三年级数学春第三讲字典排列法和树形图法

合集下载

三年级数学思维训练[1]1

三年级数学思维训练[1]1
50-三年级期末复习与检测4
整数计算综合
还原问题
数阵图初步
竖式问题
几何图形简拼
路程、时间、速度
01-整数计算综合(1)
02-整数计算综合(2)
03-还原问题(1)
04-还原问题(2)
05-数阵图初步(1)
06-数阵图初步(2)
07-竖式问题(1)
08-竖式问题(2)
09-竖式问题(3)
10-竖式问题(4)
37-长度计算1
38-长度计算2
39-长度计算3
40-角度的计算1
41-角度的计算2
42-角度的计算3
43-找位置1
44-找位置2
火柴棍算式与生活趣题
三年级期末复习与检测
45-火柴棍算式与生活趣题1
46-火柴棍算式与生活趣题2
47-三年级期末复习与检测1
48-三年级期末复习与检测2
49-三年级期末复习与检测3
11-几何图形简拼(1)
12-几何图形简拼(2)
13-几何图形简拼(3)
14-几何图形简拼(4)
15-路程、时间、速度(1)
16-路程、时间、速度(2)
17-路程、时间、速度(3)
18-路程、时间、速度(4)
行程中的线段图
简单抽屉原理
基本直线形面积公式
底、高的选取与组合
变倍问题
和差倍中的分组比较
19-行程中的线段图(1)
复杂数阵图
有特殊要求的挑选
捆绑法与插空法
最值问题一
40-多次往返相遇与追与1
41-多次往返相遇与追与2
42-多次往返相遇与追与3
43-多次往返相遇与追与4
44-从洛书到幻方1
45-从洛书到幻方2

三年级数学春第三讲字典排列法和树形图法

三年级数学春第三讲字典排列法和树形图法

第三讲字典排列法和树形图法先分类:1、2、3再有序:123所以,一共有6个没有重复的三位数:123,132,213,231,312,321。

记住:不重复,不回头。

先分类:不重复,三个数字相同,两个数字相同,分前面两个相同,后面两个相同,一前一后相同。

再有序:不重复:如(1)一共有6个没有重复的三位数:123,132,213,231,312,321。

三个重复:111,222,333一共有3个。

两个重复:前面:112,113 后面:211,311 一前一后:121,131 221,223 122,322 212,232 331,332 133,233 313,323 一共6×3=18个。

三种一起:6+3+18=27(个) 23 32 13 31 12 2 11分、2分、4分、8分各一枚先分类,可以分取1枚,2枚,3枚,4枚4种取法。

再有序:1枚:1分,2分,4分,8分共4种2枚:1分-2分,1+2=32分-4分,2+4=64分-8分,4+8=128分-无,不可取了1分-4分,1+4=52分-8分,2+8=101分-8分,1+8=9所以:3+2+1=6种记住:不回头,不重复。

3枚:1分-2分-4分1+2+4=7 1分-2分-8分1+2+8=11 1分-4分-8分1+4+8=132分-4分-8分2+4+8=14所以:3+1=4种4枚:1分-2分-4分-8分1+2+4+8=15 只有1种所以:一共有4+6+4+1=15种不同的钱数。

分析:可以将7拆成三个整数,每个数分别对应三个人每人分得书的数量,找出所有的情况。

每个数最小是1,最大是7-1-1=5,而且可以相同,而且人的顺序也可以变化。

故可以列举如下:1-1-5,1-2-4,1-3-3,1-4-2,1-5-1 5种2-1-4,2-2-3,2-3-2,2-4-1 4种3-1-3,3-2-2,3-3-1 3种4-1-2,4-2-1 2种5-1-1 1种所以,5+4+3+2+1=15种。

排列与组合,分步乘法计数原理,分类加法计数原理

排列与组合,分步乘法计数原理,分类加法计数原理

排列:1、排列的概念:从n个不同元素中取出m (mWn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

2、全排列:把n个不同元素全部取出的一个排列,叫做这n个元素的一个全排列。

3、排列数的概念:从n个不同元素中取出m (mWn)个元素的所有排列的个数,叫做从 n 个不同元素中取出m个元素的排列数,用符号白;表示。

4、阶乘:自然数1到n的连乘积,用n!=1X2X3X・・・Xn表示。

规定:0!=15、排列数公式:*”n (n-1)(n-2)(n-3)…(n-m+1)='卡—活"。

组合:1、组合的概念:从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合。

2、组合数的概念:从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数用符号C;表示。

b=屋=题…---掰+。

_ /3、组合数公式:1H史耀!的I一对;4、组合数性质:K - …,5、排列数与组合数的关系:量二5,排列与组合的联系与区别:从排列与组合的定义可以知道,两者都是从n个不同元素中取出m个(mWn, n, m£N) 元素,这是排列与组合的共同点。

它们的不同点是:排列是把取出的元素再按顺序排列成一列,它与元素的顺序有关系,而组合只要把元素取出来就可以,取出的元素与顺序无关.只有元素相同且顺序也相同的两个排列才是相同的排列,否则就不相同;而对于组合,只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合,如a, b与b, a是两个不同的排列,但却是同一个组合。

排列应用题的最基本的解法有:(1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素,称为元素分析法,或以位置为考察对象,先满足特殊位置的要求,再考虑一般位置,称为位置分析法;(2)间接法:先不考虑附加条件,计算出总排列数,再减去不符合要求的排列数。

排列的定义的理解:①排列的定义中包含两个基本内容,一是取出元素;二是按照一定的顺序排列;②只有元素完全相同,并且元素的排列顺序也完全相同时,两个排列才是同一个排列,元素完全相同,但排列顺序不一样或元素不完全相同,排列顺序相同的排列,都不是同一个排列;③定义中规定了 mWn,如果m<n,称为选排列;如果m=n,称为全排列;④定义中“一定的顺序”,就是说排列与位置有关,在实际问题中,要由具体问题的性质和条件进行判断,这一点要特别注意;⑤可以根据排列的定义来判断一个问题是不是排列问题,只有符合排列定义的说法,才是排列问题。

学而思三年级第三讲(数列图形规律)

