小船过河模型

合集下载

人教版高一物理必修第二册专题:5.2小船过河和关联速度

人教版高一物理必修第二册专题:5.2小船过河和关联速度
10
2.绳末端速度分解的分析: 如右图所示,取船与绳的连 结点 A 为研究对象(此点既 是船上的点,又是绳子上的 点).因为船上 A 点的速度即船的实际运动速度 v, 绳子 A 点既有沿绳方向的收缩(或伸长)速度 v1(沿 绳方向的直线运动),又有沿垂直绳方向的转动速 度 v2(以绳轮间支点为中心的圆周运动),所以 v 是 v1 和 v2 的合速度.
提示:将船的 运动分解成沿 绳方向的运动 和垂直绳方向 的运动。
V1
V V2
V=V1/cos600=8m/s
8
※6、一人骑自行车向西行驶,当车速为4m/s
时,他感觉到风从正南方向吹来,当车速增加到
7m/s时,他感觉到风从东南(东偏南45°)方
向吹来,则风对地的速度大小为( )
A、4m/s
B、5m/s
C、6m/s
D、7m/s
v合
v合 v2
v2
v1
v1
45
v1 3m / s
9
二、绳拉船模型分析 1.模型展示:船在靠岸的过程中,通过一条跨过定滑轮的绳拉 船.研究拉船的绳端速度与船速的关系.在绳跟滑轮间的支撑点 看绳拉船头部位,该部位的实际运动是受水面约束的直线运动, 这也是合运动.它实际上是同时参与了两个分运动:一是沿绳方 向的直线运动,二是具有沿垂直绳方向线速度的圆周运动.此类 问题在建筑工地的塔吊工作中也很常见.
7.两个典型模型的分析 一、小船渡河模型分析
1.模型展示:小船在渡河时,同时参与了两个运
动:一是随水沿水流方向的运动,二是船本身相
对水的运动.小船实际发生的运动是合运动,而
这两个运动是分运动.模型主要讨论船渡河时间
最短和位移最短这两个问题.设一条河宽 d,船

小船渡河模型(含答案)

小船渡河模型(含答案)

运动的合成与分解实例——小船渡河模型一、基础知识(一)小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v1(船在静水中的速度)、v2(水流速度)、v(船的实际速度).(3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t短=d v1(d为河宽).②过河路径最短(v2<v1时):合速度垂直于河岸时,航程最短,s短=d.船头指向上游与河岸夹角为α,cos α=v2v1.③过河路径最短(v2>v1时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如图所示,以v2矢量末端为圆心,以v1矢量的大小为半径画弧,从v2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v1v2,最短航程:s短=dcos α=v2v1d.(二)求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移.无论哪类都必须明确以下四点:(1)解决这类问题的关键是:正确区分分运动和合运动,船的航行方向也就是船头指向,是分运动.船的运动方向也就是船的实际运动方向,是合运动,一般情况下与船头指向不一致.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v船与水流速度v水的大小情况用三角形法则求极限的方法处理.二、练习1、一小船渡河,河宽d=180 m,水流速度v1=2.5 m/s.若船在静水中的速度为v2=5 m/s,则:(1)欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?解析(1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示.合速度为倾斜方向,垂直分速度为v2=5 m/s.t=dv2=1805s=36 sv=v21+v22=52 5 m/sx=v t=90 5 m(2)欲使船渡河的航程最短,应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一夹角α,如图所示.有v2sin α=v1,得α=30°所以当船头向上游偏30°时航程最短.x′=d=180 m.t′=dv2cos 30°=180523s=24 3 s答案(1)垂直河岸方向36 s90 5 m (2)向上游偏30°24 3 s180 m2、一条船要在最短时间内渡过宽为100 m的河,已知河水的流速v1与船离河岸的距离x变化的关系如图甲所示,船在静水中的速度v2与时间t的关系如图乙所示,则以下判断中正确的是()A.船渡河的最短时间是25 s B.船运动的轨迹可能是直线C .船在河水中的加速度大小为0.4 m/s 2D .船在河水中的最大速度是5 m/s 答案 C 解析 船在行驶过程中,船头始终与河岸垂直时渡河时间最短,即t =1005 s =20 s ,A 错误;由于水流速度变化,所以合速度变化,船头始终与河岸垂直时,运动的轨迹不可能是直线,B 错误;船在最短时间内渡河t =20 s ,则船运动到河的中央时所用时间为10 s ,水的流速在x =0到x =50 m 之间均匀增加,则a 1=4-010 m /s 2=0.4 m/s 2,同理x =50 m到x =100 m 之间a 2=0-410 m /s 2=-0.4 m/s 2,则船在河水中的加速度大小为0.4 m/s 2,C 正确;船在河水中的最大速度为v =52+42 m/s =41 m/s ,D 错误.3、如5所示,河水流速与距出发点垂直距离的关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则( )A .船渡河的最短时间是60 sB .船在行驶过程中,船头始终与河岸垂直C .船航行的轨迹是一条直线D .船的最大速度是5 m/s 答案 BD解析 当船头指向垂直于河岸时,船的渡河时间最短,其时间t =d v 2=3003 s =100 s ,A错,B 对.因河水流速不均匀,所以船在河水中的航线是一条曲线,当船行驶至河中央时,船速最大,最大速度v =42+32 m /s =5 m/s ,C 错,D 对.4、(2011·江苏·3)如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB .若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为 ( ) A .t 甲<t 乙 B .t 甲=t 乙C .t 甲>t 乙D .无法确定 答案 C解析 设两人在静水中游速为v 0,水速为v ,则 t 甲=x OA v 0+v +x OAv 0-v =2v 0x OA v 20-v2 t 乙=2x OBv 20-v2=2x OAv 20-v 2<2v 0x OAv 20-v 2 故A 、B 、D 错,C 对.5、甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距233H ,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好能垂直到达对岸A 点,则下列判断正确的是( )A .甲、乙两船到达对岸的时间不同B .v =2v 0C .两船可能在未到达对岸前相遇D .甲船也在A 点靠岸 答案 BD解析 渡河时间均为Hv sin 60°,乙能垂直于河岸渡河,对乙船由v cos 60°=v 0得v =2v 0,甲船在该时间内沿水流方向的位移为(v cos 60°+v 0)H v sin 60°=233H ,刚好到达A 点,综上所述,A 、C 错误,B 、D 正确.6、一快艇要从岸边某处到达河中离岸100 m 远的浮标处,已知快艇在静水中的速度图象如图甲所示,流水的速度图象如图乙所示,假设行驶中快艇在静水中航行的分速度方向选定后就不再改变,则( )A .快艇的运动轨迹可能是直线B .快艇的运动轨迹只能是曲线C .最快到达浮标处通过的位移为100 mD .最快到达浮标处所用时间为20 s 解析 快艇的实际速度为快艇在静水中的速度与水速的合速度.由图象可知快艇在静水中为匀加速直线运动,水为匀速直线运动,两速度不在同一条直线上,故快艇必做曲线运动,A 错误,B 正确;当快艇与河岸垂直时,到达浮标处时间最短,而此时快艇做曲线运动,故位移大于100 m ,C 错误;由题图甲可知快艇的加速度为a =ΔvΔt =0.5 m/s 2,最短位移为x =100 m ,对快艇由x =12at 2得:t =2x a = 2×1000.5s =20 s ,即最快到达浮标处所用时间为20 s ,D 正确. 答案 BD。

小船渡河模型解析版

小船渡河模型解析版

小船渡河模型一、模型建构1、小船渡河问题:小船运动时一个方向上的位移不变,求解最短运动时间和最小位移。

2、两类问题第一类:静水船速大于水流速度一条河宽度为L,水流速度为为v水, 已知船在静水中的航速v船,v 水<v船,(1)渡河最短时间?(2)渡河最小位移?如图所示,沿河岸和垂直河岸建立坐标系船速在y轴方向:v y=v船sinθ,渡河所需的时间:t=L/v y=L/v船sinθ在L、v船一定时,t随sinθ增大而减小当θ=90时,sinθ=1,最大,即船头与河岸垂直时,渡河时间最短t min=L/v船船的合速度v的方向与河岸垂直时,渡河的最小位移即河的宽度L。

