12π.【点评】此题主要考查了圆锥侧面积公式.熟练地应用圆锥侧面积公式求出是解决问题的关键.17.已知⊙O的直径为,锐角△ABC内接于⊙O,且AB=2,BE⊥AC于E,则sin∠CBE=.【考点】圆周角定理;垂径定理;解直角三角形.【分析】连接OA、OB,由于OM⊥AB,根据垂径定理易证得∠BOM=∠AOB,而由圆周角定理可得∠BCE=∠AOB=∠BOM,因此∠CBE=∠OBM,只需求得∠OBM的正弦值即可;在Rt△OBM中,由垂径定理可得BM=1,已知⊙O的半径OB=,由勾股定理可求得OM,即可求出∠OBM即∠CBE得正弦值,由此得解.【解答】解:连接OA、OB,作OM⊥AB,∵OM⊥AB,∴AM=BM=1,∠BOM=∠AOB,∵∠BCE=∠AOB,∴∠BCE=∠BOM,∵BE⊥AC,∴∠CBE=∠OBM,在Rt△OBM中,OB=,OM===∴sin∠OBM=sin∠CBE==;故答案为.【点评】本题主要考查了垂径定理、圆周角定理、勾股定理的综合应用能力,能够根据已知条件找到∠CBE=∠OBM,是解决问题的关键.18.如图,在边长为的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),在运动过程中,则线段CP的最小值为.【考点】圆周角定理;全等三角形的判定与性质;正方形的性质;点与圆的位置关系.【分析】首先判断出△ABE≌△BCF,即可判断出∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,所以∠APB=90°;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值为多少.【解答】解:如图,,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF,∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG==,∵PG=∴CP=CG﹣PG==,即线段CP的最小值为.故答案为:.【点评】(1)解答此题的关键是判断出什么情况下,CP的长度最小.(2)此题还考查了全等三角形的判定和性质的应用,要熟练掌握,在判定三角形全等时,关键是选择恰当的判定条件.(3)此题还考查了正方形的性质和应用,以及直角三角形的性质和应用,以及勾股定理的应用,要熟练掌握.三、解答题(第19题6分,第20、21、22题各8分,第23题10分,第24、25题各12分,第26题14分,共78分)19.计算:tan260°﹣2sin45°+cos60°.【考点】特殊角的三角函数值.【分析】将特殊角的三角函数值代入求解.【解答】解:原式=()2﹣2×+=3﹣+=﹣.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.20.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上.甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.【考点】列表法与树状图法;点的坐标.【分析】(1)直接利用表格列举即可解答;(2)利用(1)中的表格求出点A落在第三象限共有两种情况,再除以点A的所有情况即可.【解答】解:(1)如下表,点A(x,y)共9种情况;(2)∵点A落在第三象限共有(﹣7,﹣2)(﹣1,﹣2)两种情况,∴点A落在第三象限的概率是.【点评】此题主要考查利用列表法求概率,关键是列举出事件发生的所有情况,并通过概率公式进行计算,属于基础题.22.某校举行以“祖国成长我成长”为主题的图片制作比赛,赛后整理参赛同学的成绩,并制作成如表如下:请根据以上图表提供的信息,解答下列问题:(1)表中m和n所表示的数分别为:m=90,n=0.3;(2)请在图中补全频数分布直方图;(3)比赛成绩的中位数落在哪个分数段?(4)若比赛成绩不低于80分可以获奖,则获奖率为多少?【考点】频数(率)分布直方图;频数(率)分布表;中位数.【分析】(1)根据60≤x<70的频数和频率求出总人数,再用总人数乘以频率求出m,用60除以总人数求出n;(2)根据(1)求出的m的值,即可补全统计图;(3)根据中位数的定义即可得出答案;(4)把比赛成绩不低于80分的频率相加即可得出获奖率.【解答】解:(1)根据题意得:=200(人),m=200×0.45=90,n==0.3;故答案为;90,0.3;(2)根据(1)补图如下:(3)∵共有200人参赛,∴比赛成绩的中位数落在70≤x<80;(4)获奖率为:0.3+0.1=0.4.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.某电影上映前,一大型影院的楼顶挂起了一块广告牌CD.李老师目高MA=1.6m,他站在离大楼底部H点45m的A处测得大楼顶端点D的仰角为30°.接着他向大楼前进14m,站在B处,测得广告牌顶端C 的仰角为45°.(1)求这幢大楼的高DH;(2)求这块广告牌CD的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形Rt△DME与Rt△CNE;应利用ME﹣NE=AB=14构造方程关系式,进而可解即可求出答案.【解答】解:(1)在Rt△DME中,ME=AH=45m;由tan30°=,得DE=45×=15m;又因为EH=MA=1.6m,因而大楼DH=DE+EH=(15+)m;(2)又在Rt△CNE中,NE=45﹣14=31m,由tan45°=,得CE=NE=31m;因而广告牌CD=CE﹣DE=(31﹣15)m;答:楼高DH为(15+)m,广告牌CD的高度为(31﹣15)m.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.24.为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y(件)与销售单价x(元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?【考点】二次函数的应用.【分析】(1)把x=20代入y=﹣10x+500求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由总利润=销售量•每件纯赚利润,得w=(x﹣10)(﹣10x+500),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣10x2+600x﹣5000=3000,求出x的值,结合图象求出利润的范围,然后设政府每个月为他承担的总差价为p元,根据一次函数的性质求出总差价的最小值.【解答】解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,300×(12﹣10)=300×2=600元,即政府这个月为他承担的总差价为600元.(2)由题意得,w=(x﹣10)(﹣10x+500)=﹣10x2+600x﹣5000=﹣10(x﹣30)2+4000∵a=﹣10<0,∴当x=30时,w有最大值4000元.