学而思三年级第三讲(数列图形规律)
1+1=2 1+2=3 2+3=5 3+5=8 5+8=13
兔子数列规律:第一项和第二项均是 1,从第三项开始,每一项是它的前两项的和。 该规律拓展运用(类兔子数列): 例:
2, 1, 3, 4, 7, 11, 18, 29……
2+1=3 1+3=4 3+4=7 4+7=11 7+11=18 11+18=29 1, 1, 1, 3, 5, 9, 17, 31…… 发现从第 4 项开始,每一项都是它的前 3 项之和
例 4 有一正六边形点阵,如图,它的中心是一个点,算作第一层; 第二层每边两个点(相邻两边共用一个点);第三层每边三个点…… 这个六边形点阵共 100 层,问这个点阵共有多少个点? 解析:注意第一层是 1 个点,第二层 6 个点,从第三层开始,每层 比前一层多 6 个点(每边多 1 个点,6 条边即多 6 个)。即第二层 6 个(1×6),第三层 12 个(2×6),第四层 18 个(3×6)……第 100 层应是 594 个(6×99)。 共 1 + 6+ 12 + 18 + …… + 594 = 1+(6+594)×99÷2=29701(个)
(2) 根据规律,写出第 6 行及第 7 行见上数表红色字体。
(3) 要推断第 10 行的数字之和,先看看前几行各自的和是否有规律
第一行:1
第二行:2
……21
第三行:4 2×2
……22
第四行:8 2×2×2
……23
第五行:16 2×2×2×2
……24
第六行:32 2×2×2×2×2
……25
发现是一个等比数列,第 10 行应该是 9 个 2 相乘,即 29,算出结果是 512。

考点名称

考点名称

考点名称:排列与组合∙排列:∙1、排列的概念:从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

2、全排列:把n个不同元素全部取出的一个排列,叫做这n个元素的一个全排列。

3、排列数的概念:从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示。

4、阶乘:自然数1到n的连乘积,用n!=1×2×3×…×n表示。

规定:0!=15、排列数公式:=n(n-1)(n-2)(n-3)…(n-m+1)=。

∙组合:∙1、组合的概念:从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。

2、组合数的概念:从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数用符号表示。

3、组合数公式:;4、组合数性质:(1);(2)。

5、排列数与组合数的关系:。

∙∙排列与组合的联系与区别:∙从排列与组合的定义可以知道,两者都是从n个不同元素中取出m个(m≤n,n,m∈N)元素,这是排列与组合的共同点。

它们的不同点是:排列是把取出的元素再按顺序排列成一列,它与元素的顺序有关系,而组合只要把元素取出来就可以,取出的元素与顺序无关.只有元素相同且顺序也相同的两个排列才是相同的排列,否则就不相同;而对于组合,只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合,如a,b与b,a是两个不同的排列,但却是同一个组合。

∙∙排列应用题的最基本的解法有:∙(1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素,称为元素分析法,或以位置为考察对象,先满足特殊位置的要求,再考虑一般位置,称为位置分析法;(2)间接法:先不考虑附加条件,计算出总排列数,再减去不符合要求的排列数。

∙排列的定义的理解:①排列的定义中包含两个基本内容,一是取出元素;二是按照一定的顺序排列;②只有元素完全相同,并且元素的排列顺序也完全相同时,两个排列才是同一个排列,元素完全相同,但排列顺序不一样或元素不完全相同,排列顺序相同的排列,都不是同一个排列;③定义中规定了m≤n,如果m<n,称为选排列;如果m=n,称为全排列;④定义中“一定的顺序”,就是说排列与位置有关,在实际问题中,要由具体问题的性质和条件进行判断,这一点要特别注意;⑤可以根据排列的定义来判断一个问题是不是排列问题,只有符合排列定义的说法,才是排列问题。

高思数学-各级别全年教材大纲

高思数学-各级别全年教材大纲

⾼思数学-各级别全年教材⼤纲三年级上第1讲加减法巧算第2讲基本应⽤题第3讲间隔问题第4讲简单枚举第5讲字典排列法与树形图法第6讲找规律第7讲和倍问题与差倍问题第8讲和差问题与多个对象的和差倍第9讲简单加减法竖式第10讲周期问题初步第11讲周期问题进阶第12讲妙⽤假设法第13讲分组与画图第14讲等差数列初步第15讲等差数列进阶第16讲平⾯图形认知第17讲⽴体图形认知第18讲基本盈亏问题第19讲智巧趣题⼀第20讲旅⾏中的数学三年级下第⼀讲乘除法巧算第⼆讲归⼀问题第三讲分类计数第四讲和差倍问题中的隐藏条件第五讲线段图解复杂和差倍关系第六讲简单乘法竖式第七讲简单除法竖式第⼋讲假设法综合提⾼第九讲分组法综合提⾼第⼗讲四则混合运算第⼗⼀讲阵列问题第⼗⼆讲巧填算符第⼗三讲算符与数字第⼗四讲盈亏条件的转化第⼗五讲复杂盈亏问题第⼗六讲长度计算第⼗七讲⾓度的计算第⼗⼋讲找位置第⼗九讲⽕柴棍算式与⽣活趣题第⼆⼗讲三年级期末复习与检测四年级上第1讲整数计算综合第2讲还原问题第3讲数阵图初步第4讲竖式问题第5讲⼏何图形剪拼第6讲路程、时间、速度第7讲⾏程中的线段图第8讲简单抽屉原理第9讲基本直线形⾯积公式第10讲底、⾼的选取与组合第11讲变倍问题第12讲和差倍中的分组⽐较第13讲年龄问题第14讲数列数表规律第15讲复杂数表估算第16讲加法原理与乘法原理第17讲乘法原理进阶第18讲⽕车⾏程第19讲统筹规划第20讲游戏对策四年级下第1讲⼩数的运算技巧第2讲多位数巧算第3讲简单平均数第4讲多组对象的平均数第5讲复杂竖式第6讲横式问题第7讲格点图形的计算第8讲割补法巧算⾯积第9讲多⼈多次的相遇与追及第10讲排列组合公式第11讲排列组合应⽤第12讲分段计算的⾏程问题第13讲多次往返相遇与追及第14讲从洛书到幻⽅第15讲复杂数阵图第16讲有特殊要求的挑选第17讲捆绑法与插空法第18讲最值问题第19讲逻辑推理第20讲四年级期末复习与检测五年级上第1讲分数计算与⽐较⼤⼩第2讲整除问题初步第3讲整除问题进阶第4讲质数与合数第5讲容斥原理第6讲流⽔⾏船问题第7讲环形路线问题第8讲⽜吃草问题第9讲⼏何计数第10讲约数、倍数初步第11讲约数与倍数进阶第12讲分数与循环⼩数第13讲⽐较与估算第14讲数论巧解数字谜第15讲包含分数、⼩数的数字谜第16讲分数应⽤题之量率对应第17讲分数应⽤题之单位“1”的转化第18讲巧解不确定性问题第19讲倍数关系求解直线形第20讲巧连辅助线解直线形五年级下第1讲计算综合第2讲分数裂项第3讲圆与扇形初步第4讲圆与扇形中的重叠与旋转第5讲余数的性质与计算第6讲物不知数与同余第7讲复杂抽屉原理第8讲⼯程问题初步第9讲⼯程问题进阶第10讲钟表问题第11讲⽐例关系求解直线形第12讲平⾏线相关⽐例与勾股定理第13讲构造论证第14讲⾏程问题中的变速问题第15讲⾏程问题中分段与⽐较第16讲位值原理第17讲数字问题第18讲数论相关的计数第19讲数字谜中的计数第20讲五年级期末复习与检测六年级上第1讲计算综合⼆第2讲⽐例计算与列表分析第3讲正反⽐例的概念与应⽤第4讲⽅程解应⽤题第5讲浓度问题第6讲经济问题第7讲逻辑推理⼆第8讲最值问题⼆第9讲不定⽅程第10讲⽴体⼏何第11讲复杂直线形计算第12讲⼏何综合问题第13讲递推计数第14讲对应计数第15讲⾏程问题中的⽐例关系第16讲复杂⾏程问题选讲第17讲数论综合与简单代数式第18讲数字谜综合⼆第19讲应⽤题综合⼀第20讲应⽤题综合⼆六年级下第1讲构造论证⼆第2讲进位制与取整符号第3讲计数综合提⾼第4讲数论与⽅程第5讲计算综合练习第6讲⼏何综合练习第7讲应⽤题综合练习第8讲数字谜综合练习第9讲数论综合练习第10讲计数综合练习第11讲组合综合练习第12讲⼩升初总复习模拟测试第13讲⼩升初总复习模拟测试⼆第14讲⼩升初总复习模拟测试三第15讲⼩升初总复习模拟测试四第16讲⼩升初总复习模拟测试五第17讲⼩升初总复习模拟测试六第18讲⼩升初总复习模拟测试七第19讲⼩升初总复习模拟测试⼋第20讲⼩升初总复习模拟测试九。

