2017中考数学《分式方程》专题训练含答案解析

合集下载

2017年全国中考数学真题分类 分式2017(选择题)

2017年全国中考数学真题分类  分式2017(选择题)

2017年全国中考数学真题分类分式 选择题一、选择题1. (2017浙江丽水·5·3分)化简xx x -+-1112的结果是( ) A .x +1 B .x -1 C .x 2-1D .112-+x x答案:A .解析:根据分式的加法法则,x x x -+-1112=1)1)(1(1111122--+=--=--x x x x x x x x -=x +1,选A . 2. (2017四川成都,3分)已知x =3是分式方程2121kx k x x--=-的解,那么实数K 的值为 A .-1B . 0C .1D .2答案:D ,解析:把x =3代入分式方程2121kx k x x --=-,得321223k k --=,解此一元一次方程,得k =2.4. (2017重庆,12,4分)若数a 使关于x 的分式方程4112=-+-xax 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤->-+021232a y yy 的解集为y 2-<,则符合条件的所有整数a 的和为( ) A .10B .12C . 14D .16答案:A 解析:①解关于x 的分式方程,由它的解为正数,求得a 的取值范围.4112=-+-xa x 去分母,得:2-a =4(x -1) 去括号,移项,得: 4x =6-a 系数化为1,得:x =46a- ∵x 0>且x ≠1,∴46a -0>,且46a-≠1,解得a 6<且a ≠2;②通过求解于y 的不等式组,判断出a 的取值范围.()⎪⎩⎪⎨⎧≤->-+021232a y yy 解不等式①,得y 2-<; 解不等式②,得y ≤a ;∵不等式组的解集为y 2-<,∴a 2-≥;③由a 6<且a ≠2和a 2-≥,可推断出a 的取值范围:62<≤-a ,且a ≠2,符合条件的所有整数a 为-2、-1、0、1、3、4、5,这些整数的和为10,故选A .5. (2017年四川绵阳,5,3分) 使代数式有意义的整数x 有 A .5个B .4个C .3个D .2个答案:B 解析:根据被开方数是非负数,分母不能为零,可得答案. 6. (2017重庆B ,7,4分)若分式31-x 有意义,则x 的取值范围是 A .3>xB .3<xC . 3≠xD .3=x答案:C ,解析:根据分式分母不为0,所以x -3≠0,即3≠x ,故答案为C .8. (2017年四川内江,8,3分)下列计算正确的是 A .3x 2y +5xy =8x 3y 2 B .(x +y )2=x 2+y 2C .(-2x )2÷x =4xD .xy x y x y -+-=1 答案:C ,解析:(1)根据“同类项定义”, 3x 2y +5xy 不能计算;(2) 根据“完全平方公式”, (x +y )2=x 2+2xy +y 2;(3)根据“单项式的除法法则”计算,(-2x )2÷x =4x 2÷x =4x ;(4)根据“分式的加法法则”计算, x y x y x y -+-=y x x y x y ---=yx xy --=-1.9. (2017山东泰安,5,3分)化简⎪⎭⎫⎝⎛÷⎪⎭⎫ ⎝⎛-221-112-1x x x 的结果为A .11x x -+ B .11x x +- C .1x x+ D .1x x- 答案:A ,解析:本题考查了分式的混合运算,注意运算分则和运算顺序.⎪⎭⎫ ⎝⎛÷⎪⎭⎫ ⎝⎛-221-112-1x x x ()()()222111x x x x x -+÷-=()()()111222-+•-=x x x x x 11+-=x x .10. 6.(2017四川眉山,6,3分)下列运算结果正确的是 A .8-18=- 2B .(-0.1)-2=0.01C .(2a b)2÷b 2a =2abD .(-m )3⋅m 2=-m 6答案:A ,解析:因为8-18=22-32=-2,而(-0.1)-2=1(-0.1) 2=10.01=100,(2ab )2÷b 2a =4a 2b 2⋅2a b =8a 3b3,(-m )3⋅m 2=-m 3⋅m 2=-m 5,所以只有选项A 正确.11. 12.(2017四川眉山,12,3分)已知14m 2+14n 2=n -m -2,则1m -1n 的值等于A .1B .0C .-1D .-14答案:C ,解析:由题意,得(14m 2+m +1)+(14n 2-n +1)=0,即(12m +1)2+(12n -1)2=0,从而m =-2,n =2,所以1m -1n =1-2-12=-1.12. (2017山西,7,3分)化简2442---x xx x 的结果是( ) A .-x 2+2xB .-x 2+6xC . 2+-x xD .2-x x答案:C ,解析:()()()()()()()22242224222424422-+--=-++-=---+=---x x xx x x x x x x x x x x x x x x x = ()()()()()22222222+-=-+--=-++-x xx x x x x x x x .13. 7.(2017天津,3分)计算111a a a +++的结果为 A .1 B.a C.a +1 D .11a +答案:A ,解析:根据同分母分式的加法法则“分母不变,分子相加”可得,原式=11a a ++=1,故选A .14. 14.(2017湖北宜昌,3分)计算()()224x y x y xy+--的结果为( )A .1B .12C .14D .0答案:A ,解析:根据整式的运算法则及分式的基本性质化简,原式=222222444x y xy x y xy xyxy xy++--+==1.15. 3. (2017重庆,7,4分)要使分式34-x 有意义,x 应满足的条件是( ) A . 3>xB .3=xC .3<xD .3≠x答案:D 解析:先根据分式有意义的条件“分母不等于0”,得到关于x 的方程,解这个方程,问题获解.由分式的意义,知03≠-x ,解得3≠x ,故答案为D .16.17.(2017湖北鄂州)(本小题满分8分)先化简,再求值:233(1)11x x xx x x ---+÷++,其中x 的值从不等式组23241x x -⎧⎨-<⎩,的整数解中选取.思路分析:先进行分式分式的混合运算,求出最简结果;再解不等式组,从解集中确定出整数解,最后在整数解中选取一个使计算式中各个分式有意义及除数不为0的x 的值代入求值.解:原式=213311(1)x x x x x x -+-+⋅+-=(1)(2)11(1)x x x x x x --+⋅+-=2x x-.解不等式2x -≤3,得x ≥-1. 解不等式24x -<1,得x <52.∴不等式组的解集为-1≤x <52,它的整数数解为-1,0,1,2. ∵x ≠-1,0,1, ∴x =2. 当x =2时,原式=222-=0.17. (2017·湖南株洲,20,6分)先化简,再求值:)(2x y x -·yx y+-y ,其中x =2,y =3.解题思路:先根据分式的混合运算顺序和法则化简原式,再将x 、y 的值代入求解可得.解:)(2x y x -·y x y +-y =x y x 22-·yx y+-y=x y x y x ))((+-·y x y +-y =yy x y )(--y =xy xy 2--y=x xy y xy --2=-xy 2.当x =2,y =3时,原式=-2)3(2=-23.18. (2017新疆生产建设兵团,3,5分)已知分式11x x -+的值是0,则x 的值是( )A. -1B.0C.1D. ±1 答案:C 解析:因为11x x -+=0,所以x -1=0,且x+1≠0,解得x=1,故选C.19. (2017北京,2,3分)若代数式4xx -有意义,则实数x 的取值范围是( ) A .x =0B .x =4C .x ≠0D .x ≠4答案:D ,解析:要使分式有意义,则x ﹣4≠0,即x ≠4.20. (2017北京,7,3分)如果a 2+2a ﹣1=0,那么代数式242a a a a ⎛⎫- ⎪-⎝⎭的值是( )A .﹣3B .﹣1C .1D .3答案:C ,解析:原式=2222422222()()a a a a a a a a a a a a -+⋅=⋅=+=+--,而a 2+2a ﹣1=0,∴原式=1.21. 4.(2017江苏常州,4,3分)计算11x x x-+的结果是( ) A .2x x+ B .2xC .12D .1【答案】D 【解析】11111x x x x x--++==.22. 3.(2017·辽宁大连,3,3分)计算:2)1(3-x x -2)1(3-x 的结果是 A . 2)1(-x xB .11-x C .13-x D .13+x 答案:C 解析:根据分式减法法则直接运算即可.因为2)1(3-x x -2)1(3-x =2)1(33--x x =2)1()1(3--x x =13-x ,故选C .23. 5.(2017山东淄博,5,4分)若分式11x x -+的值为零,则x 的值是 ( )A .1B .-1C .±1D .2答案:A ,解析:分式的值为零,同时满足两个条件:分子等于零、分母不为零;1x -=0且x +1≠0,所以x =1.24. 5.(2017陕西,5,3分)化简x yx y x y--+的正确结果为 A .1B .2222x y x y+-C .x yx y-+ D .x 2+y 2答案:B ,解析:x y x y x y --+=()()()()()()x x y y x y x y x y x y x y +---++-=222222x xy xy y x y x y +----=2222x y x y +-.25. (2017广东乐山,6,3分)若a 2-ab =0(b ≠0),则=+ba aA .0B .21C .0或21D .1或2 答案:C ,解析:∵a 2-ab =0(b ≠0),∴a (a -b )=0,∴a =0或a -b =0,即a =0或a =b ,∴=+ba a或=+b a a 2126. (2017广东乐山,8,3分)已知31=+x x ,则下列三个等式:①7122=+x x ,②51=-x x ,③2x 2-6x =-2中,正确的个数有A .0个B .1个C .2个D .3个答案:C ,解析:∵31=+x x ,∴22211⎪⎭⎫ ⎝⎛+=+x x x x -2=9-2=7,①对;∵2211⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-x x x x -4=9-4=5,∴51±=-xx ,②错;∵2x 2-6x =-2,∴2x 2+2=6x ,又∵x ≠0,∴两边同时除以2x 可得31=+xx ,③对.27. 7.(2017广东广州,3分)计算()232b a b a,结果是( ) A .a 5b 5 B .a 4b 5C .ab 5D .a 5b 6答案:A ,解析:原式=a 6b 3·2b a=a 5b 5.28. 2. (2017年武汉,2,3分)若代数式41-a 在实数范围内有意义,则实数a 的取值范围为( ) A .a =4B .a >4C .a <4D .a ≠4答案:D ,解析:要使41-a 有意义,只需a -4≠0,即a ≠4.故选D .。

【精品】2017年全国中考数学真题《分式与分式方程》分类汇编解析

【精品】2017年全国中考数学真题《分式与分式方程》分类汇编解析

2017年全国中考数学真题《分式与分式方程》分类汇编解析分式与分式方程考点一、分式 (8~10分)1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是( )A .B .C .D .2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )C.﹣=D.+=304.(2017·广西桂林·3分)当x=6,y=3时,代数式()•的值是()A.2 B.3 C.6 D.95. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣27.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.8.(2017海南3分)解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解10. (2017·湖北武汉·3分)若代数式在31-x实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3D.x=312.(2017·四川攀枝花)化简+的结果是()A.m+n B.n﹣m C.m﹣n D.﹣m﹣n13.(2017·四川内江)甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地,已知A,C两地间的距离为110千米,B,C两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x千米/时,由题意列出方程,其中正确的是( )A.1102x+=100xB.1100x=1002x+C.1102x-=100xD.1100x=1002x-14.(2017·四川内江)在函数y x的取值范围是( )A.x>3 B.x≥3 C.x>4 D.x≥3且x≠4驶100km,设提速前列车的平均速度为xkm/h,下列方程正确的是()A.=B.=C.=D.=16. (2017·黑龙江龙东·3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣317.(2017·黑龙江齐齐哈尔·3分)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m 的值为()A.1,2,3 B.1,2 C.1,3 D.2,318.(2017·湖北荆门·3分)化简的结果是()A.B.C.x+1 D.x﹣119.(2017·内蒙古包头·3分)化简()•ab,其结果是()A.B.C.D.20. (2017·山东潍坊·3分)计算:20•2﹣3=()A.﹣B.C.0 D.821. (2017·山东潍坊·3分)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣22. (2017·四川眉山·3分)已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C.D.二、填空题1.(2017·山东省济宁市·3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.2. (云南省昆明市·3分)计算:﹣=.4.(2017·贵州安顺·4分)在函数中,自变量x的取值范围是.5.(2017贵州毕节5分)若a2+5ab﹣b2=0,则的值为.6.(2017·四川南充)计算:=.7.(2017·四川攀枝花)已知关于x的分式方程+=1的解为负数,则k的取值范围是.8.(2017·四川泸州)分式方程﹣=0的根是.9.(2017·四川内江)化简:(2a+93a-)÷3aa+=______.10. (2017·湖北荆州·3分)当a=﹣1时,代数式的值是.三、解答题1.(2017·湖北随州·6分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.2. (2017·湖北随州·6分)某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.3. (2017·吉林·5分)解方程:=.4. (2017·江西·6分)先化简,再求值:(+)÷,其中x=6.5. (2017·辽宁丹东·10分)某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?6.(2017·四川泸州)化简:(a+1﹣)•.7.(2017·四川宜宾)2017年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?8.(2017·四川宜宾)化简:÷(1﹣)9.(2017·黑龙江龙东·6分)先化简,再求值:(1+)÷,其中x=4﹣tan45°.10.(2017·黑龙江齐齐哈尔·5分)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.11.(2017·湖北黄石·6分)先化简,再求值:÷•,其中a=2017.12.(2017·湖北荆州·12分)已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n =0②中,k、m、n均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.13.(2017·青海西宁·7分)化简:,然后在不等式x≤2的非负整数解中选择一个适14. (2017·陕西)化简:(x﹣5+)÷.15. (2017·四川眉山)先化简,再求值:,其中a=3.16. (2017·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?A、B两种型号车的进货和销售价格如表:17.(2017·山东省滨州市·4分)先化简,再求值:÷(﹣),其中a =.18.(2017·山东省东营市·4分)化简,再求值:(a +1-4a -5a -1)÷(1a -1a 2-a ),其中a =2+3.19.(2017·山东省东营市·8分)东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?20.(2017·山东省菏泽市·3分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)21. (2017·重庆市A卷·5分)(+x﹣1)÷.22. (2017·重庆市B卷·5分)÷(2x﹣)23. (2017·浙江省绍兴市·4分))解分式方程:+=4.24.(2017·福建龙岩·6分)先化简再求值:,其中x=2+.25.(2017·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同 (1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?26.(2017·贵州安顺·10分)先化简,再求值:1211)1(+-+÷-x x x ),从﹣1,2,3中选择一个适当的数作为x 值代入.27.(2017·黑龙江哈尔滨·7分)先化简,再求代数式(﹣)÷的值,其中a =2sin 60°+tan 45°.28.(2017·黑龙江哈尔滨·10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?29.(2017广西南宁)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?30.(2017河南)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.答案分式与分式方程一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是()A.B.C.D.【考点】最简分式.【专题】计算题;分式.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣【考点】分式的加减法. 【专题】计算题;分式.【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30 B .﹣=C .﹣= D .+=30【考点】由实际问题抽象出分式方程.【分析】设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟列出方程即可.【解答】解:设甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据题意得,﹣=.故选B .4.(2017·广西桂林·3分)当x =6,y =3时,代数式()•的值是( )A .2B .3C .6D .9 【考点】分式的化简求值.【分析】先对所求的式子化简,然后将x =6,y =3代入化简后的式子即可解答本题.【解答】解:()•==,当x=6,y=3时,原式=,故选C.5. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.6. (2017·重庆市A卷·4分)函数y=中,x的取值范围是()A.x≠0B.x>﹣2 C.x<﹣2 D.x≠﹣2【分析】由分式有意义的条件得出不等式,解不等式即可.【解答】解:根据题意得:x+2≠0,解得x≠﹣2.故选:D.【点评】本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.7.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据题意,可列方程: =,故选:A .8.(2017海南3分)解分式方程,正确的结果是( )A .x =0B .x =1C .x =2D .无解 【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解答】解:去分母得:1+x ﹣1=0, 解得:x =0, 故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验. 9.(2017河北3分)下列运算结果为x -1的是( )A .11x-B .211x x x x -∙+ C .111x x x +÷- D .2211x x x +++ 答案:B解析:挨个算就可以了,A 项结果为—— , B 项的结果为x -1,C 项的结果为—— D 项的结果为x +1。

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。

中考数学分式方程专项练习题(含答案)

中考数学分式方程专项练习题(含答案)