即当销售单价定为30元时,每月可获得最大利润4000元.(3)由题意得:﹣10x2+600x﹣5000=3000,解得:x1=20,x2=40.∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x≤40时,4000>w≥3000.又∵x≤25,∴当20≤x≤25时,w≥3000.设政府每个月为他承担的总差价为p元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.∵k=﹣20<0.∴p随x的增大而减小,∴当x=25时,p有最小值500元.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.【点评】本题主要考查了二次函数的应用的知识点,解答本题的关键熟练掌握二次函数的性质以及二次函数最大值的求解,此题难度不大.25.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”.(1)请用直尺和圆规画一个“好玩三角形”(保留作图痕迹,不写作法);(2)如图1,Rt△ABC中,BC<AC<AB,∠C=90°,当△ABC是“好玩三角形”时,求BC:AC:A的值;(3)如图2,所示直角坐标系中,A(﹣3,0),B(3,0),M(﹣5,0),点D是以点M为圆心4为半径的圆上除x轴外的任意一点,且D为AC中点.求证:△ABC是好玩三角形;(4)如图3,已知正方形ABCD的边长为a,点P,Q从点A同时出发,以相同速度分别沿折线AB﹣BC和AD﹣DC向终点C运动,记点P经过的路程为s.若△APQ是“好玩三角形”,试求的值.【考点】圆的综合题.【分析】(1)先画一条线段AB,再确定AB的中点O,以点O为圆心,AB为半径画圆,在圆O上取一点C,连接AC、BC,则△ABC是所求作的三角形;(2)设AC=2x=BD,则AD=CD=x,从而表示出BC=x,利用勾股定理得AB==x,从而求得三条线段的比;(3)利用两边对应成比例且夹角相等证得△AMD∽△DMB后得到BD=2AD=AC,从而说明三角形ABC 是好玩三角形;(4)当点P在AB上时,△APQ是等腰直角三角形,不可能是“好玩三角形”,然后分等腰三角形APQ底边PQ等于AE,即PQ=AE时和等腰三角形APQ的腰AP与它的中线QM相等两种情况求得结论即可.【解答】解:(1)如图,①作一条线段AB,②作线段AB的中点O,③以点O为圆心,AB为半径画圆,④在圆O上取一点C,连接AC、BC,∴△ABC是所求作的三角形(点E、F除外).(2)如图1,由题意可得,只能是AC边上的中线BD等于AC,设AC=2x=BD,则AD=CD=x,所以,BC=x,则AB==x,所以,BC:AC:AB=:2:;(3)如图2,三角形AMD中,AM=2,MD=4,三角形MBD中,MD=4,MB=8,又∵∠DMA=∠BMD,∴△AMD∽△DMB,∴BD=2AD=AC,∴三角形ABC是好玩三角形;(4)当点P在AB上时,△APQ是等腰直角三角形,不可能是“好玩三角形”当P在BC上时,连接AC交PQ于点E,则△PCQ、△PCE、△QCE都是等腰直角三角形,①如图3若等腰三角形APQ底边PQ等于AE,即PQ=AE时,设PE=QE=x,则AE=2x,∴AC=AE+CE=3x,a==x,s=AB+BP=a+a﹣PC=2×x﹣x=2x,∴=;②如图4,若等腰三角形APQ的腰AP与它的中线QM相等,即AP=QM时,可得QM=AP=AQ,作QN⊥AP于N,∴MN=AN=PM,设MN=x,则QN==x,tan∠APQ==,tan∠APQ=,∴=,∴AE=k,PE=CE=3k,∴AC=AE+CE=(+3)k,∴a==k,∴PC=PE,∴PB=a﹣PC=k﹣3k=k,∴s=a+PB=k+k=k,∴=×=;【点评】本题是一道相似形综合运用的试题,考查了相似三角形的判定及性质的运用,勾股定理的运用,等腰直角三角形的性质的运用,等腰三角形的性质的运用,锐角三角形函数值的运用,解答时灵活运用三角函数值建立方程求解是解答的关键.26.在平面直角坐标系中△ABC的边AB在x轴上,且OA>OB,以AB为直径的⊙P过点C,若C的坐标为(0,2),AB=5,经过A、B、C三点的抛物线为y=ax2+bx+c.(1)求点A、B的坐标及抛物线的解析式.(2)若∠ACB的平分线所在的直线l交x轴于点D,交圆于点E.①求证:PE⊥x轴;②试求直线l对应的一次函数的解析式.(3)过点D任作一直线l分别交射线CA,CB(点C除外)于点M,N,则+的值是否为定值?若是,求出定值;若不是,请说明理由.【考点】二次函数综合题.【分析】(1)连结CP,在Rt△CPO中,求出OP==1.5,进而求出A,B的坐标;然后利用待定系数法求出函数解析式;(2)①根据CE平分∠ACB,得到E为弧AB的中点,根据垂径定理可知PE⊥x轴;②求出E点坐标,利用待定系数法求出函数解析式;(3)过D作DE⊥AC于E,DN⊥AC于F,根据△MDE∽△MNC,△DNF∽△MNC,得到=,=,从而求出+==.【解答】解:(1)如图,连结CP,在Rt△CPO中,OP==1.5,∴A(﹣4,0),B(1,0);设二次函数解析式为y=a(x﹣1)(x+4),将C(0,2)代入上式得2=a(0﹣1)(0+4),解得a=﹣,函数解析式为y=﹣(x﹣1)(x+4)=﹣x2﹣x+2;(2)①∵CE平分∠ACB,∴E为弧AB的中点,∴PE⊥x轴;②∵E为弧AB的中点∴E(﹣,﹣),将C(0,2),E(﹣,﹣)分别代入解析式y=kx+b得,,解得,,函数解析式为y=3x+2.(3)令y l=0,得x=﹣,∴D(﹣,0),∴CD=,∴∠DCF=45°,∠ACB=90°,∴DF=,过D作DE⊥AC于E,DN⊥AC于F,∵CE平分∠ACB,∴DE=DF=,又∵△MDE∽△MNC,△DNF∽△MNC,∴=,=,∴+==.【点评】本题考查了二次函数综合题,涉及勾股定理、待定系数法求函数解析式、圆的性质、垂径定理等知识,难度较大.。
2019年中考数学模拟试卷含答案
2019年中考数学模拟试卷含答案2019年九年级数学模拟试卷一、选择题(本大题共有8小题,每小题3分,共24分)1.-3的相反数是()A。
3 B。
-3 C。
1/3 D。
-1/32.计算2×3的结果是()A。
5 B。
6 C。
23 D。
33.某市棚户区改造项目总占地亩。
这个数用科学计数法表示为()A。
1.29×10^5 B。
1.129×10^1 C。
1.129×10^4 D。
1.129×10^34.下列命题中错误的是()A。
两组对边分别对应相等的四边形是平行四边形B。
两条对角线相等的平行四边形是矩形C。
两条对角线垂直的平行四边形是菱形D。
两条对角线垂直且相等的四边形是正方形5.某同学一周中每天体育运动所花时间(单位:分钟)分别为:35,40,45,40,55,40,48.这组数据的中位数是()A。
35 B。
40 C。
45 D。
486.如图所示,△ABC中,点D、E分别是AC、BC边上的点,且DE∥AB,CD:AD=2:1,△ABC的面积是18,则△DEC的面积是()A。
8 B。
