关于溶解氧溶解氧的含量及其影响因素课件
水中的溶解氧
水中的溶解氧
水中的溶解氧
溶解氧是指水中含有的氧分子。
它是水中的一种活性物质,受温度、水分、和酸碱度的影响。
它的含量影响水体中的生物群落结构,也是水体环境健康状况的重要指标。
1. 溶解氧的来源
相对于生物体,水中的溶解氧属于有机物质,来源主要有大气溶解、生物降解以及光氧化作用。
(1)大气溶解
由于水的表面积和温度,大气溶解氧在水中更容易溶解,一般可以溶解大气中的20~80%的溶解氧向水体中溶入。
(2)生物降解
生物毒素的非生物降解过程会产生氧,而生物体的全代谢也会产生大量溶解氧,将氧分子溶入水体中,使水体中的溶解氧浓度增加。
(3)光氧化作用
当水体中溶解氧浓度低于20~30mg/L时,光照作用可以使溶解氧浓度升高,光氧化作用是水体中溶解氧浓度升高的重要途径。
2. 溶解氧的影响因素
(1)温度
水的温度越高,溶解氧浓度越低,当水温超过30℃时,溶解氧的含量将会急剧下降。
(2)酸碱度
水的酸碱度越高,溶解氧的浓度越低,当水的酸碱度超过7.5时,溶解氧的浓度会急剧下降。
(3)污染物
水体中的污染物可以将水体中的溶解氧消耗掉,从而降低水体中的溶解氧浓度,导致水体环境受到污染。
3. 溶解氧的重要性
溶解氧是水体中生物体生存、繁衍和发育的重要生物物质,它与水体的环境健康状况有密切的关系。
水体中溶解氧的含量不够,可能会给淡水生物的生长、繁殖等活动造成不利影响,甚至会导致某些水体的生态系统紊乱。
课件:溶解氧
Questions
✓What is DO? ✓What are the factors affecting the
concentration of DO? • Salinity, temperature, air pressure, algae … ✓What carefulness/attention should be taken
when sampling DO sample? • Any contact with air or agitation should be
avoided, and no air bobbles are allowed.
Redox titration
Mn(II) O2 Mn(OH)4
Hd+is. Mn(IV)
• Why should the potassium iodide solution (one of the fixing solutions) be basic?
Sample handling
• One sample, parallel (two) titrations for each student.
Purposห้องสมุดไป่ตู้:
• To understand the principle of determination of dissolved oxygen,
• To master one of the volumetric methods, redox titration, as well as the sample collection and storage for the analysis of dissolved oxygen.
溶解氧概述
溶解氧概述溶解氧是指在水中溶解的氧气分子。
它是水体生物呼吸和许多生态过程中不可或缺的重要因素。
溶解氧的浓度对水的质量有重要影响,并且直接影响水体中的生物物种和生态系统的健康。
本文将对溶解氧的原理、测定方法以及影响因素进行详细介绍。
1.原理:溶解氧是氧气分子在水体中的溶解过程。
氧气分子从气体相转移到水相中的溶解过程是一个物理过程,遵循亨利定律。
亨利定律描述了气体在液体中的溶解程度与气体的分压成正比的关系。
也就是说,当气体的分压增加时,溶解度也会增加。
同时,在溶解过程中,氧气分子会与水分子发生一系列的物理化学反应,包括吸附、扩散和解离等。
这些反应直接影响溶解氧在水体中的浓度和稳定性。
