人教版数学 八年级上册1画轴对称图形课件
合集下载
画轴对称图形课件人教版数学八年级上册
说这两个图形关于这条直线成轴对称. 不同的对称轴对应不同的轴对称图形.
练习 如图所示,把一个正方形纸片三次对折后沿虚线剪下,则展开平纸片所得的图形是( ).
求作: △ABC 关于直线 l 对称的图形.
轴垂直平分. 练习 求作△ABC关于直线
l
对称这的△A条′ B′ C直′. 线叫做对称轴,折叠后重合的点
(图1)动手试一试: 如何剪能剪 出B 选项?
(图2)
A
B
C
D
初中数学
例 将一个正方形纸片依次按图1中 a,b的方式对折,
然后沿图 c 中的虚线裁剪,成图 d 样式,将纸展开铺平, 所得到的图形是图2中的(D ).Fra bibliotek(图1)
(图2) B
A
B
C
D
练习 如图所示,把一个正方形纸片三次对折后沿虚线
剪下,则展开铺平纸片所得的图形是( C ).
由一个平面图形可以得到与它关于一条直线 l 对称的图形,
练习 求作△ABC关于直线 l 对称的△A′ B′ C′.
如果它能够与另一个图形重合,那么就 练习 如图,有一个英语单词,三个字母都关于直线 l 对称,请补全字母,补全后的单词是________.
已知:点 A 和直线 l .
上折
右折 右下方折 沿虚线剪开
接这些对称点即可.
初中数学
例 (3)已知: △ABC和直线 l .
求作: △ABC关于直线 l 对称的图形.
B
作法:
A
C
1. 如图,分别作出点 A,B ,
C关于直线 l 的对称点 A′ ,
l B′ ,C′ ;
2. 连接A′ B′ ,B′ C′ ,C′ A′ ;
A′
八年级上册数学(人教版)课件:13.第1课时 画轴对称图
8.如图所示,在直线MN上求作一点P,使∠MPA=∠NPB.
解:①作点A关于MN的对称点A′; ②连结BA′交MN于点P,连接AP,则∠MPA=∠NPB
9.如图所示,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和 △A″B″C″关于直线EF对称.
(1)画出直线EF; (2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角 α的数量关系.
3.如图,分别以直线l为对称轴,所作轴对称图形错误的是( C)
4.以直线l为对称轴画出图形的另一半. 解:图略
5.仔细观察下列图案,并按规律在横线上画出合适的图形.
6.如图,小新把一张含30°角的直角三角形纸板ABC沿较短边的垂 直平分线翻折,则∠BOC的度数为_6_0_°_.
7.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC, 请你找出格点图中所有与△ABC成轴对称也以格点为顶点的三角形,这 样的三角形共用__5__个.
Байду номын сангаас
(1)如图,连接B′B″,作线段B′B″的垂直平分线EF,则直线EF是△A′B′C′ 与△A″B″C″的对称轴
(2)连结BO,B′O,B″O,∵△ABC和△A′B′C′关于MN对称,∴∠BOM= ∠B′OM,又∵△A′B′C′和△A″B″C″关于EF对称,∴∠B′OE=∠B″OE, ∴∠BOB″=∠BOB′+∠B′OB″=2∠B′OM+2∠B′OE=2(∠B′OM+ ∠B′OE)=2∠MOE=2α,即∠BOB″=2α
第十二章 全等三角形
13.2 画轴对称图形
第1课时 画轴对称图形
1.已知对称轴l和一点A,要画出点A关于l的对称点A′,可采用以下方 法:过点A作对称轴l的___垂_,线垂足为点O,延长___A_至O ___A_′,使___O_A= _O_A_′_,则点A′就是点A关于直线l的对称点.
解:①作点A关于MN的对称点A′; ②连结BA′交MN于点P,连接AP,则∠MPA=∠NPB
9.如图所示,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和 △A″B″C″关于直线EF对称.
(1)画出直线EF; (2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角 α的数量关系.
3.如图,分别以直线l为对称轴,所作轴对称图形错误的是( C)
4.以直线l为对称轴画出图形的另一半. 解:图略
5.仔细观察下列图案,并按规律在横线上画出合适的图形.
6.如图,小新把一张含30°角的直角三角形纸板ABC沿较短边的垂 直平分线翻折,则∠BOC的度数为_6_0_°_.
7.如图,在2×2的正方形格点图中,有一个以格点为顶点的△ABC, 请你找出格点图中所有与△ABC成轴对称也以格点为顶点的三角形,这 样的三角形共用__5__个.