9 C。
12 D。
157.若关于x的一元二次方程kx^2-2x-1=0没有实数根,则k的取值范围是()A。
k>-1 B。
k>-1且k≠0 C。
k<1 D。
k<-18.如图1,正方形纸片ABCD的边长为2,翻折∠B、∠D,使两个直角的顶点重合于对角线BD上一点P,EF、GH分别是折痕(如图2)。
设AE=x(0<x<2),则以下哪个选项是正确的?A。
当x=1时,点P是正方形ABCD的中心。
B。
当x=1/2时,EF+GH=AC。
C。
当0<x<2时,六边形AEFCHG面积的最大值是3.D。
当0<x<2时,六边形AEFCHG周长的值不变。
二、填空题(本大题共10小题,每小题3分,共30分,把答案填在相应的空格内)9.分解因式:2x^2-8=2(x+2)(x-2)10.二次根式1-x有意义的条件是x≤1.11.已知∠α=20°,则∠α的余角等于70°。
2019年最新中考数学模拟练习试卷及答案7673784
中考数学模拟试卷及答案解析学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.小数表示2610-⨯结果为( ) A . 0.06B . -0.006C .-0.06D .0.0062.如果点M 在直线1y x =-上,则点M 的坐标可以是( ) A .(-1,O )B .(0,1)C .(1,0)D .(1,-1)3.一个三角形的两边长为3和6,第三边长为方程(x -2)(x -4)=0的根,则这个三角形的周长是( ) A .11B .12C .13D .11或134.如图,AC 与BD 互相平分于点O ,则△AOB 至少绕点O 旋转多少度才可与△COD •重合( ) A .60°B .30°C .180°D .不确定5.如图,将两根钢条AA ′、BB ′的中点O 连在一起,使AA ′、BB ′可以绕着点O 自由转动,就做成了一个测量工件,则A ′B ′的长等于内槽宽AB ,那么判定△OAB ≌△OA ′B ′的理由是( ) A .边角边B .角边角C .边边边D .角角边6.下列方程中与方程x+y=1有公共解2,3x y =-⎧⎨=⎩的是( )A .y-4x=5B .2x-3y=-13C .y=2x+1D .x=y-1 7.计算32)(x x ⋅-所得的结果是( ) A .5xB .5x -C .6xD .6x -8.在△ABC 中,三个内角满足以下关系:∠A=12∠B=13∠C ,那么这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .任意三角形9.如图所示,在4×4的正方形网格中,∠1,∠2,∠3的大小关系是( ) A .∠1>∠2>∠3B .∠l<∠2=∠3C .∠1=∠2>∠3D .∠1=∠2=∠310.下列长度的三条线段能组成三角形的是( ) A .5cm,3cm,1cmB .6cm,4cm,2cmC . 8cm, 5cm, 3cmD . 9cm,6cm,4cm11.在一个暗箱里放有a 个除颜色外其他完全相同的球,这a 个球中只有3个红球. 每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱. 通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( ) A . 12B . 9C . 4D . 312.下列事件中,为必然事件的是( )A .掷一枚均匀的正方形骰子,骰子停止后朝上的点数是3B .一枚均匀的正方形骰子,骰子停止后朝上的点数不是奇数便是偶数C .随机从0,1,2,·…,9这十个数中选取两个数,和为 20D .开电视,正在播广告13.从1~9这9个自然数中任取一个,是2的倍数或3的倍数的概率为( ) A .79B .29C . 23D . 5914.下图中,正确画出△ABC 的 AC 边上的高的是 ( ) A .B .C .D .15.下列各图中,正确画出△ABC 的AC 边上的高的是( )A .B .C .D .16. 如图,由△ABC 平移而得的三角形有( ) A . 8个B . 9个C . 10个D . 16个17.如图,在等边ABC △中,9AC =,点O 在AC 上,且3AO =,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋转60得到线段OD .要使点D 恰好落在BC 上,则AP 的长是( )A .4B .5C .6D .818.若干桶方便面摆放在桌子上,如图所示是它的三视图,则这一堆方便面共有( ) A .6桶B .7桶C .8桶D .9桶19.一个几何体的三视图如下图所示,则这个几何体是( )A .圆柱B .圆锥C .长方体D .正方体20.有下列三个调查:①了解杭州市今年夏季冷饮市场冰琪淋的质量;②调查八年级(1)班50名学生的身高;③了解一本300页的书稿的错别字个数.其中不适合采用普查而适合采用抽样调查方式的有( ) A .3个B .2个C .1个D .0个21.在“我为震灾献爱心”的捐赠活动中,某班40位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数是( ) A .30元B .35元C .50元D .100元22.当x=2 时,下列不等式中成立的是( ) A .20x -<B .5(2)0x ->C .20x +>D .2(2)9x +>23.如图,在Rt △ABC 中,CD 是斜边AB 上的高,角平分线AE 交CD 于H ,EF ⊥AB 于F ,则下列结论中不正确的是( ) A .∠ACD=∠BB . CH=CE=EFC .AC=AFD .CH=HD24.如图,已知AB=AC ,BE=CE ,延长AE 交BC 于D ,则图中全等三角形的对数共有( ) A .1对B .2对C .3对D .4对25.不等式2x -7<5-2x 的正整数解有 ( ) A .1个B .2个C .3个D .4个26. 下列说法不正确的是( )A.8 和-8 互为相反数B.8 是-8 的相反数C.-8 是8 的相反数D.-8 是相反数27.如图,在光明中学学生耐力测试比赛中,甲、乙两学生测试的路程s(m)与时间t(s)之间的函数关系图象分别为折线OABC和线段OD,下列说法正确的是()A.乙比甲先到达终点B.乙测试的速度随时间增加而增大C.比赛进行到29.4 S时,两人出发后第一次相遇D.比赛全程甲的测试速度始终比乙的测试速度快28.某校九年级(1)班50名学生中有20名团员,他们都积极报名参加学校开展的“文明劝导活动”.根据要求,该班从团员中随机抽取1名参加,则该班团员京京被抽到的概率是()A.150B.12C.120D.2529.与分式2xy的值相等的是()A.222xy++B.63xyC.3(2x)yD.2xy-30.在扇形统计图中,若将圆均匀地分成10份,则每份的圆心角的度数是()A.10°B.18°C.36°D.72°31.若火箭发射点火前5秒记为-5秒,那么火箭发射点火后10秒应记为()A.-10秒B.-5秒C.+5秒D.+10秒32.在-3,+3,12-,-4.7,-0.1,0,2中,最大的数是()A. -0.1 B. 0 C.