概率论 总体与样本
概率论与数理统计的基本概念和原理简介
概率论与数理统计的基本概念和原理简介概率论和数理统计是数学中重要的分支学科,它们在现代科学和生活中扮演着重要角色。
本文将对概率论和数理统计的基本概念和原理进行简要介绍。
一、概率论的基本概念和原理1. 随机试验随机试验是指具有以下特点的试验:在相同条件下可以重复进行,每次试验的结果不确定,但所有可能结果都是事先确定的且互不相容。
2. 随机事件与样本空间试验的每个可能结果称为基本事件,基本事件的集合称为样本空间。
样本空间中的子集称为随机事件。
3. 概率的定义一般来说,事件发生的概率是指该事件发生的可能性大小。
概率的定义可以通过频率的概念来解释:事件A发生的概率等于在多次重复试验中,事件A发生的频率趋近于一个常数。
4. 概率的性质概率具有以下性质:- 0 ≤ P(A) ≤ 1,概率值的取值范围在0到1之间。
- P(Ω) = 1,样本空间发生的概率为1。
- 对于任意的事件序列 {Ai},若相互不相容,则有 P(A1 ∪ A2 ∪ ... ∪ An) = P(A1) + P(A2) + ... + P(An)。
5. 概率的计算方法计算概率的常用方法有古典概型法、几何概率法、频率概率法和叠加原理等。
二、数理统计的基本概念和原理1. 总体与样本总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
通过对样本的统计分析,可以推断总体的性质。
2. 统计量统计量是样本的函数,用于刻画样本的某种性质。
常见的统计量有样本均值、样本方差等。
3. 参数估计参数估计是通过样本统计量推断总体参数的值。
常用的参数估计方法有点估计和区间估计。
4. 假设检验假设检验是指对于总体参数提出一个假设,并通过对样本进行统计推断来判断是否拒绝假设。
假设检验分为单侧检验和双侧检验。
5. 相关与回归分析相关分析用于刻画两个变量之间的线性关系,回归分析用于建立一个变量与其他变量之间的函数关系。
三、概率论与数理统计的应用领域概率论和数理统计广泛应用于各个领域:1. 金融风险管理概率论和数理统计对金融领域的风险管理起着关键作用,可以通过建立数学模型对金融市场进行预测和评估。
概率论与数理统计(06)第6章 统计量及其抽样分布
σx =
σ
n
当样本容量足够 大时( 大时(n ≥ 30) , 样本均值的抽样 分布逐渐趋于正 态分布
6 - 11
µx = µ
xቤተ መጻሕፍቲ ባይዱ
x 的分布趋 于正态分布 的过程
6 - 12
6.4 正态总体 6.3.1 χ2分布 6.3.2 t 分布 6.3.3 F 分布
6 - 13
χ2 分布
第六章 样本与统计量
6.1引言 6.1引言
数理统计学: 运用概率论的基础知识,对要研究的随机现象进行 多次观察或试验,研究如何合理地获得数据资料, 建立有效的数学方法,根据所获得的数据资料,对 所关心的问题作出估计与检验。
6-1
§6.2总体与样本 6.2总体与样本
对某一问题的研究对象全体称为总体。 组成总体的某个基本单元,称为个体。 总体可以是具体事物的集合,如一批产品。 也可以是关于事物的度量数据集合,如长度测量。 总体可以包含有限个个体,也可以包含无限个个体。 有限总体在个体相当多的情况下,可以作为无限 总体进行研究。 总体中的个体,应当有共同的可观察的特征。该 特征与研究目的有关。
6 - 16
χ2分布
(图示) 图示)
n=1 n=4 n=10
n=20
6 - 17 不同容量样本的抽样分布
χ2
t 分布
6 - 18
t 分布
1. 高 塞 特 (W.S.Gosset) 于 1908 年 在 一 篇 以 (W. “Student”(学生)为笔名的论文中首次提出 Student”(学生)
X ~ N(µ,σ ) ,则
2
χ2分布
2. 3.