Байду номын сангаас
(1)如图,连接B′B″,作线段B′B″的垂直平分线EF,则直线EF是△A′B′C′ 与△A″B″C″的对称轴
(2)连结BO,B′O,B″O,∵△ABC和△A′B′C′关于MN对称,∴∠BOM= ∠B′OM,又∵△A′B′C′和△A″B″C″关于EF对称,∴∠B′OE=∠B″OE, ∴∠BOB″=∠BOB′+∠B′OB″=2∠B′OM+2∠B′OE=2(∠B′OM+ ∠B′OE)=2∠MOE=2α,即∠BOB″=2α
第十二章 全等三角形
13.2 画轴对称图形
第1课时 画轴对称图形
1.已知对称轴l和一点A,要画出点A关于l的对称点A′,可采用以下方 法:过点A作对称轴l的___垂_,线垂足为点O,延长___A_至O ___A_′,使___O_A= _O_A_′_,则点A′就是点A关于直线l的对称点.
人教八年级数学上册《画轴对称图形》课件(17张)
13.2 画轴对称图形
第1课时 画轴对称图形
课• 件本说节明课内容属于“图形的变化”领域,
画轴对称图 形是继平移变换之后的又一种图形变换,
是利用轴 对称变换设计图案的基础.它是研究几
何问题、发 现几何结论的有效工具.
课件说明
▪ 学习目标: 1.理解图形轴对称变换的性质. 2.能按要求画出一个平面图形关于某直线对称的图 形.
(1)三角形关于直线l 的对称图
B
形是什么形状?
C
(2)三角形的轴对称图形可以由 A
l
哪几个点确定?
(3)如何作一个已知点关于直线
l 的对称点?
画l,画出与△ABC 关于直线l 对称的图形.
画法:(1)如图,过点A 画直
B
线l 的垂线,垂足为点O,在垂线上
由一个平面图形可以得到与它关于一条直线l 对称 的图形,这个图形与原图形的形状、大小完全相同;
新图形上的每一点都是原图形上的某一点关于直线 l 的对称点;
连接任意一对对应点的线段被对称轴垂直平分.
画轴对称图形
如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢?
画轴对称图形
例1 如图,已知△ABC 和直线l,画出与△ABC 关于直线l 对称的图形.
谢谢观赏
You made my day!
我们,还在路上……
B
C
A
O
l
A′
C′
B′
画轴对称图形
如何验证画出的图形与△ABC 关于直线l 对称?
B
C
A
O
l
A′
C′
B′
画轴对称图形
已知一个几何图形和一条直线,说一说画一个与该 图形关于这条直线对称的图形的一般方法.
第1课时 画轴对称图形
课• 件本说节明课内容属于“图形的变化”领域,
画轴对称图 形是继平移变换之后的又一种图形变换,
是利用轴 对称变换设计图案的基础.它是研究几
何问题、发 现几何结论的有效工具.
课件说明
▪ 学习目标: 1.理解图形轴对称变换的性质. 2.能按要求画出一个平面图形关于某直线对称的图 形.
(1)三角形关于直线l 的对称图
B
形是什么形状?
C
(2)三角形的轴对称图形可以由 A
l
哪几个点确定?
(3)如何作一个已知点关于直线
l 的对称点?
画l,画出与△ABC 关于直线l 对称的图形.
画法:(1)如图,过点A 画直
B
线l 的垂线,垂足为点O,在垂线上
由一个平面图形可以得到与它关于一条直线l 对称 的图形,这个图形与原图形的形状、大小完全相同;
新图形上的每一点都是原图形上的某一点关于直线 l 的对称点;
连接任意一对对应点的线段被对称轴垂直平分.
画轴对称图形
如果有一个图形和一条直线,如何作出这个图形关 于这条直线对称的图形呢?
画轴对称图形
例1 如图,已知△ABC 和直线l,画出与△ABC 关于直线l 对称的图形.
谢谢观赏
You made my day!
我们,还在路上……
B
C
A
O
l
A′
C′
B′
画轴对称图形
如何验证画出的图形与△ABC 关于直线l 对称?
B
C
A
O
l
A′
C′
B′
画轴对称图形
已知一个几何图形和一条直线,说一说画一个与该 图形关于这条直线对称的图形的一般方法.