-4.7 D.+333.已知|2006||2007|0x y-++=,则x与y的大小关系是()A.x y< B.x y>C.0x y<-<D.0x y>->34.2007年12月某日,我国部分城市的平均气温情况如下表,记温度零上为正(单位:℃),则当天平均气温最低的城市是()A .广州B .哈尔滨C .北京D .上海35.+8 比 -5 大( ) A .13B .-13C .8D .5.36.下列说法正确的是( ) A .一个数的偶次幂一定是正数 B .一个正数的平方比原数大 C .一个负数的立方比原数小D .互为相反数的两个数的立方仍互为相反数37.小红妈妈的 2 万元存款到期了,按规定她可以得到 2 的利息,但同时必须向国家缴 纳 20% 的利息所得税,则小红妈妈缴税的金额是( ) A .80 元 B .60 元C .40 元D .20 元38.54表示( ) A .4个5 相乘B . 5个4相乘C .5与4的积D . 5个4相加的和39.在数轴上,到原点的距离是3的点共有( ) A . 1个B . 2个C .3个D .4个40.下列各选项中,两个单项式不是同类项的是( ) A .23x y 和213yx -B .1与-2C .2m n 和22310nm ⨯D .213a b 与213b a41.化简1(1)(1)n n a a +-+-(n 为正整数)的结果为( ) A .0B . -2C . 2D .2 或-242.甲比乙大10岁,五年前甲的年龄是乙的年龄的3倍,甲现在的年龄为( ) A .20岁B .15岁C .10岁D .25岁43.若)3)(1(+-x x =n mx x ++2 ,则m 、n 的值分别为 ( ) A .m=1,n=3B .m=4 ,n=5C .m=2 ,n= —3D .m= —2 ,n=344.下列方程中,解是2x =的是( ) A . 360x +=B . 11042x -+= C .223x =D .531x -=45.下列函数中,y 的值随x 的值增大而增大的函数是( ) A .2y x =-B .21y x =-+C .2y x =-D .2y x =--46.下列说法:①直线向两方无限延伸,它无长短之分,但有粗细之别;②两条直线相交, 只有一个交点;③点a 在直线AB 外;④直线动经过点P .其中不正确的有( ) A .1个B .2个C .3个D .4个47.如图,0是直线AB 上一点,OD 是∠BOC 的平分线,0E 是∠AOC 的平分线,在下列说法 中错误的是 ( )C NMA .∠00D 与∠COE 互余B .∠COE 与∠BOE 互补C .∠EOC 与∠BOD 互余 D .∠BOD 与∠BOE 互补48.若∠1和∠2互为补角,且∠1>∠2,则∠2的余角等于( ) A .12(∠1-∠2)B .12(∠1+∠2)C .12∠1+∠2D .∠l-12∠249.如图,点A 、B 、C 、D 为直线MN 上的四点,图中分别以这四点为端点的线段有( ) A .3条 B .4条 C .5条 D .6条50.如图是超市中某品牌洗发水的价格标签,一服务员不小心将墨水滴在标签上,使得原价模糊不清,请你根据标签上的数据算一算该洗发水的原价是( ) A .22元 B .23元 C .26元D .24元51.现有两根木棒,它们的长度分别是20 cm 和30 cm .如果不改变木棒的长度,要钉成一个三角形木架,那么应在下列四根木棒中选取( ) A .10 cm 的木棒B .20 cm 的木棒C .50 cm 的木棒D .60 cm 的木捧52.如图所示,由∠ABC=∠DCB ,∠ACB=∠DBC ,直接能判定全等的三角形是 ( ) A .△AB0≌△DODB .△ABC ≌△DCB C .△ABD ≌△DCA D .△OAD ≌△0BC53.下列四个图案中,从对称的角度考虑,其中不同于其他三个的图案是( )54.赵师傅透过平举的放大镜从正上方看到水平桌面上的菱形图案的一角(如图所示),那么∠A 与放大镜中的∠C 的大小关系是( )A .∠A=∠CB .∠A >∠CC .∠A <∠CD .∠A 与∠C 的大小无法比较55.下列等式成立的是( ) A .22()()x y x y -=-- B .22()()x y x y +=-- C .222()m n m n -=-D .222()m n m n +=+56.下列多项式的运算中正确的是( ) A .222()x y x y -=-B .22(2)(22)24a b a b a b ----C . 11(1)(1)1222l a b ab +-=-D .2(1)(2)2x x x x +-=--57.若321()44m n x y x y x ÷=,则( ) A .m = 6,n =1B . m= 5 , n= 1C .m = 5,n =0D .m= 6,n =058.设P=2y-2,Q=2y+3,且3P-Q=1,则y 的值是 ( ) A .0.4 B .2.5 C .-0.4 D .-2.5 59.若两个图形位似,则下列叙述不正确的是( ) A .每对对应点所在的直线相交于同一 B .两个图形上的对应线段之比等于位似比 C .两个图形上对应线段必平行 D .两个图形的面积比等于位似比的平方 60.下列说法中,错误的是( ) A .长方体、立方体都是棱柱 B .竖放的直三棱柱的侧面是三角形C .竖放的直六棱柱有六个侧面,侧面为长方形 C .球体的三种视图均为同样大小的图形 61.下列函数中,属于二次函数的是( ) A .y=π2x +1B .y =2-x 2+(x -1)2C .y =-x -2D .y =x 2-1262.△DEF 由△ABC 平移得到的,点A (-1,-4)的对应点为D (1,-l ),则点B (1,1)的对应点E ,点C (-1,4)的对应点F 的坐标分别为( ) A .(2,2),(3,4)B .(3,4),(1,7)C .(-2,2),(1,7)D .(3,4),(2,-2)63.如图,A 、B 、C 是⊙O 上的三点,若∠BOC=2∠BOA ,则∠CAB 是∠ACB 的( )A .2 倍B .4 倍C .12D . 1倍64.如图,Rt △ACB 中,∠C= 90°,以A 、B 分别为圆心,lcm 为半径画图,则图中阴影部分面积是( ) A .14πB .1:8πC .38πD .12π65.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较 大的半圆面积,则这个三角形为 ( )A .锐角三角形或钝角三角形B .钝角三角形C .锐角三角形D .直角三角形66.二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( ) A .a <0B .abc >0C .c b a ++>0D .ac b 42->067.用弧长为8π的扇形做成一个圆锥的侧面,那么这个圆锥的底面的半径是( ). A .4πB .8πC .4D .868.已知圆锥侧面展开图的圆心角为90°,则该圆锥的底面半径与母线长的比为( ) A .1∶2B .2∶1C .1∶4D .4∶169.