沿河岸方向的速度分量:v x=v船cosθv水<v船时,v水=v x=v船cosθ即cosθ=v水/v船v合=v船sinθ垂直河岸,位移最小等于河宽L。

一、解题思路:1、沿河岸和垂直河岸建立坐标系2、比较船速沿河岸分速度与水速关系3、判断小船能否垂直渡河4、列方程求最小位移和渡河时间二、解题方法:运动的合成与分解三、解题关键点:1、合理分解速度2、确定渡河位移最小时船速的方向四、解题易错点1、渡河最短时间与水速和船速的大小关系无关2、静水船速小于水流速度时,最小第二类:静水船速小于水流速度一条河宽度为L,水流速度为为v水,已知船在静水中的航速v船,v 水>v船,渡河最小位移?如图所示,沿河岸和垂直河岸建立坐标系沿河岸方向的速度分量:v x=v船cosθv水>v船时,v x始终小于v水即v合不会垂直河岸,不能垂直渡河以v水的矢尖为圆心,v船为半径画圆,当与圆相切时α角最大。

α角越大,船到下游的距离x越短。

此时sinα=v船/v水,船的最短航程为X min=L/sinα=Lv船/v水二、例题精析例题、河宽60m,水流速度v1=2m/s,小船在静水中速度v2=3m/s,则:(1)它渡河的最短时间是多少?(2)最短航程是多少?【解答】(1)、当静水速的方向与河岸垂直时,渡河时间最短,最短时间t===20s;(2)、船在静水中的速度v2=3m/s,大于水流速度v1=2m/s,因此当船的合速度垂直河岸时,则渡河位移最小,即为河宽60m;三、针对训练1.甲、乙两船在同一河流中同时开始渡河,河水流速为v0,船在静水中的速率均为v,甲、乙两船船头均与河岸成θ角,如图所示,已知甲船恰能垂直到达河正对岸的A点,乙船到达河对岸的B点,A、B之间的距离为L,则下列判断正确的是()A.甲乙船不可能同时到达对岸B.若仅是河水流速v0增大,则两船的渡河时间都变短C.不论河水流速v0如何改变,只要适当改变θ角甲船总能到达正对岸的A点D.若仅是河水流速v0增大,则两船到达对岸时,两船之间的距离仍然为L【解答】解:A、将小船的运动分解为平行于河岸和垂直于河岸两个方向,抓住分运动和合运动具有等时性,知甲、乙两船到达对岸的时间相等。

关于小船渡河模型分析

关于小船渡河模型分析
小船渡河模型分析(NO.1)
2015.1.26 制 1.模型展示:小船在渡河时,同时参与了两个运动:一是随水沿水流方向的运动,二是船本身相对水
的运动.小船实际发生的运动是合运动,而这两个运动是分运动.模型主要讨论船渡河时间最短和位
移最短这两个问题.设一条河宽 d,船在静水中的速度为 v1,水流速度为 v2,下面讨论小船渡河的这
2.如图甲所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体 A 的受力情况是 () A.绳的拉力大于 A 的重力 B.绳的拉力等于 A 的重力 C.绳的拉力小于 A 的重力 D.拉力先大于重力,后变为小于重力
平抛运动分析
1.如图所示,从地面上方 D 点沿相同方向水平抛出的三个小球分别击中对面墙上的 A、B、C 三点,图中
两类问题.
2.三种速度:v1(船在静水中的速度)、v2(水的流速)、v(船的实际速度). 3.三种情景
d (1)过河时间最短:船头正对河岸时,渡河时间最短,t 短=v1(d 为河宽). (2)过河路径最短(v2<v1 时):合速度垂直于河岸,航程最短,x 短=d.
(3)过河路径最短(v2>v1 时):合速度不可能垂直于河岸,无法垂直渡河.确定方法如下:如右图所示, 以 v2 矢量末端为圆心,以 v1 矢量的大小为半径画弧,从 v2 矢量的始端向圆弧作切线,则合速度沿此切 线方向航程最短.
A.v0< v <2v0
C.v=2v0 B.2v0< v <3v0 D.v>3v0
8..一水平抛出的小球落到一倾角为θ的斜面上时,其速度方向与斜面垂直,运动
轨迹如图中虚线所示.小球在竖直方向下落的距离与在水平方向通过的距离之比为( )
A.tan θ B.2tan θ

017小船过河模型 精讲精练-2022届高三物理一轮复习疑难突破微专题

017小船过河模型 精讲精练-2022届高三物理一轮复习疑难突破微专题
v船
4.分析思路
1 / 12
017 小船过河模型专题
5.解题方法: 小船渡河问题有两类:一是求渡河时间,二是求渡河位移。无论哪类都必须明确以下
四点: (1)解决问题的关键:正确区分分运动和合运动,船的航行方向也就是船头指向,是分运
动。船的运动方向也就是船的实际运动方向,是合运动,一般情况下与船头指向不一致。 (2)运动分解的基本方法:按实际效果分解,一般用平行四边形定则沿水流方向和船头指
017 小船过河模型专题
一.必备知识 1.模型构建 (1)常规简单模型:实际运动是匀速直线运动 在运动的合成与分解问题中,两个匀速直线运动的合运动仍是匀速直线运动。若其中一个
分运动的速度大小和方向都不变,另一个分运动的速度大小不变,方向在 180°范围内(在速 度不变的分运动所在直线的一侧)变化,我们对合运动或分运动的速度、时间、位移等问题进 行研究。这样的运动系统可看成“小船渡河模型”。
3 / 12
017 小船过河模型专题
x=d=180 m
d
d
180
t=v⊥=v2cos30°=5
s=24 3
3 s。
2
(3)若 v2=1.5 m/s,与(2)中不同,因为船速小于水速,所以船一定向下游漂移,设合速 度方向与河岸下游方向夹角为α,则航程 x= d ,欲使航程最短,需α最大,如图丙所示,
v⊥=v2=5 m/s。 d d 180
t= = = s=36 s v⊥ v2 5
v 合= v21+v22=5 5 m/s 2
x=v 合 t=90 5 m。 (2)若 v2=5 m/s,欲使船渡河航程最短,合速度应沿垂直河岸方向。船头应朝图乙中的 v2 方向。
垂直河岸过河要求 v∥=0,如图乙所示,有 v2sinα=v1,得α=30°。 所以当船头与上游河岸成 60°角时航程最短,

高中物理必修二:小船渡河问题+平抛运动模型(教师版)-2020.10.14

高中物理必修二:小船渡河问题+平抛运动模型(教师版)-2020.10.14

渡河位移最短
如果 v 船>v 水,当船头方向与上游河岸夹角 θ满足 v 船cos θ=v 水时,合速度垂直河岸, 渡河位移最短,等于河宽 d
如果 v 船<v 水,当船头方向(即 v 船方向)与合
dv 速度方向垂直时,渡河位移最短,等于

v船
例 3 (多选)甲、乙两船在同一河流中同时开始渡河,河水流速为 v0,两船在静水中的速率均为 v, 甲、乙两船船头均与河岸成θ角,如图所示,已知甲船恰能垂直河岸到达河正对岸的 A 点,乙船到 达河对岸的 B 点,A、B 之间的距离为 L,则下列判断正确的是( BD )
跟踪训练 1、从沿水平方向匀速飞行的飞机上自由释放一物体,不计空气阻力,在物体下落过程中,下列说法
正确的是( C )
A.从飞机上看,物体静止
B.从飞机上看,物体始终在飞机的后方
C.从地面上看,物体做平抛运动
D.从地面上看,物体做自由落体运动
2、发球机从同一高度向正前方依次水平射出两个速度不同的乒乓球(忽略空气的影响).速度较大的 球越过球网,速度较小的球没有越过球网.其原因是( C )
D.8 倍
2.如图所示,从倾角 30O 的斜坡顶端沿水平方向以初速度 v0 10m / s 抛出一小球,小球最终落
在斜坡上。斜坡足够长,不计空气阻力。求:
(1)小球抛出后经多长时间与斜坡间的距离最大? t 3 s 3
(2)小球与斜坡间的最大距离是多少? y 5 3 m 6
7
`
类型二:对着斜面平抛(这里主要针对垂直打到斜面的情况) 结论:1、掉在斜面上的时间由斜面的倾斜程度和初速度共同决定,有经验公式:t= v0 ;
`
第 8 讲 小船渡河模型+绳端模型+平抛运动模型