z=
X −µ
Y=z
概率论与数理统计-ch6-样本与抽样分布
概率论与数理统计-ch6-样本与抽样分布概率论中,所研究的随机变量是假定其分布是已知的,在此前提下研究它的性质、数字特征等。
在数理统计中,所研究的随机变量的分布是未知或不完全知道的,通过重复独⽴的试验得到许多观察值去推断随机变量的种种可能分布。
1、随机样本总体:试验的全部可能的观察值。
=样本空间个体:每⼀个可能观察值。
=样本点容量:总体中所包含的个体的个数。
有限总体⽆限总体⼀个总体对应⼀个随机变量X,对总体的研究就是对随机变量X的研究。
所以将不区分总体与相应的随机变量,统称为总体X。
样本:在数理统计中,⼈们都是通过从总体中抽取⼀部分个体,根据获得的数据来对总体分布得出推断的,被抽出的部分个体叫做总体的⼀个样本。
对总体进⾏⼀次观察,就会得到⼀个随机变量X1,对总体进⾏n次重复的、独⽴的观察,就会得到n个随机变量X1,X2,...,Xn,这n个随机变量X1,X2,...,Xn是对总体随机变量X观察的结果。
则X1,X2,...,Xn是相关独⽴且与X具有相同分布,称为来⾃总体X的⼀个简单随机样本。
n称为样本的容量。
进⾏n次观察得到的⼀组实数x1,x2,...,xn是随机变量X1,X2,...,Xn的观察值,称为样本值,也称为X的n个独⽴的观测值。
2、抽样分布样本是统计推断的依据,但往往不直接使⽤样本本⾝,⽽是由样本构造的函数。
统计量:设X1,X2,...,Xn是来⾃总体X的⼀个样本,g(X1,X2,...,Xn)是其函数,且g中不含任何未知参数,则称g(X1,X2,...,Xn)是⼀统计量。
统计量也是⼀个随机变量。
g(x1,x2,...,xn)是统计量的观测值。
常⽤的统计量:经验分布函数:经验分布函数(empirical distribution function)是根据样本得到的分布函数.如设,是总体的样本值,将它们按⼤⼩顺序排列为,则称分布函数为经验分布函数是与总体分布函数相对应的统计量。
总体的分布函数是F(x),统计量的经验分布函数是F n(x),⽤F n(x)去推断F(x),当n⾜够⼤时,F n(x)以概率1收敛于F(x)。
【2024版】概率论与数理统计(数理统计的基本概念)
X
2 n
)
D(
X
2 1
)
D(
X
2 2
)
D(
X
2 n
)
nD (
X
2 i
)
n{ E (
X
4 i
)
[E(
X
2 i
)]2
}
n
x4
1
2
e
x2 2
dx
12
n3
1
2n
23
若 2 ~ 2(n) 分布函数为F ( x)
,0 1 若F ( x) P{ 2 x}
则其解称为 2 分布 的 分位数(临界值)
0.15 00.1.155
000.1..11
N(0,1)
n=10 n=10 nn==33
n增大
000.0..00555
nnn===111
000
-5--55
-4--44
-3-3
-2-2
-1-1
00
11
22
33
444
555
t 分布的密度曲线关于y轴对称 随着n的增大, t 分布的密度曲线越陡
n 时,t 分布趋于标准正态分布N (0,1)
后,还要对数据进行加工和提炼,将样本的有关 信息,利用数学的工具进行加工.
引入统计量的概念
12
定义 设( X1, X 2 ,, X n )为来自总体X的一个样本,
若n元函数f ( X1, X 2 ,, X n )不含任何未知参数,
则
称f
(
X
1
,
X
2
,,
X
n
)为X
1
,
X
2
概率论与数理统计 第5章
n
n
性质2.(分布可加性):若X~2(n1),Y~2(n2),X与 Y独立,则
X + Y~2(n1+n2 )
3、2分布表及有关计算
(1)构成 P{2(n)>λ}=α,已知n, α可查表求得λ; (2)有关计算P 2 (n) 2 (n) 称为上侧α分位数
例5.1 设 X ~ N ( , 2 ) (X1,X2,…,Xn)为X的一个样本,
求(X1,X2,…,Xn)的密度。 解 (X1,X2,…,Xn)为X的一个样本,故
X i ~ N ( , 2 )
n
i 1,2,, n
f ( x1 , x2 ,, xn ) f ( xi )
16 2
解
i 1,2,,16
2 1 16 2 2 P ( X i ) P 8 2 (16) 16 2 16 i 1
2—分布的密度函数f(y)曲线
n/2 1 f ( y) 2 ( n / 2) y 0,
n y 1 2 2
e , y0 y0
2 例5.4 X ~ N ( , ) (X1,X2,X3)为X的一个样本
X 1 X 2 X 3 的分布。 求
(n)为整体记号
2
2 (n) 2 2 查表得 0 ( 25 ) 34 . 382 10) 18.307 .1 0.05 (
1 当n充分大时,近似有 (n ) (u 2n - 1) 2 2
2
练习1. P(2(n)<s)=1-p ∵P(2(n) < s)=1- P(2(n) s )=1-p ∴ P(2(n) s )=p 2 s p (n) 练习2. P(2(11)>s)=0.05,求s
总体与样本名词解释
总体与样本名词解释总体与样本是统计学中常用的两个名词。
它们在统计推断和概率论中扮演着重要的角色。
总体(population)是指研究对象的全体。
它可以是一个人群、一个国家的居民、一家公司的员工等等。
总体是研究者感兴趣的统计指标的全集合。
例如,如果我们想研究全球人口的平均身高,那么全球人口就是总体。
样本(sample)是从总体中选择出来的一部分观察值。
样本是对总体的一种估计。
选择样本可以减少数据收集的成本和时间,同时也能够提供关于总体特征的信息。
例如,我们可以从全球人口中选择一部分人进行调查,他们的身高数据就构成了一个样本。
总体与样本之间的关系可以通过抽样(sampling)来实现。
抽样是从总体中无偏地选取样本的过程。
在抽样过程中,我们希望样本能够代表总体的特征。
具体的抽样方法包括简单随机抽样、分层抽样、整群抽样等等。
通过合适的抽样方法,我们可以用样本的数据推断总体的特征。
在统计推断中,总体和样本是很重要的概念。
我们通常对样本进行统计量的计算,例如样本均值、样本比例等等。
然后利用这些统计量来估计总体的参数,例如总体均值、总体比例等等。
通过根据样本对总体的估计,我们可以对总体的特征作出推断。
总体和样本还可以用来探索数据的分布特征和进行假设检验。
在数据的分析过程中,我们可以通过对样本的分析来了解总体的分布形态和特征。
并且通过比较样本的统计量和总体参数的差异,我们可以判断所提出的假设是否成立。
总体和样本在统计学中起着重要的作用,它们是进行统计推断和概率分析的基础。
理解总体和样本的概念以及它们之间的关系,可以帮助我们更好地理解和解释数据。
同时,正确选择样本和采用合适的抽样方法,也是保证统计推断和估计的准确性和可靠性的关键。
概率论 第六章 样本及抽样分布
一般,设 x1,x2, …,xn 是总体F的一个容 量为n的样本值,先将x1,x2, …,xn 按自小到 大的次序排列,并重新编号,设为
x(1) ≤x(2) ≤…≤x(n) 则经验分布函数Fn(x)的观察值为
0,
若x x(1) ,
性质:
(1) limf (t)
1
e ; t2 2
n
2
(2)当n 45时 取t (n) Z .