如图所示,草地上一根长5米的绳子,一端拴在墙角的木桩上,加一端栓着一只小羊R .那么,小羊在草地上的最大活动区域的面积是( ) A .m 2213π B .m 2427π C .m 2213π D .m 2427π70.下列各线段中,能成比例的是( ) A .3,6,7,9B .2,5,6,8C .3,6,9,18D .1,2,3,471.如图,△ABC 中,∠BAC= 90°,AD ⊥BC 于D ,ED ⊥AB 于 E ,则图中与△ADE 相似的三角形个数为( ) A .1 个B .2 个C .3 个D .4 个72.若抛物线2y ax =经过点 (m ,n ),则它也经过点( ) A .(一m ,n )B .(m ,一n )C . (-m, -n )D .(n ,m )73.如图,梯形 ABCD 中,AB ∥CD ,如果ODC S :1:3BDC S ∆∆=,那么:ODC ABC S S ∆∆=( ) A .1:5B .1:6C .1:7D .1:974.苹果熟了,从树上落下所经过的路程 S 与下落的时间 t 满足212s gt =(g 是不为0 的常数),则 S 与t 的函数图象大致是( )A .B .C .D .75.反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( )A .2B .-2C .4D .-476. 当锐角∠A>300 时,cosA 的值( )A .小于12B . 大于12C .D . 77.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A .25B .310C .320D .1578.如图所示,电线杆 AB 的中点C 处有一标志物,在地面D 点处测得标志的仰角为 45°,若点 D 到电线杆底部点B 的距离为a, 则电线杆 AB 的长可表示为( ) A .aB . 2aC .32a D .52a79. 如图,在300 m 高的峭壁上测得一塔顶与塔基的俯角分别为 30°和 60°,则塔高 CD 约为( ) A .100mB .200mC .150mD .180m80.如图所示,一只蚂蚁在正方形纸片上爬行,正好停在质数上的概率是( ) A .14B .13C .49D .5981.已知⊙O 的半径为6cm ,如果一条直线和圆心O 的距离为5cm ,那么这条直线和这个圆的位置关系为( ) A .相离B .相交C .相切D .相切或相离82.如图,一个小球从A 点沿制定的轨道下落,在每个交叉口都有向左或向右两种机会均等的结果,小球最终到达 H 点的概率是( ) A .12B .14C .16D .1883.已知关于x 的一元二次方程221()04x R r x d -++=无实数根,其中 R 、r 分别是⊙O 1、⊙O 2的半径,d 为两圆的圆心距,则⊙O 1、⊙O 2的位置关系为( ) A .外切B .内切C .外离D .外切或内切84.人走在路灯下的影子的变化是( ) A .长→短→长B .短→长→短C .长→长→短D .短→短→长85.由6个大小相同的小正方体组合而成的立方体图形如图所示,则关于它的三视图说法正确的是( )A .主视图的面积最大B .左视图的面积最大C .俯视图的面积最大D .三个视图的面积一样大86.如图,AC 是⊙O 的直径,∠BAC=20°,P 是弧AB 的中点,则∠PAB=( )A .35°B .40°C .60°D .70°87.两个相似三角形的面积比为 4:9,那么这两个三角形对应边的比为( ) A .4:9B .l6:81C .2:3D .8:988.根据下列条件能画出唯一△ABC 的是 ( ) A .AB =3,BC =4,AC =8B .AB =4,BC =3,∠A =30°C .∠A =60°,∠B =45°,AB =4D .∠C =90°,AB =689.下列计算正确的是( )A 4=±B .1=C 4=D .2632=⋅ 90. 下列各方程中,无解的是( )A 1=-B .3(2)10x -+=C .210x -=D .21xx =- 91.如果1x =-是方程2240x mx +-=的一个根,那么方程的另一个根是( ) A .2-B .1-或2C .2D .192.用配方法解方程2230x x --=时,配方所得的方程是( ) A .2125()46x i -=B .2123()416x +=C .2123()43x -=D .217()42x +=93.若方程02=++c bx ax )0(≠a 中,c b a ,,满足0=++c b a 和0=+-c b a ,则方程的根是( ) A .1,0B .-1,0C .1,-1D .无法确定94.三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是( ) A .9 B .11C .13D .11或1395.在频数分布直方图中,每个小长形的高度等于( ) A .组距B .组数C .每小组的频率D .每小组的频数96.等腰△ABC ,AB=AC ,AD 是角平分线,则①AD ⊥BC ,②BD=CD ,③∠B=∠C ,④∠BAD=∠CAD 中,正确的个数是( ) A .1个B .2个C .3个D .4个97.在菱形ABCD 中,若∠A :∠B=2:1,则∠CAD 的平分线AE 与边CD 间的关系是( ) A .相等B .互相垂直但边CD 不一定被AE 平分C .不垂直但边CD 被AE 平分 D .垂直且边CD 被AE 平分98..已知平面直角坐标系内,0(0,0),A (1.3), C (3,0),若以0,A ,C ,B 为顶点的四边形是平行四边形,则B 点不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限99.在绘制频数分布直方图时,各个小长方形的高等于相应各组的( ) A .频数 B .组距 C .组中值 D .频率100.点A 、C 是反比例函数(0)ky k x=>图象上的两点,AB ⊥x 轴于点 B ,CD ⊥x 轴于点D. 若设 Rt △AOB 和 Rt △GOD 的面积分别为 S 1、S 2, 则( ) A . S 1>S 2B . S 1=S 2C .S 1<S 2D .无法确定101.如图,EF 过□ABCD 的对角线的交点O 交AD 于E ,交BC 于F ,若AB=4,BC=5,OE=1.5,那么四边形EFCD 的周长为( ) A .16B .14C .12D .10102.在下列定理中,没有逆定理的是( ) A .有斜边和一直角边对应相等的两个直角三角形全等 B .直角三角形两个锐角互余 C .全等三角形对应角相等D .角平分线上的点到这个角两边的距离相等103.如图,把一个正方形三次对折后沿虚线剪下,则展开所得图形是( )104.下列命题是假命题的是( ) A .四个角相等的四边形是矩形B .对角线互相平分的四边形是平行四边形C .四条边相等的四边形是菱形D .对角线互相垂直且相等的四边形是正方形105.如图,矩形ABCD 的周长为20cm ,两条对角线相交于O 点,过点O 作AC 的垂线EF ,分别交AD BC ,于E F ,点,连结CE ,则CDE △的周长为( )106.