物理建模系列(五) 小船渡河模型分析

物理建模系列(五) 小船渡河模型分析

物理建模系列(五)小船渡河模型分析1.模型构建在运动的合成与分解问题中,两个匀速直线运动的合运动仍是匀速直线运动,其中一个速度大小和方向都不变,另一个速度大小不变,方向在180°范围内(在速度不变的分运动所在直线的一侧)变化,我们对合运动或分运动的速度、时间、位移等问题进行研究.这样的运动系统可看作“小船渡河模型”.2.模型展示3.三种速度:v1(水的流速)、v2(船在静水中的速度)、v(船的实际速度).4.三种情景12求:(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?【解析】 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向当船头垂直河岸时,如图甲所示,合速度为倾斜方向,垂直分速度为v 1=5 m/s. t =d v 1=1805s =36 s v =v 21+v 22=525 m/s x =v t =90 5 m.(2)欲使船渡河航程最短,合速度应垂直于河岸,船头应朝上游与垂直河岸方向成某一夹角α如图乙所示, 有v 1sin α=v 2, 得α=30°所以当船头向上游垂直河岸方向偏30°时航程最短. x ′=d =180 m. t ′=d v 1cos 30°=180523 s=24 3 s.【答案】 (1)垂直河岸方向 36 s 90 5 m (2)向上游垂直河岸方向偏30° 24 3 s 180 m1.解这类问题的关键是:正确区分分运动和合运动. 2.运动分解的基本方法:按实际运动效果分解. (1)确定合速度的方向(就是物体的实际运动方向); (2)根据合速度产生的的实际运动效果确定分速度的方向;(3)运用平行四边形定则进行分解.3.小船渡河问题的处理(1)小船渡河问题,无论v船>v水,还是v船<v水,渡河的最短时间均为t min=Lv船(L为河宽).(2)当v船>v水时,船能垂直于河岸渡河,河宽即是最小位移;当v船<v水时,船不能垂直于河岸渡河,但此时仍有最小位移渡河,可利用矢量三角形定则求极值的方法处理.[高考真题]1.(2016·课标卷Ⅰ,18)一质点做匀速直线运动,现对其施加一恒力,且原来作用在质点上的力不发生改变,则()A.质点速度的方向总是与该恒力的方向相同B.质点速度的方向不可能总是与该恒力的方向垂直C.质点加速度的方向总是与该恒力的方向相同D.质点单位时间内速率的变化量总是不变【解析】因为质点原来做匀速直线运动,合外力为0,现在施加一恒力,质点的合力就是这个恒力,所以质点可能做匀变速直线运动,也有可能做匀变速曲线运动,这个过程中加速度不变且一定与该恒力的方向相同,但若做匀变速曲线运动,单位时间内速率的变化量是变化的,故C正确,D错误.若做匀变速曲线运动,则质点速度的方向不会总是与该恒力的方向相同,故A错误;不管做匀变速直线运动,还是做匀变速曲线运动,质点速度的方向不可能总是与该恒力的方向垂直,故B正确.【答案】BC2.(2015·广东卷,14)如图所示,帆板在海面上以速度v朝正西方向运动,帆船以速度v朝正北方向航行,以帆板为参照物()A.帆船朝正东方向航行,速度大小为vB.帆船朝正西方向航行,速度大小为vC.帆船朝南偏东45°方向航行,速度大小为2vD.帆船朝北偏东45°方向航行,速度大小为2v【解析】以帆板为参照物,帆船具有朝正东方向的速度v和朝正北方向的速度v,两速度的合速度大小为2v,方向朝北偏东45°,故选项D正确.【答案】 D3.(2014·四川卷,4)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1【解析】设河岸宽度为d,去程时t1=dv静,回程时,t2=dv2静-v2,又t1t2=k,得v静=v1-k2,B正确.【答案】 B[名校模拟]4.(2018·山东潍坊高三上学期期中)关于曲线运动,下列说法正确的是()A.曲线运动是变速运动B.变速运动一定是曲线运动C.物体保持速率不变沿曲线运动,其加速度为零D.任何做圆周运动物体的加速度都指向圆心【解析】曲线运动是变速运动,但变速运动不一定是曲线运动,例如匀变速直线运动,故A对,B错;匀速圆周运动速率不变,但加速度不为零,C错;只有做匀速圆周运动的物体加速度才指向圆心,D错.【答案】 A5.(2018·山东烟台高三上学期期中)一物体从位于一直角坐标系xOy平面上的O点开始运动,前2 s在y轴方向的v-t图象和x轴方向的s-t图象分别如图甲、乙所示,下列说法正确的是()甲乙A.物体做匀变速直线运动B .物体的初速度为8 m/sC .2 s 末物体的速度大小为4 m/sD .前2 s 内物体的位移大小为8 2 m【解析】 由图象可知,y 轴方向为匀加速运动,x 轴方向为匀速直线运动,故合运动为曲线运动,A 错;物体初速度为4 m/s ,B 错;2 s 末速度v =42+(4×2)2 m/s =4 5 m/s ,C 错;前2 s 内位移x =82+⎝⎛⎭⎫12×4×222 m =82m ,D 对. 【答案】 D6.(2018·山东师大附中高三质检)如图所示,水平面上固定一个与水平面夹角为θ的斜杆A ,另一竖直杆B 以速度v 水平向左做匀速直线运动,则从两杆开始相交到最后分离的过程中,两杆交点P 的速度方向和大小分别为( )A .水平向左,大小为vB .竖直向上,大小为v tan θC .沿A 杆斜向上,大小为v cos θD .沿A 杆斜向上,大小为v cos θ【解析】 两杆的交点P 参与了两个分运动:与B 杆一起以速度v 水平向左的匀速直线运动和沿B 杆竖直向上的匀速运动,交点P 的实际运动方向沿A 杆斜向上,如图所示,则交点P 的速度大小为v P =vcos θ,故C 正确. 【答案】 C课时作业(十) [基础小题练]1.趣味投篮比赛中,运动员站在一个旋转较快的大平台边缘上,相对平台静止,向平台圆心处的球筐内投篮球.则下图各俯视图中篮球可能被投入球筐(图中箭头指向表示投篮方向)的是( )【解析】 当沿圆周切线方向的速度和出手速度的合速度沿球筐方向,球就会被投入球筐.故C 正确,A 、B 、D 错误.【答案】 C2.下列图中实线为河岸,河水的流动方向如图v 的箭头所示,虚线为小船从河岸M 驶向对岸N 的实际航线.则其中可能正确的是( )【解析】 船头垂直于河岸时,船的实际航向应斜向右上方,A 正确,C 错误;船头斜向上游时,船的实际航向可能垂直于河岸,B 正确;船头斜向下游时,船的实际航向一定斜向下游,D 错误.【答案】 AB3.(2018·衡阳联考)如图所示,当汽车静止时,车内乘客看到窗外雨滴沿竖直方向OE 匀速运动.现从t =0时汽车由静止开始做甲、乙两种匀加速启动,甲种状态启动后t 1时刻,乘客看到雨滴从B 处离开车窗,乙种状态启动后t 2时刻,乘客看到雨滴从F 处离开车窗,F 为AB 的中点.则t 1∶t 2为( )A .2∶1B .1∶ 2C .1∶ 3D .1∶(2-1)【解析】 雨滴在竖直方向的分运动为匀速直线运动,其速度大小与水平方向的运动无关,故t 1∶t 2=AB v ∶AFv =2∶1,选项A 正确.【答案】 A4.有甲、乙两只船,它们在静水中航行速度分别为v 1和v 2,现在两船从同一渡口向河对岸开去,已知甲船想用最短时间渡河,乙船想以最短航程渡河,结果两船抵达对岸的地点恰好相同.