第二讲 字典排列法与树形图

第二讲 字典排列法与树形图

第二讲字典排列法与树形图知识点总结1、枚举法:字典排列法、分类枚举、树形图都是枚举法中的一种,使用各种枚举法需要注意有条理、不重复、不遗漏,使人一目了然。

2、字典排列法:从首位开始,按一定的顺序(比如从小到大)枚举第一位,对于每种情况再按从小到大的顺序枚举第二位,依次类推。

3、分类枚举:先有序分类,再有序枚举。

4、树形图:确定起点,按照一定的顺序一一罗列,最后数终点个数。

例题精讲【例1】汤姆、杰瑞和得鲁比都有蛀牙,他们一起去牙医诊所看病,医生发现他们一共有8颗蛀牙,他们三人可能分别有几颗蛀牙?【分析】三人情况:都有蛀牙说明每个人的蛀牙数目不能为0,每人至少有1颗,一共有8颗蛀牙,所以最多的蛀牙数是6。

题中有三个人的名字,所以三个人是有次序的,我们将汤姆看成是首位,杰瑞看成第二位,德鲁比看成第三位,则可以运用字典排列法枚举。

汤姆: 1 1 1 1 1 1 汤姆: 2 2 2 2 2 杰瑞: 1 2 3 4 5 6 杰瑞: 1 2 3 4 5 得鲁比:6 5 4 3 2 1 得鲁比: 5 4 3 2 1汤姆: 3 3 3 3 汤姆: 4 4 4杰瑞: 1 2 3 4 杰瑞: 1 2 3得鲁比:4 3 2 1 得鲁比:3 2 1汤姆: 5 5 汤姆: 6杰瑞: 1 2 杰瑞: 1得鲁比:2 1 得鲁比:1总共有6+5+4+3+2+1=21种情况。

【例2】下午茶的时候,老师给同学们准备了苹果,香蕉和橘子三种水果,每种都有足够多个,昊昊想挑3个水果吃,请问:他一共有多少中选择?【分析】分类枚举:先有序分类,再有序枚举。

一种水果:苹苹苹,香香香,橘橘橘两种水果:苹香香,苹苹香,苹橘橘,苹苹橘,香橘橘,香香橘三种水果:苹香橘一共:3+6+1=10(种)【例3】一个人在三个城市A、B、C中游览。

他今天在这个城市,明天就必须到另一个城市。

这个人从A城出发,4天后还回到A城,那么这个人有几种旅游路线?【分析】列出树形图如下,共有6种路线。

小学数学三年级上学期 树形图 PPT+作业+答案

小学数学三年级上学期 树形图 PPT+作业+答案

作业3
3.学校食堂里每天供应果汁和牛奶两种饮料。如果曼曼第 一天和第四天喝的都是牛奶,那么第二天她喝的饮料可 能有( )种情况,分别是( )。如果曼曼第二天 喝的是牛奶,那么第三天她喝的饮料可能有()种情况, 分别是( )。
【答案】2;牛奶、果汁;2;牛奶、果汁。
作业4 4.如图:如果从 F 点出发,以 F➙C➙E 的路线行进,且要求同 一个点或同一条线段只能经过一次,那么从 E 点继续走,可以 直接到达( )点。
例题1 由1、2、3组成的三位数一共有多少个?
解析: ⚠️题目没有强调数字不能重复,因此画树形图时需注意。
百位 十位 个位
1 12
3 1 12 2
3 1 32
3
百位为1时,有9个三位数,同样地,百 位为2、3时也分别有9个三位数, 所以,一共有三位数:9☓3=27(个) 答:三位数一共有27个。
总结:画树形图解题,注意数字是否可以重复。
总结:注意数字卡片6和9可以颠倒。
练习2 用2、5、9三张数字卡片可以组成多少个不同的三位数?
59 2
95
29 5
92
25 9
52
数字卡片9可以倒过来变成6,因此一共 有三位数:6☓2=12(个) 答:可以组成12个不同的三位数。
例题3
一个快递员给A、B、C三栋写字楼送快递,每天去其中的一 栋写字楼,并且相邻的两天不能去同一栋写字楼。如果他 第一天去了A栋写字楼,第四天又去了A栋写字楼,那么这 四天的送货方式一共有多少种?
【答案】9 种。
作业7 7、由 0、1、2 所组成的三位数一共有多少个?
【答案】18 个
作业8 8、用 0、7、8、9 这四张数字卡片一共可以组成多少个不同的 两位数? 【答案】14 个。 【解析】