中考数学分式方程专项练习题(含答案)
一、分式方程基础知识点梳理
1.分式方程的概念
分母中含有未知数的方程叫作分式方程.
2.可化为一元一次方程的分式方程的解法
⑴解分式方程的基本思想是:把分式方程转化为整式方程.
⑵可化为一元一次方程的分式方程的一般方法和步骤:
①去分母,即在方程的两边同时乘以最简公分母,把原方程化为整式方程;
②解这个整式方程;
③验根:把整式方程的根代入最简公分母中,使最简公分母不等于零的值是原方程的根;使最简公分母等于零的值是原方程的增根.注意:⑴增根能使最简公分母等于0.
⑵增根是去分母后所得整式方程的根.
3.解分式方程产生增根的原因
增根的产生是在解分式方程的第一步“去分母”时造成的,根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得的
方程是原方程的同解方程,如果方程的两边都乘以的数是0,那么所得的方程与原方程不是同解方程,这时求得的根就是原方程的增根,即分式方程无解.
二、必备50道练习题
11。

初三数学分式方程试题答案及解析

初三数学分式方程试题答案及解析

初三数学分式方程试题答案及解析1.分式方程的解是。

【答案】x=9。

【解析】观察可得最简公分母是x(x﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解。

方程的两边同乘x(x﹣3),得3x﹣9=2x,解得x=9。

检验:把x=9代入x(x﹣3)=54≠0。

∴原方程的解为:x=9。

故答案为:x=9。

【考点】解分式方程。

2.(7分)(1)解关于m的分式方程=-1;(2)若(1)中分式方程的解m满足不等式mx+3>0,求出此不等式的解集.【答案】(1)m=﹣2;(2)x<1.5.【解析】(1)去分母将分式方程转化为整式方程,求出m的值,检验即可;(2)将m的值代入不等式,即可求出解集.试题解析:(1)去分母得:﹣m+3=5,解得:m=﹣2,经检验m=﹣2是分式方程的解;(2)将m=﹣2代入不等式得:﹣2x+3>0,解得:x<1.5.【考点】1.解分式方程2.解一元一次不等式.3.列方程(组)解应用题:某市计划建造80万套保障性住房,用于改善百姓的住房状况.开工后每年建造保障性住房的套数比原计划增加25%,结果提前两年保质保量地完成了任务.求原计划每年建造保障性住房多少万套?【答案】8.【解析】方程的应用解题关键是找出等量关系,列出方程求解.本题利用建设任务表示出建设时间,以时间为等量关系列方程是解题关键,等量关系为:提前2年完成建设任务.试题解析:设原计划每年建造保障性住房x万套.则解得 x=8.经检验:x=8是原方程的解,且符合题意.答:原计划每年建造保障性住房8万套.【考点】分式方程的应用.4.方程的解是【答案】x=3.【解析】原式可化为:2x=3(x-1)解得:x=3经检验得x=3是原方程的根所以原方程的解为x=3.故答案是x=3.【考点】解分式方程.5.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成. (1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【答案】(1)乙工程队单独做需要80天完成;(2)甲队做了45天,乙队做了50天.【解析】(1)根据“甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成”,设乙工程队单独完成这项工作需要x天,列出方程求解即可;(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,可得到方程,再根据x<46,y<52,得到方程组,其中x、y均为正整数,解此方程组即可得到答案.试题解析:(1)设乙工程队单独完成这项工作需要x天,由题意得,解之得x=80.···················································3分经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.·······················································4分(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,所以,即,又x<46,y<52,·····························5分所以,解之得42<x<46,因为x、y均为正整数,所以x=45,y=50.·················································7分答:甲队做了45天,乙队做了50天.···························································8分【考点】分式方程的应用;一元一次不等式(组)的应用.6.计算(1)计算:(2)解方程:【答案】(1);(2)x = 4.【解析】(1)针对特殊角的三角函数值,负整数指数幂,二次根式化简,绝对值4个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)首先去掉分母,观察可得最简公分母是x(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元二次方程,最后检验即可求解.试题解析:(1)原式.(2)去分母得 3x2–6x–x2–2x = 0,即 2x2–8x = 0,∴ x = 0或x = 4.经检验:x = 0是增根.∴原方程的解是x = 4.【考点】1.特殊角的三角函数值;2.负整数指数幂;3.二次根式化简;4.绝对值;5.解分式方程.7.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【答案】(1)100,50;(2)10.【解析】(1)方程的应用解题关键是设出未知数,找出等量关系,列出方程求解. 本题设乙队每天绿化x m2,则甲队每天绿化2x m2,等量关系为:在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(2)不等式的应用解题关键是找出不等量关系,列出不等式求解. 本题不等量关系为:这次的绿化总费用不超过8万元.试题解析:(1)设乙队每天绿化x m2,则甲队每天绿化2x m2,根据题意,得.解得:x=50.经检验,x=50.是原方程的根.2x=100.答:甲、乙两工程队每天能完成绿化的面积分别是100、50m2。

初三数学分式方程试题答案及解析

初三数学分式方程试题答案及解析

初三数学分式方程试题答案及解析1.某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍。

已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍。

(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x。

【答案】(1)购买这批乒乓球拍和羽毛球拍的总费用为 4000+25x ;(2)x=40。

【解析】(1)若每副乒乓球拍的价格为x元,根据购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍即可得出答案,(2)根据购买的两种球拍数一样,列出方程=,求出方程的解,再检验即可。

试题解析:(1)若每副乒乓球拍的价格为x元,则购买羽毛球拍花费:2000+25x,则购买这批乒乓球拍和羽毛球拍的总费用为:2000+2000+25x=4000+25x;(2)若购买的两种球拍数一样,根据题意得:=,解得:x1=40,x2=﹣40,经检验;x1=40,x2=﹣40都是原方程的解,但x2=﹣40不合题意,舍去,则x=40。

【考点】分式方程的应用。

2.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2B.m≥2C.m≥2且m≠3D.m>2且m≠3【答案】C【解析】分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m=2且m≠3.故选C【考点】分式方程的解3.解方程:.【答案】此方程无解.【解析】首先去掉分母,观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解.试题解析:解:方程两边同乘以x﹣2得:1=x﹣1﹣3(x﹣2)整理得:2x=4,解得:x=2.检验:当x=2时,x﹣2=0,故x=2不是原方程的根,∴此方程无解.【考点】解分式方程.4.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?【答案】(1)3;(2)方案3总工资最低,最低总工资为4800元.【解析】(1)设单独由乙队摘果,需要x天才能完成,根据题意列出分式方程,求出分式方程的解得到x的值,检验即可;(2)分别求出三种方案得总工资,比较即可.试题解析:(1)设单独由乙队摘果,需要x天才能完成,根据题意得:2()=1,解得:x=3,经检验x=3是分式方程的解,且符合题意,则单独由乙队完成需要3天才能完成;(2)方案1:总工资为6000元;方案2:总工资为5200元;方案3:总工资为4800元,则方案3总工资最低,最低总工资为4800元.【考点】分式方程的应用.5.娄底到长沙的距离约为180km,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比张晚出发1小时,最后两车同时到达长沙,已知小轿车的速度是大货车速度的1.5倍.(1)求小轿车和大货车的速度各是多少?(列方程解答)(2)当小刘出发时,求小张离长沙还有多远?【答案】(1)大货车速度为60km/h,则小轿车的速度为90km/h;(2)当小刘出发时,小张离长沙还有120km.【解析】(1)由题意,设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,根据“小刘比张晚出发1小时,最后两车同时到达长沙,”列出方程解决问题;(2)利用(1)中小张开着大货车的速度,即可求得答案.试题解析:解:(1)设大货车速度为xkm/h,则小轿车的速度为1.5xkm/h,由题意得﹣=1解得x=60,则1.5x=90,答:大货车速度为60km/h,则小轿车的速度为90km/h.(2)180﹣60×1=120km答:当小刘出发时,小张离长沙还有120km.【考点】分式方程的应用6.若关于x的方程无解,则m=________.【答案】1或.【解析】分式方程去分母转化为整式方程,根据分式方程无解得到x-4=0,求出x的值代入整式方程即可求出m的值.试题解析:去分母得:x-2=3+m(x-4),整理得:(1-m)x=5-4m若1-m=0,即m=1,方程无解;若1-m≠0,即m≠1时,根据题意:x-4=0,即x=4,将x=4代入整式方程得:m=.综上,m的值为1或.【考点】分式方程的解.7.一行20人外出旅游入住某酒店,因特殊原因,服务员在安排房间时每间比原来多住1人,结果比原来少用了一个房间.设原来每间住x人,则下列方程正确的是A.B.C.D.【答案】A.【解析】设原来每间住x人,原来所用房间数为,实际所用房间数为.所列方程为.故选A.【考点】由实际问题抽象出分式方程.8.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成. (1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【答案】(1)乙工程队单独做需要80天完成;(2)甲队做了45天,乙队做了50天.【解析】(1)根据“甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成”,设乙工程队单独完成这项工作需要x天,列出方程求解即可;(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,可得到方程,再根据x<46,y<52,得到方程组,其中x、y均为正整数,解此方程组即可得到答案.试题解析:(1)设乙工程队单独完成这项工作需要x天,由题意得,解之得x=80.···················································3分经检验x=80是原方程的解.答:乙工程队单独做需要80天完成.·······················································4分(2)因为甲队做其中一部分用了x天,乙队做另一部分用了y天,所以,即,又x<46,y<52,·····························5分所以,解之得42<x<46,因为x、y均为正整数,所以x=45,y=50.·················································7分答:甲队做了45天,乙队做了50天.···························································8分【考点】分式方程的应用;一元一次不等式(组)的应用.9.⑴解方程:=-3 ⑵解不等式组:【答案】(1) 原方程无解;(2)-1≤x<2.【解析】(1)先根据“去分母、去括号、揿项、合并同类项、系数化为1”的步骤解方程,然后再检验即可求得方程的解.(2)先求出不等式组中①、②的解集,再找到公共部分即可.(1)∵=-3=-31=x-1-3(x-2)1=x-1-3x+6x=2经检验:x=2是增根,所以原方程无解.(2)解不等式(1)得:x<2;解不等式(2)得:x≥ -1所以:不等式组的解集为:-1≤x<2.考点: 1.解分式方程;2.解一元一次不等式组.10.随着梅雨季节的临近,雨伞成为热销品.某景区与某制伞厂签订2万把雨伞的订购合同.合同规定:每把雨伞的出厂价为13元.景区要求厂方10天内完成生产任务,如果每延误1天厂方须赔付合同总价的1%给景区.由于急需,景区也特别承诺,如果每提前一天完成,每把雨伞的出厂价可提高0.1元.⑴如果制伞厂确保在第10天完成生产任务,平均每天应生产雨伞把;⑵生产2天后,制伞厂又从其它部门抽调了10名工人参加雨伞生产,同时,通过技术革新等手段使每位工人的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该厂原计划安排多少名工人生产雨伞?⑶已知每位工人每天平均工资为60元,每把雨伞的材料费用为8.2元.如果制伞厂按照⑵中的生产方式履行合同,将获得毛利润多少元?(毛利润=雨伞的销售价-雨伞的材料费-工人工资)【答案】(1)2000;(2)原计划安排150名工人生产雨伞;(3)制伞公司支付完员工工资后将剩余24400元.【解析】(1)根据某景区与某制伞厂签订2万把雨伞的订购合同,厂方10天内完成生产任务,即可得出平均每天应生产雨伞数量;(2)设原计划安排x名工人生产雨伞得出每人平均生产雨伞的数量,进而表示出提高工作效率后的生产数量,即可得出等式方程求出即可;(3)根据毛利润=雨伞的销售价﹣雨伞的材料费﹣工人工资求出即可.试题解析:(1)20000÷10=2000;(2)设原计划安排x名工人生产雨伞.由题意可得解之得:x="150"经检验:x=150是原方程的解,答:原计划安排150名工人生产雨伞;(3)(元)答:制伞公司支付完员工工资后将剩余24400元.【考点】分式方程的应用.11.A、B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从 B地出发骑车前往A地,且乙骑车比甲步行每小时多走10千米.乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地.求甲从A地到B地步行所用的时间.【答案】3小时.【解析】本题的等量关系是路程=速度×时间.本题可根据乙从B到A然后再到B用的时间=甲从A到B用的时间-20分钟-40分钟来列方程.试题解析:设甲从A地到B地步行所用时间为x小时,由题意得:化简得:2x2-5x-3=0,解得:x1=3,x2=-,经检验知x=3符合题意,∴x=3,∴甲从A地到B地步行所用时间为3小时.考点: 分式方程的应用.12.对于非零的两个实数a,b,规定a⊗b=-,若1×(x+1)=1,则x的值为 () A.B.C.1D.-【答案】D【解析】由规定可知:-1=1去分母:1-(x+1)=x+1解得x=-当x=-时,分母x+1=-+1≠0∴x=-是原方程的根.13.炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,设乙队每天安装x台,根据题意,列出方程 .【答案】.【解析】设乙队每天安装x台,根据甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台,则.故答案是.【考点】由实际问题抽象出分式方程.14.数学的美无处不在.数学家们研究发现,弹拨琴弦发出声音的音调高低,取决于弦的长度,绷得一样紧的几根弦,如果长度的比能够表示成整数的比,发出的声音就比较和谐.例如,三根弦长度之比是15∶12∶10,把它们绷得一样紧,用同样的力弹拨,它们将分别发出很调和的乐声do、mi、so.研究15、12、10这三个数的倒数发现:-=-.我们称15、12、10这三个数为一组调和数.现有一组调和数:x、5、3(x>5),则x的值是________.【答案】15【解析】依据调和数的意义,有-=-,解得x=15.15.全民健身活动中,组委会组织了长跑队和自行车队进行宣传,全程共10千米,自行车队的速度是长跑队速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车队晚到了2小时,如果设长跑队跑步的速度为x千米/时,那么根据题意可列方程为A.+2=+B.-=2-0.5C.-=2-0.5D.-=2+0.5【答案】C【解析】自行车队的速度是长跑队的速度的2.5倍,可得自行车队的速度为2.5x,整个过程长跑队一共比自行车队多用了2-0.5小时,据此可列方程-=2-0.5.16. (1)甲、乙两人同时从A地出发去B地,甲的速度是乙的1.5倍.已知A、B两地相距27千米,甲到达乙地3小时后,乙才到达,求甲、乙两人的速度.(2)甲、乙两人同时从相距9千米的A、B两地同时出发,若相向而行,则1小时相遇,若同向而行,乙在甲前面,则甲走了18千米后追上乙,求甲、乙两人的速度.【答案】(1)甲为4.5千米/时,乙为3千米/时. (2)甲为6千米/时,乙为3千米/时.【解析】(1)根据甲比乙少用3小时为等量关系列出方程.设乙的速度为x千米/时,列方程得-=3,甲为4.5千米/时,乙为3千米/时.(2)设甲的速度为x千米/时,相向而行,1小时相遇,则(甲速+乙速)×1=9,所以乙速=9-x.又若同向而行,乙在甲前面,则甲走了18千米后追上乙,即甲走18千米所用时间=乙走9千米所用的时间相等,由此可列出方程,得=,甲为6千米/时,乙为3千米/时.17.已知关于x的方程的解是正数,则m的取值范围为 __.【答案】m>﹣6且m≠﹣4.【解析】解分式方程后需要检验,原方程整理得:2x+m=3x﹣6,解得:x=m+6,∵x>0,∴m+6>0,即m>﹣6,又∵原式是分式方程,∴x≠2,即m+6≠2,∴m≠﹣4,综上所述,则m的取值范围为m>﹣6且m≠﹣4.【考点】解分式方程.18.某校七年级准备购买一批笔记本奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,学校决定购买笔记本和笔袋共90件,笔袋每个原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?【答案】解:(1)设打折前售价为x,则打折后售价为0.9x,由题意得,,解得:x=4。