如图,梯形ABCD 中,AD ∥BC,AD=AB,BC=BD,∠A=100°,则∠C=( ) A .80°B .70°C .75°D .60°107.在□ABCD 中,若∠A=60°,则∠C 的度数为( ) A .30°B .60°C .90°D .120°108.某区的食品总消费为 a (kg )(a 为常数),设该区平均每人消费食品数为 y (kg ),人口数为 x (人),则y 与x 的函数图象为( )A .B .C .D .109.菱形的两条对角线长分别为6 cm ,8 cm ,那么这个菱形的周长为 ( ) A .40 cmB .20 cmC .10 cmD .5 cm110.下列四个命题中,属于真命题的是( ) A .底边相等的两个等腰三角形全等 B .同旁内角互补 C .两个锐角的和一定是钝角D .对顶角相等111.下列二次根式中,不能再化简的是( )A B C D 112.下列英文字母中是轴对称图形的是( ) A .SB .HC .PD .Q113.任何有理数的平方的末位数,不可能是( ) A . 1,4,9,0 B . 2,3,7,8C .4,5,6,1D .1,5,6,9114.已知代数式12x a+1y b与-3x b y a-b 是同类项,那么a 、b 的值分别是( ) A .2,1a b =⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =-⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩115.正方形 ABCD 的边长为 1,对角线 AC 、BD 相交于点O ,若以 O 为圆心作圆,要使点A 在⊙O 外,则所选取的半径可能是( )A .12B .2C .2D .2116.下列说法正确的是( ) A .相等的弦所对的圆心角相等 B .相等的圆心角所对的弧相等117.如图,点O 是两个同心圆的圆心,大圆半径OA 、OB 交小圆于点C 、D ,下列结论中正确的个数有( ) (1)⌒AB =⌒CD ;(2 )AB= CD ;(3)∠OCD=∠OAB A .0 个B .1个C .2 个D .3 个118.已知0a <,且不等式组x a x b >⎧⎨>⎩的解是x a >,则不等式组x ax b <⎧⎨->⎩的解是( ) A . b x a -<<B .x b >或x a <C .x a <D . 无解119. 方程(3)3x x x +=+的解是( ) A . 1x =B . 10x =,23x =-C . 10x =,23x =D .11x =,23x =-120.如图,四边形ABCD 为矩形纸片.把纸片ABCD 折叠,使点B 恰好落在CD 边的中点E 处,折痕为AF .若CD =6,则AF 等于 ( )A .34B .33C .24D .8【参考答案】***试卷处理标记,请不要删除一、选择题1.A 2.C 3.C 4.C 5.A 6.B 7.A 8.A 9.C 10.D 11.A14.C 15.C 16.B 17.C 18.B 19.A 20.C 21.C 22.C 23.D 24.C 25.B 26.D 27.C 28.C 29.B 30.C 31.D 32.D 33.B 34.B 35.A 36.D 37.A 38.B 39.B 40.D 41.A 42.A 43.C 44.B48.A 49.D 50.D 51.B 52.B 53.C 54.A 55.B 56.D 57.B 58.B 59.C 60.B 61.D 62.B 63.A 64.A 65.D 66.C 67.C 68.C 69.B 70.C 71.D 72.A 73.B 74.B 75.D 76.C 77.B 78.B82.B 83.C 84.A 85.C 86.A 87.C 88.C 89.D 90.A 91.C 92.A 93.C 94.C 95.D 96.D 97.D 98.C 99.A 100.B 101.C 102.C 103.A 104.D 105.D 106.B 107.B 108.D 109.B 110.D 111.D 112.B116.C 117.B 118.D 119.D 120.A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考模拟测试卷一(120分钟,150分)一、选择题(每小题4分,共48分)1.计算|√2-1|+(√2)0的结果是( )A.1B.√2C.2-√2D.2√2-12.下列运算正确的是( )A.a3+a3=2a6B.a6÷a-3=a3C.a3·a2=a6D.(-2a2)3=-8a63.在桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,设组成这个几何体的小正方体的最少个数为m,最多个数为n,则m,n的值分别为( )A.m=5,n=13B.m=8,n=10C.m=10,n=13D.m=5,n=104.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若∠ABE=20°,则∠EFC'=()A.115°B.120°C.125°D.130°5.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为( ) A.7 B.5 C.4 D.36.游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽.每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽是红色游泳帽的2倍,设男孩有x 人,女孩有y 人,则下列方程组正确的是( )A.{x -1=yx =2y B.{x =y x =2(y -1)C.{x -1=y x =2(y -1)D.{x +1=yx =2(y -1)7.如图,二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+c 和反比例函数y=bx 在同一平面直角坐标系中的图象大致是( )8.(2018辽宁沈阳)如图,正方形ABCD 内接于☉O,AB=2√2,则AB ⏜的长是( )A.πB.32π C.2π D.12π9.若关于x 的不等式组{x -a ≤0,5-2x <1的整数解只有1个,则a 的取值范围是( )A.2<a<3B.3≤a<4C.2<a≤3D.3<a≤410.如图,直尺、有60°角的直角三角板和光盘如图摆放,A 为60°角与直尺的交点,B 为光盘与直尺的交点,AB=3,则光盘表示的圆的直径是( )A.3B.3√3C.6D.6√311.把一元二次方程x 2-6x+1=0配方成(x+m)2=n 的形式,正确的是( )A.(x+3)2=10B.(x-3)2=10C.(x+3)2=8D.(x-3)2=812.在平面直角坐标系中,点P(-4,2)向右平移7个单位长度得到点P 1,点P 1绕原点逆时针旋转90°得到点P 2,则点P 2的坐标是( ) A.(-2,3) B.(-3,2) C.(2,-3) D.