针尖增强拉曼散射-TERS

合集下载

壳层隔绝纳米粒子增强拉曼光谱技术简介

壳层隔绝纳米粒子增强拉曼光谱技术简介

壳层隔绝纳米粒子增强拉曼光谱技术简介2016-09-11 12:09来源:内江洛伯尔材料科技有限公司作者:研发部壳层隔绝纳米粒子增强拉曼光谱技术简介拉曼光谱(Ramanspectra),是一种散射光谱。

拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。

为了提高拉曼光谱技术的普适性及灵敏度,科学家在SERS基础上进行了大量的创新研究。

其技术发展主要经历了三个阶段:第一阶段是接触式借力模式,即制备一些核壳纳米结构,可在合适波长下,通过产生局域表面等离激元共振,使纳米结构表面直接接触的分子感受到光电场的作用,使其拉曼信号得到增强。

第二阶段是非接触式借力模式,即针尖增强拉曼光谱(TERS),它是将拉曼光谱和扫描探针显微技术结合起来,通过将一个Au或Ag针尖放置在距离单晶表面小于1 nm的位置进行拉曼检测激光照射纳米间隙后,针尖处被激发产生局域表面等离激元,产生很强的电磁场从而极大地增强了针尖附近吸附在单晶表面分子的拉曼信号。

拉曼光谱技术在方法学上经历了上述两个阶段的发展,其检测灵敏度得到很大提升,同时也在一定程度上解决了空间分辨率的问题。

TERS技术使得拉曼光谱在高端的需要高空间分辨的谱学信息的研究中发挥出重要的作用,形成拉曼光谱技术中顶天型的仪器。

但是,不论是接触式借力模式还是非接触式借力模式,尚无法全面解决基底材料普适性问题直到2010年,拉曼光谱技术在方法学的突破进入了第三阶段,即壳层隔绝式借力模式,田中群课题组发明了壳层隔绝纳米粒子增强拉曼光谱(SHINERS)方法,成功解决了SERS基底普适性问题,该项科研成果已发表在国际顶级学术刊物《Nature》上,获得了学术界的广泛认可和高度评价,国际表面增强拉曼光谱领域的著名的Graham教授在国际知名期刊《Angewandte Chemie》上撰文评论该项技术,称此项技术为下一代的先进光谱技术。

针尖增强拉曼光谱(TERS).ppt[可编辑]

针尖增强拉曼光谱(TERS).ppt[可编辑]

4、探针的制备
良好的TERS针尖是TERS技术的关键: ◆合适的SPR共振频率—最强的增强
◆良好的形状和尺寸----增强源明确,背景干扰 减小
王瑞, 郝凤欢, 张明倩,等. 针尖增强拉曼光谱术原理与系统设计关键[J]. 激光与光电子学 进展, 2010(3):58-67.
◆AFM-TERS 探针——通常以商用Si 或Si3N4 探针为模板, 通过物理方法(蒸镀或溅射)获得。这种方法获得的TERS 探◆针ST拉M-曼TE增R—强—活通性常较采差用,电容化易学在方扫法描腐过蚀程高中纯造度成单损晶伤金。丝、 银丝获得。这种STM 金丝探针的制备方法简单、增强活 性极好、成功率高,针尖尖端半径可以小于30 nm,但对 于银丝探针的制备效果较差。
TWheheDnbthaenTdEcRaSntipbeis aincctiovnattaectdwinithRtahme saunrfsacaetotfering.
graphene, the atomic force of tip and the interaction of the tip with the carbon atom of graphene will induce the extrinsic corrugation of surface of graphene, this extrinsic corrugation will break the symmetry of the hexagon ring in locally domain on graphene and loose the selection rule .
缺 只能研究透明薄膜或分散稀疏的纳米材料。
王瑞, 郝凤欢, 张明倩,等. 针尖增强拉曼光谱术原理与系统设计关键[J]. 激光与光电子学 进展, 2010(3):58-67.