部编版数学三年级上册第13讲.字典排列法和树形图 教师版

部编版数学三年级上册第13讲.字典排列法和树形图 教师版
那么比赛的进程有多少种可能? [分析] 令常昊为 a,古力为 b,则进行分类枚举有:
如果第一场常昊胜,共有 6 种:
a
【对应学案】【学案 1】
例2
(明心教育 2005 年秋季三年级)婷婷到游乐园游玩,游乐园有一张价目表:
类型
价格 时间
骑木马 1 元 10 分钟
蹦床
2 元 10 分钟
电动车 5 元 10 分钟
碰碰车 8 元 10 分钟 爸爸只让婷婷玩 20 分钟,那么,婷婷共有多少种不同的搭配方式可以玩?请你一一列举出来。 【分析】共有 10 种不同的搭配方.骑木马+骑木马;蹦床+蹦床;电动车+电动车;碰碰车+碰碰 车;
[分析](1)2 种;两间房依次住着艾迪、薇儿或者薇儿、艾迪。 (2)6 种;三间房依次住着①艾迪、薇儿、哈哈,②艾迪、哈哈、薇儿,③薇儿、艾迪、哈 哈,④薇儿、哈哈、艾迪,⑤哈哈、艾迪、薇儿,⑥哈哈、薇儿、艾迪。
【巩固】(第七届“小机灵杯”小学生数学竞赛(决赛)试题)自然数 12、135、1349 这些数有一个共 同的特点,相邻两个数字,左边的数字小于右边的数字,我们取名为“上升数”。用 5、6、7、8 这四个数字,可以组成( )个“上升数”.
而中文字典的排列是什么样的呢?现在绝大多数的中文字典的排列和英文词典是差不多的,每 个汉字是按照它的汉语拼音的字母顺序去排列的 ,同样的拼音再按声调的顺序排列 。而在拼音发明 之前 ,中文字典都是按照部首来排列的 。
按照这样的顺序排出的字典、词典方便易查,比如想在一本英文词典中找到“apple”。我们只要 先找到第一个字母是 a 的单词的位置,再找第二个字母是 p 的字母的位置,以此类推,由于每个字 母的排列都是从 a 到 z 的,我们可以很快找到 apple 的位置。 同学们可以想一想,如果这本词典是 胡乱排列每个单词的,那么我们想找到“apple”就只能靠“撞大运”了,假如真有这样的词典,我们也 不会去买的。

西单小学三年级数学知识树结构

西单小学三年级数学知识树结构
教学难点
稍复杂的两三位数除以一位数的计算方法,会计算含有除法的四则混合运算,混合运算的顺序。两位数乘两位数计算的笔算方法。能正确认读写简单的分数,知道分数各部分的名称,在具体情境中会比较简单分数的大小。
所需知
识铺垫
两三位数除以一位数:学生在熟练掌握了表内乘除法和有余数的除法,熟练进行口算加减法,充分理解数的意义,并对估算有初步了解的基础上,进行教学的。
3.经历探索解决问题的过程中,感受数学知识在生活中的应用,感悟数学与现实生活联系的密切性,体验数学与生活的联系,培养学生学数学和用数学的乐趣和认真扎实的学习习惯。
教学重点
掌握稍复杂的两三位数除以一位数的计算方法,会计算含有除法的四则混合运算,知道混合运算的顺序。学会两位数乘两位数计算的笔算方法,能结合具体情境进行两位数乘两位数的估算和简单乘除混合运算。能正确认读写简单的分数,知道分数各部分的名称,在具体情境中会比较简单分数的大小。
两位数乘两位数:学生能够熟练进行口算加减法,初步掌握估算,能够熟练计算两三位数乘一位数,理解数的意义及组成的基础上进行教学的。
分数的初步认识:学生能够理解整数的意义,掌握整数的读写方法,充分理解平均分的基础上进行教学的。
教学中的地位作用
两三位数除以一位数是表内除法及有余数除法的延伸,是学习多位数除法及进一步用除法解决问题的基础。
同分母分数的的减法
同分母分数的的加法
比较大小
同分母分数的大小比较
同分子分数的大小比较
认识分数的各部分名称
认识几分之几
认识几分之一
认识分数
数与代数
分数的两位数估算
两位数乘两位数笔算
两位数乘两位数连续进位
两位数乘两位数验算
整十数乘两位数口算