则甲、乙两船渡河所用时间之比t 1t 2为( )A.v 22v 1B .v 1v 2C.v 22v 21 D .v 21v 22【解析】 当v 1与河岸垂直时,甲船渡河时间最短;乙船船头斜向上游开去,才有可能航程最短,由于甲、乙两只船到达对岸的地点相同(此地点并不在河正对岸),可见乙船在静水中速度v 2比水的流速v 0要小,要满足题意,则如图所示.由图可得t 1t 2=v 2v 1·sin θ①cos θ=v 2v 0②tan θ=v 0v 1③由②③式得v 2v 1=sin θ,将此式代入①式得t 1t 2=v 22v 21.【答案】 C5.自行车转弯时,可近似看成自行车绕某个定点O (图中未画出)做圆周运动,如图所示为自行车转弯时的俯视图,自行车前、后两轮轴A 、B 相距L ,虚线表示两轮转弯的轨迹,前轮所在平面与车身间的夹角θ=30°,此时轮轴B 的速度大小v 2=3 m/s ,则轮轴A 的速度v 1大小为( )A.332 m/sB .2 3 m/s C. 3 m/sD .3 3 m/s【解析】 将两车轴视为杆的两端,杆两端速度沿杆方向的投影大小相等,有v 1cos 30°=v 2,解得v 1=2 3 m/s ,B 正确.【答案】 B6.(2018·山东济南一中上学期期中)如图所示,汽车用跨过定滑轮的轻绳提升物块A .汽车匀速向右运动,在物块A 到达滑轮之前,关于物块A ,下列说法正确的是( )A.将竖直向上做匀速运动B.将处于超重状态C.将处于失重状态D.将竖直向上先加速后减速【解析】v A=v车·cos θ,v车不变,θ减小,v A增大,由T-m A g=ma知T>m A g,物块A处于超重状态,B对.【答案】 B[创新导向练]7.生活科技——曲线运动的条件在飞行中孔明灯的应用春节期间人们放飞孔明灯表达对新年的祝福,如图甲所示,孔明灯在竖直Oy方向做匀加速运动,在水平Ox方向做匀速运动,孔明灯的运动轨迹可能为图乙中的()A.直线OA B.曲线OBC.曲线OC D.曲线OD【解析】孔明灯在竖直Oy方向做匀加速运动,则合外力沿Oy方向,在水平Ox方向做匀速运动,此方向上合力为零,所以合运动的加速度方向沿Oy方向,但合速度方向不沿Oy方向,故孔明灯做曲线运动,结合合力指向轨迹内侧可知轨迹可能为曲线OD,故D正确.【答案】 D8.体育运动——足球运动中的力学问题在足球场上罚任意球时,运动员踢出的足球,在行进中绕过“人墙”转弯进入了球门,守门员“望球莫及”,轨迹如图所示.关于足球在这一飞行过程中的受力方向和速度方向,下列说法中正确的是()A .合外力的方向与速度方向在一条直线上B .合外力的方向沿轨迹切线方向,速度方向指向轨迹内侧C .合外力方向指向轨迹内侧,速度方向沿轨迹切线方向D .合外力方向指向轨迹外侧,速度方向沿轨迹切线方向【解析】 足球做曲线运动,则其速度方向为轨迹的切线方向,根据物体做曲线运动的条件可知,合外力的方向一定指向轨迹的内侧,故C 正确.【答案】 C9.生活科技——教具中的运动合成与分解的原理如图所示为竖直黑板,下边为黑板的水平槽,现有一三角板ABC ,∠C =30°.三角板上A 处固定一大小不计的滑轮.现让三角板竖直紧靠黑板,BC 边与黑板的水平槽重合,将一细线一端固定在黑板上与A 等高的Q 点,另一端系一粉笔头(可视为质点).粉笔头最初与C 重合,且细线绷紧.现用一水平向左的力推动三角板向左移动,保证粉笔头紧靠黑板的同时,紧靠三角板的AC 边,当三角板向左移动的过程中,粉笔头会在黑板上留下一条印迹.关于此印迹,以下说法正确的是( )A .若匀速推动三角板,印迹为一条直线B .若匀加速推动三角板,印迹为一条曲线C .若变加速推动三角板,印迹为一条曲线D .无论如何推动三角板,印迹均为直线,且印迹与AC 边成75°角 【解析】在三角板向左移动的过程中,粉笔头沿AC 边向上运动,且相对于黑板水平方向向左运动,由于两个分运动的速度始终相等,故粉笔头的印迹为一条直线,如图中CD 所示,A 正确,B 、C 错误;根据图中的几何关系可得,∠ACD =∠ADC =180°-30°2=75°,D 正确.【答案】 AD10.科技前沿——做曲线运动的波音737飞机如图所示,从广州飞往上海的波音737航班上午10点到达上海浦东机场,若飞机在降落过程中的水平分速度为60 m/s ,竖直分速度为6 m/s ,已知飞机在水平方向做加速度大小等于2 m/s 2的匀减速直线运动,在竖直方向做加速度大小等于0.2 m/s 2的匀减速直线运动,则飞机落地之前( )A .飞机的运动轨迹为曲线B .经20 s 飞机水平方向的分速度与竖直方向的分速度大小相等C .在第20 s 内,飞机在水平方向的分位移与竖直方向的分位移大小相等D .飞机在第20 s 内,水平方向的平均速度为21 m/s【解析】 由于合初速度的方向与合加速度的方向相反,故飞机的运动轨迹为直线,A 错误;由匀减速运动规律可知,飞机在第20 s 末的水平分速度为20 m/s ,竖直方向的分速度为2 m/s ,B 错误;飞机在第20 s 内,水平位移x =⎝⎛⎭⎫v 0x t 20+12a x t 220-⎝⎛⎭⎫v 0x t 19+12a x t 219=21 m ,竖直位移y =⎝⎛⎭⎫v 0y t 20+12a y t 220-⎝⎛⎭⎫v 0y t 19+12a y t 219=2.1 m ,C 错误.飞机在第20 s 内,水平方向的平均速度为21 m/s ,D 正确.【答案】 D[综合提升练]11.如图甲所示,质量m =2.0 kg 的物体在水平外力的作用下在水平面上运动,已知物体沿x 方向和y 方向的x -t 图象和v y -t 图象如图乙、丙所示,t =0时刻,物体位于原点O .g 取10 m/s 2.根据以上条件,求:(1)t =10 s 时刻物体的位置坐标; (2)t =10 s 时刻物体的速度大小.【解析】 (1)由图可知坐标与时间的关系为: 在x 轴方向上:x =3.0t m ,在y 轴方向上:y =0.2t 2 m 代入时间t =10 s ,可得:x =3.0×10 m =30 m ,y =0.2×102 m =20 m 即t =10 s 时刻物体的位置坐标为(30 m,20 m).(2)在x 轴方向上:v 0=3.0 m/s当t =10 s 时,v y =at =0.4×10 m/s =4.0 m/sv =v 20+v 2y = 3.02+4.02m/s =5.0 m/s【答案】 (1)(30 m,20 m) (2)5.0 m/s12.如图所示,在竖直平面内的xOy 坐标系中,Oy 竖直向上,Ox 水平向右.设平面内存在沿x 轴正方向的恒定风力.一小球从坐标原点沿Oy 方向竖直向上抛出,初速度为v 0=4 m/s ,不计空气阻力,到达最高点的位置如图中M 点所示(坐标格为正方形,g =10 m/s 2)求:(1)小球在M 点的速度v 1;(2)在图中定性画出小球的运动轨迹并标出小球落回x 轴时的位置N ;(3)小球到达N 点的速度v 2的大小.【解析】 (1)设正方形的边长为x 0.竖直方向做竖直上抛运动,有v 0=gt 1,2x 0=v 02t 1 水平方向做匀加速直线运动,有3x 0=v 12t 1. 解得v 1=6 m/s.(2)由竖直方向的对称性可知,小球再经过t 1到x 轴,水平方向做初速度为零的匀加速直线运动,所以回到x 轴时落到x =12处,位置N 的坐标为(12,0).(3)到N 点时竖直分速度大小为v 0=4 m/s水平分速度v x =a 水平t N =2v 1=12 m/s ,故v 2=v 20+v 2x =410 m/s.【答案】 (1)6 m/s (2)见解析图 (3)410 m/s。