电化学结合针尖增强拉曼光谱

电化学结合针尖增强拉曼光谱
EC-TERS联用技术用于分子异构现象研究
学 生:李定颐 指导老师:吴康兵 教授
目录
CONTENTS
1 EC-TERS仪器的构 2 EC-TERS研究界面分子异构现象
亮点
将EC-STM与TERS技术联用,实现了高分辨率(纳米级)和高灵敏度(单分子水平)原 位检测;
利用电化学控制实现界面分子可控异构化,并通过TERS检测出这种构型变化,有 望发展成实时研究燃料电池、金属腐蚀等界面反应的机理与状态的强大技术。
Thank You
电化学装置 a
Au tip Au(111) electrode
控制针尖与基底间的偏压,检 测隧道电流;
检测Au针尖和Au电极的表面 状态,优化测量条件;
控制电化学变量以控制基底吸 附的分子的构型变化。
图4. (a) EC-TERS系统中的电化学部分示意图; (b) Au (111)电极吸附4-PBT前(黑)后(红)的循环伏安曲线.
综合TERS的定性与空间分辨能力,有望实时原位研究燃料电池、金属 腐蚀等重要界面反应的机理与状态的强大技术,发展前景很大。
图7. NB两种存在形式的消光光谱
图8. (a) EC-TERS体系中NB随CV电位变化的TERS谱图; (b) (a)中某几个特征电位下的NB的TERS谱图; (c) EC-TERS体系中NB的CV曲线; (d) 根据(c)中电流在时间上的积分得到的电荷密度(与NB的反应量成正比)与 CV扫描电位的关系曲线; (e) (a) 中TERS谱图的591cm-1处的峰高与CV扫描电位的关系曲线(与d图镜像对称).
激光入射方向与SPR方向正交 ,拉曼散射截面最大。
STM针尖的制备与处理
a
乙醇+发烟盐酸 体积比为1:1

针尖增强拉曼系统组成与优化

针尖增强拉曼系统组成与优化

针尖增强拉曼系统组成与优化
郭云昌
【期刊名称】《现代科学仪器》
【年(卷),期】2022(39)2
【摘要】基于扫描探针显微镜的针尖增强拉曼光谱(TERS)经过20多年的发展,已经被科学家们广泛应用。

TERS系统组成简单,根据激光照射方式,可分为透射式和反射式两类。

拉曼激光照射金银探针而产生的高度局域的增强电磁场有效激发了样品的拉曼信号。

根据科学家实际应用需求,基于系统组成和增强机制,从系统硬件、软件多个角度出发,合理优化一套适合自己科研的TERS系统非常有必要。

【总页数】6页(P228-233)
【作者】郭云昌
【作者单位】仪凰(无锡)光谱测控有限公司
【正文语种】中文
【中图分类】TH742
【相关文献】
1.适用于针尖增强拉曼技术的Au针尖的研制
2.蒽醌分子的深紫外针尖增强拉曼散射的化学增强机制
3.p-Thiocresol吸附在银纳米粒子表面系统的表面增强拉曼散射和表面增强共振拉曼散射的增强研究
4.扫描拉曼埃分辨显微术:埃级分辨的针尖增强拉曼光谱成像技术
5.纳米岛状银膜@金纳米针尖表面增强拉曼散射传感界面及多巴胺分子的传感分析
因版权原因,仅展示原文概要,查看原文内容请购买。

表面增强拉曼光谱田中群 -回复

表面增强拉曼光谱田中群 -回复

表面增强拉曼光谱田中群-回复什么是表面增强拉曼光谱(TERS)?它在实践中的应用有哪些?表面增强拉曼光谱(TERS)是一种通过增强拉曼散射信号的技术,能够实现对纳米尺度表面结构的化学分析。