分式方程练习题及答案

分式方程练习题及答案

分式方程练习题及答案一、填空题1. 将分式 $\frac{3}{4}$ 化为小数,计算结果保留两位小数。

解答:0.752. 若 $\frac{a}{3} = \frac{2}{5}$,求 $a$ 的值。

解答:$a = \frac{6}{5}$3. 已知 $\frac{x}{4} = \frac{5}{12}$,求 $x + 2$ 的值。

解答:$x + 2 = \frac{5}{3}$4. 若 $\frac{2}{x} = \frac{7}{16}$,求 $x$ 的值。

解答:$x = \frac{32}{7}$5. 解方程 $\frac{1}{2x} - \frac{3}{4} = \frac{1}{8}$,求 $x$ 的值。

解答:$x = \frac{5}{2}$二、选择题1. 若 $\frac{2}{3}x - 1 = \frac{5}{6}$,则 $x =$A. $-\frac{1}{4}$B. $\frac{1}{2}$C. $\frac{7}{9}$D.$\frac{9}{7}$解答:C. $\frac{7}{9}$2. 若 $x - \frac{2}{3} = \frac{x}{5}$,则 $x =$A. $-\frac{1}{4}$B. $\frac{3}{2}$C. $\frac{15}{17}$D.$\frac{5}{7}$解答:B. $\frac{3}{2}$3. 若 $\frac{x}{3} = \frac{2}{5x}$,则 $x =$A. $-2$B. $-\frac{1}{2}$C. $\frac{1}{2}$D. 2解答:D. 24. 若 $\frac{3}{2} - \frac{4}{x} = \frac{5}{6}$,则 $x =$A. $-\frac{8}{3}$B. $\frac{24}{15}$C. $\frac{35}{2}$D.$\frac{6}{5}$解答:B. $\frac{24}{15}$5. 若 $2 - \frac{3}{x} = \frac{1}{4}$,则 $x =$A. 4B. 5C. 6D. 8解答:C. 6三、解答题1. 解方程 $\frac{x}{4} + \frac{1}{3} = \frac{5}{6}$,求 $x$ 的值。

2017年全国中考数学真题分类 分式2017(解答题)

2017年全国中考数学真题分类  分式2017(解答题)

2017年全国中考数学真题分类分式 解答题三、解答题1.(2017山东滨州,19,8分)(本小题满分8分) (1)计算:(a -b )(a 2+ab +b 2)解:原式=a 3+a 2b +ab 2-a 2b -ab 2-b 3=a 3-b 3.(2)利用所学知识以及(1)所得等式,化简代数式332222222m n m n m mn n m mn n--÷++++. 分析:观察到第一个分式的分子出现m 、n 两数的立方差,考虑使用(1)中的立方差公式.解:原式=22222()()()()()m n m mn n m n m mn n m n m n -+++⋅+++-=m +n .2. (2017四川广安,18,6分)先化简,再求值: (21a a ++a )÷21a a-,其中a =2.思路分析:先把21a a+与a 通分求和,再把除法运算化为乘法运算,分解因式后再约分,把分式化为最简后代入求值即可.解:a a a a a 1)12(2-÷++=÷++a a a 122a a 12-=2(1)a a +•(1)(1)aa a +-=11-+a a .当a =2时,原式=1212-+=3. 3. (2017四川泸州,19,6分)化简:21x x -+•(1+2254x x +-)思路分析:先将括号内通分,再将通分后的分式分子、分母分解因式,约分即得计算结果.解:原式=21x x -+•224254x x x -++-=21x x -+•2(1)(2)(2)x x x +-+=12x x ++.4. (2017四川成都,16,6分)化简求值:212(1)211x x x x -÷-+++,其中1x = 解:原式=2211111(1)1(1)11x x x x x x x x x ---+÷=⋅=+++-+,将1x === 5.7. (2017山东德州)(本小题满分6分)先化简,再求值:44422-+-a a a ÷a a a 222+--3,其中a =27. 思路分析:把分式的分子与分母进行因式分解,同时把除法运算转化为乘法运算,然后再进行约分化简,最后代数求值.解:44422-+-a a a ÷a a a 222+--3=)2)(2()2(2+--a a a ·2)2(-+a a a -3=a -3. 代入a =27求值得,原式=21.8. (2017山东威海,19,7分)先化简,222111,11x x x x x x -+-⎛⎫÷-+ ⎪-+⎝⎭然后从x <选取一个合适的整数的值代入求值.思路分析:将括号内通分,注意-x +1的符号变化,注意选取字母值时要保证原分式有意义.解:原式()()()()()()2221111*********x x x x x x x x x x x x x ----+⎛⎫-+-⎛⎫÷--=÷ ⎪ ⎪-++-+⎝⎭⎝⎭=()211111x x x x x ----÷++ =2111x x x x x --÷++ =()1111x x x x x -++-=1x -.∵满足x <<-2,-1,0,1,2,又∵1x =±或x =0时,分母的值为0,∴x 只能取-2或 2. 当x =-2时,原式=12,当x =2时,原式=12-.(答对两种情况之一即得满分) 9. (2017山东菏泽,16,6分)(本题6分)先化简,再求值:231111x x x x -⎛⎫+÷ ⎪+-⎝⎭,其中x 是不等式组11,210.x x x --⎧->⎪⎨⎪->⎩的整数解. 思路分析:先解不等式组求出解集,确定整数解x 的值,然后依据“先加减,后乘除”的运算顺序进行分式运算,最后带入求值即可.解:解不等式①得x <3, 解不等式②得x >1,所以不等式组的解集为1<x <3,它的整数解为2,231111x x x x -⎛⎫+÷ ⎪+-⎝⎭=2411x x x x ÷+-=4(1)(1)1x x x x x +-⋅+=4x -4, 当x=2时,原式=4x -4=4.10. (2017年四川绵阳,19(2),8分)先化简,再求值:(),其中x =2,y =.(2)原式=……………………………………………………2分=………………………………………………………………3分=……………………………………………………4分=………………………………………………6分当时,.……………………………………………8分11. (2017四川自贡,20,8分)(本小题满分8分)先化简,再求值:21a 1a a 2a 2-+÷++⎛⎫ ⎪⎝⎭,其中a =2.解:原式=()()()()()21221112111(2)12a a a a a a a a a a a a a ++++⋅=⋅=+-++--+++.当x =2时,原式=3.12. (2017年四川南充,17,8分)化简(1-2x x x+)÷11x x -+,再任取一个你喜欢的数代入求值.思路分析:这里括号内的分式可以约分,因此先约分,再算小括号,最后算除法,即颠倒相乘.通过以上步骤得到原式化简的结果.代入求值时,所代入的值不能使原式的分母以及除式为0,即x 2+x ≠0,x +1≠0,x -1≠0,也就是代入的值不能是-1,0,1这三个数. 解:原式=(1-11x +)÷11x x -+=1x x +·11x x +-=1x x -.(代值,x 不能取0,1,-1,其它数均可)13. (2017重庆B ,21(2), 5分)(2)296)2432(2-+-÷---+a a a a a a思路分析:根据分式的混合运算法则进行计算,对异分母分式的加减要先通分,然后把分子相加减, (2)原式=2)3(22)43()2)(2(--⨯----+a a a a a a =22)3(223--⋅--a a a a a =2)3(22)3(--⋅--a a a a a =3-a a14. (2017四川攀枝花,17,6分)先化简,再求值:(1-2x +1)÷x 2-1x 2+x ,其中x =2.思路分析:先把1与2x +1通分求差,再把除法运算化为乘法运算,分解因式后再约分,把分式化为最简后代入求值即可. 解析:原式=()()()112111x x x x x x ++-++-=()()()11111x x x x x x +-++-=1x x +.当2x =时,原式=2321=+. 15. (2017江苏盐城,19, 8分)先化简,再求值:35(2)22x x x x +÷+---,其中x =3 思路分析:先进行括号内的运算,然后化除法为乘法求出代数式的最简结果,最后将x 的值代入求值.解:原式=3(2)(2)522x x x x x ++--÷--=23922x x x x +-÷--=322(3)(3)x x x x x +-⋅-+-=13x -.当x =3+16.(2017江苏连云港,18, 6分)化简:211a aa a. 思路分析:根据分式的乘除法,先对分子分母分解因式,然后直接约分即可, 解:原式=211)1(1aa a a a =-⨯-.17. (2017四川达州1,7分)设223121a a A a a a a -⎛⎫=÷- ⎪+++⎝⎭. (1)化简A ;(2)当3a =时,记此时A 的值为()3f ;当4a =时,记此时A 的值为()4f ;… 解关于x 的不等式:()()()27341124x xf f f ---≤+++,并将解集在数轴上表示出来.思路分析:(1)按照分式混合运算的顺序化简A ;(2)求出()3f ,()4f ,…,(11)f ,解不等式,再把解集在数轴上表示出来.解:(1)原式=2222(1)1a a aa a --÷++ =221(1)(2)a a a a a -+⨯+- =1(1)a a +(2)(3)(4)(11)f f f +++=1111111131-+-+-=-==34451112312124∴不等式为271244x x ---≤,解得:4x ≤,在数轴上表示如下:.19. 19、先化简,再求值:、(本大题2个小题,每小题6分,满分12分)222431212()()33322x x x x x x x x x -+-+-----+-,其中x =4. 解:原式=22431(1)2)()33(1)(2)2x x x x x x x x -+-+------( =2(2)12()322x x x x x ------=2(2)332x x x x ----=x -2x =4时,x -2=2.20. (2017江苏苏州,21,6分)先化简,再求值:259123x x x -⎛⎫-÷⎪++⎝⎭,其中2x =-.思路分析:分式的化简求值,先将括号内的进行通分,各分子、分母因式分解,再约分.解:原式()()()()333331232332x x x x x x x x x x x -+--+=÷=⋅=++++-+.当2x =-时,原式===.22. (2017江苏徐州,19(2),5分)2421244x x x x +⎛⎫+÷ ⎪--+⎝⎭(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.(2)原式=()()2222242222222x x x x x x x x x x ---+⎛⎫+⨯=⨯=- ⎪--+-+⎝⎭23. (2017山东烟台,19,6分)先化简,再求值:(x 一22xy y x-)÷222x y x xy -+,其中x y l.思路分析:先化简,再代值运算.解:(x 一22xy y x-)÷222x y x xy -+==222x xy y x-+÷222x y x xy -+=()2x y x-·()()+()x x y x y x y +-=x -y .当x y =l l )=1.24. 21.(2017湖南邵阳,21,8分)(本小题满8分)先化简,再在-3,-1,02 中选择一个合适的 x 值代入求值.2229322x x xx x x x -⋅++-- 思路分析:先把xx x x x 293222--⋅+的积求出来,再求和。