新人教版八年级数学上册13.1.1轴对称ppt课件
轴对称
形状
是否轴对称图 对称轴的数
形
量(条)
是
2
是 不是
4 -------
是
是
20
1
无数
可编辑课件PPT
轴对称
对称轴问题
(1)有些轴对称图形的对称轴只有一条, 但有的轴对称图形的对称轴却不止一条,有的 轴对称图形的对称轴甚至有无数条。
(2)对称轴通常画成虚线,是直线,不 能画成线段。
21
可编辑课件PPT
形,那么这两个图形关于这条直线_对_称_;如果
把两个成轴对称的图形看成一个图形,那么这个
图形就是__轴__对__称__图__形___.
30
可编辑课件PPT
想一想:0-9十个数字中,哪些是
轴对称图形?(抢答)
01234
56789
31
可编辑课件PPT
猜字游戏: 在艺术字中,有些汉字是轴对称的, 你能猜一猜下列是哪些字的一半吗?
3、(日照·中考)已知以下四个汽车标志图案: 其中是轴对称图形的图案是 (只需填入图案代号).
【解析】根据轴对称的定义可以得出①③是轴对称图形. 答案:①③
39
可编辑课件PPT
通过本课时的学习,需要我们: 1.了解轴对称图形和两个图形关于某直线对称的概念.
2.能识别简单的轴对称图形及其对称轴(直线),能找出 两个图形关于某直线对称的对称点.
28
可编辑课件PPT
想一想
轴对称
轴对称图形
两个图形成轴对称
29
可编辑课件PPT
比较归纳
轴对称
区别 联系
轴对称图形
_一___个图形
两个图形成轴对称
__两___个图形
新人教版八年级数学上册《轴对称》课件
推理形式如下: : 在△ABC中
∵∠B=∠C(已知) ∴AB=AC(等角对等边) B
例 如图, △ABC中, ∠A=36°, ∠C=72°,BD平分∠ABC, 那么图中 共有几个等腰三角形?你能依次说明吗?
A C
A D
B
C
已知在△ABC中, AB=AC, BE、CD分别平分 ∠ABC、 ∠ACB,且相交于点O,试说明△BOC是等 腰三角形。
点P ,则点P即为所求.
3、能不能在三角形ABC内找 一点到A、B、C的距离相等
A
····
O C
B 4、角是轴对称图形,角平分线所在直线是它的对称轴. 性质:角平分线上的点到这个角的两边的距离相等.
如图:∵BD平分∠ABC, ED⊥AB于E,CD⊥BC于C,∴ED=CD
B
EA
D C
我来设计
如图,直线a,b,c表示三条相交叉的公路,A.B.C表示公 路的交叉点.若在△ABC内部修建一处加油站,使加油站 到三条公路a,b,c的距离相等,则加油站应建在何处.
2、底角是顶角一半的等腰三角形是____等_腰__直_角三角 形。
3、如果一个三角形三个外角的比是3:3:2,则这
是一个
()
A.等腰三角形
D B.等边三角形
C.直角三角形 D.等腰直角三角形
思考拓展
如图,⊿ABC中,BC=BA,∠A=600,BD是AC边的中线, 延长BC到E,使CE=CD,试说明:DE=DB
若DB是AC边上的高,上述结论还成立吗?
提示:
∵ BA=BC
∴∠BCA=∠A=600(等边对等角)
∵ CE=CD ∴∠E=∠CDE=300(三角形外角性质) ∵ BA=BC, BD是AC边的中线 ∴∠DBC=300(等腰三角形三线合一 )
∵∠B=∠C(已知) ∴AB=AC(等角对等边) B
例 如图, △ABC中, ∠A=36°, ∠C=72°,BD平分∠ABC, 那么图中 共有几个等腰三角形?你能依次说明吗?
A C
A D
B
C
已知在△ABC中, AB=AC, BE、CD分别平分 ∠ABC、 ∠ACB,且相交于点O,试说明△BOC是等 腰三角形。
点P ,则点P即为所求.
3、能不能在三角形ABC内找 一点到A、B、C的距离相等
A
····
O C
B 4、角是轴对称图形,角平分线所在直线是它的对称轴. 性质:角平分线上的点到这个角的两边的距离相等.
如图:∵BD平分∠ABC, ED⊥AB于E,CD⊥BC于C,∴ED=CD
B
EA
D C
我来设计
如图,直线a,b,c表示三条相交叉的公路,A.B.C表示公 路的交叉点.若在△ABC内部修建一处加油站,使加油站 到三条公路a,b,c的距离相等,则加油站应建在何处.