(3,-2)二、填空题(每小题4分,共24分)13.H9N2型禽流感病毒的病毒粒子的直径在0.000 08毫米~0.000 12毫米之间,数据0.000 12用科学记数法表示为 . 14.已知△ABC 内接于半径为5厘米的☉O,若∠A=60°,则边BC 的长为 厘米.15.在某一时刻,一个身高1.6米的同学影长2米,同时学校旗杆的影子有一部分落在12米外的墙上,墙上影高1米,则旗杆高为 米.16.如图,在直角坐标系中放入一个矩形纸片ABCO,OC=9.将纸片翻折后,点B 恰好落在x 轴上,记为B',折痕为CE,已知tan∠OB'C=34.则点B'的坐标为 .17.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a 的值为 .18.如图,在△ABC 和△ACD中,∠B=∠D,tan∠B=12,BC=5,CD=3,∠BCA=90°-12∠BCD,则AD= .三、解答题(共7小题,共66分))÷(a2+1),其中a=√2-1.19.(9分)先化简,再求值:(a-1+2a+120.(10分)为响应市政府关于“垃圾不落地·市区更美丽”的主题宣传活动,某校随机调查了部分学生对垃圾分类知识的掌握情况.调查选项分为“A:非常了解,B:比较了解,C:了解较少,D:不了解”四种,并将调查结果绘制成两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)把两幅统计图补充完整;(2)若该校学生有1 000名,根据调查结果,估计该校“非常了解”与“比较了解”的学生共有名;(3)已知“非常了解”的同学有3名男生和1名女生,从中随机抽取2名进行垃圾分类的知识交流,请用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(12分)(2018内蒙古包头)某商店以固定进价一次性购进一种商品,3月份按一定售价销售,销售额为2 400元,为扩大销量,减少库存,4月份在3月份售价基础上打9折销售,结果销售量增加30件,销售额增加840元.(1)求该商店3月份这种商品的售价是多少元;(2)如果该商店3月份销售这种商品的利润为900元,那么该商店4月份销售这种商品的利润是多少元?22.(10分)如图,已知A(3,m),B(-2,-3)是直线AB和某反比例函数图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x在什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.23.(14分)如图,在△ABC和△DCB中,AB=DC,AC=DB,AC、DB交于点M.(1)求证:△ABC≌△DCB;(2)作CN∥BD,BN∥AC,CN交BN于点N,四边形BNCM是什么四边形?请证明你的结论.x+m与x轴、24.(15分)如图1,在平面直角坐标系xOy中,直线l:y=34x2+bx+c经过点B,且与直y轴分别交于点A和点B(0,-1),抛物线y=12线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l 于点E,点F在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG 的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.25.(15分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路:过点C作CD⊥AB于点D,则CD将△ABC 分割成2个与△ABC相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一题作答:我选择题.A:①如图3-1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a= (用含b的式子表示);②如图3-2,若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a= (用含n,b的式子表示);B:①如图4-1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含b的式子表示);②如图4-2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a= (用含m,n,b的式子表示).中考模拟测试卷一一、选择题1.B2.D3.A4.C5.C6.C7.D8.A9.B 10.D 11.D 12.A 如图所示:由图可知P 1(3,2),P 2(-2,3),故选A. 二、填空题 13.答案 1.2×10-4 14.答案 5√3解析 连接OB,OC,过点O 作OD⊥BC 于点D,∴BD=CD=12BC,∵∠A=60°, ∴∠BOC=2∠A=120°, ∵OB=OC, ∴∠OBC=∠OCB=180°-∠BOC2=30°,∵OB=5厘米,∴BD=OB·cos 30°=5×√32=5√32(厘米),∴BC=2BD=5√3(厘米). 15.答案 10.6解析 相同时刻的物高与影长成比例,设墙上影高落在地上为y 米,则1.62=1y,解得y=1.25.则学校旗杆的影长为12+1.25=13.25米, 设该旗杆的高度为x 米,则1.62=x 13.25,解得x=10.6.即旗杆高10.6米. 16.答案 (12,0)解析 在Rt△OB'C 中,tan∠OB'C=34,∴OCOB '=34,即9OB '=34,解得OB'=12,则点B'的坐标为(12,0). 17.答案 75解析 观察每个图形最上边正方形中数字规律为1,3,5,7,9,11.左下角数字变化规律为2,22,23,24,25,26.所以,b=26.观察数字关系可以发现,右下角数字等于同图形中最上边数字与左下角数字之和,所以a=26+11=75. 18.答案 2√5解析 如图,延长DC 至Q,使CQ=BC=5,连接AQ,过A 作AH⊥DQ 于H,则DQ=DC+CQ=CD+BC=3+5=8,∵∠BCA+∠ACQ+∠BCD=180°,∠BCA=90°-12∠BCD,设∠BCD=x°,则∠BCA=90°-12x°,∴∠ACQ=180°-x°-(90°-12x °)=90°-12x°=∠BCA,又∵AC=AC,∴△BCA≌△QCA(SAS), ∴∠B=∠Q=∠D,∴AD=AQ, ∵AH⊥DQ,∴DH=QH=12DQ=4,tan∠B=tan∠Q=AH QH=AH 4=12,∴AH=2,∴AQ=AD=2√5. 三、解答题 19.解析 原式=(a+1)(a -1)+2a+1·1a 2+1=a 2+1a+1·1a 2+1=1a+1,当a=√2-1时,原式=√22.20.解析 (1)∵被调查的学生人数为4÷8%=50,∴C 选项的人数为50×30%=15,D 选项的人数为50-(4+21+15)=10, 则B 选项所占百分比为2150×100%=42%,D 选项所占百分比为1050×100%=20%.补全统计图如下:(2)500.