三年级奥数简单排列组合

三年级奥数简单排列组合

明朝那些事(树形图)知识图谱明朝那些事知识精讲一.树形图对某件事情过程的枚举,一般会用树形图法.所谓树形图法就是用像树一样的、不断分叉的图来表示出所有的情况的方法.“树形图”可以使枚举过程形象直观、有条理又不易重复或遗漏,使人一目了然.一般适用于以下条件的题目:1.每个位置有特殊要求;2.相邻两个位置有特殊要求;3.前面位置影响下一个位置.三点剖析本讲主要培养学生的实践应用能力,其次还会注重培养学生的运算能力.本讲内容是在字典排列的基础上,继续学习树形图.在需要对整件事情的过程进行枚举的问题,会更多的使用树形图.后续课程还会继续学习更为简便的计数方法.课堂引入例题1、 在相继读完四大名著后,柯小南想要研究一下明朝的历史,在高斯先生的建议下,柯小南找来了《明朝那些事儿》.阅读了一部分后,柯小南就画了一部分明朝皇帝的人物关系图.柯小南带着人物关系图想要跟高斯先生交流一下对明朝历史的理解.高斯先生看到这张图后,沉思了一会.高斯先生微笑着点了点头,肯定了柯小南的想法. 同学们,能帮柯小南用树形图的方法解决这个问题吗?例题2、 用枚举和画图两种方法解决问题:有A 、B 、C 三片荷叶,青蛙“呱呱”在荷叶A 上,每次他都会从一片荷叶跳到另一片荷叶上,结果它跳了3次之后,不在荷叶A 上.请问:它一共有多少种不同的跳法?每个位置都有特殊要求例题1、 (1)乌龟、兔子、米老鼠站成一排,如果乌龟不站在第1个,兔子不站在第2个,米老鼠不站在第3个.请问:它们共有多少种不同的站法?(2)由2、3、4各一个组成一个三位数,要求:百位不是2,十位不是3,个位不是4,则符合要求的三位数有多少个?朱棣朱高炽 朱高煦 朱高燧 朱高爔朱瞻基 朱瞻埈 朱瞻墉 朱瞻垠 朱瞻墡 朱瞻堈 朱瞻墺 朱瞻垲 朱瞻垍 朱瞻埏朱祁镇朱祁钰小南,我们还是先来看道数学题吧:用1、4、8这三个数字可以组成多少个三位数?高斯先生,这可以用我们之前刚刚学过的字典法则来解决.除了字典法则,能不能用你画人物关系的方法来画呢?我画的这个人物关系图?嗯,长得像棵树呀,难道是树形图的方法吗?第一个位置,可以是谁呢?例题2、(1)有4本书排成一排,唐小虎、柯小南、艾小莎、唐小果四个人选书,每人选1本书.唐小虎不要第1本书,柯小南不要第2本书,艾小莎不要第3本书,唐小果不要第4本书,那么一共有多少种不同的选法?(2)甲、乙、丙、丁4个人站队,站成一条直线,如果甲不站第1、2个,乙不站第2、3个,丙不站第3、4个,丁不站第4、1个.那么一共有多少种站队的方法?虽然对象比之前的对了,但是也可以用树形图做!例题3、如图,在正方形区域中再放置一个,使之与原有的三个色块形成轴对称图形,共有________种放法.随练1、由1、2能组成________个三位数.随练2、唐小果、唐小虎、艾小莎、柯小南四个人每个人写了一封信,把这4封信放在一起,每个人拿一封信且不能拿自己写的信,那么一共有________种不同的拿法.相邻两位置有特殊要求例题1、(1)一个三位数,每一位上的数字都是1、3、5中的一个,并且相邻的两个数字不同,一共有多少个满足条件的三位数?(2)一个三位数,每一位上的数字都是0,6,7中的某一个,并且相邻的两个数字不相同,一共有多少个满足条件的三位数?这题相邻位置都有要求,跟之前的不一样哦~例题2、一个四位数,每一位上的数字都是0,1,2中的某一个,并且相邻的两个数字不相同,一共有多少个满足条件的四位数?多位数,首位不能为0哦~例题3、粗心的艾小莎忘记了日记本的三位密码,只记得密码是由1、2、7三个数字中的某些数字构成的,且相邻的两个数字不一样,那么艾小莎最多试几次就一定能打开日记本?随练1、一个三位数,每一位上的数字都是2、4、6中的一个,并且相邻的两个数字不同,一共有________个满足条件的三位数.随练2、一个三位数,个位数字比十位数字大,十位数字比百位数字大,并且各位数字都不小于5.那么这样的三位数一共有________个.前面位置影响下一位置例题1、甲、乙、丙三个人传球,从甲开始传球,每次拿球的人都把球传给剩下两个人中的一人,传了3次后球在丙的手上,那么一共有多少种可能的传球过程?最后一步,球在谁手上呢?例题2、唐小果与柯小南两人进行围棋赛,谁先胜三局谁就会取得比赛的胜利.如果最后柯小南获胜了,那么比赛的进程有多少种可能?例题3、在NBA总决赛中,由洛杉矶湖人队对印第安纳步行者队.比赛采用7场4胜制,每胜一场会获得1分的积分.最终湖人队获得了胜利,双方的积分是4:2,并且在整个比赛过程中,湖人队的积分从来没有落后过.问:比赛过程中的胜负情况共有多少种可能?注意条件:“湖人队的总分没有落后过”.例题4、一个两位数,把组成两位数的两个数字相加,如果和还是两位数,继续把两位数的两个数字相加,直到和是一位数为止.按照这样计算,最后的结果是3的两位数有________个.随练1、甲、乙、丙三个人传球,从甲开始传球,每次拿球的人都把球传给剩下两个人中的一人,传了3次后球不在丙的手上,那么一共有________种可能的传球过程.随练2、甲、乙比赛乒乓球,五局三胜.已知甲胜了第1局,并最终获胜.则一共有_________种不同的比赛过程.易错纠改例题1、 刚刚学完了树形图,大家都觉得学得还不错,想要马上大展身手.这时,高斯先生提着一个带密码锁的公文包进来了.最后小虎算出来需要84次,小莎算出来需要125次.高斯先生却只是摇着头笑了笑.那你知道他们谁算的是正确的?如果不正确,那么高斯先生最多需要几次就能打开公文包?拓展1、 一个三位数,每一位上的数字都是1、2、3中的一个,并且相邻的两个数字不同,一共有__________个满足条件的三位数.2、 旦旦、雁雁和蒙蒙玩传球游戏,每次持球人要把球传给另外两人中的任何一人.先由旦旦拿球,第1次传球可以传给其他两人中的任何一人,经过4次传球之后,球到了雁雁手里.那么一共有__________种不同的传球过程.3、 一个三位数,每一位上的数字都是0,6,7中的某一个,并且相邻的两个数字不相同,一共有多少个满足条件的三位数?4、 高高队和思思队进行足球比赛,高高队在比赛过程中从未让思思队比分领先过,最后以3比2取得胜利,那么比赛的进球顺序有__________种可能. 这个是我的公文包,但是我忘记了密码,密码是一个三位数,这个三位数的个位数字比十位数字大,十位数字比百位数字大,并且没有比5大的数字,你们觉得我最多试几次就肯定能打开这个包?我可以的,这个是我们刚刚学过的树形图的“前面位置影响下一个位置”.我画个树形图就好了,高斯先生,您稍等一下.恩恩,小虎说的对.我也可以算出来的.先生,稍等一下哦~看看我跟小虎是不是都算对了.5、小高去参加“逗你玩”挑战赛,答错一道题可得1分,答对一题可得2分,小高每题都答了.请问小高恰好得5分的情况有多少种?6、5块六边形的地毯拼成了如图的形状,每块地毯上都有一个编号.现在小高站在1号地毯上,他想要走到5号地毯上.如果小高每次都只能走到和他相邻的地毯上(两个六边形如果有公共边就称为相邻),并且只能向右边走,例如1→2→3→5就是一种可能的走法.请问:小高一共有多少种不同的走法?241357、(1)刚开学时,甲、乙、丙、丁、戊五位同学的座位表如图所示.一段时间后,每人都想要换到与原来座位不相邻的位置上,那么有多少种换座位的方法?甲乙丙丁戊(2)甲,乙,丙,丁,戊,己六位同学的座位如图所示,如果每人都要换座位,而且每人都要换到与原来座位不相邻的位置上,那么有多少种换座位的方法?甲乙丙丁戊己8、分析并口述题目的做题思路及方法.一个人在三个城市A、B、C中游览.他今天在这个城市,明天就必须到另一个城市.这个人从A城出发,4天后还回到A城,那么这个人有几种旅游路线?。