(三)设X~2(n1), Y~ 2(n2), 且X 与Y相互独立,则随机变量
F X/ n1 Y / n2
则称F服从第一自由度为n1,第二自由 度为n2的F分布,记作
F~F(n1 ,n2)
F分布的分布密度为
2 2
E( X 2 ) D( X ) (E( X ))2
2 2
n
E(S 2 )
E[ 1 n 1
n i 1
(Xi
X
)2 ]
E[
1
n
(
n 1 i1
X
2 i
2
n X )]
1
n
E(
n 1 i1
X
2 i
nX
2
)
1 [E( n 1
n i 1
X
2 i
)
E(n X
2
)]
1[ n 1
n i 1
考察某厂生产的电容器
的使用寿命。在这个试验 中什么是总体,什么是个 体。
解 个体是每一个电容器 的使用寿命;总体X是各个 电容器的使用寿命的集合。
2. 样本
为推断总体分布及各种特征,按一定规 则从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为样本. 样 本中所包含的个体数称为样本容量.
概率论与数理统计-第六章
这200人的年龄数据。
总体:北京市民的年龄 随机变量:年龄X
个体:张三28岁;李四5岁;
样本:{ 28;5;14;56;23;2;39;…;69} 样本容量:200
抽样:随机抽取200人进行调查的过程
6
例2:为了确定工厂生产的电池电量分布情况,在
产品中随机抽取500个,测量其电量。记录了
x
0
F n1 , n2
F分布的分位数
x
F分布的上α分位点
对于给定的 , 0 1, 称满足条件
F n1 , n2
f x; n1 , n2 dx 的点F n1 , n2
为F n1 , n2 分布的上 分位数。F n1 , n2 的值可查F 分布表
17
不易计算!
18
抽样分布 —— 任意统计量 Q = g (X1, X2, …, Xn ) 的分布函数 抽样分布的计算: 多维随机变量(独立、同分布)的函数的分布 函数的计算问题。
得到统计量 Q 的抽样分布,就可以用来解决
关于总体 X 的统计推断问题。
19
关于随机变量独立性的两个定理
解:(1)作变换 Yi
显然Y1 , Y2 ,
2 n i 1
Xi
, Yn相互独立,且Yi N 0,1 i 1, 2,
Xi
i 1, 2,
,n
,n
于是 (
) Yi 2 2 n
2 i 1
28
n
(2)
2 ( X X ) X1 X 2 ~ N (0, 2 2 ), 1 2 2 ~ 2 (1) 2
概率与统计的基本概念和计算方法
概率与统计的基本概念和计算方法概率与统计是数学中的两个重要分支,它们在各个领域中都有广泛的应用。
概率是研究随机事件发生的可能性的数学理论,而统计是通过对数据进行收集、整理、分析,从中得出结果并作出推断的数学方法。
本文将介绍概率与统计的基本概念和常用的计算方法。
一、概率的基本概念:概率是研究随机事件发生的可能性的数学理论。
在概率论中,我们使用概率来描述事件发生的可能性大小。
概率的取值范围是0到1,其中0表示不可能事件,1表示必然事件。
在概率的计算中,我们使用了一些基本概念,如样本空间、随机事件、事件的概率等。
1.1 样本空间:样本空间是指试验中所有可能的结果构成的集合。
以抛硬币为例,其样本空间为{正面,反面}。
1.2 随机事件:随机事件是指在试验中某个特定结果的出现。
以抛硬币为例,正面朝上是一个随机事件。
1.3 事件的概率:事件的概率是指该事件发生的可能性大小。
概率的计算通常使用频率的概念,即事件发生的次数与试验总次数之比。
以抛硬币为例,正面朝上的概率为事件发生的次数除以总次数。
二、统计的基本概念:统计是通过对数据进行收集、整理、分析,从中得出结果并作出推断的数学方法。
在统计学中,我们使用统计量来总结和描述数据的特征。
统计学的基本概念包括总体和样本、参数和统计量等。
2.1 总体和样本:总体是指我们希望研究的全部对象或现象的集合。
样本是从总体中选取的一部分,用于对总体进行推断。
例如,我们希望了解全国人口的平均年龄,可以通过抽取一部分人口作为样本进行研究。
2.2 参数和统计量:参数是总体的特征数值,如总体均值、总体标准差等。
统计量是样本的特征数值,如样本均值、样本标准差等。
通过对样本进行统计分析,可以估计总体的参数。
三、概率的计算方法:在概率的计算中,我们主要使用了加法法则、乘法法则和条件概率等方法。
3.1 加法法则:加法法则用于计算多个事件同时发生的概率。
当事件A和事件B互斥(即不能同时发生)时,事件A或事件B发生的概率等于事件A和事件B分别发生的概率之和。
《概率论与数理统计》第六章
既然总体是随机变量X,自然就有其概率分布。
我们把X的分布称为总体分布。