2、底角是顶角一半的等腰三角形是____等_腰__直_角三角 形。
3、如果一个三角形三个外角的比是3:3:2,则这
是一个
()
A.等腰三角形
D B.等边三角形
C.直角三角形 D.等腰直角三角形
思考拓展
如图,⊿ABC中,BC=BA,∠A=600,BD是AC边的中线, 延长BC到E,使CE=CD,试说明:DE=DB
若DB是AC边上的高,上述结论还成立吗?
提示:
∵ BA=BC
∴∠BCA=∠A=600(等边对等角)
∵ CE=CD ∴∠E=∠CDE=300(三角形外角性质) ∵ BA=BC, BD是AC边的中线 ∴∠DBC=300(等腰三角形三线合一 )
轴对称(第一课时)(课件)人教版数学八年级上册
课堂小结
定义
1、轴对称图形 2、两个图形成轴对称
轴对称图形
区别和联
系
轴对称图形和两个图形成轴对称
应用
利用轴对称图形和两个图形成轴 对称的定义进行判断
课后作业
1.把一圆形纸片两次对折后,得到右图,然后 沿虚线剪开,得到两部分,其中一部分展开后 的平面图形是( B )
A
B
C
D
课后作业
2.如图,在3×3的正方形网格中,已有两个小正方形被 涂黑,再将图中其余小正方形任意涂黑一个,使整个图案 (包括网格)构成一个轴对称图形,则涂色的方法有( D )
追问: 你能再举出一些两个图形成轴对称的例子吗?
互动新授
A
B C
小试牛刀
1、分别观察以下每组图形,判断它们是否关于某条直线成轴对称?
E
E
E
EE
E
不是
不是
是
E
E
E E E
E
是
不是
是
互动新授 仔细观察,下列两个图形有什么区别?
它们之间有什么联 系和区别呢?
轴对称图形
两个图形成轴对称
总结归纳 轴对称图形和轴对称的区别与联系
A.2种 C.4种
B.3种 D.5种
1条
2条
4条
无数条
互动新授
观察下面每对图形(如图),你能类比前面的内容概括出 它们的共同特征吗?
互动新授 共同特征:每一对图形沿着虚线折叠,左边的图形都能与右
边的图形重合.
结论:把一个图形沿着某一条直线折叠,如果它能够与另一个图形 重合,那么就说这两个图形关于这条直线(成轴)对称,这 条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.
八年级数学上册13.1.1轴对称(共21张PPT)
课前准备:
正方形纸片、剪刀.
一、引出新知
二、探究新知
【问题1】如图,把一张纸对折,剪出一个图案(折 痕处不要完全剪断),再打开这张对折的纸,就得到 了美丽的窗花.观察得到的窗花,你能发现它们有什 么共同的特点吗?
(一)轴对称图形
如果一个平面图形沿一条直线折叠,直线两旁的部分能 够互相重合,这个图形就叫做轴对称图形,这条直线就 是它的对称轴. 这时,我们也说这个图形关于这条直线 (成轴)对称.
B
B'
C
C'
N
(四)两个图形成轴对称的性质
思考:如果将其中的“三角形”改为“四边形”“五边形”…
其他条件不变,前面的结论还成立吗?
M
l
l
A
A'
P
B C
B' C'
N
性质:如果两个图形关于某条直线对称,那么对称轴是任何一 对对应点所连线段的垂直平分线.(即对称点所连线段被对称 轴垂直平分;对称轴垂直平分对称点所连线段.)
四边形ABCD是轴对称图形
B
3
30°
C
30°
A
3
D
∆ABC ∆ADC
AC垂直平分BD
轴对称图形
课堂小结
轴对称
重要内容 线段的垂直 平分线
概念 性质
两个图形 成轴对称
概念 性质
本节课知识点对应数学课本P58-60
课后作业
完成课本P64-65习题13.1第1、2、3、4、5题.
谢谢!
B
点C'是点C的对称点. 能成轴对称,
B′
那么它们是全
C
C′
等图形吗?
做一做
2.下列每副图形中两个图案是轴对称的吗?如果是,
《画轴对称图形》轴对称PPT教学课件(第2课时)
巩固练习
平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4), B(2,4),C(3,–1). (1)试在平面直角坐标系中,标出A、B、C三点; (2)若△ABC与△A'B'C'关于x轴对称,画出△A'B'C',并 写出A'、B'、C'的坐标.
巩固练习 解:如图所示:
y
A (0,4)
B (2,4)
4.如图,在平面直角坐标系中,点P(–1,2)关于直线x=1的
对称点的坐标为( C )
A.(1,2) B.(2,2)
1 2
C.(3,2) D.(4,2)
-1
1
课堂检测 5.已知点P(2a+b,–3a)与点P′(8,b+2). 若点P与点P′关于x轴对称,则a=___2__, b=____4___. 若点P与点P′关于y轴对称,则a=___6__ ,b=___–_2_0__.