小船过河问题的总结

小船过河问题的总结

曲线运动习题课一、船过河模型1、处理方法:小船在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)与船相对水的运动,即在静水中的船的运动(就就是船头指向的方向),船的实际运动就是合运动。

2、若小船要垂直于河岸过河,过河路径最短,应将船头偏向上游,如图甲所示,此时过河时间:3、若使小船过河的时间最短,应使船头正对河岸行驶,如图乙所示,此时过河时间(d为河宽)。

因为在垂直于河岸方向上,位移就是一定的,船头按这样的方向,在垂直于河岸方向上的速度最大。

二、绳端问题(绳子末端速度分解)绳子末端运动速度的分解,按运动的实际效果进行可以方便我们的研究。

例如在右图中,用绳子通过定滑轮拉物体船,当以速度v匀速拉绳子时,求船的速度。

解析:船的运动(即绳的末端的运动)可瞧作两个分运动的合成:a)沿绳的方向被牵引,绳长缩短,绳长缩短的速度等于左端绳子伸长的速度。

即为v;b)垂直于绳以定滑轮为圆心的摆动,它不改变绳长。

这样就可以求得船的速度为, 当船向左移动,α将逐渐变大,船速逐渐变大。

虽然匀速拉绳子,但物体A却在做变速运动。

绳子末端速度的分解问题,就是本章的一个难点,同学们在分解时,往往搞不清哪一个就是合速度,哪一个就是分速度。

以至解题失败。

下面结合例题讨论一下。

例1、如图1所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳速度大小为v1,当船头的绳索与水平面夹角为θ时,船的速度多大?解析我们所研究的运动合成问题,都就是同一物体同时参与的两个分运动的合成问题,而物体相对于给定参照物(一般为地面)的实际运动就是合运动,实际运动的方向就就是合运动的方向。

本例中,船的实际运动就是水平运动,它产生的实际效果可以A点为例说明:一就是A点沿绳的收缩方向的运动,二就是A点绕O 点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v1与垂直于绳的速度v2,如图1所示。

由图可知:v=v1/cosθ点评不论就是力的分解还就是速度的分解,都要按照它的实际效果进行。

2023年高考物理---《小船渡河模型》基础知识梳理与例题讲解

2023年高考物理---《小船渡河模型》基础知识梳理与例题讲解

2023年高考物理---《小船渡河模型》基础知识梳理与例题讲解基础知识梳理1.合运动与分运动合运动→船的实际运动v 合→平行四边形对角线2.两类问题、三种情景渡河时间最短当船头方向垂直河岸时,渡河时间最短,最短时间t min =d v 船渡河位移最短如果v 船>v 水,当船头方向与上游河岸夹角θ满足v 船cos θ=v 水时,合速度垂直河岸,渡河位移最短,等于河宽d如果v 船<v 水,当船头方向(即v 船方向)与合速度方向垂直时,渡河位移最短,等于d v 水v 船例2 一小船渡河,河宽d =180 m ,水流速度v 1=2.5 m/s.若船在静水中的速度为v 2=5 m/s ,求:(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少? (2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?答案 (1)船头垂直于河岸 36 s 90 5 m (2)船头朝上游与垂直河岸方向成30°角 24 3 s 180 m解析 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图甲所示.合速度为倾斜方向,垂直分速度为v 2=5 m/s ,t =d v 2=36 s ,v =v 12+v 22=525 m/s ,x =v t =90 5 m.(2)欲使船渡河航程最短,合速度应垂直河岸渡河,船头应朝上游与垂直河岸方向成某一夹角α,如图乙所示,有v2sin α=v1,得α=30°,所以当船头向上游与垂直河岸方向成30°角时航程最短,x′=d=180 m,t′=dv2cos 30°=24 3 s.例题讲解1、(水速不变)(2020·广东惠州一中模拟)河水速度与河岸平行,v的大小保持不变,小船相对静水的速度为v0.一小船从A点出发,船头与河岸的夹角始终保持不变,如图5所示,B为A的正对岸,河宽为d,则()图5A.小船不可能到达B点B.小船渡河时间一定等于dv0C.小船一定做匀速直线运动D.小船到达对岸的速度一定大于v0答案 C解析当船的合速度垂直河岸时,即沿着AB方向,则小船能到达B点,A错误;船过河时,船头斜指向上游,垂直于河岸的分速度小于v0,那么渡河时间一定大于d v,B错误;由于两方向均是匀速直线运动,因此合运动也必定是匀速直线运动,C正确;根据速度的合成法则,小船到达对岸的速度不一定大于v0,D错误.2、(水速变化)如图6所示,河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x,v水与x的关系为v水=3400x (m/s)(x的单位为m),让小船船头垂直河岸由南向北渡河,小船划水速度大小恒为v船=4 m/s,则下列说法中正确的是()图6A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船在距南岸200 m处的速度小于在距北岸200 m处的速度D.小船渡河的时间是160 s答案 B解析小船在南北方向上为匀速直线运动,在东西方向上先加速,到达河中间后再减速,速度方向与加速度方向不共线,小船的合运动是曲线运动,A错.当小船运动到河中间时,东西方向上的分速度最大,为3 m/s,此时小船的合速度最大,最大值v m=5 m/s,B对.小船在距南岸200 m处的速度与在距北岸200 m处的速度大小相等,C错.小船的渡河时间t=800 m=200 s,D错.4 m/s本课结束。

高考物理二轮复习课件:小船渡河模型

高考物理二轮复习课件:小船渡河模型

【解析】选B。水流速度和船速的合速度方向沿虚线方向,水流速度变大,船速 也应变大,河宽不变,过河时间变短,B项正确。
【加固训练】
小船横渡一条河,小船本身提供的速度大小和方向都不变,已知小船的运动轨
迹如图所示,则河水的流速
()
A.越接近B岸越大
B.越接近B岸越小
C.由A岸到B岸先增大后减小
D.恒定
vmin=v1cosθ=3×0.8 m/s=2.4 m/s。 答案:(1)5 m/s (2)2.4 m/s
【精练题组通关】
1.某船要渡过60 m宽的河,船渡河的最短时间是12 s;若船沿垂直河岸的直线
到达正对岸,渡河时间是15 s,则船在静水中的速率v1及河水的流速v2分别为 ()
A.v1=5 m/s v2=4 m/s C.v1=4 m/s v2=5 m/s
v d v 答案:(1)5 m/s (2)2. 1 v s in v d 答案:(1)5 m/s (2)2. 2
2

1
(1)正确区分分运动和合运动,船的航行方向也就是船头指向,是分运动。
水流速度和船速的合速度方向沿虚线方向,水流速度变大,船速也应变大,河宽不变,过河时间变短,B项正确。
小船横渡一条河,小船本身提供的速度大小和方向都不变,已知小船的运动轨迹如图所示,则河水的流速
A.加速度大小为 F 3 的匀变速直线运动
m
B.加速度大小为 2 F 3 的匀变速直线运动
m
C.加速度大小为 F 3 的匀变速曲线运动
m
D.匀速直线运动
【解析】选B。物体在F1、F2、F3三个共点力作用下做匀速直线运动,必有F3与 F1、F2的合力等大反向,当F3大小不变,方向改变90°时,F1、F2的合力大小仍为 F3,方向与改变方向后的F3夹角为90°,故F合= 2F3,加速度 a F合 2F3,但因