2.测定方法:测定水体中溶解氧的浓度是水质监测和生态研究的重要内容之一、常用的测定方法包括氧电极法、化学法和光学法等。
-氧电极法是最常用的测定溶解氧的方法之一、它基于溶解氧分子与电极表面之间的电化学反应。
通过测量电极上所生成的电信号,可以间接推断出溶解氧的浓度。
-化学法是一种直接测定溶解氧浓度的方法。
这种方法利用一系列的化学反应,将溶解氧分子与特定的试剂反应生成可测量的物质。
通过测量物质生成的浓度,可以确定溶解氧的浓度。
-光学法是一种通过分析溶解氧分子对特定光源的吸收和散射来测定溶解氧浓度的方法。
这种方法利用溶解氧分子对特定波长的光产生吸收和散射的特性,通过测量光的强度变化来推测溶解氧的浓度。
以上三种方法各有优缺点,选择适合的方法取决于具体的应用需求和实验条件。
3.影响因素:水体中溶解氧的浓度受多个因素的影响,包括温度、气压、盐度、水流速度、光照强度、生物活动和水体污染等。
-温度是影响溶解氧浓度的最重要因素。
一般情况下,随着温度的升高,溶解氧浓度会降低。
这是因为温度升高会促进气体的解离和分子的运动,从而减少氧气分子在水中的溶解度。
-气压也会影响溶解氧浓度。
随着气压的升高,氧气分子在水中的溶解度也会增加。
这是因为气压的增加会增加气体在溶液中的分压,进而促使氧气分子溶解到水中。
溶解氧
水中耗氧作用及其影响因素
1:物理作用耗氧,水中溶解氧过饱和时,氧气会不断地向空气逸散,过饱和成都越大,爆气月充分,则逸散损失越多越快。
2:化学作用耗氧,水体内有些物质可以经化学反应或生物代谢消耗溶解氧
3:生物作用耗氧,低质耗氧占最大。
溶解氧的日变化规律
由于受水层温跃层的影响,导致水的上下层溶解氧分布不均匀,上层溶解氧大于下层,下层的营养物质多余上层。
1:表层溶解氧的日变化规律,表层水中溶解氧含量昼夜变化,最小值通常出现在日出之前,最大值则出现在日落之前。
日出后的整个白天,溶解氧含量从最小值逐渐增高,至日出前达到最大值,而在日落后的整个黑夜,溶解氧则从最大值不断降低,到日出前又达到最小值。
2:底层水溶解氧的日变化规律,底层水溶解氧的日变化规律与表层水相似。
白天,底层水中因阳光不充足,光合作用不能正常进行,增氧作用主要靠水的运动的氧的扩散作用,由表层向底层补充。
在风力不大时,补充数量不大。
夜间耗氧作用照常进行,强度变化不大。
因此,底层水中溶解氧日变化不及,溶解氧饱和度保持较低的水平。
溶解氧的管理
1:物理增氧
2:化学增氧,比如施用氧化钙,使用活性沸石
3:土法抢救,比如用明矾,黄泥浆,食盐水,石灰水。
水体溶解氧的影响因素
水体溶解氧的影响因素水体溶解氧是指水体中溶解的氧气分子量。
水体中溶解氧的含量是水生生物生存发展的重要指标之一。
溶解氧的浓度直接影响着水生生物的呼吸、新陈代谢和免疫功能,因此,水体中溶解氧的含量对于水生生物的生命活动具有重要的影响。
一、气压气压是水体中溶解氧含量的重要因素之一。
气压越低,水体中的溶解氧就越少。
因此,在高山湖泊、高原河流、深海等水体中,溶解氧的含量相对较低。
二、水温水温也是影响水体中溶解氧含量的重要因素。
水温越低,溶解氧含量越高;水温越高,溶解氧含量就越低。
这是因为水温升高以后,水分子的运动速度加快,分子距离拉大,不利于氧分子与水分子形成氧分子水合物而变成溶解状态。
三、水流水流对水体中溶解氧含量也有一定的影响,水流速度越大,水体中的氧分子与空气中的氧分子接触良好,溶解氧含量就越高。
相反,在静水地区,水体中的溶解氧含量相对较低。
四、压力水深增加,水压增大,溶解氧的含量会变高。
这是因为水深越深,水温越低,氧气溶解效率越高,同时受到水的压力更大,能让空气中的氧气更快、更深刻地进入水中。
五、浊度水体的浊度也会影响到水中溶解氧的含量。
水体中的悬浮颗粒物会影响水体的透明度和光合作用的进行,进而影响水中浮游生物数量和分解物的分解速度,从而影响水中溶解氧的含量。
如果水体浑浊,将会影响到水体中的光合作用过程,从而降低了水体中溶解氧的含量。