三年级奥数有几种不同的分法

三年级奥数有几种不同的分法

字典法则(字典排列法、整数分拆)知识图谱字典法则知识精讲一.字典排列法所谓字典排序法,就是指在枚举时,像字典里的单词顺序那样排列出所有答案.例如:用数字4、5、6可以组成多少个不同的三位数.用字典排列法枚举时,每个位置都按从小到大排列,枚举的顺序是:456、465、546、564、645、654.二.整数分拆1.概念:把一个自然数表示成若干个自然数的和的形式.2.方法:在进行整数分拆时,要按一定的顺序,做到不重复、不遗漏.将一个整数拆分成三个数相加,其实可以先固定第一个数,那剩下两个数的和也是固定的,这样问题就转化成将一个新的整数拆分成两个数相加.3.分人与分堆的区别:整数分拆时,分堆无顺序,分人有顺序.4.枚举中的至多、至少问题:根据至多、至少的条件用字典排列法进行分类枚举.三.分类计数枚举法是解决计数问题的基础,但是对于比较复杂的问题,如果直接枚举容易出现重复或者遗漏.这时就需要先把所有情形分成若干小类,再针对每一小类进行枚举.在分类时,一定要注意类与类之间有没有重复和遗漏的情况.三点剖析本讲主要培养学生的实践应用能力,其次培养学生的运算能力.本讲内容是在基本整数分拆的基础上,进一步学习字典排列.能够有顺序的去枚举出符合条件的所有情况,对于情况较多的问题,能够进行合理的分类等.后续课程还会进一步讲解树形图.课堂引入例题1、语文老师给大家留了一篇阅读练习.这天,柯小南在家做作业,发现文章里有好多生僻字,就找来字典用部首检字表查一下.查完后,小南又往拼音音节索引翻了翻,这些拼音音节索引都是按照一定的顺序来的,比如,声母是p,韵母先是a,然后是ai ,an,ang,ao,a为开头的结束后,是e,按照顺序有ei,en,eng.然后再是韵母是i……想到这里,小南想起来以前学过的整数分拆,在数比较大时,总会出现重复或遗漏的情况,如果学习字典上的这种有序排列方式来做题,是不是会好一些呢?例如,高斯先生拿8颗糖分给艾小莎和柯小南,两人都要有,可能有多少种情况呢?例题2、三个整数之和等于7,共有________组这样的三个数.字典排列例题1、满足下面性质的数称为好数:它的个位比十位大,十位比百位大,百位比千位大,并且相邻两位数字的差不超过2.例如1346、3579为好数,而1456就不是好数,那么一共有________个四位数是好数.同学们可以根据要求,从最高位上依次枚举.例题2、高斯先生计划在下周要去3次健身馆,但是为了防止运动过量,不能连续两天都去.高斯先生一共有多少种满足条件的时间安排?可以周一、周三、周五去,还可以……例题3、小包子每个5角钱,大包子每个2元钱.艾小莎一共有6元钱,如果把这些钱全部用来买包子,一共有________种不同的买法.我可以买大包子,也可以买小包子,或者两个都买吧.随练1、唐小虎拿着10元钱去买冰激凌,店里有单价为1元5角和2元的两种冰激凌.如果唐小虎两种冰激凌都要买,并且刚好要把10元钱花完,那他一共可以买多少个冰激凌?分几人例题1、高斯先生给柯小南12个相同的练习本,如果柯小南把这些本子全都分给唐小果和艾小莎,有多少种不同的分法?我可以先给唐小果,那剩下的就都是艾小莎的了.例题2、唐妈妈把9颗糖分给小虎和小果,使得他俩每人都有糖,有________种不同的分法.我先拿,剩下的给姐姐就行了吧?所以我能拿几个有多少种情况,那就有几种不同的分法.例题3、唐小果把6个相同的笔记本分给唐小虎、柯小南和艾小莎三个人,有人可能没分到,共有________种不同的分法.我可以先给小虎拿,问题就变成小南和小莎两个人去拿了.例题4、两个海盗分20枚金币.请问:如果每个海盗最少分到5枚金币,一共有________种不同的分法.最少分到5枚金币,那就是说最多分到15枚.例题5、三个同学分6个高思积分,每个同学至多分到4个高思积分,也有可能分不到,共有________种不同的分法.先看看6可以拆成哪三个数相加.例题6、老师要求唐小虎把一篇英语课文抄写4遍,每天至少写1遍.那么唐小虎完成这些课文共有________种不同的可能.小虎,怎么又被罚抄了?认真写哦~随练1、把9块蛋糕分给果果、蕊蕊、莹莹三个小朋友,每位小朋友至少要有2块蛋糕,共有多少种不同的分法?随练2、猴子小孙从山上采来10个桃子.如果小孙把这些桃子全部分给猴爸和猴妈,并且猴爸和猴妈都要分到桃子,那么小孙共有多少种不同的分法?分几堆例题1、现在有7束玫瑰花,要把它们分成2堆,一共有多少种不同的分法?注意分两人和分两堆的区别哦~例题2、艾小莎有20块巧克力,如果她要把这些糖果分成2堆,且每堆最少有2块巧克力,那么一共有多少种不同的分法?分两堆,是不计次序的.小莎,要注意一下.例题3、小刘去地里挖红薯,一共挖了11个红薯,现在要把它们分成3堆,一共有多少种不同的分法?分三堆,是不是不能为0呢?例题4、 15个苹果分3堆,每堆至少放3个苹果,至多放7个苹果,共有________种不同的分法. 例题5、 有19本书,分成5份.如果每份至少有一本书,且每份的本数都不相同,有多少种分法? 随练1、 把15个玻璃球分成数量不同的4堆,共有多少种不同的分法?随练2、 科学老师让大家观察蚂蚁的习性,唐小虎在小区的广场上发现了12只黑蚂蚁,这12只蚂蚁恰好凑成了3堆,每堆至少有2只.这3堆蚂蚁可能各有________只.分类枚举法例题1、 艾小莎要从苹果、梨、橘子、桃中挑2个水果来吃,每种水果都有很多个,共有________种不同的挑法. 例题2、 从1~8这八个自然数中, 任取三个数,其中没有连续自然数的取法有________种.例题3、 高斯先生拿来三块木板,上面分别写着数字1,2,3.唐小虎可以用这些木板拼出多少个不同的数?例题4、 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止.如果天数不限,可能的吃法有多少种?例题5、 一个骰子,各面点数已画好,分别为1~6;从空间一点看,能看到的不同点数的组合一共有________种.随练1、 把10只鸽子关在3个同样的笼子里,使得每个笼子里都有鸽子,可以有多少种不同的放法?随练2、 1997的数字和是199726+++=,在小于2000的四位数中,数字和为26的除了1997外还有几个?可以分类枚举,如果有4,那就不能有3和5了.题目中没有说3块木板都要用……这些鸡蛋最少吃1天,最多就吃3天吧.从每个面、每条棱、每个点看过去的都不一样哦~易错纠改例题1、 从3个1,2个2,1个3中选出3个数字可以组成________个不同的3位数.拓展1、 从1,2,3,4,5,6中任意选出三个不同的数字,使它们的和为偶数,一共有______种不同的选法. A.6 B.9 C.10 D.122、 如图,一只小蚂蚁要从一个正四面体的顶点A 出发,沿着这个正四面体的棱依次走遍4个顶点再回到顶点A .这只小蚂蚁一共有___________种不同的走法.3、 白雪公主要吃完10个相同的苹果,每天至少吃3个苹果,所吃天数不限,一共有__________种不同的吃法.4、 小李摆摊卖货,小木偶每个卖1元,大木偶每个卖2元.他今天一共卖出了5个木偶.小李今天一共可能卖了多少钱?5、 (1)小明买回了一袋糖豆,他数了一下,一共有10个.现在他要把这些糖豆分成3堆,一共有多少种不同的分法? (2)如果小明有两袋糖豆,每袋10个.要把这两袋糖豆分成3堆,每堆最少要有5个,一共有多少种不同的分法?6、 18个苹果分成3堆,每堆至少放4个苹果,至多放9个苹果,共有__________种不同的分法.7、 在所有四位数中,各位数字之和超过32的共有多少个?8、 分析并口述题目的做题思路及方法.盘子里一共有20颗花生,唐小虎和唐小果一起吃.每人一口吃2颗,两个人一起把花生吃完(每人至少吃一口).请列举出他们吃花生数量的所有情况.1、2、3组成三位数有6个!不对不对,小虎,是3个1,2个2,1个3.那3、1、2、2、1、3组成的三位数有24个.也不对,认真审题哦~DABC。