科学思维系列——小船渡河模型

科学思维系列——小船渡河模型

核心素养提升微课堂科学思维系列——小船渡河模型一、三个速度v船(船在静水中的速度)、v水(水流速度)、v合(船的实际速度).二、两个问题1.渡河时间(1)船头与河岸成α角时,渡河时间为t=dv船sin α(d为河宽).(2)船头正对河岸时,渡河时间最短,t min=dv船(d为河宽).2.最短航程(1)若v水<v船,则当合速度v合垂直于河岸时,航程最短,xmin=d.船头指向上游与河岸的夹角α满足cos α=v水v船.如图①所示.(2)若v水>v船,则合速度不可能垂直于河岸,无法垂直渡河.如图②所示,以v水矢量的末端为圆心、以v船矢量的大小为半径画弧,从v水矢量的始端向圆弧作切线,则合速度沿此切线方向时航程最短,由图可知船头指向上游与河岸的夹角α满足cos α=v船v水,最短航程x min=dcos α=v水v船d.【典例】某条河宽度为700 m,河水均匀流动,流速为2 m/s.若小船在静水中的运动速度为4 m/s,则小船的船头向哪个方向行驶才能恰好到达河的正对岸?渡河时间为多少?【解析】 如图所示,小船实际的运动是垂直于河流方向的运动,可以将小船实际的运动看做小船斜向上游方向和沿水流方向两个分运动的合运动.由图可见sin α=v 2v 1=24=0.5,α=30° 即小船应朝向上游行驶,船头指向与河岸成60 °夹角.由图还可以得到合速度的大小为v =v 21-v 22=42-22 m/s ≈3.5 m/s渡河时间为t =x v =7003.5 s =200 s. [拓展] 在【典例】中,若小船行驶的过程中始终保持小船船头的指向垂直于河岸(如图所示),则渡河的时间是多少?小船到达对岸时向下游偏移了多少?解析:若行驶的过程中始终保持小船船头的指向垂直于河岸,则渡河的时间为t ′=x v 1=7004 s =175 s. 小船到达对岸时向下游偏移了x ′=v 2t ′=2×175 m =350 m.答案:175 s 350 m解题通法小船渡河问题的分析要点(1)区别三个速度:水流速度v 水、船在静水中的速度v 船、船的实际速度(即船的合速度)v合.(2)分清两种情况:①渡河位移最短:船的实际速度(即船的合速度)与河岸垂直,最短位移为河宽d.②渡河时间最短:船头垂直于河岸,最短时间t min=dv船.变式训练1已知河水的流速为v1,小船在静水中的速度为v2,且v2>v1,下面用小箭头表示小船船头的指向,则下图中能正确反映小船用最短时间渡河、最小位移渡河的情境分别是()A.①②B.①⑤C.④⑤D.②③解析:船的实际速度是v1和v2的合速度,v1与河岸平行,对渡河时间没有影响,所以v2与河岸垂直(即船头指向对岸)时,渡河时间最短,为t min=d v2,式中d为河宽,此时合速度与河岸成一定夹角,船的实际路线应如④所示;由v2>v1知,最小位移即为d,应使合速度垂直河岸,则v2应指向河岸上游,实际路线如⑤所示,综合可得选项C正确.答案:C变式训练2[2019·福州检测]小船要渡过200 m 宽的河面,水流速度是4 m/s,船在静水中的航速是5 m/s,则下列判断正确的是()A.要使小船过河的位移最短,过河所需的时间是50 sB.要使小船过河的位移最短,船头应始终正对着对岸C.小船过河所需的最短时间是40 sD.如果水流速度增大为6 m/s,小船过河所需的最短时间将增大解析:要使小船过河的位移最短,小船的船头应斜向上游,使小船与水的合速度与河岸垂直,这时合速度v合=v2船-v2水=3 m/s,船过河所需的时间t=dv合=2003s,A、B错误;若使船以最短时间渡河,船头必须垂直河岸过河,过河时间t min=dv船=2005s=40 s,C正确;小船过河所需的最短时间与水流速度的大小无关,D错误.答案:C变式训练3一快艇从离岸边100 m远的河流中央向岸边行驶.已知快艇在静水中的速度图像如图甲所示;河中各处水流速度相同,且速度图像如图乙所示.则()A.快艇的运动轨迹一定为直线B.快艇的运动轨迹可能为直线,也可能为曲线C.快艇最快到达岸边,所用的时间为20 sD.快艇最快到达岸边,经过的位移为100 m解析:快艇的轨迹一定为曲线运动,A、B两个选项错误,要使得到达河岸的时间最短,则v船应垂直于河岸,s=12at2,解得t=20 s,C选项正确;快艇最快到达岸边,位移必定大于10 0 m.答案:C变式训练4河水由西向东流,河宽为800 m,河中各点的水流速度大小为v水,各点到较近河岸的距离为x,v水与x的关系为v水=3400x(m/s),让小船船头垂直河岸由南向北渡河,小船在静水中的速度大小恒为v船=4 m/s,则下列说法中正确的是()A.小船渡河的轨迹为直线B.小船在河水中的最大速度是5 m/sC.小船在距离南岸200 m处的速度大小小于它在距北岸2 00 m处的速度大小D.小船渡河的时间是160 s解析:水流的速度与其到较近河岸的距离有关,小船垂直河岸的速度恒定,则小船在沿河岸方向做变速运动,在垂直河岸方向做匀速运动,则小船的合运动为曲线运动,选项A错误;根据v水=3400x(m/s)得,小船在河中央时水流速度最大,即为v水=3 m/s,故小船的最大速度v=v2船+v2水=5 m/s,选项B正确;无论小船是在距南岸200 m处还是在距北岸200 m处,水速均为v′水=1.5 m/s,则小船的合速度大小相等,选项C错误;小船渡河的时间t=dv船=200 s,选项D错误.答案:B变式训练5如图所示,河宽d=120 m,设小船在静水中的速度为v1,河水的流速为v2.小船从A点出发,在渡河时,船身保持平行移动.第一次出发时船头指向河对岸上游的B点,经过10 min,小船恰好到达河正对岸的C点;第二次出发时船头指向河正对岸的C点,经过8 min,小船到达C点下游的D点,求:(1)小船在静水中的速度v1的大小;(2)河水的流速v2的大小;(3)在第二次渡河时小船被冲向下游的距离s CD.解析:(1)小船从A点出发,若船头指向河正对岸的C点,则此时v1方向的位移为d,故有v1=dt min =12060×8m/s=0.25 m/s.。

中学物理“小船渡河”模型详解

中学物理“小船渡河”模型详解

中学物理“小船渡河”模型详解“小船渡河”模型是“运动的合成与分解”板块中一个重要的模型,主要考察的方面有三个:运动合成与分解的“正交分解法”处理一般问题;合运动与分运动的等效性、独立性和等时性;运动合成与分解的“三角形定则”处理动态分析与极值问题。

1、基本概念(1)船的实际运动:水流的运动和船相对静水的运动的合运动.(2)三种速度:船在静水中的速度:V船;水的流速:V水;船的实际航速:V;2、正交分解法小船渡河,其目的是研究实际运动。

直接矢量合成并不能解决问题,可以先正交分解再合成。

(沿河岸方向和垂直河岸方向建立直角坐标系)x轴方向:Vx=V船· cosθ-V水Sx=Vx · ty轴方向:Vy=V船 ·sinθSy=Vy · t船的实际运动:3、渡河时间船在X轴方向运动没有限制条件,在Y轴有限制条件。

根据运动的独立性与等时性,决定运动时间的是Y轴的分运动。

最短渡河时间:当θ等于90°时,sinθ=1,为最大值。

即船头垂直河岸渡河时,用时最短。

(最短渡河时间示意图)4、渡河位移在X轴方向的运动:Vx=V船· cosθ-V水Vx>0,表示船向上游运动Vx<0,表示船向下游运动最短渡河位移:(1)V船>V水,调整船头方向,存在Vx>0,Vx=0,Vx<0三种情况,即船可向上游、对岸、下游运动。

根据数学知识:点到直线,垂线段最短。

最短位移为运动到河正对岸,即为河宽d。

最短位移:Smin=d。

(V船>V水,最短渡河位移示意图)(2)V船<V水,无论如何调整船头方向,只存在Vx<0一种情况,即船只能向下游运动,无法到达河对岸。

此时,只能采用合成与分解的“三角形定则”。

水速与船速矢量首尾连接,即为船的实际航速。

随着船头方向不断变化,航向也会不断变化。

越靠近河正对岸,位移越短。

不断调整船头指向,当船速与实际运动速度垂直时,位移最小。

小船渡河数学模型

小船渡河数学模型

小船过河数学模型1.问题及背景一只小船度过宽度为d的河流,目标是起点A正对着的另一岸的B点。

建立小船渡河航线模型,并分析研究小船的渡河航行时间。

2.问题假设和分析假设河水流速v1与船在静水中的速度v2之比为K。

在小船渡河问题中,我们假设选地面为参考系,小船将会涉及到两个分运动:一个是与小船的动力装置有关、与船头同向的小船在静水中的速度方向的运动;另一个是受水流作用使得小船具有速度方向的运动。

3.模型建立以B为坐标原点,BA所在的线段为x轴的正半轴建立如图一所示的坐标系。

设小船航迹为y=y(x),由运动力学知,小船实际速度v=v1+v2,设小船与B点连线与x轴正方向夹角为θ,则V=﹣iv2cosθ﹢j(v1﹣v2sinθ) 即dx dt=﹣v2cos θ,dydt=v1﹣v2sin θ设小船t 时刻位于点〔x ,y 〕处,显然有cos θ=x (x 2+y 2)1/2,sin θ=y (x 2+y 2)1/2即dx dt=﹣v2x (x 2+y 2)1/2,dy dt=v1﹣v2y (x 2+y 2)1/2所以dy dx =dydtdxdt = (v1﹣v2y (x 2+y 2)1/2)/(﹣v2x (x 2+y 2)1/2)于是初值问题(x 2+y 2)1/2dy dx=﹣k(x 2+y 2)1/2x﹢yx, 0<x<dy(d)=0即为小船航迹应满足的数学模型,它是一阶齐次微分方程。