中考数学试题分类汇总《分式方程》练习题及答案

中考数学试题分类汇总《分式方程》练习题及答案

中考数学试题分类汇总《分式方程》练习题及答案解分式方程1.方程的解为x=﹣6.【解答】解:去分母得:x=2(x+3),解得:x=﹣6,当x=﹣6时,x(x+3)≠0,∴原分式方程的解为x=﹣6,2.方程=的解为5.3.方程=的解为()A.x=4B.x=C.x=D.x=【分析】首先去分母,然后解一元一次方程,最后检验即可求解.【解答】解:去分母得:8(x﹣3)=2x,∴8x﹣24=2x,∴x=4,经检验x=4是分式方程的解,∴原方程的解为x=4.4.分式方程=的解为x=6.【解答】解:=,x=2(x﹣3),解得:x=6,检验:当x=6时,x(x﹣3)≠0,∴x=6是原方程的根,5.若分式的值等于1,则x=0.6.方程的解为()A.x=6B.x=2C.x=﹣2D.x=﹣67.方程的解是x=﹣2.【分析】按照解分式方程的步骤进行计算即可解答.【解答】解:,3x=2(x﹣1),解得:x=﹣2,检验:当x=﹣2时,3x(x﹣1)≠0,∴x=﹣2是原方程的根,8.分式方程的解为x=1.由根求参数9.若关于x的分式方程=有正整数解,则整数m为0.【分析】求解分式方程可得x=,由题意可得1+m=1或1+m=2,≠1,由此可求m的值.【解答】解:=,x﹣2=﹣mx,x+mx=2,(1+m)x=2,x=,∵方程有正整数解,∴1+m=1或1+m=2,∴m=0或m=1,∵x≠1,∴≠1,∴m≠1,∴m=0,10.已知不等式组.(1)解上述不等式组;(2)从(1)的结果中选择一个整数是方程的解,求m的值.【解答】解:(1),解不等式①得:x>,解不等式②得:x≤2,∴不等式组的解集为<x≤2;(2)∵<x≤2;∴x的整数值为1和2,∵x﹣2≠0,即x≠2,∴把x=1代入方程得:m﹣2=0,解得:m=2.11.若关于x的方程=的解为负数,则点(m,m+2)在第三象限.【分析】解方程得出x=m+2,根据解为负数得出m<﹣2,从而得出答案.【解答】解:解关于x的方程=,得:x=m+2,根据题意知,m+2<0,解得m<﹣2,∴点(m,m+2)在第三象限,列分式方程12.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x件电子产品,可列方程为()A.=B.=C.=D.=【分析】设乙工人每小时搬运x件电子产品,则甲每小时搬运(x+30)件电子产品,根据300÷甲的工效=200÷乙的工效,列出方程.【解答】解:设乙工人每小时搬运x件电子产品,则甲每小时搬运(x+30)件电子产品,依题意得:=13.甲、乙两位同学去图书馆参加整理书籍的志愿活动,已知甲每小时比乙多整理5本,甲整理80本书所用的时间与乙整理70本书所用的时间相同,设乙每小时整理x本书,根据题意列方程得()A.=B.=C.=D.=14.为满足市场对新冠疫苗需求,某大型疫苗生产企业更新技术后,加快了生产速度,现在平均每天比更新技术前多生产6万份疫苗,现在生产500万份疫苗所需的时间与更新技术前生产300万份疫苗所需时间相同,设更新技术前每天生产x万份,依据题意,可得方程()A.B.C.D.【解答】解:设更新技术前每天生产x万份疫苗,则更新技术后每天生产(x+6)万份疫苗,依题意得:,15.某城市在旧城改造过程中,需要整修一段全长3000m的道路.为了尽量减少施工对城市交通造成的影响,实际工作效率比原计划提高了20%,结果提前10天完成任务,若设原计划每天整修道路x米,根据题意可得方程()A.B.C.D.【解答】解:根据题意可列方程为:,16.某书店分别用500元和700元两次购进一本小说,第二次数量比第一次多4套,且两次进价相同.若设该书店第一次购进x套,根据题意,列方程正确的是()A.B.C.D.【解答】解:设该书店第一次购进x套,根据题意可列方程:,17.八年级(3)班小王和小张两人练习跳绳,小王每分钟比小张少跳60个,小王跳120个所用的时间和小张跳180个所用的时间相等.设小王跳绳速度为x 个每分钟,则列方程正确的是()A.B.C.D.【解答】解:由题意可得,,分式方程的应用18.国家推行“节能减排,低碳经济”政策后,电动汽车非常畅销.某汽车经销商购进A、B两种型号的电动汽车,其中A型汽车的进货单价比B型汽车的进货单价多4万元,花100万元购进A型汽车的数量与花60万元购进B型汽车的数量相同,在销售中发现:每天A型号汽车的销量y A=2(台),B型号汽车的每天销量y B(台)与售价x(万元/台)满足关系式y B=﹣x+10.(1)求A、B两种型号的汽车的进货单价;【分析】(1)利用花100万元购进A型汽车的数量与花60万元购进B型汽车的数量相同,进而得出方程求解即可;【解答】解:(1)设A种型号的汽车的进货单价为m万元,依题意得:,解得:m=10,检验:m=10时,m≠0,m﹣4≠0,故m=10是原分式方程的解,故m﹣4=6.答:A种型号的汽车的进货单价为10万元,B种型号的汽车的进货单价为6万元;19.北京冬奥会的吉祥物冰墩墩深受大家喜爱,出现“一墩难求”的现象.负责生产冰墩墩硅胶外壳的公司收到了一笔48万个的订单,若按原计划生产的日产量计算,则完成这笔订单的生产时间将超过一年,扩大生产规模后,日产量可提高到原来的30倍,生产时间能减少464天.(1)扩大生产规模后每天生产多少个冰墩墩硅胶外壳?【解答】解:(1)设扩大生产规模前每天生产x个冰墩墩硅胶外壳,则扩大生产规模后每天生产30x个冰墩墩硅胶外壳,依题意得:﹣=464,解得:x=1000,经检验,x=1000是原方程的解,且符合题意,∴30x=30×1000=30000.答:扩大生产规模后每天生产30000个冰墩墩硅胶外壳.20.在“母亲节”前夕,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销量大,店主决定将玫瑰降价1元促销,降价后30元可购买玫瑰的数量是原来可购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?【分析】(1)可设降价后每枝玫瑰的售价是x元,根据等量关系:降价后30元可购买玫瑰的数量=原来购买玫瑰数量的1.5倍,列出方程求解即可;【解答】解:(1)设降价后每枝玫瑰的售价是x元,依题意有=×1.5,解得:x=2.经检验,x=2是原方程的解.答:降价后每枝玫瑰的售价是2元.21.为有效落实双减工作,切实做到减负提质,很多学校决定在课后看护中增加乒乓球项目.体育用品商店得知后,第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,但这次每盒的进价是第一次进价的倍,购进数量比第一次少了30盒.(1)求第一次每盒乒乓球的进价是多少元?【分析】(1)设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是x元,由题意:第一次用600元购进乒乓球若干盒,第二次又用600元购进该款乒乓球,购进数量比第一次少了30盒.列出分式方程,解方程即可;【解答】解:(1)设第一次每盒乒乓球的进价是x元,则第二次每盒乒乓球的进价是x元,由题意得:=+30,解得:x=4,经检验:x=4是原分式方程的解,且符合题意,答:第一次每盒乒乓球的进价是4元;22.受新冠肺炎疫情持续影响,医用防护服和防护面罩的需求大大增加,为保障一线医护人员的健康安全,重庆一医疗器械有限公司组织甲、乙两个生产组进行防护服生产,甲生产组工人的人数比乙生产组工人人数多10人,由于乙生产组采用的新生产技术,所以乙生产组每天人均生产的防护服套数是甲生产组每天人均生产的防护服套数的倍,甲生产组每天可生产防护服2160套,乙生产组每天可生产防护服1920套.(1)求甲、乙两个生产组各有工人多少名?(2)随着天气转凉,疫情有所反弹,医用防护服的需求急增,该公司紧急组织甲、乙两个生产组加班生产一批防护服,并且在每个生产组都加派了生产工人.甲生产组的总人数比原来增加了,每天人均生产的防护服套数比来增加了a%;乙生产组的总人数比原来增加了5a%,每天人均生产的防护服套数比原来增加了24套,现在两个生产组每天共生产防护服7200套,求a的值.【解答】解:(1)设甲生产组有工人x名,则乙生产组有工人(x﹣10)名,由题意得:×=,解得:x=30,经检验,x=30是原方程的解,∴x﹣10=30﹣10=20,答:甲生产组有工人30名,乙生产组有工人20名;(2)甲生产组原每天人均生产套数为2160÷30=72(套),乙生产组原每天人均生产套数为1920÷20=96(套),由题意得:30×(1+)×72×(1+a%)+20×(1+5a%)×(96+24)=7200,解得:a=10,答:a的值为10.23.国家推行“节能减排,低碳经济”政策后,电动汽车非常畅销.某汽车经销商购进A、B两种型号的电动汽车,其中A型汽车的进货单价比B型汽车的进货单价多4万元,花100万元购进A型汽车的数量与花60万元购进B型汽车的数量相同,在销售中发现:每天A型号汽车的销量y A=2(台),B型号汽车的每天销量y B(台)与售价x(万元/台)满足关系式y B=﹣x+10.(1)求A、B两种型号的汽车的进货单价;解:(1)设A种型号的汽车的进货单价为m万元,依题意得解得:m=10,检验:m=10时,m≠0,m-4≠0,故m=10是原分式方程的解,故m-4=6.答:A种型号的汽车的进货单价为10万元,B种型号的汽车的进货单价为6万元;24.一艘轮船在静水中的最大航速为30km/h,它以最大航速沿江顺流航行90km 所用时间,与以最大航速逆流航行60km所用时间相等,江水的流速为多少?【分析】根据题意可得顺水速度为(30+v)km/h,逆水速度为(30﹣v)km/h,根据题意可得等量关系:以最大航速沿江顺流航行90km所用时间=以最大航速逆流航行60km所用时间,根据等量关系列出方程求解即可.【解答】解:设江水的流速为vkm/h,根据题意得:=,解得:v=6.经检验,v=6是原方程的解.答:江水的流速为6km/h.25.2022年2月6日晚,中国女足在第20届亚洲杯决赛中以3:2逆转夺冠!全国各地掀起了一股学女足精神的热潮.某学校准备购买一批足球,第一次用3000元购进A类足球若干个,第二次又用3000元购进B类足球,购进数量比第一次多了20个,已知A类足球的单价是B类足球单价的1.5倍.(1)求B类足球的单价是多少元;【解答】解:(1)设B类足球的单价是x元,则A类足球的单价是1.5x元,根据题意得,﹣=20,解得,x=50,经检验,x=50是分式方程的解,且符合题意,答:B类足球的单价是50元;25.为了配合学校贯彻落实“双减”政策,开展学生课后体育活动,某体育用品商店用10000元购进了一批足球,很快销售一空;商店又用10000元购进了第二批该种足球,每个足球的进价比原来小涨了25%,结果所购进足球的数量比第一批少40个.(1)求第一批足球每个的进价是多少元?(2)若商店将第一批足球以售价70元,第二批足球以售价80元全部售出,则其盈利多少元?解:(1)设第一批足球每个的进价是x元,则第二批足球每个的进价是(1+25%)x元,根据题意得:=+40,解得x=50,经检验,x=50是原方程的解,也符合题意,∴x=50,答:第一批足球每个的进价是50元;(2)第一批足球盈利(70﹣50)×=4000(元),第二批足球盈利(80﹣50×1.25)×=2800(元),∴一共盈利4000+2800=6800(元),答:全部售出,其盈利6800元.26.2022年3月12日是第44个植树节,某街道办现计划采购樟树苗和柳树苗共600棵,已知一棵柳树苗比一棵樟树苗贵4元,用2400元所购买的樟树苗与用3200所购买的柳树苗数量相同.(1)请问一棵樟树苗的价格是多少元?【分析】(1)设一棵樟树苗的价格是x元,则一棵柳树苗的价格为(x+4)元,根据两种树苗的数量相同列分式方程,求解即可;【解答】解:(1)设一棵樟树苗的价格是x元,则一棵柳树苗的价格为(x+4)元,根据题意,得,解得x=12,经检验,x=12是原分式方程的根,∴一棵樟树苗的价格是12元.27.某手机店准备进一批华为手机,经调查,用80000元采购A型华为手机的台数和用60000元采购B型华为手机的台数一样,一台A型华为手机的进价比一台B型华为手机的进价多800元.(1)求一台A,B型华为手机的进价分别为多少元?(2)若手机店购进A,B型华为手机共60台进行销售,其中A型华为手机的台数不大于B型华为手机的台数,且不小于20台,已知A型华为手机的售价为4200元/台,B型华为手机的售价为2800元/台,且全部售出,手机店怎样安排进货,才能在销售这批华为手机时获最大利润,求出最大利润.【解答】解:(1)设一台A型华为手机的进价为x元,则一台B型华为手机的进价为(x﹣800)元,由题意可得:,解得x=3200,经检验,x=3200是原分式方程的解,∴x﹣800=2400,答:一台A型华为手机的进价为3200元,一台B型华为手机的进价为2400元;28.某中学计划购买A、B两种学习用品奖励学生,已知购买一个A比购买一个B多用20元,若用400元购买A的数量是用160元购买B数量的一半.(1)求A、B两种学习用品每件各需多少元?【解答】解:(1)设A种学习用品每件x元钱,则B种学习用品每件(x﹣20)元钱,由题意得:=×,解得:x=25,经检验,x=25是原方程的解,且符合题意,则x﹣20=5,答:A种学习用品每件25元钱,则B种学习用品每件5元钱;29.某超市计划购进甲、乙两种水果进行销售,经了解,甲种水果和乙种水果的进价与售价如表所示:甲乙进价(元/千克)x x+4售价(元/千克)2025已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.(1)求甲、乙两种水果的进价;【解答】解:(1)由题意得,,解得x=16,经检验,x=16是原方程的解,答:甲的进价是16元/千克,乙的进价是20元/千克;30.北京冬奥会吉祥物“冰墩墩”深受欢迎,佳佳购进一批“冰墩墩”玩偶,简装版共3840元,礼盒版共8000元,礼盒版进价比简装版多8元,礼盒版进数是简装版进数的2倍.(1)求单个“冰墩墩”简装版和礼盒版的进价;【解答】解:(1)设“冰墩墩”简装版的进价为x元,则礼盒版的进价为(x+8)元,根据题意得:2×=,解得:x=192,经检验得,x=192是原方程的解,且符合实际意义,x+8=192+8=200,答:“冰墩墩”简装版的进价为192元,则礼盒版的进价为200元;。

中考数学专项练习分式方程的解及检验(含解析)

中考数学专项练习分式方程的解及检验(含解析)

中考数学专项练习分式方程的解及检验(含解析)【一】单项选择题1.假设关于x的分式方程= 的根为正数,那么k的取值范围是()A.k<-且k≠-1 B.k≠-1 C.-<k <1 D.k<-2.关于方程〔a+1〕x=1,以下结论正确的选项是〔〕A.方程无解B.x=C.a≠-1时方程解为任意实数 D.以上结论都不对3.方程的根是〔〕A.﹣1B.2C.﹣1或2D.04.分式方程的解为〔〕A.1B.2C.无解D.05.关于x的方程=1的解是正数,那么a的取值范围是〔〕A.a>-1B.a>-1且a≠0C.a<-1D.a<-1且a≠-26.在﹣3、﹣2、﹣1、0、1、2这六个数中,随机取出一个数记为a,那么使得关于x的一元二次方程x2﹣2ax+5=0无解,且使得关于x的方程﹣3= 有整数解的所有a的值之和为〔〕A.﹣1B.0C.1D.27.假设关于x的方程﹣=0无解,那么m的值是〔〕A.3B.2C.1D.﹣18.假设关于x的方程+ =3的解为正数,那么m的取值范围是〔〕A.m<B.m<且m ≠C.m>﹣D.m>﹣且m≠﹣9.当分式方程中的a取以下某个值时,该方程有解,那么这个a是〔〕A.0B.1C.-1D.-210.关于x的方程的解为非正数,且关于x的不等式组无解,那么满足条件的所有整数a的和是〔〕A.﹣19B.﹣15C.﹣13D.﹣911.关于x的分式方程﹣=1的解为负数,那么k的取值范围是〔〕A.k>或k≠1B.k>且k≠1C.k<且k≠1 D.k<或k≠112.假设关于x的分式方程=2的解为正数,那么m的取值范围是〔〕A.m>﹣1B.m ≠﹣1C.m>1 且m≠﹣1D.m>﹣1且m≠1【二】填空题13.关于x的方程的解是负数,那么m的取值范围是_______ _.14.方程的解是________.15.假设关于x的方程= +1无解,那么a的值是________.16.关于x的方程=2的解是非正数,那么n的取值范围是________.17.假设x=3是分式方程=0的根,那么a的值是________.【三】解答题18.解方程:19.解分式方程:x﹣;【四】综合题20.根据题意计算与解答〔1〕计算〔x﹣y〕2﹣〔x﹣2y〕〔x+y〕〔2〕假设关于x,y的二元一次方程组的解满足x+y >﹣,求出满足条件的m的所有正整数值.〔3〕假设关于x的方程+ =3的解为正数,求m的取值范围.21.解以下方程〔1〕〔2〕.【一】单项选择题【考点】分式方程的解及检验,解分式方程【考点】分式方程的解【解析】【分析】判断该方程是否有解,需要了解方程有解的条件,在此题中即是〝a+1≠0〞.【解答】该方程是一元一次方程,但其中含有一个未知量〝a〞,此时就要判断x的系数〝a+1〞是否为0.当a+1≠0即a≠-1时,方程有实数解,解为:x=.当a+1=0时,方程无解.应选D、【点评】在方程中存在字母未知量时,需要判断未知量的可能情况【考点】分式方程的解【解析】【解答】解:去分母得x(x+1)=0,那么x=0或x+1=0,解得x1=0,x2=-1,当x=0时,分母〔x+1〕(x+2)=2>0,符合题意;当x=-1时,分母〔x+1〕(x+2)=0,故x=-1舍去.故x=0是原分式方程的解.应选B.【分析】解分式方程的一般过程:去分母,去括号,移项,合并同类项,系数化为1,检验解.【考点】分式方程的解【考点】分式方程的解【解析】【解答】去分母得,2x+a=x-1∴x=-1-a∵方程的解是正数∴-1-a>0即a<-1又因为x-1≠0∴a≠-2那么a的取值范围是a<-1且a≠-2应选:D、【分析】先解关于x的分式方程,求得x的值,然后再依据〝解是正数〞建立不等式求a的取值范围.由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式,另外,解答此题时,易漏掉a≠-2,这是因为忽略了x-1≠0这个隐含的条件而造成的,这应引起同学们的足够重视.【考点】根的判别式,分式方程的解【考点】分式方程的解【解析】【解答】解:去分母得:2m﹣3﹣x=0,由分式方程无解,得到x﹣1=0,即x=1,把x=1代入整式方程得:2m﹣4=0,解得:m=2,应选B【分析】分式方程去分母转化为整式方程,由分式方程无解得到x﹣1=0,求出x的值,代入整式方程求出m的值即可.【考点】分式方程的解【考点】分式方程的解,解分式方程【解析】【分析】将等式右边通分化简处理,有:,所以1+a=-1,解得a=-2选D【点评】此题难度较低,主要考查学生对分式方程知识点的掌握。