总体的特性是由总体分布来刻画的。因此,常 把总体和总体分布视为同义语。
第六章 样本及抽样分布 ‹#›
例2
在例1中,假定物体真实长度为(未知)。一般 说来,测量值X就是总体,取 附近值的概率要大一 些,而离 越远的值被取到的概率就越小。
k=1,2,…
第六章 样本及抽样分布 ‹#›
它反映了总体k 阶矩的信息
样本k阶中心矩
Bk
1 n
n i 1
(Xi
X )k
它反映了总体k 阶 中心矩的信息
第六章 样本及抽样分布 ‹#›
统计量的观察值
1 n
x n i1 xi;
s2
1 n 1
n i1
(xi
x )2
s
1 n 1
n i1
(xi
x
)2
第六章 样本及抽样分布 ‹#›
实际上,我们真正关心的并不一定是总体或个
体本身,而真正关心的是总体或个体的某项数量指 标。
如:某电子产品的使用寿命,某天的最高气温, 加工出来的某零件的长度等数量指标。因此,有时也
将总体理解为那些研究对象的某项数量指标的全
体。
第六章 样本及抽样分布 ‹#›
为评价某种产品质量的好坏,通常的做法是: 从全部产品中随机(任意)地抽取一些样品进行观测(检
样本X1,X2,…,Xn 既被看成数值,又被看成随机变量, 这就是所谓的样本的二重性。
随机样本
例 4 (例2续) 在前面测量物体长度的例子中,如果我们 在完全相同的条件下,独立地测量了n 次,把这 n 次测 量结果,即样本记为
X1,X2,…,Xn .
概率论第六章样本及抽样分布
本相互独立,记
1 n1 X Xi n1 i 1 1 n2 Y Yi n2 i 1
则有 ⑴
2 1 2 2 2 1 2 2
1 n1 S12 ( X k X )2 n1 1 k 1 1 n2 2 S2 (Yk Y ) 2 n2 1 k 1
S / ~ F (n1 1, n2 1) S /
⑵ 当 时
2 1 2 2 2
X Y ( 1 2 ) ~ N (0,1) 1 1 n1 n2
(n1 1) S12
2 1
2 (n2 1) S2
2 2
~ 2 (n1 n2 2)
X Y ( 1 2 ) ~ t (n1 n2 2) 1 1 S n1 n2
2
又因为
(n 1)S 2
2
~ (n 1)
2
X n1 X n
故 Y
(n 1) S 2
n n 1 ~ t (n 1) /(n 1)
2
X n1 X n Y S
n ~ t (n 1) n 1
例4
设总体X , Y 相互独立 X ~ N (0,32 ) , Y ~ N (0,32 ) ,
2
X n1 X n n X 1 , X 2 ,, X n , X n1 , 求 Y 的分布 . S n 1 1 n 1 n 2 2 其中 X n X i , S ( Xi X n ) n i 1 n 1 i 1
1 2 解 由已知得 X n1 ~ N ( , ) , X n ~ N ( , ) , n n 1 2 所以 X n1 X n ~ N (0, ) n n 标准化得 X n1 X n ~ N (0,1) n 1
概率论与数理统计第6章
不含未知参数的样本的函数称为统计量 不含未知参数的样本的函数称为统计量. 统计量 2. 几个常见统计量
1 n 样本均值 X = ∑Xi n i=1
反映总体 均值的信息 反映总 体方差 的信息
1 n 2 2 样本方差 S = ∑( Xi − X) n −1 i=1
样本2阶中心矩 样本 阶中心矩
反映总体2 反映总体 阶 中心矩的信息
(
)
−
n1 +n2 2
x≥0
例1 设X、Y相互独立均服从正态分布 、 相互独立均服从正态分布 N(0,3), X1,X2,…,X9和Y1,Y2,…,Y9分别为来 的样本。 自X、Y的样本。求 、 的样本
U=
X1 + X 2 + L + X 9 Y +Y +L+Y
2 1 2 2
的分布。 的分布。
2 9
小样本问题中使用) 精确抽样分布(小样本问题中使用) 抽样分布 大样本问题中使用) 渐近分布 (大样本问题中使用
{
三. 统计三大分布
1 . χ 分布
2
定义: 相互独立, 定义 设 X1 , X2 ,L, Xn相互独立 都服从正态 分布N(0,1), 则称随机变量: 则称随机变量: 分布 2 2 2 2 χ = X 1 + X 2 + …+X n 所服从的分布为自由度为 n 的 χ 分布. 分布
3. F分布 分布 与 X ~ χ (n1),Y ~ χ (n2 ), X与Y X / n1 相互独立, 相互独立,则称统计量 F = Y / n2 定义: 定义 设
2 2
服从自由度为n 分布, 服从自由度为 1及 n2 的F分布,n1称为第 分布 一自由度, 称为第二自由度, 一自由度,n2称为第二自由度,记作 F~F(n1,n2) .