4. 模型求解假设d=100m ,v1=1m/s ,v2=2m/s令yx=u ,则y=ux ,dydx=x dudx﹢u ,把它们带入初值问题,整理,得x dudx=﹣k(1﹢u 2)1/2对上式别离变量并积分,得arshu=ln(u ﹢(1﹢u 2)1/2)=﹣k(lnx ﹢lnC)带入初始条件x=d ,u=0,得C=1d ,所以ln(u ﹢(1﹢u 2)1/2)=﹣kln x d=ln(xd)﹣k从而u=sh(ln(xd)﹣k)= 12[(xd)﹣k﹣(xd)k]带入u=yx,得y=x 2[(xd)﹣k﹣(xd)k]= d 2[(xd)1﹣k﹣(xd)1+k],0≦x ≦d5. 结果分析小船航线的参数方程为dx dt =﹣2x (x 2+y 2)1/2, x(0)=d dy dt=1﹣2y(x 2+y 2)1/2, y(0)=0由Matlab 求解数值和画图, Matlab 程序如下:通过数值解求出小船渡河的时间为6.参考文献。

小船过河模型知识点总结

小船过河模型知识点总结

小船过河模型知识点总结1. 基本问题描述小船过河模型的基本问题描述为:有四个人(或其他物品)和一条小船,他们需要过河,但小船只能搭载一两个人。

且有一些限制条件需要满足,比如船的容量,人的行动速度等。

目标是找到一种最短的方案,使得四个人都安全地过河。

2. 图论小船过河模型可以转化为图论问题。

将小船从一个岸边到另一个岸边看作是一条边,两个岸边上的状态看作是图的节点。

在这个图中,我们需要考虑如何在满足各种限制条件的情况下找到一条从初始节点到目标节点的最短路径。

3. 递归与回溯解决小船过河模型的一个常见方法是使用递归与回溯。

我们可以将问题分解为每一步小船搭载一两个人的情况,然后递归地搜索所有可能的组合。

在搜索过程中,我们需要考虑限制条件,比如小船的容量、每个人的行动速度等。

如果某种组合满足了所有条件,我们就可以继续搜索下一步;否则,就需要回溯到上一步,更换其他组合继续尝试。

4. 状态空间搜索我们还可以使用状态空间搜索来解决小船过河模型。

在状态空间搜索中,我们将问题的每个可能状态都看作一个节点,然后使用搜索算法(比如A*算法)来寻找最优路径。

在搜索过程中,我们需要考虑如何表示节点的状态、如何评估节点的代价等问题。

5. 问题变体除了基本的小船过河模型,还有很多与之相关的变体问题,比如增加更多的人或更多的限制条件等。

对于这些变体问题,我们可以根据基本的解题思路进行变换和扩展,来解决更加复杂的情况。

总结:小船过河模型涉及到了图论、递归与回溯、状态空间搜索等多个数学概念。

解决这类问题需要我们充分理解问题的本质,合理地建模和表示问题,并选择合适的解题方法。

希望本文的总结对您的学习和研究有所帮助。

人教高中物理 必修二 5.1 小船渡河模型(含答案)

人教高中物理 必修二  5.1 小船渡河模型(含答案)

运动的合成与分解实例——小船渡河模型一、基础知识(一)小船渡河问题分析(1)船的实际运动是水流的运动和船相对静水的运动的合运动.(2)三种速度:v 1(船在静水中的速度)、v 2(水流速度)、v (船的实际速度). (3)三种情景①过河时间最短:船头正对河岸时,渡河时间最短,t 短=dv 1(d 为河宽).②过河路径最短(v 2<v 1时):合速度垂直于河岸时,航程最短,s 短=d .船头指向上游与河岸夹角为α,cos α=v 2v 1.③过河路径最短(v 2>v 1时):合速度不可能垂直于河岸,无法 垂直渡河.确定方法如下:如图所示,以v 2矢量末端为圆心,以v 1矢量的大小为半径画弧,从v 2矢量的始端向圆弧作切线,则合速度沿此切线方向航程最短.由图可知:cos α=v 1v 2,最短航程:s 短=dcos α=v 2v 1d .(二)求解小船渡河问题的方法求解小船渡河问题有两类:一是求最短渡河时间,二是求最短渡河位移. 无论哪类都必须明确以下四点:(1)解决这类问题的关键是:正确区分分运动和合运动,船的航行方向也就是 船头指向,是分运动.船的运动方向也就是船的实际运动方向,是合运动, 一般情况下与船头指向不一致.(2)运动分解的基本方法,按实际效果分解,一般用平行四边形定则按水流 方向和船头指向分解.(3)渡河时间只与垂直河岸的船的分速度有关,与水流速度无关.(4)求最短渡河位移时,根据船速v 船与水流速度v 水的大小情况用三角形法 则求极限的方法处理.二、练习1、一小船渡河,河宽d =180 m ,水流速度v 1=2.5 m /s.若船在静水中的速度为v 2=5 m/s ,则:(1)欲使船在最短时间内渡河,船头应朝什么方向?用多长时间?位移是多少? (2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少? 解析 (1)欲使船在最短时间内渡河,船头应朝垂直河岸方向.当船头垂直河岸时,如图所示.合速度为倾斜方向,垂直分速度为v 2=5 m/s. t =d v 2=1805 s =36 s v =v 21+v 22=525 m/s x =v t =90 5 m(2)欲使船渡河的航程最短,应垂直河岸渡河,船头应朝上游与垂直 河岸方向成某一夹角α,如图所示. 有v 2sin α=v 1, 得α=30°所以当船头向上游偏30°时航程最短. x ′=d =180 m.t ′=d v 2cos 30°=180523 s =24 3 s答案 (1)垂直河岸方向 36 s 90 5 m (2)向上游偏30° 24 3 s 180 m 2、一条船要在最短时间内渡过宽为100 m 的河,已知河水的流速v 1与船离河岸的距离x 变化的关系如图甲所示,船在静水中的速度v 2与时间t 的关系如图乙所示,则以下判断中正确的是( )A .船渡河的最短时间是25 sB .船运动的轨迹可能是直线C .船在河水中的加速度大小为0.4 m/s 2D .船在河水中的最大速度是5 m/s 答案 C 解析 船在行驶过程中,船头始终与河岸垂直时渡河时间最短,即t =1005 s =20 s ,A 错误;由于水流速度变化,所以合速度变化,船头始终与河岸垂直时,运动的轨迹不可能是直线,B 错误;船在最短时间内渡河t =20 s ,则船运动到河的中央时所用时间为10 s ,水的流速在x =0到x =50 m 之间均匀增加,则a 1=4-010 m /s 2=0.4 m/s 2,同理x =50 m到x =100 m 之间a 2=0-410 m /s 2=-0.4 m/s 2,则船在河水中的加速度大小为0.4 m/s 2,C 正确;船在河水中的最大速度为v =52+42 m/s =41 m/s ,D 错误.3、如5所示,河水流速与距出发点垂直距离的关系如图甲所示,船在静水中的速度与时间的关系如图乙所示,若要使船以最短时间渡河,则( )A .船渡河的最短时间是60 sB .船在行驶过程中,船头始终与河岸垂直C .船航行的轨迹是一条直线D .船的最大速度是5 m/s 答案 BD解析 当船头指向垂直于河岸时,船的渡河时间最短,其时间t =d v 2=3003 s =100 s ,A错,B 对.因河水流速不均匀,所以船在河水中的航线是一条曲线,当船行驶至河中央时,船速最大,最大速度v =42+32 m /s =5 m/s ,C 错,D 对.4、(2011·江苏·3)如图所示,甲、乙两同学从河中O 点出发,分别沿直线游到A 点和B 点后,立即沿原路线返回到O 点,OA 、OB 分别与水流方向平行和垂直,且OA =OB .若水流速度不变,两人在静水中游速相等,则他们所用时间t 甲、t 乙的大小关系为 ( ) A .t 甲<t 乙 B .t 甲=t 乙C .t 甲>t 乙D .无法确定 答案 C解析 设两人在静水中游速为v 0,水速为v ,则 t 甲=x OA v 0+v +x OAv 0-v =2v 0x OA v 20-v2 t 乙=2x OB v 20-v 2=2x OAv 20-v 2<2v 0x OAv 20-v 2 故A 、B 、D 错,C 对.5、甲、乙两船在同一条河流中同时开始渡河,河宽为H ,河水流速为v 0,划船速度均为v ,出发时两船相距233H ,甲、乙两船船头均与河岸成60°角,如图所示.已知乙船恰好能垂直到达对岸A 点,则下列判断正确的是( )A .甲、乙两船到达对岸的时间不同B .v =2v 0C .两船可能在未到达对岸前相遇D .甲船也在A 点靠岸 答案 BD解析 渡河时间均为Hv sin 60°,乙能垂直于河岸渡河,对乙船由v cos 60°=v 0得v =2v 0,甲船在该时间内沿水流方向的位移为(v cos 60°+v 0)H v sin 60°=233H ,刚好到达A 点,综上所述,A 、C 错误,B 、D 正确.6、一快艇要从岸边某处到达河中离岸100 m 远的浮标处,已知快艇在静水中的速度图象如图甲所示,流水的速度图象如图乙所示,假设行驶中快艇在静水中航行的分速度方向选定后就不再改变,则( )A .快艇的运动轨迹可能是直线B .快艇的运动轨迹只能是曲线C .最快到达浮标处通过的位移为100 mD .最快到达浮标处所用时间为20 s 解析 快艇的实际速度为快艇在静水中的速度与水速的合速度.由图象可知快艇在静水中为匀加速直线运动,水为匀速直线运动,两速度不在同一条直线上,故快艇必做曲线运动,A 错误,B 正确;当快艇与河岸垂直时,到达浮标处时间最短,而此时快艇做曲线运动,故位移大于100 m ,C 错误;由题图甲可知快艇的加速度为a =ΔvΔt =0.5 m/s 2,最短位移为x =100 m ,对快艇由x =12at 2得:t =2x a= 2×1000.5s =20 s ,即最快到达浮标处所用时间为20 s ,D 正确. 答案 BD。