在TERS中,使用金属纳米结构或纳米颗粒作为增强基质,使得样品表面的拉曼散射信号增强数千倍甚至更多。

TERS技术的应用范围广泛,尤其在纳米材料科学、表面物理、化学、生物学等领域有很大的潜力。

通过TERS技术,研究人员可以实现对单个分子、纳米颗粒、生物分子、表面催化反应等的高分辨率化学分析。

此外,开展表面增强拉曼光谱也有助于了解材料和生物分子的相互作用,分析表面等离子体共振(SPR)效应等。

表面增强拉曼光谱的实验操作步骤主要包括以下几个方面:1. 选择适当的激发光源:激发光源的选择对于TERS实验非常重要。

常用的激发光包括波长可调的单向光源,如氦氖激光器(633 nm)、二极管激光器(532 nm)等。

2. 准备样品:将待测样品沉积在具有高增强效果的金属纳米结构上,如银纳米颗粒或金纳米棒。

3. 调整近场探测器的位置:利用近场探测器实现纳米尺度的空间分辨率。

可以使用光纤探针、原子力显微镜探针等。

4. 进行光谱测量:在近场和远场光场同时观察拉曼散射光谱。

近场光场可用于实现高分辨率拉曼光谱的测量,远场光场用于监测样品的增强效果。

5. 数据处理和解读:利用数学算法对测量得到的拉曼光谱数据进行处理和解读。

可以采用成像分析技术,将不同的拉曼散射信号关联到不同的化学成分或结构。

表面增强拉曼光谱的实际应用非常广泛。

在材料科学领域,TERS可以用于研究纳米材料的属性和结构,例如纳米颗粒、二维材料(如石墨烯)、金属材料等。

对于化学反应研究,TERS可实现对表面催化活性中的中间体和反应产物的直接检测,进一步揭示反应机制。

在生物医学领域,TERS 技术可以用于分析生物分子、细胞膜、蛋白质等的结构和组成,在生物医学研究、临床诊断等方面具有重要意义。

针尖增强拉曼散射-TERS

针尖增强拉曼散射-TERS
图1表面增强拉曼散射拉曼散射有一个弱点就是约11051106强度的光被散射到各个方向所以拉曼散射的强度很弱1974年英国南安普顿大学的fleishman在研究吸附于粗糙银电极上的pyridine的光谱时发现raman谱增强很多增强可达6个数量级sers可以定义为raman散射体因在币金属金银铜碱金属过渡金属上的吸附而引起的raman信号增强现象
检测
散射










反射光
图1
拉曼光谱是1928年印度科学家(C.V.Raman )发现的, 1930年拉曼获得诺贝尔物理学奖。
表面增强拉曼散射
拉曼散射有一个弱点,就是约1/105~1/106强 度的光被散射到各个方向,所以拉曼散射的强 度很弱
1974年英国南安普顿大学的Fleishman 在研究吸附于粗糙银电极上的pyridine 的光谱时发现,Raman谱增强很多, 增强可达6个数量级
针尖增强拉曼散射(TERS)
散射
光束通过不均匀媒质时,部分光束将偏 离原来方向而分散传播,从侧向也可以 看到光的现象,叫做光的散射。
拉曼散射
光照射到物质上发生弹性散射和非弹 性散射. 弹性散射的散射光是与激发 光波长相同的成分,非弹性散射的散射 光有比激发光波长长的和短的成分, 统称为拉曼效应
光与介质作用发生散射,散射可分为两种:1.弹性散射:散射光 与入射光频率一样;2.拉曼散射:散射光频率发生改变。
SERS可以定义为Raman散射体因在币 金属(金,银,铜),碱金属,过渡 金属上的吸附而引起的Raman信号增 强现象。
SERS要求金属表面有一定粗糙度。 不同金属出现最大SERS效应的粗糙 度不一样。

针尖增强拉曼光谱技术的应用

针尖增强拉曼光谱技术的应用

针尖增强拉曼光谱技术的应用厦门大学固体表面物理化学国家重点实验室指导教师:任斌教授助研:刘郑博士生王翔硕士生表面增强因子:提高SERS 的普适性:表面适用性的拓展粗糙无序表面粗糙有序表面单晶表面SPMTipEkLaser~1 nm30nm 可以研究纳米级不均匀性的体系国际上TERS研究实例碳纳米管碳纳米管细胞膜离子通道的高空间分辨率成像普通荧光成像普通荧光成像针尖增强荧光成像Novotny L et al.Nano Lett., 8, 642 (2008)Novotny L et al.Phys. Rev. Lett.96, 113002 (2006)STM单分子的TERS任斌教授在TERS领域的研究成果TERS针尖的制备良好的TERS针尖是TERS技术的关键: 合适的SPR共振频率—最强的增强 良好的形状和尺寸----增强源明确,背景干扰减小250 nm重现性不高; 针尖易污染、易氧化制备形状和大小可控、 表面光亮的高TERS活性的针尖 Rev. Sci. Instrum., 2004, 75: 837.高活性TERS针尖的制备0.25mm Au wireAu Counter ElectrodeCHI instrumentSolution: 发烟盐酸+ 乙醇 (1:1) Potentiostat voltage: 2.2 ~2.3 VEtching solutionSetup高活性TERS针尖的制备A2.1 VB2.2 VC2.4 V200nmA200nmB200nmCAppl. Phys. Lett. 91,101105 (2007)Au(111)上孔雀石绿的TERS研究SEF(增强因子) =g4=1~6x106 Phys. Rev. Lett. (2004) 92, 096101-1-4.Pt单晶上非共振分子的TERS检测5 mw 632.8 nm12000 11000 1000018000.5 mw 632.8 nmRaman Intensity(counts)9000 8000 7000 6000 5000 4000 3000 2000 1000Raman Intensity (counts)1600140012001000S8003006009001200 1500 1800 2100 2400 2700 30003006009001200 1500 1800 2100 2400 2700 3000Wavenumber /cm-1Wavenumber /cm-1Angew. Chem. Int. Ed., 44 (2005) 139.44联吡啶自组装膜的TERS检测1608 1293 100 cps 1019 1220 1511 16351014 238SERSTERS20060010001400-1Without tip 18004‘4联吡啶在Au(111) 上的STM成像Raman shift (cm )Appl. Phys. Lett. 91,101105 (2007)电磁场增强与距离的关系1 mW ,10sO2N40 cpsHSSHE1 nm 2.5 nm 4 nm 6 nm 7.5 nm 9 nm 15 nm 20 nm500 1000 1500-1κ20002500Raman shift(cm )电磁场增强与距离的关系Expriment data 3D-FDTD simulation1.21.0Normalized intensity0.81 nm0.65 nm0.40.20.0 2 4 6 8 10 12 14 16 18 20 22 24 26tip sample distance/nm国内第一台TERS仪器的研制暑期主要任务1.制备合适的量子点,利用TERS研究量子点的荧光、拉曼;2.TERS仪器与光谱仪同步测试。