课堂检测
解:∵正方形ABCD,点A、B的坐标分别是(–1,–1)、(–3,–1), ∴根据题意,得第1次变换后的点B的对应点的坐标为(–3+2,1),即(–1,1), 第2次变换后的点B的对应点的坐标为(–1+2,–1),即(1,–1), 第3次变换后的点B的对应点的坐标为(1+2,1),即(3,1), 第n次变换后的点B的对应点的为:当n为奇数时为(2n–3,1),当n为偶数时为 (2n–3,–1), ∴把正方形ABCD经过连续7次这样的变换得到正方形A′B′C′D′,则点B的对应 点B′的坐标是(11,1).
D.(–1,–4)
课堂检测
基础巩固题
1.平面直角坐标系内的点A(–1,2)与点B(–1,–2)关于( B )
13.2《画轴对称图形》第1课时PPT课件人教版
作:作出对应点所连线段的垂直平分线.
如图,把下列图形补成关于直线 l 对称的轴对称图形.
的线段PQ,使PQ与AC关于某条直 思考2:已知线段AB和直线l,画出线段AB关于直线l的对称线段A′B′.
连接对应点的线段被对称轴垂直平分
线段AD被直线l垂直平分.
线对称,且P,Q为格点. △ABC与△DEF全等.
A
(2)过点B作直线l的垂线,垂足为P,
在垂线上截取PB′=PB,点B′就是点B关于
直线l的对称点.
(3)连接A′B′,则线段A′B′即为所求.
P B′ O A′ l
例1:如图,已知△ABC和直线l,画出与△ABC关于直
线l对称的图形.
分析:△ABC可以由三个顶点的位
B
C
置确定,只要能分别画出这三个顶 A
作法:(1)过点A作直线l的垂
A
线,垂足为O; (2)在垂线上截取OA′=OA,点 A′就是点A关于直线l的对称点.
O
l
A′
思考2:已知线段AB和直线l,画出线段AB关于直线l的
对称线段A′B′.
B
作法:(1)过点A作直线l的垂线,垂足
为O,在垂线上截取OA′=OA,点A′就是
点A关于直线l的对称点.
点M关于直线l的对称点一定在△DEF内.
C
点M关于直线l的对称点一定在△DEF内.
(1)△ABC与△DEF全等吗?全等的两个图形一定可以通过轴对称变换得到吗?
知识点 画轴对称图形
分析:根据物体与其在水中的倒影关于水面成轴对称,作出倒影关于这条直线成轴对称的图形即可.
Q
(2020·吉林中考)如图是3×3的正方形网格,每个小
随堂练习
1.用纸片剪一个三角形,分别沿着它一边的中线、高、 角平分线对折,看看哪些部分能够重合,哪些部分不 能重合?
如图,把下列图形补成关于直线 l 对称的轴对称图形.
的线段PQ,使PQ与AC关于某条直 思考2:已知线段AB和直线l,画出线段AB关于直线l的对称线段A′B′.
连接对应点的线段被对称轴垂直平分
线段AD被直线l垂直平分.
线对称,且P,Q为格点. △ABC与△DEF全等.
A
(2)过点B作直线l的垂线,垂足为P,
在垂线上截取PB′=PB,点B′就是点B关于
直线l的对称点.
(3)连接A′B′,则线段A′B′即为所求.
P B′ O A′ l
例1:如图,已知△ABC和直线l,画出与△ABC关于直
线l对称的图形.
分析:△ABC可以由三个顶点的位
B
C
置确定,只要能分别画出这三个顶 A
作法:(1)过点A作直线l的垂
A
线,垂足为O; (2)在垂线上截取OA′=OA,点 A′就是点A关于直线l的对称点.
O
l
A′
思考2:已知线段AB和直线l,画出线段AB关于直线l的
对称线段A′B′.
B
作法:(1)过点A作直线l的垂线,垂足
为O,在垂线上截取OA′=OA,点A′就是
点A关于直线l的对称点.
点M关于直线l的对称点一定在△DEF内.
C
点M关于直线l的对称点一定在△DEF内.
(1)△ABC与△DEF全等吗?全等的两个图形一定可以通过轴对称变换得到吗?
知识点 画轴对称图形
分析:根据物体与其在水中的倒影关于水面成轴对称,作出倒影关于这条直线成轴对称的图形即可.