总体与样本
数理统计
数理统计的特点是应用面广,分支 较多. 如生物统计、金融统计和医学统 计等. 由于学时有限,课程的这部分内容 重点在于介绍数理统计的一些重要概念 和典型的统计方法,它们是实际中最常 用的知识.
数理统计学是一门应用性很强的学 科. 它是研究怎样以有效的方式收集、 整理和分析带有随机性的数据,以便对 所考察的问题作出推断和预测,直至为 采取一定的决策和行动提供依据和建议.
2) 求
中的最大最小值. 记
3) 分组. a) 确定组数和组距. 选定组数 ,取组距 一般情况下, 应取数据的最小单位的整数倍. b) 确定各组的上下界. 取第一组的下界 应略小于 ,使得 落入第 一组内,即 然后令
为了使每个数据都落入组内,应使分点 比样本 值多一位小数. 4) 计算频率,记 为落入第 个区间的频数,则频 率为 5) 画直方图. 以 为底,
1
从上表可大体知道这批电路板的不光滑情况,可近似地 作为“每块板上不光滑点个数” X 的分布律.
二、直方图 当总体是连续型随机变量时,可采用直方图 来处理数据(样本值). 设 为给定的一组 样本值,处理步骤如下: 1)简化数据,令 由于数据总在某个某个数值 上下波动,可以选 取适当的常数 ,把样本值化为位数较少的整数, 为方面起见,化简后的数值 仍记为 .
更确切的说,对这批钢筋,我们关心的 是它的强度的分布,如强度低于52kg/mm^2 的比例是多少. 设 X 表示“任一根钢筋的强度”,X 是 一个随机变量. 它的概率分布就反映了这批 钢筋的强度的分布,即把总体看做一个随机 变量。
从总体中抽取一个个体就是做一次随 机试验,而“任取 n 根钢筋,测其强度” 就是做 n 次随机试验,得到容量为 n 的样 本.
概率论数理统计基础知识第五章
C
]
(A)Y ~ 2 (n). (B)Y ~ 2 (n 1). (C)Y ~ F (n,1). (D)Y ~ F (1, n).
【例】设 随机变量X和Y都服从标准正态分布,则[ C ]
(A)X+Y服从正态分布.
2 2 2
(B)X2 +Y2服从 2分布. Y
2
2 X (C)X 和Y 都服从 分布. (D)
(X ) ~ t ( n 1) S n
客、考点 10,正态总体的抽样分布
33/33
34/33
35/33
【例】设总体 X ~ N (0,1),X 1 , X 2 , X1 X 2
2 2 X3 X4
, X n 是简单随机
2 X i. i 4 n
样本 , 试问下列统计量服从什么分布? (1 ) ; (2 ) n 1X1
记:F分布是两个卡方分布的商
2. F 分布的上侧分位数
设 F ~ F (k1 , k2 ) ,对于给定的 a (0,1) ,称满足条件
P{F Fa (k1 , k2 )}
Fa ( k1 ,k2 )
f F ( x)dx a
的数 Fa (k1 , k2 ) 为F 分布的上侧a 分位数。
服从F分布.
§5.5 正态总体统计量的分布
一、单个正态总体情形 总体
X ~ N ( , 2 ) ,样本 X1 , X 2 , , Xn ,
1 n 样本均值 X X i n i 1
n 1 2 样本方差 S 2 ( X X ) i n 1 i 1
1. 定理1 若设总体X~N(μ,σ2), 则统计量
有一约束条件
(X
i 1
概率论与数理统计课件:数理统计基础知识
数理统计基础知识
首页 返回 退出
6.1.1 总体
§6.1 总体和随机样本
总体:研究对象的全部可能观察值叫做总体. 个体:组成全体的每个观察值叫做个体.
如:考察某校学生的身高
总体:该校的所有学生的身高 个体:每个学生的身高
数理统计基础知识
首页 返回 退出
实际问题中,要研究的是有关对象的各种数量指标. 总体可以用一个随机变量及其分布来描述.
首页 返回 退出
由于抽样的目的是为了对总体进行统计推断, 为了使抽取的样本能很好地反映总体的信息,必 须考虑抽样方法.