针尖增强拉曼光谱

针尖增强拉曼光谱

针尖增强拉曼光谱
针尖增强拉曼光谱(TERS)是一种将扫描探针技术(SPM)和增强拉曼谱学相结合的技术。

它具有SPM的空间分辨本领和拉曼光谱
的指纹识别能力,同时针尖增强拉曼光谱的灵敏度极高,可以极大地提高拉曼散射的强度。

在TERS中,激光被耦合到功能化的针尖尖端上,针尖增强拉曼
光谱系统采用一枚金属化的针尖(通常是镀金或镀银的针尖),把入射激光聚集到针尖的尖端。

针尖不仅充当纳米源头,而且还起到局域磁场增强的作用,极大地提高了拉曼的灵敏度,增强因子可以达到103-107倍,而探测的体积则仅限于针尖下“纳米”范围内。

两台仪器的光路以共焦的形式藕合在一起,这种光学耦合有透射或反射两种不同的配置。

透射型配置可以使用高数值孔径(NA)的
物镜,包括油镜,激发光在焦点处可达到很高的功率密度,从而可以收集到很强的信号,但是透射型配置只适用于透明的样品。

反射型配置则无须考虑样品透明还是不透明,但是只能使用较小数值孔径(NA)的物镜。

通过逐点扫描和同步光谱采集的结合,可以实现近场拉曼成像,其横向分辨率优于10 nm。

TERS是一种强大的工具,可以在原子尺度上研究光子、声子、电子、等离激元相互作用,表征物质结构与纳米光学性质。

电化学结合针尖增强拉曼光谱

电化学结合针尖增强拉曼光谱

EC-TERS研究界面分子异构现象 a
pKa=5.0±0.5
吡啶环 呼吸振
图5. (a) 4-PBT的质子化过程及其逆过程; (b) 吸附在Au表面 的4-PBT可能存在的形式和相应的DFT计算的拉曼谱图; (c) TERS体系中4-PBT可能的存在形式; (d) SERS体系中4-PBT
的TERS/SERS谱图; (c, d) 4PBT在pH=3时的TERS/SERS
TERS
SERS
谱图.
总结
对TERS的拉曼仪光纤耦合装置作了有利的改进,避免了光路畸变、拉 曼散射截面小等不利影响;
利用电化学腐蚀和聚乙烯绝缘化处理制备出强TERS效应且不漏电的Au
针尖,且利用4-PBT吸附在Au上的钝化效应,保证了之后的TERS测试 的灵敏度和重现性; 利用电化学检验Au针尖的性能,并通过调节针尖与电极间的偏压实现 分析物4-PBT的可逆去/质子化过程;
Thank You
电化学装置 a
Au tip Au(111) electrode
控制针尖与基底间的偏压,检
测隧道电流; 检测Au针尖和Au电极的表面
状态,优化测量条件;
控制电化学变量以控制基底吸 附的分子的构型变化。
图4. (a) EC-TERS系统中的电化学部分示意图; (b) Au (111)电极吸附4-PBT前(黑)后(红)的循环伏安曲线.
EC-TERS联用技术用于分子异构现象研究
学 生:李定颐 指导老师:吴康兵 教授
1
EC-TERS仪器的构造
目录
CONTENTS
2
EC-TERS研究界面分子异构现象
亮点
将EC-STM与TERS技术联用,实现了高分辨率(纳米级)和高灵敏度(单分子水平)原 位检测; 利用电化学控制实现界面分子可控异构化,并通过TERS检测出这种构型变化,有 望发展成实时研究燃料电池、金属腐蚀等界面反应的机理与状态的强大技术。