六、人类活动人类活动也对水体中的溶解氧含量产生了一定的影响,如排放工业废气和污水,会对水体的氧气含量造成一定的污染;河流的淤泥沉积也会降低水体中的溶解氧含量。
总之,水体的溶解氧含量是受多种因素影响的,因此在进行水体保护和管理的时候,需要综合考虑水体中各种因素的作用,以及如何控制和调节这些因素,从而有效提高水体中的溶解氧含量,保证水生生物的健康和生存。
第3章 溶解氧精品PPT课件
• 国内高产鱼池: 61%源于光合作用、
39%源于空气溶解(开增氧机导致空 气溶解比例增大)、补水增氧可忽略。
二、消耗
(1)水生生物的消耗——种类、规格、发育阶段、水温——运输和 袋装鱼等 (2)水中微型生物的呼吸——浮游植物(19.1%)、浮游动物 (23.5%)、细菌(57.4%)及其他的有机物质。 (3)底质耗氧——化学耗氧H2S、H2、CH4、FeCO3、NH4+、FeS2。底 泥中的有机物、底栖动物、细菌、还原态的无机物. (4)逸出: 四项中,(2)占决大部分,(4)可忽略
• 活性沸石施用于池塘时,每 千克可带入空气100000毫升, 相当21000毫升氧气,并以微 气泡放出,增氧效果较好,活 性沸石也有吸附异物改良水质、 底质的功效。
• 过氧化氢也有一定的增氧效
果。
通常水中氧气的来源以光合作用为主
• 不同研究者对不同类型鱼池氧气来源进
行了估算:
• 国外低产鱼池:89%源于光合作用、
图
(1)水呼吸耗氧
• 水呼吸——指水中微型生物耗氧,
主要包括:浮游动物、浮游植物、 细菌呼吸耗氧以及有机物在细菌 参与下的分解耗氧。
• 水呼吸耗氧与耗氧生物种类、个体大小、
水温及水中有机物的数量有关。
• 20.5-25.5℃时浮游动物耗氧的速率为
721-932ml(O2)/kg·h;原生动物耗氧 速率为:
(2)植物光合作用
• 水生植物进行光合作用释放氧气,
是养殖水体氧气的重要来源。
• 一般河流、湖泊表层水夏季光合
作用产氧速率为:
• 0.5-10g/ m2·d-1。
• 光合作用产氧速率与光照条件、 水温、水生植物种类、数量、营 养元素供给状况等因素有关。气 温较高的夏季产氧速率较大,冬 季温度较低产氧速率要低一些。
水中溶解氧(DO)及其测定方法知识详解
水中溶解氧(DO)及其测定方法知识详解1、什么是溶解氧?溶解氧DO(英文Dissolved Oxygen的简写)表示的是溶解于水中分子态氧的数量,单位是mg/L。
水中的溶解氧饱和含量与水温、大气压和水的化学组成有关,在一个大气压下,0℃的蒸馏水中溶解氧达到饱和时的氧含量为14.62mg/L,在20℃时则为9.17mg/L。
水温升高、含盐量增加或大气压力下降,都会导致水中溶解氧含量降低。
溶解氧是鱼类和好氧菌生存和繁殖所必须的物质,溶解氧低于4mg/L,鱼类就难以生存。
当水被有机物污染后,好氧微生物氧化有机物会消耗水中的溶解氧,如果不能及时从空气中得到补充,水中的溶解氧就会逐渐减少,直到接近于0,引起厌氧微生物的大量繁殖,使水变黑变臭。
2、常用的溶解氧测定方法有哪些?常用的溶解氧测定方法有两种,一是碘量法及其修正法(GB 7489-87),二是电化学探头法(GB11913-89)。
碘量法适用于测量溶解氧大于0.2mg/L的水样,一般碘量法只适用于测定清洁水的溶解氧,测定工业废水或污水处理厂各个工艺环节的溶解氧时必须使用修正的碘量法或电化学法。
电化学探头法的测定下限与所用的仪器有关,主要有薄膜电极法和无膜电极法两种,一般适用于测定溶解氧大于0.1mg/L 的水样。
污水处理厂在曝气池等处安装使用的在线DO仪使用的就是薄膜电极法或无膜电极法。
碘量法的基本原理是向水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀,加酸后,棕色沉淀溶解并与碘离子反应生成游离碘,再以淀粉为指示剂,用硫代硫酸钠滴定游离碘,即可计算出溶解氧的含量。
当水样有颜色或含有能与碘反应的有机物时,不宜使用碘量法及其修正法测定水中的溶解氧,可使用氧敏感薄膜电极或无膜电极测定。