中考《分式方程》经典例题及解析

中考《分式方程》经典例题及解析

分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.注意:“分母中含有未知数”是分式方程与整式方程的根本区别,也是判定一个方程为分式方程的依据.2.分式方程的解法(1)解分式方程的基本思路是将分式方程化为整式方程,具体做法是去分母,即方程两边同乘以各分式的最简公分母.(2)解分式方程的步骤:①找最简公分母,当分母是多项式时,先分解因式;②去分母,方程两边都乘最简公分母,约去分母,化为整式方程;③解整式方程;④验根.注意:解分式方程过程中,易错点有:①去分母时要把方程两边的式子作为一个整体,记得不要漏乘整式项;②忘记验根,最后的结果还要代回方程的最简公分母中,只有最简公分母不是零的解才是原方程的解.3.增根在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.由于可能产生增根,所以解分式方程要验根,其方法是将根代入最简公分母中,使最简公分母为零的根是增根,否则是原方程的根.注意:增根虽然不是方程的根,但它是分式方程去分母后变形而成的整式方程的根.若这个整式方程本身无解,当然原分式方程就一定无解.4.分式方程的应用(1)分式方程的应用主要涉及工程问题,有工作量问题、行程问题等.每个问题中涉及到三个量的关系,如:工作时间=工作量工作效率,时间=路程速度等.(2)列分式方程解应用题的一般步骤:①设未知数;②找等量关系;③列分式方程;④解分式方程;⑤检验(一验分式方程,二验实际问题);⑥答.经典例题解分式方程1.解方程:2211xx x+=--;【答案】x=0;【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;【解析】解:(1)2211x x x+=-- 去分母得:x 2=2x 2-- 解得x=0, 经检验x=0是分式方程的解;【点睛】本题考查了解分式方程与解不等式组,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解一元一次不等式组要注意不等号的变化.2.代数式31x -与代数式23x -的值相等,则x =_____. 【答案】7【分析】根据题意列出分式方程,去分母,解整式方程,再检验即可得到答案.【解析】解:根据题意得:3213x x =--,去分母得:3x ﹣9=2x ﹣2,解得:x =7, 经检验x =7是分式方程的解.故答案为:7.【点睛】本题考查的是解分式方程,掌握分式方程的解法是解题的关键.1.分式22x x -与282x x -的最简公分母是_______,方程228122-=--x x x x的解是____________. 【答案】()2x x - x=-4【分析】根据最简公分母的定义得出结果,再解分式方程,检验,得解.【解析】解:∵()222x x x x -=-,∴分式22x x -与282x x -的最简公分母是()2x x -, 方程228122-=--x x x x,去分母得:()2282x x x -=-,去括号得:22282x x x -=-, 移项合并得:2280x x +-=,变形得:()()240x x -+=,解得:x=2或-4,∵当x=2时,()2x x -=0,当x=-4时,()2x x -≠0,∴x=2是增根,∴方程的解为:x=-4.【点睛】本题考查了最简公分母和解分式方程,解题的关键是掌握分式方程的解法.2. 解方程:24111x x x =+-- 【答案】x=3.【分析】观察可得方程最简公分母为(x 2-1),去分母,转化为整式方程求解,结果要检验.【解析】解:24111x x x =+--去分母得,2(1)41x x x +=+- 解得,x=3, 经检验,x=3是原方程的根,所以,原方程的根为:x=3.【点睛】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意要检验.经典例题 分式方程的解1.关于x 的分式方程2m x -﹣32x -=1有增根,则m 的值( ) A .m =2B .m =1C .m =3D .m =﹣3 【答案】D【分析】分式方程去分母转化为整式方程,由分式方程有增根,确定出m 的值即可.【解析】解:去分母得:m +3=x ﹣2,由分式方程有增根,得到x ﹣2=0,即x =2,把x =2代入整式方程得:m +3=0,解得:m =﹣3,故选:D .【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 【答案】-1或5或13-【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【解析】去分母得:()443x m x m ++-=+,可得:()151m x m +=-,当10m +=时,一元一次方程无解,此时1m =-,当10m +≠时,则5141m x m -==±+, 解得:5m =或13-.故答案为:1-或5或13-.【点睛】此题主要考查了分式方程的解,正确分类讨论是解题关键.1.若关于x 的分式方程33122x m x x +=+--有增根,则m =_________. 【答案】3. 【分析】先把分式方程去分母转化为整式方程,然后由分式方程有增根求出x 的值,代入到转化以后的整式方程中计算即可求出m 的值.【解析】解:去分母得:()332x m x =++-,整理得:21x m =+,∵关于x 的分式方程33122x m x x +=+--有增根,即20x -=,∴2x =, 把2x =代入到21x m =+中得:221m ⨯=+,解得:3m =,故答案为:3.【点睛】本题主要考查了利用增根求字母的值,增根就是使最简公分母为零的未知数的值;解决此类问题的步骤:①化分式方程为整式方程;②让最简公分母等于零求出增根的值;③把增根代入到整式方程中即可求得相关字母的值.2.若分式方程无解,则【答案】±1 【解析】去分母得:x-a=ax+a ,整理得:所以a-1=2a ,解得a=-1;②整式方程无解考点:分式方程的解.1.若关于x 的分式方程32x x -=2m -A .m <﹣10 B .m ≤﹣10 【答案】D【分析】分式方程去分母化为整式方程,【解析】解:去分母得35(x m =-+由方程的解为正数,得到100m +>,且则m 的范围为10m >-且6≠-m ,故选【点睛】本题主要考查了分式方程的计算程的分母不可为零是做对题目的关键.2.已知关于x 的分式方程1x k k x x +-=+【答案】12k >且1k ≠. 分析:分式方程去分母得:()(x k +【解析】∵分式方程解为负数,∴-+由211k -+≠±得0k ≠和1k ≠∴k 的取值考点:1.分式方程的解;2.分式有意义的条1.已知关于x 的分式方程21m x +-A .3B .4【答案】B 【分析】根据解分式方程,可得分式方程的【解析】解:去分母,得:m+2(x-1)=3,的值为 .:(1-a )x=2a ,由于分式方程无解,所以由两种情程无解,即1-a=0,解得a=1;综上a=±1.经典例题x+5的解为正数,则m 的取值范围为( ) C .m ≥﹣10且m ≠﹣6 D .m >﹣10且,表示出方程的解,由分式方程的解为正数求出2)x -,解得102m x +=, 且2x ≠,104m +≠,故选:D .计算,去分母化为整式方程,根据方程的解求出m11-的解为负数,则k 的取值范围是 . )()(211121211x k x x x k k --+=-⇒=-+-+≠±12102k k ⇒. 的取值范围是12k >且1k ≠. 义的条件;3.解不等式;4.分类思想的应用.31x =--的解为非负数,则正整数m 的所有个数为C .5 D .6 方程的解,根据分式方程的解为负数,可得不等式,移项、合并,解得:x=52m -, 两种情况:①分母为0,即x=-1,m ≠﹣6求出m 的范围即可.的范围,其中考虑到分式方).数为( ) 等式,解不等式,即可解题.∵分式方程的解为非负数,∴52m -≥0且52m -≠1,解得:m≤5且m≠3, ∵m 为正整数∴m=1,2,4,5,共4个,故选:B .【点睛】本题考查了分式方程的解,先求出分式方程的解,再求出符合条件的不等式的解.2.已知关于x 的分式方程433x k x x -=--的解为非正数,则k 的取值范围是( ) A .12k ≤-B .12k -≥C .12k >-D .12k <- 【答案】A【分析】表示出分式方程的解,由解为非正数得出关于k 的不等式,解出k 的范围即可.【解析】解:方程433x k x x-=--两边同时乘以(3)x -得:4(3)x x k --=-, ∴412x x k -+=-,∴312x k -=--,∴43k x =+, ∵解为非正数,∴403k +≤,∴12k ≤-,故选:A . 【点睛】本题考查了分式方程的解及解一元一次不等式,熟练掌握分式方程的解法和一元一次不等式的解法是解题的关键.经典例题1.已知关于x 的分式方程2322(2)(3)x k x x x +=+--+的解满足41x -<<-,且k 为整数,则符合条件的所有k 值的乘积为( )A .正数B .负数C .零D .无法确定 【答案】A【分析】先解出关于x 的分式方程得到x=63k -,代入41x -<<-求出k 的取值,即可得到k 的值,故可求解. 【解析】关于x 的分式方程2322(2)(3)x k x x x +=+--+得x=217k -, ∵41x -<<-∴21471k --<<-解得-7<k <14 ∴整数k 为-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,8,9,10,11,12,13,又∵分式方程中x≠2且x≠-3∴k≠35且k≠0∴所有符合条件的k 中,含负整数6个,正整数13个,∴k 值的乘积为正数,故选A .【点睛】此题主要考查分式方程与不等式综合,解题的关键是熟知分式方程的求解方法.1.若关于x 的分式方程21m x x =-有正整数解,则整数m 的值是( ) A .3B .5C .3或5D .3或4 【答案】D 【分析】解带参数m 的分式方程,得到2122m x m m ==+--,即可求得整数m 的值. 【解析】解:21m x x=-,两边同时乘以()1x x -得:()21x m x =-, 去括号得:2x mx m =-,移项得:2x mx m -=-,合并同类项得:()2m x m -=-,系数化为1得:2122m x m m ==+--, 若m 为整数,且分式方程有正整数解,则3m =或4m =,当3m =时,3x =是原分式方程的解;当4m =时,2x =是原分式方程的解;故选:D .【点睛】本题考查分式方程的解,始终注意分式方程的分母不为0这个条件.经典例题 分式方程的应用1.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .10x -102x =20B .102x -10x =20C .10x -102x =13D .102x -10x =13【答案】C【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解析】由题意可得,10x -102x =13,故选:C . 【点睛】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程. 2.某体育用品商店出售毽球,有批发和零售两种售卖方式,小明打算为班级购买键球,如果给每个人买一个毽球,就只能按零售价付款,共需80元;如果小明多购买5个毽球,就可以享受批发价,总价是72元.已知按零售价购买40个毽球与按批发价购买50个毽球付款相同,则小明班级共有多少名学生?设班级共有x 名学生,依据题意列方程得( )A .807250405x x ⨯=⨯+ B .807240505x x ⨯=⨯+ C .728040505x x ⨯=⨯- D .728050405x x ⨯=⨯- 【答案】B 【分析】根据“按零售价购买40个毽球与按批发价购买50个毽球付款相同”建立等量关系,分别找到零售价与批发价即可列出方程.【解析】设班级共有x 名学生,依据题意列【点睛】本题主要考查列分式方程,读懂题1.数学家斐波那契编写的《算经》中有如元钱,则第二次每人所得与第一次相同,【答案】10406x x =+ 【分析】根据“第二次每人所得与第一次相【解析】解:根据题意得,1040x x =【点睛】本题主要考查分式方程的实际应用2.如图,著名旅游景区B 位于大山深处增强景区的吸引力,发展壮大旅游经济,BC =100≈1.4等数据(1)公路修建后,从A 地到景区B 旅游可(2)为迎接旅游旺季的到来,修建公路时结果提前50天完成了施工任务.求施工队【答案】(1)从A 地到景区B 旅游可以少【解析】解:(1)过点C 作AB 的垂线在直角△BCD 中,AB ⊥CD ,sin30°=CD ∴CD =BC•sin30°=100×=50(千米)在直角△ACD 中,AD =CD =50(千米∴AB =50+50(千米),∴AC+BC ﹣AB =50+100﹣(50+50答:从A 地到景区B 旅游可以少走35千米(2)设施工队原计划每天修建x 千米,解得x =0.14,经检验x =0.14是原分式方题意列方程得,807240505x x ⨯=⨯+故选:B . 读懂题意找到等量关系是解题的关键.中有如下问题:一组人平分10元钱,每人分得若干,求第一次分钱的人数.设第一次分钱的人数为一次相同,”列分式方程即可得到结论. 06+,故答案为:10406x x =+ 际应用,找出等量关系,列出分式方程,是解题的关深处,原来到此旅游需要绕行C 地,沿折线A→C→B,修建了一条从A 地到景区B 的笔直公路.请结合等数据信息,解答下列问题: 旅游可以少走多少千米? 路时,施工队使用了新的施工技术,实际工作时每天的施工队原计划每天修建多少千米?可以少走35千米;(2)施工队原计划每天修建0.14线CD ,垂足为D ,BC,BC =1000千米, ),BD =BC•cos30°=100×=50(千米),千米),AC ==50(千米), )=50+50﹣50≈35(千米).千米; ,依题意有,﹣=50,分式方程的解. 若干;若再加上6人,平分40数为x 人,则可列方程_____.题的关键.C→B 方可到达.当地政府为了请结合∠A =45°,∠B =30°,每天的工效比原计划增加25%,.14千米. ),答:施工队原计划每天修建0.14千米.点评:(1)过点C作AB的垂线CD,垂足为D,在直角△BCD中,解直角三角形求出CD的长度和BD的长度,在直角△ACD中,解直角三角形求出AD的长度和AC的长度,再求出AB的长度,进而求出从A地到景区B旅游可以少走多少千米;(2)本题先由题意找出等量关系即原计划的工作时间﹣实际的工作时间=50,然后列出方程可求出结果,最后检验并作答.。

中考数学复习《分式方程》测试题(含答案)

中考数学复习《分式方程》测试题(含答案)

中考数学复习《分式方程》测试题(含答案)一、选择题(每题4分,共20分)1.解分式方程2x -1+x +21-x =3时,去分母后变形为(D) A .2+(x +2)=3(x -1) B .2-x +2=3(x -1)C .2-(x +2)=3(1-x )D .2-(x +2)=3(x -1)2.[2015·天津]分式方程2x -3=3x 的解为(D) A .x =0 B .x =5C .x =3D .x =9【解析】 去分母得2x =3x -9,解得x =9,经检验x =9是分式方程的解.3.[2015·常德]分式方程2x -2+3x2-x =1的解为(A)A .x =1B .x =2C .x =13D .x =0【解析】 去分母得2-3x =x -2,解得x =1,经检验x =1是分式方程的解.4.[2015·遵义]若x =3是分式方程a -2x -1x -2=0的根,则a 的值是(A)A .5B .-5C .3D .-3【解析】 ∵x =3是分式方程a -2x -1x -2=0的根,∴a -23-13-2=0,∴a -23=1,∴a -2=3,∴a =5.5.[2014·福州]某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,设原计划平均每天生产x 台机器,根据题意,下面所列方程正确的是(A)A.600x +50=450x B.600x -50=450x C.600x =450x +50 D.600x =450x -50 【解析】 根据现在生产600台机器的时间与原计划生产450台机器的时间相同,所以可得等量关系为:现在生产600台机器所需时间=原计划生产450台所需时间.二、填空题(每题4分,共20分)6.[2015·淮安]方程1x -3=0的解是__x =13__.7.[2015·巴中]分式方程3x +2=2x的解x =__4__. 8.[2015·江西样卷]小明周三在超市花10元钱买了几袋牛奶,周日再去买时,恰遇超市搞优惠酬宾活动,同样的牛奶,每袋比周三便宜0.5元,结果小明只比上次多花了2元钱,却比上次多买了2袋牛奶.若设他上周三买了x 袋牛奶,则根据题意列得方程为__10x =12x +2+0.5__. 9.[2015·河南模拟]若关于未知数x 的分式方程a x -2+3=x +12-x有增根,则a 的值为__-3__.【解析】 分式方程去分母,得a +3x -6=-x -1,解得x =-a +54,∵分式方程有增根,∴x =2,∴-a +54=2,解得a =-3.10.[2015·黄冈中学自主招生]若关于x 的方程ax +1x -1-1=0的解为正数,则a 的取值范围是__a <1且a ≠-1__.【解析】 解方程得x =21-a ,即21-a>0,解得a <1, 当x -1=0时,x =1,代入得a =-1,此为增根,∴a ≠-1,∴a <1且a ≠-1.三、解答题(共26分)11.(10分)(1)[2014·黔西南]解方程:1x -2=4x 2-4; (2)[2014·滨州]解方程:2-2x +13=1+x 2.解:(1)x +2=4,x =2,把x =2代入x 2-4,x 2-4=0,所以方程无解;(2)去分母,得12-2(2x +1)=3(1+x ),去括号,得12-4x -2=3+3x ,移项、合并同类项,得-7x =-7,系数化为1,得x =1.12.(8分)[2015·济南]济南与北京两地相距480 km ,乘坐高铁列车比乘坐普通快车能提前4 h 到达,已知高铁列车的平均行驶速度是普通快车的3倍,求高铁列车的平均行驶速度.解:设普通快车的速度为x km/h ,由题意得480x -4803x =4,解得x =80,经检验,x =80是原分式方程的解,3x =3×80=240.答:高铁列车的平均行驶速度是240 km/h.13.(8分)[2015·扬州]扬州建城2 500年之际,为了继续美化城市,计划在路旁栽树1 200棵,由于志愿者的参加,实际每天栽树的棵数比原计划多20%,结果提前2天完成,求原计划每天栽树多少棵?解:设原计划每天种树x 棵,则实际每天栽树的棵数为(1+20%)x ,由题意得1 200x - 1 200(1+20%)x=2, 解得x =100,经检验,x =100是原分式方程的解,且符合题意.答:原计划每天种树100棵.14.(10分)[2015·连云港]在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6 000元购买的门票张数,现在只花费了4 800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.解:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x -80)元,根据题意,得6 000x =4 800x -80,解得x =400.经检验,x =400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y ,根据题意,得400(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去).答:平均每次降价10%.15.(12分)[2015·泰安]某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7 800元,乙种款型共用了6 400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T 恤衫各购进多少件?(2)商店按进价提高60%标价销售,销售一段时间后,甲款型全部售完,乙款型剩余一半,商店决定对乙款型按标价的五折降价销售,很快全部售完,求售完这批T 恤衫商店共获利多少元?解:(1)设乙种款型的T 恤衫购进x 件,则甲种款型的T 恤衫购进1.5x 件,依题意有7 8001.5x +30=6 400x ,解得x =40,经检验,x =40是原分式方程的解,且符合题意,1.5x =60.答:甲种款型的T 恤衫购进60件,乙种款型的T 恤衫购进40件;(2)6 40040=160,160-30=130(元),130×60%×60+160×60%×(40÷2)+160×[(1+60%)×0.5-1]×(40÷2) =4 680+1 920-640=5 960(元).答:售完这批T 恤衫商店共获利5 960元.16.(12分)[2015·宁波]宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共6 600棵,若A 花木数量是B 花木数量的2倍少600棵.(1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务?【解析】 (1)首先设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得等量关系:种植A ,B 两种花木共6 600棵,根据等量关系列出方程;(2)首先设安排a 人种植A 花木,由题意得等量关系:a 人种植A 花木所用时间=(26-a )人种植B 花木所用时间,根据等量关系列出方程.解:(1)设B 花木数量为x 棵,则A 花木数量是(2x -600)棵,由题意得 x +2x -600=6 600,解得x =2 400,2x -600=4 200,答:B 花木数量为2 400棵,则A 花木数量是4 200棵;(2)设安排a 人种植A 花木,由题意得4 20060a = 2 40040(26-a ),解得a =14,经检验,a =14是原分式方程的解,26-a=26-14=12,答:安排14人种植A花木,12人种植B花木.。