表面增强拉曼光谱和针尖增强拉曼光谱

表面增强拉曼光谱和针尖增强拉曼光谱

文章标题:探讨表面增强拉曼光谱和针尖增强拉曼光谱一、引言表面增强拉曼光谱(surface-enhanced Raman spectroscopy,SERS)和针尖增强拉曼光谱(tip-enhanced Raman spectroscopy,TERS)是近年来在纳米科学和光谱学领域备受关注的研究热点。

它们以其在表面增强效应和高灵敏度方面的独特优势,为材料表征和生物医药等领域带来了许多新的可能性和机遇。

二、表面增强拉曼光谱(SERS)1. 表面增强效应表面增强拉曼光谱是在粗糙表面或纳米结构表面上实现的拉曼光谱的增强效应。

这种增强效应主要源于局部表面等离激元的激发,即激发表面等离激元的共振增强效应和局部电场增强效应。

通过这种表面增强效应,SERS可以实现对分子的极其敏感的检测和强大的增强效果。

2. 应用领域SERS在化学、生物医药、材料科学等领域具有广泛的应用价值。

在药物分析、环境监测、生物分子检测等方面,SERS都展现出了极高的灵敏度和选择性,成为研究人员的重要工具之一。

三、针尖增强拉曼光谱(TERS)1. 针尖增强效应针尖增强拉曼光谱利用金属探针尖的局部电磁场增强效应,实现了单分子级别的探测和纳米尺度的空间分辨。

相比传统的SERS,TERS更加侧重于单分子的检测和纳米尺度的空间分辨。

2. 技术发展随着纳米技术和扫描探针显微镜技术的发展,TERS在纳米材料表征、生物分子探测等领域展现出了巨大的潜力。

其高分辨率、高灵敏度的特点吸引了越来越多的研究者投入到TERS的研究中。

四、个人观点在当今科学研究的浪潮中,SERS和TERS作为光谱学的新兴技术,拥有着巨大的发展潜力和广阔的应用前景。

从表面增强效应到针尖增强效应,这些技术在分子检测、纳米材料表征等方面都有着独特的优势,将为材料科学、生命科学等领域带来革命性的变革。

五、总结与展望SERS和TERS作为表面增强拉曼光谱的两大分支,在其应用和技术发展方面都展现出了极大的潜力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SERS可以定义为Raman散射体因在币 金属(金,银,铜),碱金属,过渡 金属上的吸附而引起的Raman信号增 强现象。
SERS要求金属表面有一定粗糙度。 不同金属出现最大SERS效应的粗糙 度不一样。
能够引起拉曼增强的纳米结构
针尖增强拉曼散射(TERS)
原子力显微镜实现的原子搬运
原子力显微镜(AFM)的针尖
针尖增强拉曼散射(TERS)
散射
光束通过不均匀媒质时,部分光束将偏 离原来方向而分散传播,从侧向也可以 看到光的现象,叫做光的散射。
拉曼散射
光照射到物质上发生弹性散射和非弹 性散射. 弹性散射的散射光是与激发 光波长相同的成分,非弹性散射的散射 光有比激发光波长长的和短的成分, 统称为拉曼效应
光与介质作用发生散射,散射可分为两种:1.弹性散射:散射光 与入射光频率一样;2.拉曼散射:散射光频率发生改变。
AFM-Raman with SERS Amplification (TERS)
Laser
AFM tip with thin silver layer
Tip Enhanced Raman Scattering Neeld Raman Surface Enhanced Raman Scattering
检测
散射










反射光
图1
拉曼光谱是1928年印度科学家(C.V.Raman )发现的, 1930年拉曼获得诺贝尔物理学奖。
表面增强拉曼散射
拉曼散射有一个弱点,就是约1/105~1/106强 度的光被散射到各个方向,所以拉曼散射的强 度很弱
1974年英国南安普顿大学的Fleishman 在研究吸附于粗糙银电极上的pyridine 的光谱时发现,Raman谱增强很多, 增强可达6个数量级
知识回顾 Knowledge Review
祝您成功!
相关文档
最新文档