最常用的一种抽样方法叫作“简单随机抽样” 它要求抽取的样本满足下面两点: 1. 代表性: X1,X2,…,Xn中每一个与所考察 的总体有相同的分布.
2. 独立性: X1,X2,…,Xn是相互独立的随机变量.
从一批产品中抽5件,检验产品是否合格.
数理统计基础知识
样本容量为5
首页 返回 退出
样本是随机变量.
抽到哪5辆是随机的
容量为n的样本可以看作n维随机变量(X1,X2,…,Xn).
但是,一旦取定一组样本,得到的是n个具体的数 (x1,x2,…,xn),称为样本的一次观察值,简称样本值 .
数理统计基础知识
总体的指标 如体重、身高、寿命等 是随机变量X 个体的指标 如体重、身高、寿命等 是随机变量X 的一个取值
常用随机变量的记号或用其分布函数表示总体.
如:总体X或总体F X
数理统计基础知识
首页 返回 退出
有限总体 总体
无限总体
1.考察某校大一新生(共2000人)的身高. 有限总体
2.观测某地每天最高气温. 无限总体 3.某厂生产的所有电视显像管的寿命. 无限总体
概率论总体与样本
06
总结与展望
本章内容的总结
概率论是研究随机现象的数学学科,总体和样本是概率论中的基 本概念。总体是研究对象全体的集合,而样本是从总体中抽取的 一部分数据。
总体和样本在概率论中有着广泛的应用,如统计学、数据分析、 机器学习等领域。通过研究总体和样本的关系,可以了解随机现 象的规律和性质。
本章介绍了概率论总体与样本的基本概念、性质和关系,以及一 些常用的统计方法和技巧。这些方法和技巧可以帮助我们更好地 理解和分析数据,从而做出更准确的预测和决策。
04
总体与样本的关系
样本的抽取方法
随机抽样
从总体中随机选取一定数量的样本,确保每个样本被选中的概率相等。
系统抽样
按照一定的间隔或顺序从总体中选取样本,如每隔10个人抽取一个样本。
分层抽样
将总体分成若干层,从每层中随机抽取一定数量的样本,再合并成一个样本。
簇群抽样
将总体分成若干簇群,从每个簇群中随机抽取一定数量的样本。
03
随着机器学习和人工智能的不断发展,概率论总体与样本的理论在算法设计和 优化中将发挥越来越重要的作用。如何将概率论总体与样本的理论应用于实际 问题的解决,也是未来研究的重要方向之一。
THANKS
感谢观看
分布。
样本的推断方法
参数估计
通过样本数据估计总体参数, 如均值、方差等。
假设检验
根据样本数据对总体假设进行 检验,判断假设是否成立。
置信区间估计
根据样本数据估计总体参数的 置信区间,以反映参数的不确 定性。
贝叶斯推断
利用先验信息、样本信息和似 然函数对未知参数进行推断。
05
实例分析
实例一:概率分布的估计
概率论总体与样本
总体与样本直方图、条形图及经验分布函数
如前所述,数理统计所研究的实际问题(总体) 的分布一般来说是未知的,需要通过样本来推 断.但如果对总体一无所知,那么,做出推断的 可信度一般也极为有限.在很多情况下,我们往 往可以通过具体的应用背景或以往的经验,再通 过观察样本观测值的分布情况,对总体的分布形 式有个大致了解.观察样本观测值的分布规律, 了解总体X的概率密度和分布函数,常用直方图 和经验分布函数.
36
X
i
近似
服从正态分布 N(54,45),所以
i1
P {5.4 0Y6.8 4 }P 5.4 05 4Y5 46.8 45 4 45 45 45
(1.6)1 ( 0.5)4 0 .941 6 0 3 .705 0 .64517
6.1 总体和样本
概率论与数理统计
1
前几章我们学习了概率论的基本知识,从本章 开始将学习数理统计的基本知识、理论和方 法.数理统计是以对随机现象观测所取得的资料 (数据)为出发点,以概率论为基础来研究随机 现象的一门学科.
概率论中,往往是在已知随机变量分布的条件 下,去研究它的性质、特点和规律性,比如求随 机变量取某些特定值的概率、求随机变量的数字 特征、研究多个随机变量之间的关系等.