Q
(2020·吉林中考)如图是3×3的正方形网格,每个小
随堂练习
1.用纸片剪一个三角形,分别沿着它一边的中线、高、 角平分线对折,看看哪些部分能够重合,哪些部分不 能重合?
人教版八年级数学上册《画轴对称图形》轴对称PPT精品课件
画点B、C的对称点F、G,然后顺次连接E、F、G得△
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
EFG,则△ EFG就是所求.
方法二:也可以利用全等知识进行作图,即先出A、C
的对称点E、G,然后分别以E、G为圆心,AB、CB为
半径作弧,两弧交于点F,则△ EFG就是所求.
知识拓展
二、确定对称点:四边形ABCD和四边形EFGH关于直线MN对称,连
知识梳理
例2:(2)画出△ ABC关于y轴对称的△ A2B2C2;
(3)是否存在点E,使△ ACE和△ ACB全等?若存在,直接写
出所有点E的坐标。
【结论】轴对称变换的作图的步骤是:①
求特殊点的坐标;②描点;③连线.
知识梳理
例3:在平面直角坐标系中,已知点
A( − 3,1),B( −
1,0),C( − 2, − 1),请在下图中画出△ ABC,并画出与
分别为何值.
(1)A、B关于x轴对称;
(2)A、B关于y轴对称。
知识梳理
例2:(1)根据关于x轴对称点的坐标特点横坐标不变、纵坐标互为
相反数可得
2m + n = 1
=1
,解得
− = −2
= −1
(2)根据关于y轴对称点的坐标特点纵坐标不变、横坐标互为
2m + n = −1
= −1
又∵点P(m,n),关于y轴的对称点的坐标为(1,b)
∴m=-1,n=b.
∴m=-1,n=2,故m+n=1.
知识梳理
例4:若点A(m + 2,3)与点B( − 4,n + 5)关于y轴对称,则
m+n= 0 .
+2=4
=2
根据
;解得
;故m + n = 0
新人教版八年级数学上册《画轴对称图形》精品课件
下面的图形哪些是轴对称图形?
(是)
(是)
(是)
(是)
(不是) (是) (是)
连一连。
下面的图形各是从哪张纸上剪下来的? 你能连一连吗?
3 画出下面图形的另一半.
在方格纸上画出轴对称图形的另一半。
课堂活动 画出下面图形的另一半.
练一练
在方格纸上画出下面图形的另一半.
10
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
谢谢观赏
You made my day!
(是)
(是)
(是)
(是)
(不是) (是) (是)
连一连。
下面的图形各是从哪张纸上剪下来的? 你能连一连吗?
3 画出下面图形的另一半.
在方格纸上画出轴对称图形的另一半。
课堂活动 画出下面图形的另一半.
练一练
在方格纸上画出下面图形的另一半.
10
不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 书籍是屹立在时间的汪洋大海中的灯塔。
谢谢观赏
You made my day!
人教版数学八年级上册画轴对称图形课件
13.2 画轴对称图形 第2课时
如
已知点A和一条直线MN,你能画出这个 点关于已知直线的对称点吗? 过点A作AO⊥MN于O, 然后延长AO至OA′,使AO=OA′
M
A
O
A′
N
∴ A′就是点A关于直线MN的对称点.
探究1:如图,在平面直角坐标系中你 能画出点A关于x轴的对称点吗?
5 4 3 2
1
人教版数学 八年级上册13.2画轴对称图形课件
人教版数学 八年级上册13.2画轴对称图形课件
归纳:关于y轴对称的点的坐标的特 点是:横坐标互为相反数,纵坐标相等.
(横反纵同)
练习:
1、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为_(_5__,_6__)_ 2、点M (a, -5)与点N(-2, b)关于y轴对称,则a=_2__, b =_-_5__
· B (-4, 2) 3 2 1
·-4 -3 -2 -1-10 -2
B’ (-4, -2) -3
-4
思考:
·C’(3, 4) 关于x轴 对称的 点的坐 标具有 1 2 3 4 5 怎样的
x 关系?
·C(3, -4)
通过探究你能用语言归纳关于 x 轴对称的点坐标规律吗?
人教版数学 八年级上册13.2画轴对称图形课件
CHale Waihona Puke A〞 AC〞人教版数学 八年级上册13.2画轴对称图形课件
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
观察关于y 轴对称的每对对称点的坐标有怎样的变 化规律?
y
关于y 轴对称的每 对对称点的横坐标互为 相反数,纵坐标相等.