氧敏感电极由两个与支持电解质相接触的金属电极及选择性透过膜组成,薄膜只能透过氧和其他气体,水和其中可溶物质不能通过,通过薄膜的氧气在电极上还原,产生微弱的扩散电流,在一定温度下电流大小与溶解氧含量成正比。
水的溶解氧
水的溶解氧一、什么是溶解氧溶解氧是指溶液中溶氧的含量。
在水中,氧气可以以分子形式溶解,也可以以单质形式溶解。
溶解氧的存在对维持水体中的生物生态环境非常重要。
二、溶解氧的来源1. 大气交换大气中的氧气可以通过气体交换进入水体中。
这是水体中溶解氧的主要来源之一。
气体交换是指氧气在水面和大气界面之间的传递。
氧气会自然地从高浓度的大气中向低浓度的水体中扩散。
2. 光合作用水中的植物通过光合作用可以产生氧气。
光合作用是指植物利用阳光、水和二氧化碳产生能量的过程。
这个过程中,植物会释放氧气到周围的水体中,增加了水体中的溶解氧含量。
3. 水下植被分解水下植被的分解也是水体中溶解氧的来源之一。
当水下植被死亡或凋落,它们会被细菌分解。
细菌在分解的过程中会消耗氧气,这可能导致水体中溶解氧的降低。
4. 水体活动水体中的生物活动也会影响溶解氧的含量。
例如,鱼类通过呼吸消耗氧气,并释放二氧化碳。
这会导致水体中溶解氧的减少。
此外,水体中的水藻和浮游生物也会对溶解氧的含量产生影响。
三、溶解氧的影响因素1. 水温水温对溶解氧的含量有着重要的影响。
一般来说,水温越低,溶解氧的含量越高。
这是因为低温可以增加氧气在水中的溶解度。
相反,高温会降低水体中的溶解氧含量。
2. 盐度盐度也会影响水体中溶解氧的含量。
一般来说,淡水中的溶解氧含量比海水中的溶解氧含量高。
这是因为盐度高会导致溶解氧的溶解度降低。
3. 水体中的压力水体中的压力也会对溶解氧的含量产生影响。
在较深的水域,由于水压增加,溶解氧的溶解度会增加。
因此,深水区域的溶解氧含量通常会高于浅水区域。
4. 溶解氧的呼吸生物呼吸是水体中溶解氧含量变化的重要因素。
生物通过呼吸消耗氧气,并释放二氧化碳。
因此,水体中生物的种类和数量会对溶解氧的含量产生影响。
四、溶解氧的重要性溶解氧对生物在水中的存活非常重要。
以下是溶解氧在水体中的重要作用:1. 维持水体生态系统的平衡溶解氧是水体中生物生存所必需的。
溶解氧_精品文档
溶解氧1. 引言溶解氧是指在水中溶解的氧气分子。
它是水中生物生存和生态系统健康的重要因素之一。
溶解氧的含量受到多种因素的影响,如气温、水温、水深、流速、水体植被覆盖情况等。
本文将探讨溶解氧在自然水体中的来源,其对水生生物的影响以及如何增加溶解氧的方法等内容。
2. 溶解氧的来源溶解氧的主要来源是大气中的氧气通过气液交换进入水体。
氧气在水体表面与大气中的氮气、二氧化碳等气体发生交换,并在水体中形成氧气饱和度的差异。
此外,水体中的植物通过光合作用产生氧气,并可通过水的流动将氧气输送到其他区域。
此外,一些微生物还可以通过代谢作用产生氧气。
3. 溶解氧的影响因素溶解氧的含量受到多种因素的影响。
首先是气温和水温。
一般来说,水温越高,溶解氧的含量越低。
这是因为在高温下,水分子的运动速度加快,导致氧气分子与水分子之间的气液交换速率增加,溶解氧的含量降低。
其次是水深和流速。
水深较深的地方,溶解氧的含量更低,因为水的运动速度较慢,氧气不易进入水体。
水流速度较快的地方,氧气更容易进入水体并分散,溶解氧的含量相对较高。
此外,水体中的植被覆盖情况也会影响溶解氧的含量。
植被通过光合作用产生氧气,有利于增加水体中的溶解氧含量。
4. 溶解氧的生物作用溶解氧对水生生物生存和生活起着重要作用。
许多水生动物依赖氧气进行呼吸和代谢过程。
高含量的溶解氧可以促进水生植物的生长,维持水体生态平衡。
相反,低含量的溶解氧会导致水生生物缺氧,影响它们的生长和繁殖。
当溶解氧含量过低时,一些耐氧性较低的生物可能会死亡,导致生态系统的破坏。