【质量控制问题】
某食盐厂用包装机包装的食盐,每袋重量500g, 通常在包装机正常的情况下,袋装食盐的重量X服 从正态分布,均值为500g,标准差为25g.为进行 生产质量控制,他们每天从当天的产品中随机抽 出30袋进行严格称重,以检验包装机工作是否正 常.某日,该厂随机抽取30袋盐的重量分别为:
475 500 485 454 504 439 492 501 463 461
皮尔逊kpearson18571936的分布理论统计学家戈赛特wsgosset18761937的小样本t分布理论统计学家费歇尔rafisher18901962的f分布理论和试验设计方法波兰统计学家尼曼jneyman和英国统计学家皮尔逊espearson18951980的置信区间理论和假设检验理论以及非参数统计法序贯抽样法多元统计分析法时间序列跟踪预测法都应运而生并逐步成为现代统计学的主要内容
概率论与数理统计总结之第六章
第六章 样本及抽样分布 总体与个体:我们将试验的全部可能的观察值称为总体,这些值不一定都不相同,数目上也不一定是有限的,每一个可能观察值称为个体 总体中所包含的个体的个数称为总体的容量 容量为有限的称为有限总体 容量为无限的称为无限总体设X 是具有分布函数F 的随机变量,若,,21X X …n X ,是具有同一分布函数F 的、相互独立的随机变量,则称,,21X X …n X ,为从分布函数F (或总体F 、或总体X )得到的容量为n 的简单随机样本,简称样本,它们的观察值,,21x x …n x ,称为样本值,又称为X 的n 个独立的观察值由定义得:若,,21X X …n X ,为F 的一个样本,则,,21X X …n X ,相互独立,且它们的分布函数都是F ,所以(,,21X X …n X ,)的分布函数为,,(21*x x F …)(),1∏==ni i n x F x又若X 具有概率密度f ,则(,,21X X …n X ,)的概率密度为,,(21*x x f …).(),1∏==ni i n x f x设,,21X X …n X ,是来自总体X 的一个样本,g(,,21X X …n X ,)是,,21X X …n X ,的函数,若g 中不含未知参数,则称g(,,21X X …n X ,)是一统计量设,,21X X …n X ,是来自总体X 的一个样本,n x x x ,^,,21是这一样本的观察值,定义:样本平均值∑==ni i X n X 11样本方差⎪⎭⎫ ⎝⎛--=--=∑∑==n i i n i i X n X n X X n S 12221211)(11样本标准差∑=--==ni i X X n S S 122)(11 样本k 阶(原点)矩,2,1,11==∑=k X n A n i ki k …样本k 阶中心矩,3,2,)(11=-=∑=k X X n B k ni i k …经验分布函数设,,21X X …n X ,是总体F 的一个样本,用∞<<-∞x x S ),(表示,,21X X …n X ,中不大于x 的随机变量的个数。
大学数理统计的基本概念
大学数理统计的基本概念数理统计是一门应用数学学科,研究如何收集数据、分析数据并进行推断的方法和理论。
在大学的数学统计课程中,学生将学习一系列核心的基本概念,如样本、总体、概率、随机变量等等。
本文将介绍大学数理统计中的基本概念,并探讨它们在实际问题中的应用。
一、样本与总体在数理统计中,样本和总体是两个基本概念。
样本是从总体中选取的一部分个体或观测值的集合,而总体是研究对象的全体个体或观测值的集合。
样本的选择通常通过随机抽样来保证代表性。
二、概率与概率分布概率是描述随机事件发生可能性的数值,通常用0到1的数字表示。
在数理统计中,我们使用概率来描述随机变量的可能取值。
概率分布是随机变量取值的可能性分布,常见的概率分布包括均匀分布、正态分布等等。
概率和概率分布对于研究和预测随机事件至关重要。
三、随机变量与参数估计随机变量是在一个随机试验中可能取到的各种值,可以分为离散随机变量和连续随机变量。
参数估计是通过样本数据对总体参数进行估计的过程,主要包括点估计和区间估计两种方法。
参数估计是统计学的核心内容之一,对于从样本数据中推断总体特征非常重要。
四、假设检验与统计推断假设检验是判断关于总体参数的假设是否成立的一种方法。
在假设检验中,我们需要提出一个原假设和一个备择假设,并根据样本数据进行推断和判断。
统计推断是根据样本数据对总体进行推断和预测的过程,常用的方法包括参数估计和假设检验。
五、回归与方差分析回归分析是研究自变量和因变量之间关系的一种统计方法,用于建立数学模型并进行预测和解释。
方差分析是用于比较多个总体均值是否有显著性差异的统计方法,常用于实验设计和数据分析。
六、抽样调查与统计图表抽样调查是经济、社会和科学研究中常用的一种数据收集方法,通过从总体中选取样本进行调查和分析,得出对总体的推断。
统计图表是用来直观展示数据分布、关系和趋势的图形工具,包括条形图、折线图、饼图等等。
总结:大学数理统计的基本概念包括样本与总体、概率与概率分布、随机变量与参数估计、假设检验与统计推断、回归与方差分析以及抽样调查与统计图表。
概率论与数理统计6.第六章:样本及抽样分布
),
,
,
,
是来
Z=
(
-
证明统计量 Z 服从自由度为 2 的 t 分布。
14
),
,
,
,