B B〞
E〞 D〞1 D E O1
x
C
如
已知点A和一条直线MN,你能画出这个 点关于已知直线的对称点吗? 过点A作AO⊥MN于O, 然后延长AO至OA′,使AO=OA′
M
A
O
A′
N
∴ A′就是点A关于直线MN的对称点.
探究1:如图,在平面直角坐标系中你 能画出点A关于x轴的对称点吗?
5 4 3 2
1
人教版数学 八年级上册13.2画轴对称图形课件
人教版数学 八年级上册13.2画轴对称图形课件
归纳:关于y轴对称的点的坐标的特 点是:横坐标互为相反数,纵坐标相等.
(横反纵同)
练习:
1、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为_(_5__,_6__)_ 2、点M (a, -5)与点N(-2, b)关于y轴对称,则a=_2__, b =_-_5__
· B (-4, 2) 3 2 1
·-4 -3 -2 -1-10 -2
B’ (-4, -2) -3
-4
思考:
·C’(3, 4) 关于x轴 对称的 点的坐 标具有 1 2 3 4 5 怎样的
x 关系?
·C(3, -4)
通过探究你能用语言归纳关于 x 轴对称的点坐标规律吗?
人教版数学 八年级上册13.2画轴对称图形课件
CHale Waihona Puke A〞 AC〞人教版数学 八年级上册13.2画轴对称图形课件
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
观察关于y 轴对称的每对对称点的坐标有怎样的变 化规律?
y
关于y 轴对称的每 对对称点的横坐标互为 相反数,纵坐标相等.
B B〞
E〞 D〞1 D E O1
x
C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究并归纳已知点关于坐标轴对称的点的
坐标变化规律 (教材P69)
在平面直角坐标系中,画出下列已知点及其关 于x 轴对称的点,把它们的坐标填入表格中.
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
y
C′
A′
B
1D
O
1
D′
E E′
x
B′
C
A
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律
观察下图中关于x 轴对称的每对对称点的坐标有怎
解:关于x 轴对称的点的坐标: (-2,-6),(1,2),(-1,-3),(-4,2),(1,0)
关于y 轴对称的点的坐标: (2,6),(-1,-2), (1,3),(4,-2),(-1,0) .
(拓展提高) 思考:如图,分别作出点P,M,N关于直线x=1的对 称点, 你能发现它们坐标之间分别有什么关系吗?
y
· A
5
ห้องสมุดไป่ตู้
·A′
· · C4 3 C′
·2
B
1
·B′
-4 -3 -2 -1-O1 1 2 3 4 5 x
-2 -3
-4
归纳画一个图形关于x 轴或y 轴对称的图形
的方法和步骤.
先求出已知图形中一些特殊点(多边形的顶点)的 对称点的坐标,描出并连接这些点,就可以得到这个图 形的轴对称图形.
步骤简述为: (1)求特殊点的坐标;(2)描点;(3)连线.
(横同纵反)
练习:
1、点P(-5, 6)与点Q关于x轴对称,则点Q的坐标为(_-_5__,__-6__ 2、点M (a, -5)与点N(-2, b)关于x轴对称,则a=_-_2_, b =__5__
探究2:如图,你能在平面直角坐标系 中画出点A关于y轴的对称点A’吗?
你能说出 点A与点 A’坐标的 关系吗?
13.2 画轴对称图形 第2课时
如
已知点A和一条直线MN,你能画出这个 点关于已知直线的对称点吗? 过点A作AO⊥MN于O, 然后延长AO至OA′,使AO=OA′
M
A
O
A′
N
∴ A′就是点A关于直线MN的对称点.
探究1:如图,在平面直角坐标系中你 能画出点A关于x轴的对称点吗?
5 4 3 2
1
小结:在平面直角坐标系中,关于x 轴对称的点横坐标相等,纵坐标互为相反 数.关于y轴对称的点横坐标互为相反数,
纵坐标相等.
已知点关于x轴或y轴对称的点的坐标变化规律:
( P44) 点(x, y)关于x轴对称的点的坐标为 (_x_,_-__y_).
点(x, y)关于y轴对称的点的坐标为 _(-__x_,_y_).
C y C′
D
D′
A
B
1
O
B′
1
A′x
请在图上画出四边形ABCD 关于x 轴对称的图形.