5. 增加水体中溶解氧的方法为了增加水体中的溶解氧含量,我们可以采取以下措施:a. 增加氧气的输入:通过增加水体表面的气液交换,如增加水的流动速度、增加气体交换的表面积等,使氧气更容易进入水体。
b. 增加水体表面的曝气:通过向水体中注入气泡,增加氧气与水体的接触面积,加速氧气的溶解。
c. 减少污染物排放:污染物会消耗溶解氧,导致水体中溶解氧含量降低。
溶解氧溶解氧的分布变化规律(共43张PPT)
此外,在河流有支流流入处,湖泊池塘水的 出口、进口处,浅海有淡水流入处,有生活污 水及工业废水污染处,甚至于鱼贝类的群集处 ,溶氧及其他水质特点,也与周围水质有相当 差异,呈水平分布不均状态。例如,有人测定 发现:当海水流通不好时,珠笼内部水的溶氧 量比笼外水中溶氧量少得多,特别是在放养过 密,笼网孔眼大都堵塞时,尽管笼外的溶氧很 多,笼内珠贝仍会因缺氧窒息,大批死亡。网 箱养鱼也有类似问题。这种水平分布均一的溶 氧状态,往往为人们忽略,必须特别留意。
,反之,升温较慢,作用时间较长,又有较强的风力 搅拌时,那么跃变层离水面较深,变化较缓和。
如果在一段时间内,升温降温交错进行,还可能出现 几个跃变层的复杂情况。溶氧垂直分布极大值与极小 值之差-称为“水层差〞,其大小取决于水体生产性能 与分层流转情况。在夏季停滞期内,水体初级生产力 越高,水层差就越大,底水层往往缺氧。水的垂直对 流那么使水层差减小以至消除。
②在生物与肥料条件相同或相似时,水温 高,光照强度大,光合作用进行强烈时,溶氧 日较差也大。因此,一年之中,以夏季的溶氧 日较差最大,冬季最小,春、秋两季居中,相 差亦不大。
③综合上述两点可知:水质肥沃、生物密度大、光合作 用强烈的鱼池,一到酷暑季节,表层水中溶氧日较差可 变得极大,最高溶氧量可达饱和度200%以上,最小溶 氧量可在饱和度20%以下,严重时会引起鱼、贝类大量 死亡。因此,但凡溶氧量日较差极大的水体,一到容易 出现溶氧最小值的季节及时间,都要特别留意溶氧动态 ,加强水质管理,防止鱼、贝类大批死亡。
2.晚上、特别是下半夜,溶氧浓度不断下降 ,垂直分布趋于均一。其原因是: 日落后, 只有呼吸耗O2作用,加上入夜后气温下降, 表层水温随之下降, 密度增大,表、底水层
密度差消失,甚至上重下轻,发生垂直对流或 在风力吹拂下,循环流转,终于混合均匀,使
溶解氧测量基本原理及影响因素(本文来自网络)
溶解氧(DO)分析仪的测量原理及维护在污水处理过程中,通过增加污水中的氧含量使污染物通过活化泥浆被分解出来,达到污水净化的目的,在线测量氧含量有助于确定最佳的净化方法和最经济的曝气池配置。
在生物发酵过程中氧含量的测量数据可对工艺过程进行指导,如判断发酵过程的临界氧浓度、发酵罐的供氧能力以及菌体的活性和菌体的生长量等,并根据发酵时的供氧和需氧变化来指导补料操作。
一.溶解氧分析仪测量原理氧在水中的溶解度取决于温度、压力和水中溶解的盐。
溶解氧分析仪传感部分是由金电极(阴极)和银电极(阳极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。
当给溶解氧分析仪电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为:阳极Ag+CI→AgCI+2e-阴极O2+2H2O+4e→4OH—根据法拉第定律:流过溶解氧分析仪电极的电流和氧化压成正比,在温度不变的情况下,电流和氧浓度之间呈线性关系。
二. 溶解氧含量的表示方法溶解氧含量有3种不同的表示方法:氧分压(mmHg);百分饱和度(%);氧浓度(mg/L),这3种方法本质上没什么不同。
(1)分压表示法:氧分压表示法是最基本和最本质的表示法。
根据Henry定律可得,P=(P O2+P H2O)×0.209,其中,P为总压;PO2为氧分压(mmHg); P H2O为水蒸气分压;0.209 为空气中氧的含量。
(2)百分饱和度表示法:由于曝气发酵十分复杂,氧分压不能计算得到,在此情况下用百分饱和度的表示发是最合适的,例如将标定时溶解氧定为100%,零氧时为0%,则反应过程中的溶解氧含量即为标定时的百分数。