三年级数学排列题解题技巧

三年级数学排列题解题技巧

三年级数学排列题解题技巧三年级数学排列题解题技巧在数学学习中,排列问题是一个重要的知识点。

在三年级数学中,排列问题也是一个必须掌握的知识点。

本文将介绍三年级数学排列题解题技巧,希望能帮助同学们更好地掌握排列问题。

一、排列问题的基本概念排列问题是指从一组元素中选取若干个元素按照一定的顺序排列的问题。

在排列问题中,所选元素的个数不能超过原有元素的个数,而排列的顺序则需要满足一定的规则。

例如,有三个元素A、B、C,那么从这三个元素中选取两个元素进行排列,可能的排列方式如下:AB、AC、BA、BC、CA、CB。

排列问题中,如果从n个元素中选取r个元素进行排列,则排列的总数为n!/(n-r)!。

其中,符号“!”表示阶乘运算。

二、解题技巧1、理解排列问题在解决排列问题之前,我们需要先理解排列问题的基本概念。

只有理解了排列问题的定义和基本概念,才能更好地解决排列问题。

因此,在学习排列问题时,我们需要先学习相关的概念和公式。

2、分析问题在解决排列问题时,我们需要清晰地分析问题,确定问题所要求的信息。

例如,从一个班级的20名学生中选取4名学生进行排队,可能的排队方式有多少种。

这个问题所要求的信息是从20名学生中选取4名学生,而可能的排队方式则需要进行排列统计。

3、应用排列公式在分析问题之后,我们需要应用排列公式进行计算。

对于上面的问题,我们需要计算20个学生中选取4个学生进行排列的总数。

根据排列公式,这个排列问题的总数为20!/(20-4)!。

4、解决特殊问题在解决排列问题时,有些问题可能存在特殊情况。

例如,从一个班级的20名学生中选取4名学生进行排队,其中有3名男生和1名女生,可能的排队方式有多少种。

这个问题需要按照男生、女生的不同排列方式进行计算。

因此,在解决排列问题时,我们需要注意问题的特殊情况。

三、需要注意的问题1、合理选取题目在学习排列问题时,我们需要合理选取题目进行学习。

对于初学者来说,我们可以选取一些基础的排列问题进行学习。

【课本】三年级(上)第02讲 枚举法中的字典排列

【课本】三年级(上)第02讲 枚举法中的字典排列

基础例题:在上一讲中我们学习了简单的枚举法——直接把所有情况一一列举出来.但如果问题较为复杂,直接枚举很有可能产生重复或者遗漏,这时就需要有一些特别的方法来帮助我们枚举出所有情况.本讲就主要介绍两种枚举的方法:字典排列法和树形图法.同学们可以翻一下英汉字典,不难发现字典中单词排列的规律:整本字典按首字母从a 到z 排列,我明天先吃什么呢?先吃汉堡,不不,还是先吃玉米,哎,还是先吃饼干吧!到底先吃什么呢?共有多少种不同的吃法?这里的东西可真好吃,肚子好胀哦!我要带回去一些慢慢吃。