是来 , .ຫໍສະໝຸດ 自 总 体 X 的 样 本 , E( ) 则 ,D( )=
是来自总体 X ,D(X)= . ,
,D( )=
11
3. 设 , 本 ,E(X)=
, , 为来自总体 X 的样 ,D(X)=9, 为样本均值 , 试用 < ≥ ,
切比雪夫不等式估计 P{ P{ 4.设 , 则当 K= > ≤ , , . 是总体 X
lim f (t ) (t )
n
1 e 2
t2 2
, x
3.分位点 设 T~t(n), 若对 :0<<1,存在 t(n)>0,
4
满足 P{Tt(n)}=, 则称 t(n)为 t(n)的上侧分位点 注: t1 (n) t (n) 三、F—分布 1.构造 若 1 ~2(n1), 2~2(n2),1, 2 独立,则
y0
2. F—分布的分位点 对于 :0<<1,若存在 F(n1, n2)>0, 满足 P{FF(n1, n2)}=, 则称 F(n1, n2)
5
为 F(n1, n2)的上侧 分位点; 注: F1 (n1 , n2 )
1 F (n2 , n1 )
§ 6.3 正态总体的抽样分布定理
X Y /n ~ t ( n)
t(n)称为自由度为 n 的 t—分布。 t(n) 的概率密度为
n 1 ) 1 t 2 n2 2 f (t ) (1 ) , t n n n ( ) 2 (
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
一. 总体和个体
定义 数理统计中,我们把所研究对象的全体称 为总体;总体中的每个元素称为个体
例1. (1) 当研究某地区职工收入平均水平时,这地区 所有职工的月收入组成了总体;而每个职工月 收入就是个体。 研究某批灯泡的质量,则该批灯泡寿命的全体 (2) 就组成了总体;而每个灯泡的寿命就是个体。
例如: 从某批国产轿车中抽 5 辆进行耗油量试验。 这一过程即为“抽样” 这 5 辆轿车为一个样本,其样本容量为 5
7
为了使得样本能很好的反映总体的情况,从总体 中抽取样本,必须满足下述两个条件:
随机性:为了使样本具有充分的代表性,抽样必 须是随机的,总体中的每个个体都有同等的机会 被抽到;
独立性:各次抽取必须是独立的,即每次抽样的 结果既不影响其它各次抽样,也不受其它各次抽 样的影响
总体
寿命X可用一概 率分布来刻划
F(x)
某批 灯泡的寿命
鉴于此,常用随机变量的记号 或用其分布函数表示总体. 如 说总体X或总体F(x) .
6
二. 抽样和样本
抽样
为推断总体分布及各种特征,按一定规则 从总体中抽取若干个体进行观察试验,以 获得有关总体的信息,这一抽取过程称为 “抽样”,所抽取的部分个体称为 样本, 样本中所包含的个体数目称为 样本容量。
i 1
10
三. 总体、样本、样本值的关系
事实上我们抽样后得到的资料都是具体 的、确定的值. 如我们从某班大学生中抽 取10人测量身高,得到10个数,它们是样 本取到的值而不是样本. 我们只能观察到 随机变量取的值而见不到随机变量.
11
总体(理论分布) ?
样本 样本值
统计是从手中已有的资料--样本值,去 推断总体的情况---总体分布F(x)的性质. 样本是联系二者的桥梁
总体
2
…
注: ▲ 总体依其包含的个体总数分为有限总体(个体 的个 数是有限) 和 无限总体(个体的个数是无 限的)。但当有限总体它所含的个体的个 数很 大时也可视其为无限总体。3总体可以用一个 Nhomakorabea机变量来表示
考察某大学一年级 学生的年龄
设该大学一年级学生 的年龄分布如下表
年龄 18 19 20 0.1 21 22
9
如果把容量为 n 的样本看作 n 维随机变量。 且总体X 的分布函数为 F( x ),概率密度为 f (x),则 :
X1 , X 2 ,
X n 联合分布函数为:
n
F ( x1 ,
f ( x1 ,
xn ) F ( xi )
i 1
n
X1 , X 2 , X n 联合概率密度为:
xn ) f ( xi )
这种随机的、独立的抽样方法称为简单随机抽样 由此得到的样本称为简单随机样本
以后我们涉及的抽样和样本都是指简单随机抽样 和简单随机样本
8
定义
设总体X是具有某一概率分布的随机变量。 如果 X1 , X 2 X n 相互独立,且都与X具 有相同的概率分布,则称其为来自总体X 的简单随机样本,简称为样本,n称为样 本容量。 在对总体X进行一次具体的抽样并观测之后, X1 , X 2 Xn 得到样本 的确切数 值 x1 , x2 xn ,称为样本观察值(观测值), 简称为样本值
某大学一年级全体 学生的年龄构成问 题的总体
可见,X的概率分布反 映了总体中各个值的分布 情况. 很自然地,我们就 用随机变量X来表示所考 察的总体.
也就是说,总体可以用一个随机变量 及其分布来描述.
5
又如:研究某批灯泡的寿命时,关心的数 量指标就是寿命,那么,此总体就可以用随 机变量X表示,或用其分布函数F(x)表示.
总体分布决定了样本取值的概率规律,也 就是样本取到样本值的规律,因而可以由样 本值去推断总体.
12
比例 0.5 0.3 某大学一年级全体 学生的年龄构成问 题的总体
0.07 0.03
若从该大学一年级学生中任 意抽查一个学生的年龄,所 得结果为一随机变量,记作 X.
4
考察某大学一年级 学生的年龄
X的概率分布是:
18 19 20 21 22 0.5 0.3 0.1 0.07 0.03