(3)氧浓度表示法:根据Henry定律可知氧浓度与其分压成正比,即:C=PO2*a,其中C为氧浓度(mg/L);PO2为氧分压(mmHg); a 为溶解度系数(mg/mmHg/L)。
溶解度系数a 不仅与温度有关,还与溶液的成分有关。
关于溶解氧
关于溶解氧、化学需氧量、生化需氧量报告水质评估是环境保护和水资源管理的重要组成部分,其中涉及的关键指标包括溶解氧、化学需氧量、生化需氧量以及水中的成分。
本文将详细介绍这些指标的监测和分析方法及其在水质评估中的重要性。
一、溶解氧(DO)溶解氧是表示水污染状态的重要指标之一,它可以帮助我们了解水体中氧气的含量,进而评估水体的健康状况。
当水体受到污染时,溶解氧的含量会降低,这可能会导致鱼类和其他水生生物因缺氧而死亡。
因此,监测溶解氧的含量是非常重要的。
二、化学需氧量(COD)化学需氧量是另一个重要的水质指标,它反映了水体中有机物和还原性物质的污染程度。
这些物质通常来自工业废水、农业排放和城市化污水等。
高浓度的COD意味着水体受到了严重的污染,可能会对水生生物和人类健康造成负面影响。
三、生化需氧量(BOD)生化需氧量是指在有氧条件下,水体中微生物分解有机物所需的溶解氧量。
这个指标可以帮助我们了解水体中有机物的可生物降解性。
高浓度的BOD意味着水体中存在大量的有机物,这可能会导致水质恶化并产生异味。
四、物理性质指标除了以上提到的溶解氧、化学需氧量、生化需氧量等指标外,水体的浊度、透明度、悬浮物等物理性质指标也是评估水质的重要因素。
这些指标可以反映水体的清洁度和杂质含量,帮助我们了解水体的质量和健康状况。
五、水中成分除了以上提到的指标,水中成分也是评估水质的重要因素之一。
水中的成分非常复杂,包括各种离子、有机物、微生物、悬浮物和胶体颗粒等。
其中,一些成分可能对水生生物和人类健康产生负面影响。
例如,水中的重金属离子如汞、镉、铬等可能会对水生生物的神经系统和人体健康产生负面影响。
高浓度的有机物也可能会使水质恶化并产生异味,同时还会促进微生物的生长和繁殖,进而影响水生生物的生存。
此外,水中的微生物和悬浮物也是评估水质的重要因素之一。
水中的细菌、病毒和其他微生物可能会对水生生物的免疫系统和人类健康产生负面影响。
悬浮物和胶体颗粒则可能会影响水的口感和外观,同时还会促进微生物的生长和繁殖。
《EH溶解氧仪表》课件
04 eh溶解氧仪表的安装与调 试
安装前的准备工作
了解仪表规格和要求
检查安装场所
仔细阅读仪表说明书,了解仪表的规 格、尺寸、电源要求等信息,确保安 装环境符合要求。
确保安装场所干燥、通风良好,没有 强烈的震动和磁场干扰,便于后期维 护和操作。
准备工具和材料
根据安装需要,准备合适的工具如螺 丝刀、扳手等,以及必要的材料如支 架、密封圈等。
未来展望
市场规模持续扩大
随着环保意识的提高和应用领域的拓展,eh溶解氧仪表的市场规 模将持续扩大。
技术创新不断涌现
未来随着技术的不断发展,eh溶解氧仪表将不断涌现出新的技术 创新,推动行业的发展。
国际化发展
随着全球环境治理的加强,eh溶解氧仪表将逐步走向国际化,为 全球环境监测做出贡献。
感谢您的观看
围小。
稳定性好
传感器经过特殊处理, 能够在各种水质条件下 保持稳定的测量性能。
易于安装
仪表设计简洁,安装过 程简便,能够快速投入
使用。
易于维护
传感器寿命长,且更换 方便,降低了维护成本
。
eh溶解氧仪表的优势
01
02
03
04
实时监测
能够实时监测水体中的溶解氧 含量,及时发现异常情况。
远程监控
支持远程监控,方便用户随时 随地了解水质状况。
《eh溶解氧仪表》 PPT课件
目录
CONTENTS
• 溶解氧仪表概述 • eh溶解氧仪表的特点与优势 • eh溶解氧仪表的应用场景 • eh溶解氧仪表的安装与调试 • eh溶解氧仪表的维护与保养 • eh溶解氧仪表的发展趋势与未来展望
01 溶解氧仪表概述