如果我把这三个东西都带回去,一天吃1个,还可以再吃3天呢? 第二讲枚举法中的字典排列第3个字母,第4个字母……所谓“字典排列法”,就是指在枚举时,像字典里的单词顺序那样排列出所有答案.例如,用1、2、3各一次可以组成多少个不同的三位数?用字典排列法枚举时,每个位置都按从小到大排列,枚举的顺序是:123,132,213,231,312,321.下面我们用字典排列法来解决几个问题.例题1.卡莉娅、墨莫、小高三个人去游乐园玩,三人在藏宝屋中一共发现了5件宝物,三人找到的宝物数量共有多少种不同的可能?(可能有人没有发现宝物)分析:每个人最少找到几件宝物?最多呢?练习:1.老师准备了6个笔记本奖励萱萱、小高和墨莫三人,每人至少得到1本笔记本,请问:老师有多少种不同的奖励方法?例题2.老师要求每个同学写出3个自然数,并且要求这3个数的和是8.如果两个同学写出的3个自然数相同,只是顺序不一样,则算是同一种写法.试问:同学们最多能得出多少种不同的写法?分析:注意顺序不同算一种写法,也就是三个数分别为(1、2、5)、(2、5、1)和(5、1、2)都算同一种写法.练习:2.三个大于0的整数之和(数与数可以相同)等于10,共有多少组这样的三个数?用字典排序法枚举的时候,判断题目要求到底是“交换顺序后算作两种”还是“交换顺序后仍然是同一种”非常关键.往往题目中要求“交换顺序后仍然是同一种”,那么枚举的每个结果里就没有明确的顺序关系;反之,那么枚举时要注意每个结果中应该都符合一定的顺序关系.在求解计数问题时,审题非常关键.往往一字之差就会有天壤之别.枚举法是解决计数问题的基础,但是对于比较复杂的问题,如果直接枚举很容易出现重复或者遗漏.这时就需要预先把所有情形分成若干小类,针对每一小类进行枚举.例题3如下图所示,有7个按键,上面分别写着:1、2、3、4、5、6、7这七个数字.请问:(1)从中选出2个按键,使它们上面的数字的差等于2,一共有多少种选法?(2)从中选出2个按键,使它们上面的数字的和大于9,一共有多少种选法?分析:第二问中的和大于9是什么意思?也就是最小等于10,那最大又是多少?和共有几种可能?练习3有一次,著名的探险家大米得到一个宝箱,但是宝箱有密码锁,密码锁下边有一行小字:密码是和大于11的两个数,而且这两个数不能相同.不用考虑数的先后顺序,你知道密码共有多少种可能吗?例题4数一数下图中包含星星的长方形(包括正方形)有多少个?分析:含星星的长方形会由几个小方格组成呢?我们可以依据长方形的种类进行分类.练习4数一数下图中包含星星的正方形有多少个?在分类时,一定注意类与类之间有没有重复的部分,或者还有没有漏掉的情况.只有在分类已经做到“不重不漏”的前提下,才能够进行进一步的枚举.例题5妈妈买来7个鸡蛋,每天至少吃2个,吃完为止.如果天数不限.可能的吃法1 2 3 4 5 6 7一共有多少种?分析:虽然题目对天数没有限制,但要求每天至少吃2个.照此推算,最多能吃几天?例题6午餐的时候,食堂为同学们准备了苹果、桃子和桔子三种水果,每种都有很多.东东想要挑3个水果吃.请问东东有多少种不同的选法?分析:仔细审题,挑的3个水果能不能是同种的水果?若要分类枚举,应该如何分类呢?课堂内外字典是如何排序的?在英语字典中,两个单词的位置是这样决定的:从第一个字母开始比较,如果相同,那么就看下一个字母;如果不同,那么就按照从a到z的顺序进行排列.比如说:book和look这两个单词,第一个字母分别是b和l,b排在l前面,所以book排在look之前.再比如说:book和boat这两个单词,前两个字母都是bo,所以就看第三个字母,o在a之后,所以字典里book出现在boat之后.再来看看中文字典,现在的中文字典主要采用的都是按拼音字母的顺序进行排序,方法与英语字典相同.其实在使用拼音之前我国古代的字典一般都是按照部首以及笔画来排序的,比如著名的《康熙字典》就是这样排序的:先按部首排序,每个部首之中再按剩下的笔画数从少到多进行排序.中文字典除了按拼音、部首等顺序排列之外,还有四角号码、笔顺等多种排序方法.作业1.有4支完全相同的铅笔要分给3位同学,每位同学至少分1支,共有多少种不同的分法?2.有面值分别为1元、10元和50元的纸币若干,每种面值的纸币张数都大于3.如果从中任取3张,那么能组成的钱数共有多少种?3.老师要求墨莫写4篇作文,题目不限,但是每天至少写1篇.那么墨莫完成这些作文共有多少种不同的可能?4.爷爷要墨莫多吃水果,于是给了他8个苹果,要求每天至少吃2个,吃完为止.那么墨莫一共有多少不同的吃法?5.体育馆里有很多足球和篮球,体育老师要小高从里面拿4个,请问小高有多少种不同的选择?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
221,223122,322212,232
331,332133,233313,323
一共6×3=18个。
三种一起:6+3+18=27(个)
先分类,可以分取1枚,2枚,3枚,4枚4种取法。
再有序:
1枚:1分,2分,4分,8分共4种
2枚:1分-2分,1+2=32分-4分,2+4=64分-8分,4+8=128分-无,不可取了
3-1-3,3-2-2,3-3-13种
4-1-2,4-2-12种
5-1-11种
所以,5+4+3+2+1=15种。有15种不同的情况。
ﻩ1 2345678

2、ABACA
3、ABCBA
4、ACABA
5\、ACACA
6、ACBCA
答:一共有6种不同的旅游路线。
所以:一共有 4+6+4+1=15种不同的钱数。
分析:可以将7拆成三个整数,每个数分别对应三个人每人分得书的数量,找出所有的情况。
每个数最小是1,最大是7-1-1=5,而且可以相同,而且人的顺序也可以变化。故可以列举如下:
1-1-5,1-2-4,1-3-3,1-4-2,1-5-1 5种
2-1-4,2-2-3,2-3-2,2-4-14种
1分-4分,1+4=52分-8分,2+8=10
1分-8分,1+8=9
所以:3+2+1=6种
记住:不回头,不重复。
3枚:1分-2分-4分1+2+4=71分-2分-8分1+2+8=11
1分-4分-8分1+4+8=13
2分-4分-8分2+4+8=14
所以:3+1=4种
4枚:1分-2分-4分-8分1+2+4+8=15只有1种
所以一共有5+3+3=11种不同的情形。
三年级数学春第三讲字典排列法和树形图法
———————————————————————————————— 作者:
———————————————————————————————— 日期:
第三讲字典排列法和树形图法
先分类:1、2、3
再有序:1
2
3
所以,一共有6个没有重复的三位数:123,132,213,231,312,321。
记住:不重复,不回头。
先分类:不重复,三个数字相同,两个数字相同,分前面两个相同,后面两个相同,一前一后相同。
再有序:不重复:如(1)一共有6个没有重复的三位数:123,132,213,231,312,321。
三个重复:111,222,333一共有3个。
两个重复:前面:112,113后面:211,311一前一后:121,131
相关文档
最新文档