(3)画树状图如下:共有12种等可能结果,其中满足条件的结果有6种, ∴P(一男一女)=12.21.解析 (1)设该商店3月份这种商品的售价为x 元. 根据题意,得2 400x=2 400+8400.9x-30,解得x=40.经检验,x=40是所得方程的解,且符合题意. 答:该商店3月份这种商品的售价为40元. (2)设该商品的进价为a 元. 根据题意,得(40-a)×2 40040=900,解得a=25.4月份的售价:40×0.9=36(元), 4月份的销售数量:2 400+84036=90(件).4月份的利润:(36-25)×90=990(元).答:该商店4月份销售这种商品的利润是990元. 22.解析 (1)设反比例函数解析式为y=kx (k≠0),把B(-2,-3)代入,可得k=-2×(-3)=6, ∴反比例函数解析式为y=6x ;把A(3,m)代入y=6x,可得m=2,∴A(3,2),设直线AB 的解析式为y=ax+b(a≠0),把A(3,2),B(-2,-3)代入,可得{2=3a +b ,-3=-2a +b ,解得{a =1,b =-1,∴直线AB 的解析式为y=x-1.(2)当x<-2或0<x<3时,直线AB 在双曲线的下方.(3)存在点C,使得△OBC 的面积等于△OAB 的面积. ①延长AO 交双曲线于点C 1, ∵点A 与点C 1关于原点对称, ∴AO=C 1O,∴△OBC 1的面积等于△OAB 的面积, 此时,点C 1的坐标为(-3,-2);②过点C 1作BO 的平行线,交双曲线于点C 2,则△OBC 2的面积等于△OBC 1的面积,∴△OBC 2的面积等于△OAB 的面积, 由B(-2,-3)可得OB 的解析式为y=32x,可设直线C 1C 2的解析式为y=32x+b',把C 1(-3,-2)代入,可得-2=32×(-3)+b',解得b'=52,∴直线C 1C 2的解析式为y=32x+52,解方程组{y =6x,y =32x +52,可得C 2(43,92); ③过A 作OB 的平行线,交反比例函数图象于点C 3,则△OBC 3的面积等于△OAB 的面积,设直线AC 3的解析式为y=32x+b″,把A(3,2)代入,可得2=32×3+b″,解得b″=-52,∴直线AC 3的解析式为y=32x-52,联立方程组{y =6x ,y =32x -52,可得C 3(-43,-92),综上所述,点C 的坐标为(-3,-2)或43,92或(-43,-92).23.解析 (1)证明:在△ABC 和△DCB 中, ∵{AB =DC ,AC =DB ,BC =CB ,∴△ABC≌△DCB(SSS). (2)四边形BNCM 为菱形. 证明如下: ∵△ABC≌△DCB, ∴∠DBC=∠ACB, 即MB=MC, ∵BN∥AC,CN∥BD,∴四边形BNCM 为平行四边形, 又∵MB=MC,∴平行四边形BNCM 为菱形.24.解析 (1)∵直线l:y=34x+m 经过点B(0,-1),∴m=-1,∴直线l 的解析式为y=34x-1.∵直线l:y=34x-1经过点C(4,n),∴n=34×4-1=2,∵抛物线y=12x 2+bx+c 经过点C(4,2)和点B(0,-1),∴{12×42+4b +c =2,c =-1,解得{b =-54,c =-1, ∴抛物线的解析式为y=12x 2-54x-1.(2)令y=0,则34x-1=0,解得x=43,∴点A 的坐标为(43,0),∴OA=43.在Rt△OAB 中,OB=1,OA=43,∴AB=√OA 2+OB 2=√(43)2+12=53,∵DE∥y 轴, ∴∠ABO=∠DEF, 在矩形DFEG 中,EF=DE·cos∠DEF=DE·OB AB =35DE,DF=DE·sin∠DEF=DE·OA AB =45DE, ∴p=2(DF+EF)=2×(45+35)DE=145DE,∵点D 的横坐标为t(0<t<4), ∴D (t ,12t 2-54t -1),E (t ,34t -1),∴DE=(34t -1)-(12t 2-54t -1)= -12t 2+2t,∴p=145×(-12t 2+2t)=-75t 2+285t,∵p=-75(t-2)2+285,且-75<0,∴当t=2时,p 有最大值285.(3)点A 1的横坐标为34或-712.∵△AOB 绕点M 沿逆时针方向旋转90°, ∴A 1O 1∥y 轴时,B 1O 1∥x 轴,设点A 1的横坐标为x,①如图1,点O 1、B 1在抛物线上时,点O 1的横坐标为x,点B 1的横坐标为x+1,∴12x 2-54x-1=12(x+1)2-54(x+1)-1,解得x=34;②如图2,点A 1、B 1在抛物线上时,点B 1的横坐标为x+1,点A 1的纵坐标比点B 1的纵坐标大43,∴12x 2-54x-1=12(x+1)2-54(x+1)-1+43,解得x=-712,综上所述,点A 1的横坐标为34或-712.25.解析 (1)12.∵点H 是AD 的中点,∴AH=12AD, ∵正方形AEOH∽正方形ABCD,∴相似比为AH AD =12AD AD =12.(2)45.在Rt△ABC 中,AC=4,BC=3, 根据勾股定理得,AB=5,∴△ACD 与△ABC 的相似比为AC AB =45.(3)A.①如图1,∵矩形ABEF∽矩形ADCB,∴AF AB=AB AD, 即12a b=b a,∴a=√2b.②每个小矩形都是全等的,则其边长为b 和1na,则b 1na=a b,∴a=√n b. B.①如图2,由题意可知纵向2个矩形全等,横向3个矩形也全等, ∴DN=13b,(ⅰ)当DF 是矩形DFMN 的长时, ∵矩形FMND∽矩形ABCD, ∴FD DN=AD CD,即FD 13b=a b,解得FD=13a,∴AF=a -13a=23a,∴AG=AF 2=23a 2=13a,∵矩形GABH∽矩形ABCD, ∴AG AB=AB BC, 即13a b=b a,得a=√3b;(ⅱ)当FM 是矩形DFMN 的长时, ∵矩形DFMN∽矩形ABCD,∴FD DN=AB AD,即FD 13b=b a,解得FD=b 23a , ∴AF=a -b 23a =3a 2-b 23a ,∴AG=AF 2=3a 2-b 26a ,∵矩形GABH∽矩形ABCD,∴AG AB=AB AD,即3a 2-b 26a b=b a,得a=√213b. ②如图3,由题意可知纵向m 个矩形全等,横向n 个矩形也全等,∴DN=1n b, (ⅰ)当DF 是矩形DFMN 的长时,∵矩形FMND∽矩形ABCD,∴FD DN=AD CD,即FD 1n b=a b,解得FD=1n a, ∴AF=a -1n a=(n -1)a n ,∴AG=AF m =(n -1)a n m =n -1mna, ∵矩形GABH∽矩形ABCD,∴AG AB=AB BC,即n -1mn a b=b a,得a=√mnn -1b;(ⅱ)当FM 是矩形DFMN 的长时,∵矩形DFMN∽矩形ABCD,∴FD DN=AB AD,即FD 1nb=b a,解得FD=b 2na ,∴AF=a-b 2na ,∴AG=AFm =na2-b2mna,∵矩形GABH∽矩形ABCD, ∴AG AB=AB AD,即na 2-b2mna b=b a,得a=√mn+1nb.。