溶解氧仪表的定义
溶解氧概述(原理、测定、影响因素)
注意事项
碘量法是测定水中溶解氧的基准方法。在没有干扰的 情况下此方法适用于各种溶解氧浓度大于0.2mg/L 和小于 氧的饱和浓度两倍(约20mg/L)的水样。 易氧化的有机物如丹宁酸、腐植酸和木质素等会对测 定产生干扰,可氧化的硫的化合物如硫化物、硫脲也如同 易于消耗氧的呼吸系统那样产生干扰,当含有这类物质时 宜采用电化学探头法。 亚硝酸盐浓度不高于 15mg/L 时就不会产生干扰,因 为它们会被加入的叠氮化钠破坏掉,如存在氧化物质或还 原物质,则需预处理,采用修正后的碘量法。
2.步骤HACH Sension6
按照仪器说明书进行,用水饱和空气进行校准。 测定时,将探头浸入样品,不能有空气泡截留在膜上, 停留足够的时间,待探头温度与水温达到平衡,且数字显 示稳定时读数。必要时,根据所用仪器的型号及对测量结 果的要求,检验水温、气压或含盐量,并对测量结果进行 校正。 探头的膜接触样品时,样品要保持一定的流速,防止 与膜接触的瞬间将该部位样品中的溶解氧耗尽,使读数发 生波动。
溶解氧相关知识简介
taosy@
一、概述
• 1.概念 溶解氧(dissolved oxygen),缩写为DO,指溶解在 水中的分子态氧,单位为mg/l。 水中溶解氧量是水质重要指标之一,也是水体净化的 重要因素之一,溶解氧高有利于对水体中各类污染物的降 解,从而使水体较快得以净化;反之,溶解氧低,水体中 污染物降解较缓慢。
3.注意事项
测定时,注意手不要碰触热敏元件,并应将其没入液 面以下。 当将探头浸入样品中时,应保证没有空气泡截留在膜 上。 样品接触探头的膜时,应保持一定的流速,以防止与 膜接触的瞬时将该部位样品中的溶解氧耗尽而出现错误的 读数。应保证样品的流速不致使读数发生波动,在这方面 要参照仪器制造厂家的说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本章主要介绍溶解氧的基本概念,溶解氧的影 响因素,溶解氧的分布变化规律,生物缺氧的 原因和表现及增氧措施。要求了解增氧作用和 耗氧作用,熟悉并掌握溶解氧的日变化,垂直 分布,水平分布规律和生物缺氧及增氧措施。
概述
空气中的分子态氧溶解在水中称为溶解氧。水 中的溶解氧的含量与空气中氧的分压、水的温 度都有密切关系。
氧气的分压:在水温含盐量一定时,水中溶解 氧的饱和含量随液面上氧气分压的增大而增大。
亨利定律
水面上氧气分压的大小与水面上大气压强有关。 随着海拔的增高,大气压强逐渐降低,所以对 于地处高原区域的天然水,溶解氧的饱和含量 较低。
水中溶解氧含量还受到两种作用的影响:一种是 使DO下降的耗氧作用,包括好氧有机物降解的 耗氧,生物呼吸耗氧;另一种是使DO增加的复 氧作用,主要有空气中氧的溶解,水生植物的 光合作用等。这两种作用的相互消长,使水中 溶解氧含量呈现出时空变化。
二、影响溶解氧饱和含量的因素
溶解氧的含量与水温、氧分压、盐度、水 深深度、水生生物的活动和耗氧有机物浓度有 关。
水温:在氧气分压,含盐量一定时,溶解氧的 饱和含量随着水温的升高而降低。低温下溶解 氧的饱和含量随温度的变化更加显著。
含盐量:在水温,氧气分压一定时,水的含盐 量越高,水中溶解氧的饱和含量越小。海水的 含盐量比淡水的含盐量高的多,在相同条件下, 溶解氧在海水中的饱和含量比在淡水中要低得 多。天然淡水水体内含盐量的变化幅度很小, 所以含盐量对溶解氧的饱和含量影响不大,可 近似以纯水中的饱和含量计算。
水中溶解的氧气却量少多变。例如淡水中溶解氧饱和 含量仅8—10毫升/升水,还不到空气中氧气含量的1 /20。海水中溶解氧更少。这表明:水中鱼、虾、贝、 藻类的呼吸条件较差,不时面临缺氧窒死的威胁。有 人估计:直接间接缺氧致死的鱼类,约占养殖鱼类死 亡总数60%。
由此可见,掌握水中溶解氧的动态规律,熟悉缺氧的 原因及对策,对于正确组织养殖生产,改进技术、夺 取高产,是很重要的。