4过河问题

4过河问题

两种典型的运动模型(1)小船过河模型①三个速度:v船(船在静水中的速度)、v水(水流速度)、v合(船的实际速度)。

②两个问题:a.过河时间1)船头与河岸成α角时,过河时间为t=dv船sinα(d为河宽)。

2)船头正对河岸时,过河时间最短,t min=dv船(d为河宽)。

b.最短航程1)若v水<v船,则当合速度v合垂直于河岸时,航程最短,x min=d。

船头指向上游与河岸的夹角α满足cosα=v水v船。

如图①所示。

2)若v水>v船,则合速度不可能垂直于河岸,无法垂直过河。

如图②所示,以v水矢量的末端为圆心、以v船矢量的大小为半径画弧,从v水矢量的始端向圆弧作切线,则合速度沿此切线方向时航程最短,由图②可知船头指向上游与河岸的夹角α满足cosα=v船v水,最短航程x min=dcosα=v水v船d。

例题讲解过河问题一小船过河,河宽d=180 m,水流速度v1=2.5 m/s,船在静水中的速度为v2=5 m/s,则:(1)欲使船在最短的时间内过河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船过河的航程最短,船头应朝什么方向?用多长时间?位移是多少?(3)如果其他条件不变,水流速度变为6 m/s。

船过河的最短时间和最小位移是多少?[规范解答](1)欲使船在最短时间内过河,船头应朝垂直河岸方向。

当船头垂直河岸时,如图甲所示。

时间t=d v2=1805s=36 s,v合=v21+v22=552m/s,位移为x=v合t=90 5m。

(2)欲使船过河航程最短,应使合运动的速度方向垂直河岸,船头应朝上游与河岸成某一夹角β,如图乙所示,有v2cosβ=v1,得β=60°。

最小位移为x min=d=180 m,所用时间t′=dv合′=dv2sinβ=180532s=24 3 s。

(3)最短过河时间只与v2有关,与v1无关,当船头垂直于河岸过河时时间最短,t=d v2=36 s。

当水流速度变为6 m/s时,即v1>v2,则合速度不可能垂直于河岸,无法垂直过河。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
则河宽即为最短路程。
要使小船能够垂直过河,
则需满足
d v2 v o v1
因为
只有
时,小船才能垂直过河。
其过河最短时间为
一、小船渡河时间最短
结论:当船头垂直河岸时,渡河时间最短,其与水流 速度无关,其值为
二、小船过河最短路程
1.当有
时,小船能够垂直过河,其所用时间为
如果 ,小船渡河时向下游漂流的距离是多少呢?
方法二: 将船对水的 速度沿平行于河岸和垂直 河岸方向正交分解。
注意:船的实际运动 v(相对于河岸的运动)
——是合运动。
方法技巧
1. 处理方法 小船在有一定流速的水中过河时,实际上参与了两个方向的分 运动,船的实际运动是两个运动的合运动. 2. 两种情景
(1)渡河时间最短:若使小船过河的时间最短,应使船头正对河岸行 驶,如图所示,此时过河时间 t=vd1 (d 为河宽).
一、小船渡河时间最短
结论:当船头垂直河岸时,渡河时间最短,其与水流速度无 关,其值为
二、小船过河最短路程
1.当有
时,小船能够垂直过河,其所用时间为
如果 ,小船渡河时向下游漂流的距离是多少呢?
分析:当
时,小船不能垂直过河,其
最短路程的求法为:
以 的末端为圆心,以 的大小
为半径,做一圆,小船合速度
的方向与该圆相切。
d
由几何关系有,
v2
o
xm in v1
一、小船渡河时间最短
结论:当船头垂直河岸时,渡河时间最短,其与水流速度无 关,其值为
二、小船过河最短路程
1.当有
时,小船能够垂直过河,其所用时间为
v v 2.当有 1 时2 ,小船渡河向下漂流的最短距离为
v v 2.当有 1 2 时,小船渡河向下漂流的最短距离为
问题1:一条小河宽为 ,水流速度为 。一只小船在静水中的
速度为 。请问小船怎样渡河时间最短?
分析:如图所示,小船的运动可以看成一
个 方向和一个沿 的两个分运动
的合成。
设 与河岸上游的夹角为
d
在 方向有
v2
o
v1

时, 有最小值。
一、小船渡河时间最短
(2)小船渡河路径最短(v1>v2):小船垂直河岸过河航程最短,最 短航程为 d;若小船要垂直于河岸过河,应将船头偏向上游,如 图所示,此时过河时间 t=vd合=v1sdin θ.
问题1:一 水条中小的河速宽度为为dv,2。水请流问速小度船为怎v样1。渡一河只时小间船最在短静?
分析:如图所示,小船的运动可以看
小船过河模型
有一天,一位老人背上扛着一袋米,左手拿 着一只鸡,右手牵着一只狐狸。他来到了一条 小河边。
老人的家就在河的那边,可是 河上却没有桥,只有一只小船停 靠在岸边……
除人之外,你每次只 带两样东西过河。
如何过去呢?
一、小船渡河问题的分析方法
◆.小船渡河问题的分析方法:
方法一:小船在有一定流速的水中渡河时,将 船渡河的运动看作参与两个方向的分运动,即随水 以速度 v水 漂流的运动和以速度 v船 相对于静水的 划行运动,这两个分运动互不干扰具有等时性。
结论:当船头垂直河岸时,渡河时间最短,其与水流速度无 关,其值为
问题2:一条小河宽为 ,水流速度为 。一只小船在静水中的
速度为 。请问小船怎样渡河路程最短?
分析:如果小船能够垂直过河,则
河宽即为最短路程。
要使小船能够垂直过河,则
需满足
d v2 v
o v1
因为
只有
时,小船才能垂直过河。
其过河最短时间为
分析:当
时,小船不能垂直过河,
其最短路程的求法为:
以 的末端为圆心,以 的
大小为半径,做一圆,小船合 速度 的方向与该圆相切。
d
由几何关系有,
v2
o
ห้องสมุดไป่ตู้
xm in v1
一、小船渡河时间最短
结论:当船头垂直河岸时,渡河时间最短,其与水流 速度无关,其值为
二、小船过河最短路程
1.当有
时,小船能够垂直过河,其所用时间为
成一个x方向和一个沿y的两个
分运动的合成。
设 v2与河岸上游的夹角为θ
d
在y方向有
v2
o
v1

时, 有最小值。
一、小船渡河时间最短
结论:当船头垂直河岸时,渡河时间最短,其与水流 速度无关,其值为
问题2:一条小河宽为 ,水流速度为 。一只小船在静水
中的速度为 。请问小船怎样渡河路程最短?
分析:如果小船能够垂直过河,
相关文档
最新文档