A’’(-5,-1) B’’(-2,-1) C’’(-2,-5) D’’(-5,-4)
A〞
B〞
D〞
C〞
练习:P71的 T2,3
(1,2)
·
··
·· ·
课堂练习
练习:P70的 T1
练习1 分别写出下列各点关于x 轴和y 轴对称 的点的坐标:(-2,6),(1,-2), (-1,3) ,(-4,-2),(1,0)
· P(-2,3)
y
5
4
· M(-1,1)
3’ 2
1
· -4
-3
-2
-1
0 -1
-2
N(-3,-2)
x=1
· P’(4,3)
M’(3,1)
·
x
12345
·
N’(5,-2)
,
归纳: 若两点(x1,y1)、(x2,y2)关于
直线x=m对称,则m= x1 x 2 ,y1=y2 .
2
类似: 若两点(x1,y1)、(x2,y2)关于
· B (-4, 2) 3 2 1
·-4 -3 -2 -1-10 -2
B’ (-4, -2) -3
-4
思考:
·C’(3, 4) 关于x轴 对称的 点的坐 标具有 1 2 3 4 5 怎样的
x 关系?
·C(3, -4)
通过探究你能用语言归纳关于 x 轴对称的点坐标规律吗?
归纳:关于x轴对称的点的坐标的特 点是: 横坐标相等,纵坐标互为相反数.
❖
7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。
❖
8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。
2、学习了在平面直角坐标系中如何画一个图形 关于x轴或y轴的对称图形
先求出已知图形中的一些特殊点(如多边形的顶点)的对应点的 坐标,描出并连接这些点,就可以得到这个图形的轴对称图形.
❖
1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。
直线y=n对称,则 x1=x2,n= y1 y 2
2
课堂练习
练习2 若点P(2a+b,-3a)与点 P′(8,b+2)
关于x 轴对称,则a = 2 ,b= 4 ; 若关于y 轴对称,则a = 6 ,b=_-_2_0___.
课堂练习
【P71,T2】分别写出下列各点关于x 轴和y 轴对 称的点的坐标. (3,6)、(-7,9)、(6,-1)、(0,10)
O
x
C(-1,-1) B(1,-1)
成功:A=x+y+z.A代表成功,x代表艰苦的 劳动,y代表正确的方法,Z代表少说空话.
——爱因斯坦
布置作业
课本71页 第2题、 课本72页 第5题.
这节课你学到了什么?
1、学习了在平面直角坐标系中,关于x轴和y轴 对称的点的坐标的特点。
关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴 对称的点横坐标互为相反数,纵坐标相等.
❖
4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。
❖
5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。
❖
6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
5
· A’(-2,3) 4 3 2
y
·A (2,3)
1
x
-4 -3 -2 -1 0 1 2 3 4 5 -1
-2 -3
-4
在平面直角坐标系中画出下列各点
关于y轴的对称点.
· B (-4, 2)
y
5 4 3 2
1
思考: 关于y轴 B’ (4, 2) 对称的
· 点的坐 标具有
-4 -3 -2 -1-10
-2
-3
· C’(-3, -4)
-4
1 2 3 4 5 怎样的 x 关系?
·C(3, -4)
归纳:关于y轴对称的点的坐标的特 点是:横坐标互为相反数,纵坐标相等.
(横反纵同)
练习:
1、点P(-5, 6)与点Q关于y轴对称,则点Q的坐标为_(_5__,_6__)_
2、点M (a, -5)与点N(-2, b)关于y轴对称,则a=_2__, b =_-_5__
❖
9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
感谢观看,欢迎指导!
运用变化规律作图
教材P70
例 如图,四边形ABCD 的四个顶点的坐标分别为
A(-5,1),B(-2,1),
C(-2,5),D(-5,4),
Cy
分别画出与四边形ABCD 关 D
于x 轴和y 轴对称的图形.
A B1 O1
x
运用变化规律作图
解:点(x,y)关于y 轴对称的点的坐标为
(-x,y),因此四边形ABCD 的顶点A,B,C,D
-4 -3 -2 -1 0 -1
请同学们在坐标系中多找
-2
几个点,并画出它们关于
-3
轴对称的点,然后观察已
知点与对称点的横坐标和
-4
纵坐标 有什么变化?
y
·A (2,3)
123
·
A’(2,-3)
x
45
你能说出 点A与点 A’坐标的 关系吗?
在平面直角坐标系中画出下列各点关于 x轴的对称点.
y
5 4
❖
2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。
❖
3.把握好故事情节,是欣赏小说的基础,也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点,从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。
样的变化规律?
y
C′ 关于x 轴对称的每对对 称点的横坐标相等,纵坐标 互为相反数.
C
A′ B
1D
O
1
D′
B′
A
E E′
x
探究并归纳已知点关于坐标轴对称的点 的坐标变化规律