气压表,在标定时可自动进行校正;有些仪表
未配置气压表,在标定时要根据当地气象站提
供的数据进行设置,如果数据有误,将导致较 大的测量误差。
3. 溶液中含盐量 盐水中的溶解氧明显低于自来水中的溶解
氧,为了准确测量,必须考虑含盐量对溶解氧 的影响。在温度不变的情况下,盐含量每增加 100mg/L,溶解氧降低约1%。如果仪表在标 定时使用的溶液的含盐量低,而实际测量的溶 液的含盐量高,也会导致误差。在实际使用中
在自然条件下,水在流动时,复氧过程比较迅 速,较易补充水中氧的消耗,使水体中溶解氧 保持一定的水平,反之,在静水条件下,复氧 过程缓慢,水中含氧得不到及时补充,处于嫌 气状态。
溶解氧仪
溶解氧分析仪传感部分是由金电极(阴极)和银电极(阳 极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散 进入电解液与金电极和银电极构成测量回路。当给溶 解氧仪_溶解氧分析仪电极加上0.6~0.8V 的极化电压 时,氧通过膜扩散,阴极释放电子,阳极接受电子, 产生电流,整个反应过程为:阳极 Ag+Cl→AgCl+2e-, 阴极 O2+2H2O+4e→4OH-,根据法拉第定律:流过 溶解氧分析仪电极的电流和氧分压成正比,在温度不 变的情况下电流和氧浓度之间呈线性关系。
在自然情况下,空气中的含氧量变动不大,故 水温是主要的因素,水温愈低,水中溶解氧的 含量愈高。溶解于水中的分子态氧称为溶解氧, 通常记作DO,用每升水里氧气的毫克数表示。
水中溶解氧的多少是衡量水体自净能力的一个 指标。
人类及其他陆上动物,是靠呼吸空气中的氧气生存。 空气中氧气量多而稳定,一般都是210毫升O2/升空 气。因此,在空气中生存的动物,从来没有感到缺氧 的威胁。
制约溶氧仪氧测量的因素: 温度、压力和水中溶解的盐,流速。
1. 温度的影响 由于温度变化,膜的扩散系数和氧的溶解度都将
发生变化,直接影响到溶氧电极电流输出,常采用热 敏电阻来消除温度的影响。温度上升,扩散系数增加, 溶解度反而减小。温度对溶解度系数a 的影响可以根 据Henry 定律来估算,温度对膜扩散系数β可以通过 阿仑尼乌斯定律来估算。
当溶解度系数a 计算出来后,可通过仪表指示和化验 分析值对比计算出膜的扩散系数(这里略去计算过程), 膜的扩散系数在25℃时为1.5%/℃。
(1) 氧的溶解度系数:由于溶解度系数不仅受 温度的影响,而且受溶液的成分的影响。在相 同氧分压下,不同组分的实际氧浓度也可能不 同。根据亨利定律可知氧浓度与其分压成正比, 对于稀溶液,温度变化溶解度系数a 的变化约 为2%/℃。
必须对测量介质的含盐量进行分析,以便准确 测量及正确补偿。
4. 样品的流速 氧通过膜扩散比通过样品进行扩散要慢,
必须保证电极膜与溶液完全接触。对于流通式 检测方式,溶液中的氧会向流通池内扩散,使 靠近膜的溶液中的氧损失,产生扩散干扰,影 响测量。为了溶解氧仪测量准确,应增加流过 膜的溶液的流量来补偿扩散失去的氧,样品的 最小流速为0.3m/s。
总结: 由于温度变化对电极膜的扩散和氧溶解度有
(2) 膜的扩散系数:根据阿仑尼乌斯定律,溶 解度系数β与温度T 的关系为:C=KPo2·exp(β/T),其中假定K、Po2 为常数,则可以计 算出β在25℃时为2.3%/℃。
2. 大气压的影响 根据Henry 定律,气体的溶解度与其分压
成正比。氧分压与该地区的海拔高度有关,高 原地区和平原地区的差可达20%,使用前必须 根据当地大气压进行补偿。有些仪表内部配有
一、溶解氧的饱和含量Байду номын сангаас
溶解氧是指以分子状态溶存于水中的氧气单质, 不是化合态的氧元素,也不是氧气气泡。溶解 氧通常简记为“DO”。
氧气溶于水中是一可逆过程, O2溶入水中的速度与水中逸出O2的速度相等 时,溶解即达成动态平衡。此时,水中溶解 O2的浓度,即为该条件下溶解氧的饱和含量, 在其他条件一定时,溶解氧饱和含量随温度、 含盐量升高而下降。