分式方程50题 参考答案与试题解析

分式方程50题  参考答案与试题解析

分式方程50题参考答案与试题解析一.解答题(共50小题)1.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:(x+1)2﹣4=x2﹣1,整理得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:(x﹣2)2=(x+2)2+16,整理得:x2﹣4x+4=x2+4x+4+16,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解.2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x﹣1)=2x,去括号得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:(x﹣2)2﹣x2+4=16,整理得:x2﹣4x+4﹣x2+4=16,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解.3.【分析】(1)方程两边同乘2(4+x),得关于x的一元一次方程,解方程可求解x值,最后验根即可;(2)方程两边同乘x2﹣1,得关于x的一元一次方程,解方程可求解x值,最后验根即可.【解答】解:(1)方程两边同乘2(4+x),得2(3﹣x)=4+x,解得x=,当x=时,2(4+x)≠0,∴x=是原方程的解.(2)方程两边同乘x2﹣1,得x﹣1+2=0解得x=﹣1,当x=﹣1时,x2﹣1=0,∴x=﹣1是方程的增根,∴原方程无解.4.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:﹣=1﹣,方程两边同乘以(x+3)(x﹣3)得:x+3﹣8x=x2﹣9﹣x(x+3),解这个方程得:x=3,经检验,x=3是原方程的增根,所以原方程无解.5.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=•=•=;(2)分式方程整理得:=1+,去分母得:x=2x﹣1+2,解得:x=﹣1,检验:当x=﹣1时,2x﹣1≠0,则分式方程的解为x=﹣1.6.【分析】两方式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x+1)=2(x﹣2),去括号得:3x+3=2x﹣4,解得:x=﹣7,经检验x=﹣7是分式方程的解;(2)去分母得:x2+2x+1=x2﹣1+4,解得:x=1,经检验x=1是增根,分式方程无解.7.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2(x+2)=3(3x﹣1),去括号得:2x+4=9x﹣3,移项合并得:﹣7x=﹣7,解得:x=1,经检验x=1是分式方程的解.8.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:原方程可化为:﹣=1,去分母,得3x﹣6=x﹣2,解得:x=2,经检验:x=2是原方程的增根,所以原方程无解.9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=2x,解得:x=3,检验:把x=3代入得:x(x+3)=18≠0,则分式方程的解为x=3.10.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:+=4,去分母得:x+4+2=4x﹣12,移项合并得:﹣3x=﹣18,解得:x=6,经检验x=6是分式方程的解.11.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x+7﹣2(x+5)=x2+4x﹣5,整理得:x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x=1或x=﹣2,经检验x=1是增根,则分式方程的解为x=﹣2.12.【分析】根据解分式方程的解法步骤求解即可.【解答】解:去分母得,(x+1)(x﹣2)﹣(x+2)(x﹣2)=3(x+2)去括号得,x2﹣x﹣2﹣x2+4=3x+6移项得,x2﹣x﹣x2﹣3x=6+2﹣4合并同类项得,﹣4x=4系数化为1得,x=﹣1经检验,x=﹣1是原方程的解,所以原方程的解为x=﹣1.13.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:最简公分母为(x﹣2)2,去分母得:x(x﹣2)﹣(x﹣2)2=4,整理得:x2﹣2x﹣x2+4x﹣4=4,解得:x=4,检验:把x=4代入得:(x﹣2)2=4≠0,∴分式方程的解为x=4.14.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到m的值,经检验即可得到方程的解.【解答】解:去分母得:5﹣m=m﹣2﹣3,移项合并得:2m=10,解得:m=5,检验:把m=5代入得:m﹣2=5﹣2=3≠0,∴分式方程的解为m=5.15.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:3+x2﹣9=x(x+3),解得:x=﹣2,检验:当x=﹣2时,x2﹣9≠0,∴原方程的解为x=﹣2.16.【分析】方程两边都乘以x﹣1得出3x+2=5,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x﹣1得:3x+2=5,解得:x=1,检验:当x=1时,x﹣1=0,所以x=1不是原方程的解,即原方程无解.17.【分析】方程两边都乘以x(x﹣1)得出x﹣8+3x=0,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x(x﹣1)得:x﹣8+3x=0,解得:x=2,检验:当x=2时,x(x﹣1)≠0,所以x=2是原方程的解,即原方程的解是:x=2.18.【分析】(1)方程两边都乘以x(x+1)得出5x+2=3x,求出方程的解,再进行检验即可;(2)方程两边都乘以2(x﹣1)得出2x=3﹣4(x﹣1),求出方程的解,再进行检验即可.【解答】解:(1)方程两边都乘以x(x+1)得:5x+2=3x,解得:x=﹣1,检验:当x=﹣1时,x(x+1)=0,所以x=﹣1是增根,即原方程无解;(2)方程两边都乘以2(x﹣1)得:2x=3﹣4(x﹣1),解得:x=,检验:当x=时,2(x﹣1)≠0,所以x=是原方程的解,即原方程的解是:x=.19.【分析】方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=+1,方程两边都乘(x﹣1)(x+1),得x(x+1)=4+(x﹣1)(x+1),解得x=3,检验:当x=3时,(x﹣1)(x+1)=8≠0.故x=3是原方程的解.20.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边同乘x(x﹣1)得:9(x﹣1)=8x,解得:x=9,经检验x=9是分式方程的解;(2)方程两边同乘x﹣2得:x﹣1﹣3(x﹣2)=1,解得:x=2,经检验x=2是增根,分式方程无解.21.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程﹣=1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x=,经检验x=是分式方程的解.22.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)分式方程整理得:﹣=1,去分母得:1﹣2=x﹣2,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x2+x﹣x2+1=3,解得:x=2,经检验x=2是分式方程的解.23.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)=,去分母得:x﹣3=2x,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)方程整理得:﹣1=﹣,去分母得:x﹣2x+1=﹣3,解得:x=4,经检验x=4是分式方程的解.24.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+3)(x﹣1)﹣x2+9=2,整理得:x2+2x﹣3﹣x2+9=2,即2x=﹣4,解得:x=﹣2,经检验x=﹣2是分式方程的解.25.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2)去分母得:3x+3﹣4x=x﹣1,解得:x=2,经检验x=2是分式方程的解.26.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+=0,去分母得:x﹣2+x+3=0,解得:x=﹣,经检验x=﹣是分式方程的解;(2)﹣=1,去分母得:(x+1)2﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.27.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2)分式方程整理得:﹣2=﹣,去分母得:3x﹣2(x﹣3)=﹣3,去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.28.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:+1=﹣,去分母得:2x﹣4+4x﹣2=﹣3,移项合并得:6x=3,解得:x=,经检验x=是增根,分式方程无解.29.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:3x=9,解得:x=3,把x=3代入①得:y=0,则方程组的解为;(2)分式方程=+1,去分母得:3=1+y﹣2,解得:y=4,经检验y=4是分式方程的解.30.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)=,去分母得:3x=2x﹣2,解得:x=﹣2,经检验x=﹣2是分式方程的解;(2)方程组整理得:,①+②得:6y=6,解得:y=1,把y=1代入①得:x=3,则方程组的解为.31.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:4x=12,解得:x=3,把x=3代入②得:y=1,则方程组的解为;(2)分式方程整理得:﹣=1,去分母得:4﹣3=x﹣2,解得:x=3,经检验x=3是分式方程的解.32.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),②×2﹣①得:7y=7,解得:y=1,把y=1代入②得:x=2,则方程组的解为;(2)分式方程整理得:﹣=﹣5,去分母得:﹣3=x﹣5(x﹣1),去括号得:﹣3=x﹣5x+5,移项合并得:4x=8,解得:x=2.33.【分析】(1)根据加减消元法解方程即可求解;(2)方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:(1).②﹣①×2得:7x=﹣14,解得:y=﹣2,把y=﹣2代入①得:x=2.故方程组的解为;(2)+2=,方程两边都乘(x﹣2)得1﹣x+2(x﹣2)=﹣1,解得x=2,检验:当x=2时,x﹣2=0,是增根.故原方程无解.34.【分析】(1)利用加减消元法解方程组;(2)方程两边乘以(x+1)(x﹣1)得到整式方程,然后解整式方程后进行检验确定原方程的解.【解答】解:(1),②﹣①得4x=28,解得x=7,把x=7代入①得7﹣3y=﹣8,解得y=5,所以方程组的解为;(2)去分母得﹣2=2(x﹣1)﹣(x+1),解得x=1,经检验:原方程的解为x=1.35.【分析】(1)方程两边都乘最简公分母,可以把分式方程转化为整式方程求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)=1+,方程两边都乘(x﹣2)得x=x﹣2+x+1,解得x=1,检验:当x=1时,x﹣2≠0.故x=1是原方程的解;(2),①+②×5得:17x=17,解得:x=1,把x=1代入②得:y=﹣5.故方程组的解为.36.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程+1=,去分母得:2+1+x=4x,解得:x=1,经检验x=1是分式方程的解.37.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣1=,去分母得:(x﹣2)2﹣(x2﹣4)=12,整理得:x2﹣4x+4﹣x2+4=12,移项合并得:﹣4x=4,解得:x=﹣1,检验:把x=﹣1代入得:(x+2)(x﹣2)≠0,∴分式方程的解为x=﹣1.38.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣=1,去分母得:(x+2)2﹣20=x2﹣4,整理得:x2+4x+4﹣20=x2﹣4,移项合并得:4x=12,解得:x=3,检验:把x=3代入得:(x+2)(x﹣2)≠0,则分式方程的解为x=3.39.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:6x=18,解得:x=3,①﹣②得:4y=8,解得:y=2,则方程组的解为;(2)分式方程整理得:﹣2=,去分母得:x﹣2(x﹣3)=3,去括号得:x﹣2x+6=3,移项合并得:﹣x=﹣3,解得:x=3,检验:把x=3代入得:x﹣3=0,∴x=3是增根,则分式方程无解.40.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:﹣=1,去分母得:x﹣2﹣4x+8=x2﹣4,即x2+3x﹣10=0,分解因式得:(x﹣2)(x+5)=0,解得:x=2或x=﹣5,经检验x=2是增根,则分式方程的解为x=﹣5.41.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1=4(x﹣2),解得:x=3,检验:把x=3代入得:(x﹣2)(x+1)≠0,∴x=3是原方程的解.42.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4﹣(x+2)=0,解得:x=2,经检验x=2是增根,分式方程无解.43.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣2(x+3)=x﹣3,去括号得:3﹣2x﹣6=x﹣3,移项合并得:﹣3x=0,解得:x=0,经检验x=0是分式方程的解.44.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3x﹣6﹣2x=0,解得:x=6,经检验x=6是分式方程的解;(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.45.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以(x+3)(x﹣3)得(x﹣3)+2(x+3)=12,去括号得:x﹣3+2x+6=12,移项得:x+2x=12+3﹣6,合并得:3x=9,解得:x=3,检验:把x=3代入(x+3)(x﹣3)=0,∴x=3是增根,原方程无解.46.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+4x+4﹣3x2=2x2+4x,整理得:4x2=4,即x2=1,解得:x=1或x=﹣1,经检验x=1和x=﹣1都为分式方程的解.47.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解;(2)去分母得:x2+2x+1﹣4=x2﹣x,解得:x=1,经检验x=1是增根,则原方程无解.48.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x﹣3﹣2=1,解得:x=6,经检验x=6是分式方程的解.49.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边同乘(3+x)(3﹣x),得9(3﹣x)=6(3+x),解这个方程,得x=,检验:当x=时,(3+x)(3﹣x)≠0,则x=是原方程的解;(2)方程两边同乘(x+1)(x﹣1),得4+x2﹣1=(x﹣1)2,解这个方程,得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,x=﹣1是增根,则原方程无解.50.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+3=5x,解得:x=,经检验x=是分式方程的根;(2)去分母得:3﹣x+1=x﹣4,解得:x=4,经检验x=4是增根,方程无解.。

2017年全国中考数学真题《分式与分式方程》分类汇编解析

2017年全国中考数学真题《分式与分式方程》分类汇编解析

2017年全国中考数学真题《分式与分式方程》分类汇编解析分式与分式方程考点一、分式 (8~10分)1、分式的概念一般地,用A 、B 表示两个整式,A ÷B 就可以表示成B A 的形式,如果B 中含有字母,式子BA就叫做分式。

其中,A 叫做分式的分子,B 叫做分式的分母。

分式和整式通称为有理式。

2、分式的性质(1)分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

(2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

3、分式的运算法则;;bcad c d b a d c b a bd ac d c b a =⨯=÷=⨯一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是( )A .B .C .D .2.(2017·山东省德州市·3分)化简﹣等于( )A .B .C .﹣D .﹣3.(2017·广西百色·3分)A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( )A .﹣=30 B .﹣=C .﹣=D . +=304.(2017·广西桂林·3分)当x =6,y =3时,代数式()•的值是( )A .2B .3C .6D .95. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .﹣=20 B .﹣=20 C .﹣= D .﹣=6. (2017·重庆市A 卷·4分)函数y =中,x 的取值范围是( )A .x ≠0B .x >﹣2C .x <﹣2D .x ≠﹣27.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x 棵,则列出的方程为( )A .B .C .D .8.(2017海南3分)解分式方程,正确的结果是( )A .x =0B .x =1C .x =2D .无解 10. (2017·湖北武汉·3分)若代数式在31-x 实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x ≠3D .x =312. (2017·四川攀枝花)化简+的结果是( )A .m +nB .n ﹣mC .m ﹣nD .﹣m ﹣n13.(2017·四川内江)甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地,已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,其中正确的是( ) A .1102x +=100x B .1100x =1002x + C .1102x -=100xD .1100x =1002x -14.(2017·四川内江)在函数y 中,自变量x 的取值范围是( )A .x >3B .x ≥3C .x >4D .x ≥3且x ≠415.(2017·四川南充)某次列车平均提速20km/h,用相同的时间,列车提速行驶400km,提速后比提速前多行驶100km,设提速前列车的平均速度为xkm/h,下列方程正确的是()A.=B.=C.=D.=16. (2017·黑龙江龙东·3分)关于x的分式方程=3的解是正数,则字母m的取值范围是()A.m>3 B.m>﹣3 C.m>﹣3 D.m<﹣317.(2017·黑龙江齐齐哈尔·3分)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,318.(2017·湖北荆门·3分)化简的结果是()A.B.C.x+1 D.x﹣119.(2017·内蒙古包头·3分)化简()•ab,其结果是()A.B.C.D.20. (2017·山东潍坊·3分)计算:20•2﹣3=()A.﹣B.C.0 D.821. (2017·山东潍坊·3分)若关于x的方程+=3的解为正数,则m的取值范围是()A.m<B.m<且m≠C.m>﹣D.m>﹣且m≠﹣22. (2017·四川眉山·3分)已知x2﹣3x﹣4=0,则代数式的值是()A.3 B.2 C.D.二、填空题1.(2017·山东省济宁市·3分)已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h到达,这辆汽车原来的速度是km/h.2. (云南省昆明市·3分)计算:﹣=.3. (2017·浙江省湖州市·4分)方程=1的根是x=.4.(2017·贵州安顺·4分)在函数中,自变量x的取值范围是.5.(2017贵州毕节5分)若a2+5ab﹣b2=0,则的值为.6.(2017·四川南充)计算:=.7.(2017·四川攀枝花)已知关于x的分式方程+=1的解为负数,则k的取值范围是.8.(2017·四川泸州)分式方程﹣=0的根是.9.(2017·四川内江)化简:(23aa-+93a-)÷3aa+=______.10. (2017·湖北荆州·3分)当a=﹣1时,代数式的值是.三、解答题1.(2017·湖北随州·6分)先化简,再求值:(﹣x+1)÷,其中x=﹣2.2. (2017·湖北随州·6分)某校学生利用双休时间去距学校10km的炎帝故里参观,一部分学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.3. (2017·吉林·5分)解方程:=.4. (2017·江西·6分)先化简,再求值:(+)÷,其中x=6.5. (2017·辽宁丹东·10分)某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?6.(2017·四川泸州)化简:(a+1﹣)•.7.(2017·四川宜宾)2017年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?8.(2017·四川宜宾)化简:÷(1﹣)9.(2017·黑龙江龙东·6分)先化简,再求值:(1+)÷,其中x=4﹣tan45°.10.(2017·黑龙江齐齐哈尔·5分)先化简,再求值:(1﹣)÷﹣,其中x 2+2x ﹣15=0.11.(2017·湖北黄石·6分)先化简,再求值:÷•,其中a =2017.12.(2017·湖北荆州·12分)已知在关于x 的分式方程①和一元二次方程(2﹣k )x 2+3mx +(3﹣k )n =0②中,k 、m 、n 均为实数,方程①的根为非负数. (1)求k 的取值范围;(2)当方程②有两个整数根x 1、x 2,k 为整数,且k =m +2,n =1时,求方程②的整数根;(3)当方程②有两个实数根x 1、x 2,满足x 1(x 1﹣k )+x 2(x 2﹣k )=(x 1﹣k )(x 2﹣k ),且k 为负整数时,试判断|m |≤2是否成立?请说明理由.13.(2017·青海西宁·7分)化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.14. (2017·陕西)化简:(x﹣5+)÷.15. (2017·四川眉山)先化简,再求值:,其中a=3.16. (2017·四川眉山)“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);(2)该车行计划7月份新进一批A 型车和B 型车共50辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多?A 、B 两种型号车的进货和销售价格如表:17.(2017·山东省滨州市·4分)先化简,再求值:÷(﹣),其中a=.18.(2017·山东省东营市·4分)化简,再求值:(a +1-4a -5a -1)÷(1a -1a 2-a ),其中a =2+3.19.(2017·山东省东营市·8分)东营市某学校2015年在某商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍.且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2017年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个.恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%.如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?20.(2017·山东省菏泽市·3分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)21. (2017·重庆市A卷·5分)(+x﹣1)÷.22. (2017·重庆市B卷·5分)÷(2x﹣)23. (2017·浙江省绍兴市·4分))解分式方程:+=4.24.(2017·福建龙岩·6分)先化简再求值:,其中x=2+.25.(2017·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同 (1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?26.(2017·贵州安顺·10分)先化简,再求值:1211)1(+-+÷-x x x ),从﹣1,2,3中选择一个适当的数作为x值代入.27.(2017·黑龙江哈尔滨·7分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.28.(2017·黑龙江哈尔滨·10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?29.(2017广西南宁)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的.(1)求乙队单独完成这项工程需要多少天?(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?30.(2017河南)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中选取.答案分式与分式方程一、选择题1.(2017·山东省滨州市·3分)下列分式中,最简分式是()A.B.C.D.【考点】最简分式.【专题】计算题;分式.【分析】利用最简分式的定义判断即可.【解答】解:A、原式为最简分式,符合题意;B、原式==,不合题意;C、原式==,不合题意;D、原式==,不合题意,故选A【点评】此题考查了最简分式,最简分式为分式的分子分母没有公因式,即不能约分的分式.2.(2017·山东省德州市·3分)化简﹣等于()A.B.C.﹣D.﹣【考点】分式的加减法.【专题】计算题;分式.【分析】原式第二项约分后两项通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=+==,故选B【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.3.(2017·广西百色·3分)A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣=C.﹣=D.+=30【考点】由实际问题抽象出分式方程.【分析】设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟列出方程即可.【解答】解:设甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据题意得,﹣=.故选B.4.(2017·广西桂林·3分)当x=6,y=3时,代数式()•的值是()A.2 B.3 C.6 D.9【考点】分式的化简求值.【分析】先对所求的式子化简,然后将x=6,y=3代入化简后的式子即可解答本题.【解答】解:()•==,当x=6,y=3时,原式=,故选C.5. (2017·云南省昆明市·4分)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=D.﹣=【考点】由实际问题抽象出分式方程.【分析】根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【解答】解:由题意可得,﹣=,故选C.6. (2017·重庆市A 卷·4分)函数y =中,x 的取值范围是( )A .x ≠0B .x >﹣2C .x <﹣2D .x ≠﹣2 【分析】由分式有意义的条件得出不等式,解不等式即可.【解答】解:根据题意得:x +2≠0,解得x ≠﹣2. 故选:D .【点评】本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.7.(2017贵州毕节3分)为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x 棵,则列出的方程为( )A .B .C .D .【考点】由实际问题抽象出分式方程.【分析】设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据:现在植树400棵所需时间=原计划植树300棵所需时间,这一等量关系列出分式方程即可.【解答】解:设现在平均每天植树x 棵,则原计划每天植树(x ﹣30)棵,根据题意,可列方程: =,故选:A .8.(2017海南3分)解分式方程,正确的结果是( )A .x =0B .x =1C .x =2D .无解 【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【解答】解:去分母得:1+x ﹣1=0, 解得:x =0, 故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验. 9.(2017河北3分)下列运算结果为x -1的是( )A .11x-B .211x x x x -∙+C .111x x x +÷- D .2211x x x +++ 答案:B解析:挨个算就可以了,A 项结果为—— , B 项的结果为x -1,C 项的结果为—— D 项的结果为x +1。

(完整版)分式方程2017年中考试题汇编,推荐文档

(完整版)分式方程2017年中考试题汇编,推荐文档

一、选择题2017 年中考数学试题分类汇编( 分式 方程)1.(2017 ft 东德州第 10 题)某美术社团为练习素描,他们第一次用 120 元买了买了若干本资料,第二次用 240 元在同一家商店买同一样的资料,这次商家每本优惠 4 元,结果比上次多买了 20 本。

求第一次买了多少本资料?若设第一次买了 x 本资料,列方程正确的是( ) A.240 - 120=4 B.240 - 120=4 C.120 - 240=4 D.120 - 240 =4x - 20 x【答案】Dx +20 xx x - 20x x +202. (2017 新疆建设兵团第 8 题)某工厂现在平均每天比原计划多生产 40 台机器,现在生产 600 台机器所需的时间与原计划生产 480 台机器所用的时间相同,设原计划每天生产 x 台机器,根据题意,下面列出的方程正确的是 ()A.600 = 480B .600 = 480 C .600 = 480D .600 = 480x - 40 xx +40 x x x +40 x x - 403.(2017 河南第 4 题)解分式方程 1 - 2 = 3 x -1 1- x,去分母得( ) A .1- 2(x -1) = -3 B .1- 2(x -1) = 3 C .1- 2x - 2 = -3 D .1- 2x + 2 = 3【答案】A .4. (2017 新疆乌鲁木齐第 7 题)2017 年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30 万棵,由于志愿者的加入,实际每天植树比原计划多20 0 0 ,结果提前5 天完成任务,设原计划每天植树 x 万棵,可列方程是() A .30 - 30= 5 B .30 - 30= 5 x (1+ 20 00 )x x 20 00 x C.30+ 5 = 30 20 00 x x【答案】A .D . 30 - 30= 5(1+ 20 00 )xx5. (2017 山东临沂第 8 题)甲、乙二人做某种机械零件.已知甲每小时比乙多做 6 个,甲做 90 个所用时间与乙做60 个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做 x 个,那么所列方程是( )A .90 =60B .90 = 60 C .90 = 60 D .90 = 60 x x + 6【答案】Bx + 6 xx - 6 xx x - 66.(2017 山东滨州第 6 题)分式方程 x - 1 = 3的解为()x - 1 (x - 1)(x + 2)A .x =1B .x =-1C .无解D .x =-2【答案】C .7.(2017 四川省达州市)某市从今年 1 月 1 112 月份的日起调整居民用水价格,每立方米水费上涨 .小丽家去年3水费是 15 元,而今年 5 月的水费则是 30 元.已知小丽家今年 5 月的用水量比去年 12 月的用水量多 5cm 3.求该市今年居民用水的价格.设去年居民用水价格为 x 元/cm 3,根据题意列方程,正确的是( )A. ⎛1 +301 ⎫ x - 15 = 5B. ⎛1 -301 ⎫ x - 15 = 5 C . 30 - ⎛ 151 ⎫ = 5 D . 30 - ⎛ 151 ⎫ = 5 ⎪ x ⎪ xx 1 + ⎪ x x 1 - ⎪ x ⎝ 3 ⎭ ⎝ 3 ⎭ ⎝ 3⎭ ⎝ 3 ⎭【答案】A .8.(2017 广西四市)一艘轮船在静水中的最大航速为 35km/h ,它以最大航速沿江顺流航行 120km 所用时间,与以最大航速逆流航行 90km 所用时间相等.设江水的流速为 v km/h ,则可列方程为( )120A . v + 35 =90 v - 35120B. 35- v =90 35 +v120C . v - 35 =90 v + 35120D .35 + v = 90 35- v【答案】D .9. (2017 青海西宁第 9 题)西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车 3 小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作 1.2 小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为 x 小时,根据题意可列出方程为() A .1.2 + 1.2= 1 B .1.2 + 1.2 = 1C.1.2 + 1.2 = 1 D .1.2 + 1.2 = 1 6 x【答案】B6 x 23 x 23 x二、填空题 1.(2017 浙江宁波第 14 题)分式方程 2x +1 3 的解是.= 3 - x 2x + m 2m2.(2017 四川泸州第 15 题)若关于 x 的分式方程 + = x - 2 2 - x3的解为正实数,则实数 m 的取值范围是.【答案】m <6 且 m ≠2.3. (2017 江苏宿迁第 14 题)若关于 x 的分式方程 m=1- x- 3 有增根,则实数 m 的值是.x - 2 2 - x【答案】1.4.(2017 四川省绵阳市)关于 x 的分式方程 2- x - 11 x +1= 1 1 - x的解是 .【答案】x =﹣2.5.(2017 湖北省襄阳市)分式方程 2 = 3 的解是.x - 3 x【答案】x =9. 三、解答题 1.(2017 贵州安顺第 23 题)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40 元,用90 元购进甲种玩具的件数与用150 元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?【答案】甲,乙两种玩具分别是15 元/件,25 元/件;2.(2017 江苏盐城第23 题)某商店在2014 年至2016 年期间销售一种礼盒.2014 年,该商店用3500 元购进了这种礼盒并且全部售完;2016 年,这种礼盒的进价比2014 年下降了11 元/盒,该商店用2400 元购进了与2014 年相同数量的礼盒也全部售完,礼盒的售价均为60 元/盒.2014 年这种礼盒的进价是多少元/盒?【答案】(1)2014 年这种礼盒的进价是35 元/盒.3. (2017 贵州黔东南州第23 题)某校为了在九月份迎接高一年级的新生,决定将学生公寓楼重新装修,现学校招用了甲、乙两个工程队.若两队合作,8 天就可以完成该项工程;若由甲队先单独做3 天后,剩余部分由乙队单独做需要18 天才能完成.求甲、乙两队工作效率分别是多少?4.(2017 四川宜宾第20 题)用A、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20 袋大米,A 型机器人搬运700 袋大米与B 型机器人搬运500 袋大米所用时间相等.求A、B 型机器人每小时分别搬运多少袋大米.【答案】A 型机器人每小时搬大米70 袋,则B 型机器人每小时搬运50 袋.5.(2017 广东广州第21 题)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60 公里,再由乙队完成剩下的4筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20 天.3(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.4【答案】(1)80 公里;(2)乙队每天筑路公里56.(2017 山东日照第20 题)某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360 万平方米.自2013 年初开始实施后,实际每年绿化面积是原计划的1.6 倍,这样可提前4 年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016 年起加快绿化速度,要求不超过2 年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1) 实际每年绿化面积为54 万平方米;(2) 则至少每年平均增加72 万平方米2 17. (2017 浙江金华第18 题)解分式方程:x +1 =x -1 .8.(2017 浙江湖州第18 题)解方程:2=1+1 .x -1 x -1【答案】x=29.(2017 四川省眉ft市)解方程: 1+ 2 =1-x.x - 2 2 -x【答案】无解.10.(2017 ft东省济宁市)解方程:2x= 1-1..【答案】x=﹣1.x - 2 2 -x11.(2017 贵州遵义第25 题)为厉行节能减排,倡导绿色出行,今年3 月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A,B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A,B 两型自行车各50 辆,投放成本共计7500 元,其中B 型车的成本单价比A 型车高10 元,A,B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000 人投放a 辆“小黄车”,乙街区每1000 人投放8a + 240a 辆“小黄车”,按照这种投放方式,甲街区共投放1500 辆,乙街区共投放1200 辆,如果两个街区共有15 万人,试求 a 的值.【答案】问题1:A,B 两型自行车的单价分别是70 元和80 元;问题2:a 的值为15.【解析】试题分析:问题1:设A 型车的成本单价为x 元,则B 型车的成本单价为(x+10)元,根据成本共计7500 元,列方程求解即可;问题2:根据两个街区共有15 万人,列出分式方程进行求解并检验即可.试题解析:问题1设A 型车的成本单价为x 元,则B 型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500.解得x=70.∴x+10=80.答:A,B 两型自行车的单价分别是70 元和80 元;问题2由题可得1500a ×1000+12008a + 240a ×1000=150000.解得a=15.经检验:a=15 是所列方程的解.故a 的值为15.考点:分式方程的应用;二元一次方程组的应用12.(2017 内蒙古通辽第20 题)一汽车从甲地出发开往相距240 km 的乙地,出发后第一小时内按原计划的匀速1行驶,1 小时后比原来的速度加快,比原计划提前24 min 到达乙地,求汽车出发后第 1 小时内的行驶速度.4【答案】汽车出发后第 1 小时内的行驶速度是120 千米/小时.13.(2017 黑龙江绥化第25 题)甲、乙两个工程队计划修建一条长15 千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5 千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5 倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5 万元,乙工程队每天的修路费用为0.4 万元,要使两个工程队修路总费用不超过5.2 万元,甲工程队至少修路多少天?【答案】(1)甲每天修路1.5 千米,则乙每天修路1 千米;(2)甲工程队至少修路8 天.答:甲工程队至少修路8 天.14.(2017 辽宁大连第21 题)某工厂现在平均每天比原计划多生产25 个零件,现在生产600 个零件所需时间与原计划生产450 个零件所需时间相同,原计划每天生产多少个零件?【答案】75.15.(2017 河池第24 题)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30 元,用500 元购得的排球数量与用800 元购得的足球数量相等.⑴排球和足球的单价各是多少元?⑵若恰好用去1200 元,有哪几种购买方案?【答案】(1)排球单价是50 元,则足球单价是80 元;(2)有两种方案:①购买排球 5 个,购买足球16 个.②购买排球10 个,购买足球8 个.【解析】试题分析:(1)设排球单价是x 元,则足球单价是(x+30)元,根据题意可得等量关系:500 元购得的排球数量=800 元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200 元,可购买排球m 个和购买足球n 个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解.试题解析:设排球单价为x 元,则足球单价为(x+30)元,由题意得:16.(2017 四川宜宾第20 题)用A、B 两种机器人搬运大米,A 型机器人比B 型机器人每小时多搬运20 袋大米,A 型机器人搬运700 袋大米与B 型机器人搬运500 袋大米所用时间相等.求A、B 型机器人每小时分别搬运多少袋大米.【答案】A 型机器人每小时搬大米70 袋,则B 型机器人每小时搬运50 袋.“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。

天津市河北区2017年中考数学《分式方程》复习练习题及答案

天津市河北区2017年中考数学《分式方程》复习练习题及答案

中考数学复习专题分式方程一、选择题:1、下列各式中,分式的个数为();A.5个 B.4个 C.3个 D.2个2、下列各式正确的是()A.=﹣ B.=﹣ C.=﹣ D.=﹣3、某病毒的直径是0.000000068m,这个数据用科学计数法表示为( )A.6.8×10﹣7m B.68×10﹣9m C.0.68×10﹣7m D.6.8×10﹣8m4、某厂接受为四川灾区生产活动板房的任务,计划在30天内完成,若每天多生产6套,则25天完成且还多生产10套,问原计划每天生产多少套板房?设原计划每天生产x套,列方程式是()A. B. C. D.5、小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则下列方程正确的是( )A. B. C. D.6、若分式的值为零,则x的值是()A.2或﹣2 B.2 C.﹣2 D.47、如果把分式中的和都扩大3倍,那么分式的值()A.不变B.扩大3倍 C.缩小3倍D.扩大9倍8、关于x的分式方程的解是负数,则m的取值范围是()A.m>-1;B. m>-1且m≠0;C.m≥-1;D. m≥-1且m≠0;9、对于非零的实数a、b,规定a⊕b=。

若2⊕(2x﹣1)=1,则x=()A. B. C. D.10、当+=2时,代数式的值为( )A.﹣2 B.2 C.﹣1 D.111、分式方程的解是()A.﹣B.﹣2C.﹣D.12、使分式的值为整数,则整数x可取的个数为( )A. 2个B. 3个C. 4个D. 5个二、填空题:13、当x=______时,分式无意义;当x______时,分式有意义.14、当x 时,分式有意义.15、计算:=______.16、已知a>b,如果+=,ab=2,那么a﹣b的值为.17、若a2x=25,则a﹣x等于.18、已知ab=2,a+b=4,则式子= .19、若x+,则的值是.20、轮船顺水航行46km和逆水航行34km所用时问恰好相等,水流的速度是3km/h,设轮船在静水中的速度为xkm/h,可列方程为.21、已知关于的分式方程的解为负数,则字母的取值范围是22、现有纯农药一桶,倒出20升后用水补满,然后又倒出10升,再用水补满。

2017全国部分省市中考数学真题汇编分式(含解析)

2017全国部分省市中考数学真题汇编分式(含解析)

14.规定 x=x0 时,代数式 则
的值记为 f(x0) .例如:x=﹣1 时,

的值等于 三.解答题 15.已知分式 ,试问:

(1)当 m 为何值时,分式有意义? (2)当 m 为何值时,分式值为 0? 16.已知 x,y,z 都不为零,且满足 4x﹣3y﹣6z=0,x+2y﹣7z=0.求 17.探索: (1)如果 (2)如果 总结:如果 =3+ =5+ =a+ ,则 m= ,则 m= ; ; ; 的值.
B.﹣1 C.±1 D.2 =( )
4.若 a2﹣ab=0(b≠0) ,则 A.0 B. C.0 或
D.1 或 2 )
5.下列关于分式的判断,正确的是( A.当 x=2 时, B.无论 x 为何值, C.无论 x 为何值, D.当 x≠3 时, 6.若分式 A.﹣ B. 的值为零 的值总为正数 不可能得整数值 有意义 ,则分式 C.﹣ D.
2. (2017•重庆)要使分式 A .x >3
有意义,x 应满足的条件是(

B.x=3 C.x<3D.x≠3
【分析】根据分式有意义的条件:分母≠0,列式解出即可. 【解答】解:当 x﹣3≠0 时,分式 即当 x≠3 时,分式 故选 D. 【点评】本题考查的知识点为:分式有意义,分母不为 0. 有意义, 有意义,
20.已知 x2+4x+1=0,且
,求 t 的值.
第 2 页(共 11 页)
参考答案与解析 考答案与解析
一.选择题 1. (2017•北京)若代数式 有意义,则实数 x 的取值范围是( )
A.x=0 B.x=4 C.x≠0D.x≠4 【分析】根据分式有意义的条件即可求出 x 的范围; 【解答】解:由代数式有意义可知:x﹣4≠0, ∴x≠4, 故选(D) 【点评】 本题考查分式有意义的条件, 解题的关键是正确理解分式有意义的条件, 本题属于基础题型.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程一、选择题1.下列各式中,是分式方程的是()A.x+y=5 B.C.=0 D.2.关于x的方程的解为x=1,则a=()A.1 B.3 C.﹣1 D.﹣33.分式方程=1的解为()A.x=2 B.x=1 C.x=﹣1 D.x=﹣24.下列关于分式方程增根的说法正确的是()A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根5.方程+=0可能产生的增根是()A.1 B.2 C.1或2 D.﹣1或26.解分式方程,去分母后的结果是()A.x=2+3 B.x=2(x﹣2)+3 C.x(x﹣2)=2+3(x﹣2)D.x=3(x﹣2)+27.要把分式方程化为整式方程,方程两边需要同时乘以()A.2x(x﹣2)B.x C.x﹣2 D.2x﹣48.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是()A.小时B.小时C.小时D.小时9.若关于x的方程有增根,则m的值是()A.3 B.2 C.1 D.﹣110.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程()A.=B.=C.=D.=二.填空题11.方程:的解是.12.若关于x的方程的解是x=1,则m=.13.若方程有增根x=5,则m=.14.如果分式方程无解,则m=.15.当m=时,关于x的方程=2+有增根.16.用换元法解方程,若设,则可得关于的整式方程.17.已知x=3是方程一个根,求k的值=.18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程.三.解答题19.解分式方程(1);(2).20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服?22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的1.2倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学?23.请你编一道可化为一元一次方程的分式方程(且不含常数项)的应用题,并予以解答.分式方程参考答案与试题解析一、选择题1.下列各式中,是分式方程的是()A.x+y=5 B.C.=0 D.【考点】分式方程的定义.【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【解答】解:A、方程分母中不含未知数,故不是分式方程;B、方程分母中不含未知数,故不是分式方程;C、方程分母中含未知数x,故是分式方程.D、不是方程,是分式.故选C.【点评】本题考查的是分式方程的定义,即分母中含有未知数的方程叫做分式方程.2.关于x的方程的解为x=1,则a=()A.1 B.3 C.﹣1 D.﹣3【考点】分式方程的解.【专题】计算题.【分析】根据方程的解的定义,把x=1代入原方程,原方程左右两边相等,从而原方程转化为含有a的新方程,解此新方程可以求得a的值.【解答】解:把x=1代入原方程得,去分母得,8a+12=3a﹣3.解得a=﹣3.故选:D.【点评】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.3.分式方程=1的解为()A.x=2 B.x=1 C.x=﹣1 D.x=﹣2【考点】解分式方程.【专题】计算题.【分析】本题的最简公分母是2x﹣3,方程两边都乘最简公分母,可把分式方程转换为整式方程求解.结果要检验.【解答】解:方程两边都乘2x﹣3,得1=2x﹣3,解得x=2.检验:当x=2时,2x﹣3≠0.∴x=2是原方程的解.故选A.【点评】(1)解分式方程的基本思想是“转化思想”,方程两边都乘最简公分母,把分式方程转化为整式方程求解.(2)解分式方程一定注意要代入最简公分母验根.4.下列关于分式方程增根的说法正确的是()A.使所有的分母的值都为零的解是增根B.分式方程的解为零就是增根C.使分子的值为零的解就是增根D.使最简公分母的值为零的解是增根【考点】分式方程的增根.【分析】分式方程的增根是最简公分母为零时,未知数的值.【解答】解:分式方程的增根是使最简公分母的值为零的解.故选D.【点评】本题考查了分式方程的增根,使最简公分母的值为零的解是增根.5.方程+=0可能产生的增根是()A.1 B.2 C.1或2 D.﹣1或2【考点】分式方程的增根.【专题】计算题.【分析】本题由增根的定义可知分式分母为0,即(x﹣1)=0或(x﹣2)=0,解出即可.【解答】解:∵方程+=0有增根,∴(x﹣1)=0或(x﹣2)=0,解得x=1或2,∴原方程可能产生的增根为1或2.故选C.【点评】本题主要考查增根的定义,解题的关键是使最简公分母(x﹣1)(x﹣2)=0.6.解分式方程,去分母后的结果是()A.x=2+3 B.x=2(x﹣2)+3 C.x(x﹣2)=2+3(x﹣2)D.x=3(x﹣2)+2【考点】解分式方程.【专题】计算题.【分析】找出各分母的最小公分母,同乘以最小公分母即可.【解答】解:左右同乘以最简公分母(x﹣2),得x=2(x﹣2)+3,故选B.【点评】本题考查了解分式方程的内容.注意在乘以最小公分母时,不要漏乘.7.要把分式方程化为整式方程,方程两边需要同时乘以()A.2x(x﹣2)B.x C.x﹣2 D.2x﹣4【考点】解分式方程.【专题】计算题.【分析】把分式方程化为整式方程,乘以最简公分母2x(x﹣2)即可.【解答】解:∵方程的最简公分母2x(x﹣2),∴方程的两边同乘2x(x﹣2)即可.故选A.【点评】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.找出最简公分母是解此题的关键.8.河边两地距离s km,船在静水中的速度是a km/h,水流的速度是b km/h,船往返一次所需要的时间是()A.小时B.小时C.小时D.小时【考点】列代数式(分式).【分析】往返一次所需要的时间是,顺水航行的时间+逆水航行的时间,根据此可列出代数式.【解答】解:根据题意可知需要的时间为: +故选D.【点评】本题考查列代数式,关键知道时间=路程÷速度,从而列出代数式.9.若关于x的方程有增根,则m的值是()A.3 B.2 C.1 D.﹣1【考点】分式方程的增根.【专题】计算题.【分析】有增根是化为整式方程后,产生的使原分式方程分母为0的根.在本题中,应先确定增根是1,然后代入化成整式方程的方程中,求得m的值.【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选:B.【点评】增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.10.有两块面积相同的小麦试验田,分别收获小麦9000㎏和15000㎏.已知第一块试验田每公顷的产量比第二块少3000㎏,若设第一块试验田每公顷的产量为x㎏,根据题意,可得方程()A.=B.=C.=D.=【考点】由实际问题抽象出分式方程.【专题】应用题.【分析】关键描述语是:“有两块面积相同的小麦试验田”;等量关系为:第一块试验田的面积=第二块试验田的面积.【解答】解:第一块试验田的面积是,第二块试验田的面积为.那么方程可表示为.故选C.【点评】列方程解应用题的关键步骤在于找相等关系,找到关键描述语,找到相应的等量关系是解决问题的关键.二.填空题11.方程:的解是.【考点】解分式方程.【专题】计算题.【分析】本题考查解分式方程的能力,观察可得方程最简公分母为:x(x+1),方程两边去分母后化为整式方程求解.【解答】解:方程两边同乘以x(x+1),得x2+(x+1)(x﹣1)=2x(x+1),解得:x=﹣.经检验:x=﹣是原方程的解.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)方程中有常数项的注意不要漏乘常数项,本题应避免出现x2+(x+1)(x﹣1)=2的情况出现.12.若关于x的方程的解是x=1,则m=2.【考点】分式方程的解.【分析】根据分式方程的解的定义,把x=1代入原方程求解可得m的值.【解答】解:把x=1代入方程,得,解得m=2.故应填:2.【点评】本题主要考查了分式方程的解的定义,属于基础题型.13.若方程有增根x=5,则m=5.【考点】分式方程的增根.【专题】计算题.【分析】由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘(x﹣5)化为整式方程,再把增根x=5代入求解即可.【解答】解:方程两边都乘(x﹣5),得x=2(x﹣5)+m,∵原方程有增根x=5,把x=5代入,得5=0+m,解得m=5.故答案为:5.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.如果分式方程无解,则m=﹣1.【考点】分式方程的解.【专题】计算题.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:x=m,当x=﹣1时,分母为0,方程无解.即m=﹣1方程无解.【点评】本题考查了分式方程无解的条件,是需要识记的内容.15.当m=3时,关于x的方程=2+有增根.【考点】分式方程的增根.【专题】方程思想.【分析】由于增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,所以将方程两边都乘(x﹣3)化为整式方程,再把增根x=3代入求解即可.【解答】解:方程两边都乘(x﹣3),得x=2(x﹣3)+m,∵原方程有增根,∴最简公分母x﹣3=0,解得x=3,把x=3代入,得3=0+m,解得m=3.故答案为:3.【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.16.(2006•南通)用换元法解方程,若设,则可得关于的整式方程2y2﹣4y+1=0.【考点】换元法解分式方程.【专题】压轴题;换元法.【分析】本题考查用换元法整理分式方程的能力,根据题意得设=y,代入方程可把原方程化为整式.【解答】解:设=y,则可得=,∴可得方程为2y+=4,整理得2y2﹣4y+1=0.【点评】用换元法解分式方程是常用的方法之一,换元时要注意所设分式的形式及式中不同的变形.17.已知x=3是方程一个根,求k的值=﹣3.【考点】分式方程的解.【分析】根据方程的解的定义,把x=3代入原方程,得关于k的一元一次方程,再求解可得k的值.【解答】解:把x=3代入方程,得,解得k=﹣3.故应填:﹣3.【点评】本题主要考查了分式方程的解的定义,属于基础题型.18.某市在旧城改造过程中,需要整修一段全长2400m的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路xm,则根据题意可得方程﹣=8.【考点】由实际问题抽象出分式方程.【分析】求的是原计划的工效,工作总量为2400,一定是根据工作时间来列等量关系.本题的关键描述语是:“提前8小时完成任务”;等量关系为:原计划用的时间﹣实际用的时间=8.【解答】解:原计划用的时间为:,实际用的时间为:.所列方程为:﹣=8.【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.三.解答题19.解分式方程(1);(2).【考点】解分式方程.【分析】(1)首先乘以最简公分母(x﹣3)x去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.(2)首先乘以最简公分母(x﹣1)(x+1)去分母,然后去括号,移项,合并同类项,把x的系数化为1,最后一定要检验.【解答】解:(1)去分母得:2x=3(x﹣3),去括号得:2x=3x﹣9,移项得:2x﹣3x=﹣9,合并同类项得:﹣x=﹣9,把x的系数化为1得:x=9检验:当x=9时,x(x﹣3)=54≠0.∴原方程的解为:x=9.(2)去分母得:x+1=2,移项得:x=2﹣1,合并同类项得:x=1.检验:当x=1时,(x﹣1)(x+1)=0,所以x=1是增根,故原方程无解.【点评】此题主要考查了分式方程的解法,做题过程中关键是不要忘记检验,很多同学忘记检验,导致错误.20.甲乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?【考点】分式方程的应用.【专题】应用题.【分析】求的是工效,工作总量明显,一定是根据工作时间来列等量关系.本题的关键描述语是:“甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等”;等量关系为:甲加工90个玩具所用的时间=乙加工120个玩具所用的时间.【解答】解:设甲每天加工x个玩具,那么乙每天加工(35﹣x)个玩具.由题意得:.(5分)解得:x=15.(7分)经检验:x=15是原方程的根.(8分)∴35﹣x=20(9分)答:甲每天加工15个玩具,乙每天加工20个玩具.(10分)【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.某服装厂准备加工300套演出服.在加工60套后,采用了新技术,使每天的工作效率是原来的2倍,结果共用9天完成任务.求该厂原来每天加工多少套演出服?【考点】分式方程的应用.【专题】应用题.【分析】关键描述语为:“共用9天完成任务”;等量关系为:用老技术加工60套用的时间+用新技术加工240套用的时间=9.【解答】解:设服装厂原来每天加工x套演出服.根据题意,得:.(3分)解得:x=20.经检验,x=20是原方程的根.答:服装厂原来每天加工20套演出服.(6分)【点评】分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22.为了过一个有意义的“六、一”儿童节,实验小学发起了向某希望小学捐赠图书的活动.在活动中,五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的1.2倍,二班平均每人比一班多捐1本书,求两个班各有多少名同学?【考点】分式方程的应用.【分析】设一班有x人,则二班有1.2x人.根据五年级一班捐赠图书100册,五年级二班捐赠图书180册,二班的人数是一班人数的1.2倍,二班平均每人比一班多捐1本书,可列方程求解.【解答】解:设一班有x人,则二班有1.2x人.根据题意得:,解得:x=50.经检验:x=50是原方程的解.1.2x=1.2×50=60.答:一班有50人,二班有60人.【点评】本题考查分式方程的应用,关键是设出人数,以平均每人捐的本数做为等量关系列方程求解.23.请你编一道可化为一元一次方程的分式方程(且不含常数项)的应用题,并予以解答.【考点】分式方程的应用.【分析】本题答案开放,根据题意要求,先写出符合要求的方程,如:,然后根据此方程编拟应用题.【解答】解:甲乙两个车间分别制造相同的机器零件,已知甲车间每小时比乙多制造10个机器零件,这样甲车间制造170个机器零件与乙制造160个所用时间相同,求甲乙两车间每小时各制造机器零件多少个?【点评】此题考查分式方程的应用,为开放性试题,答案不唯一.。

相关文档
最新文档