概率论在生活中的应用 毕业论文
概率论在生活中的应用 毕业论文
学号:1001114119概率论在生活中的应用学院名称:数学与信息科学学院专业名称:数学与应用数学年级班别: 10级二班姓名:指导教师:2014年3月概率论在生活中的应用摘要概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。
加强数学的应用性,让学生学用数学的知识和思维方法去看待,分析,解决实际生活的问题,在数学活动中获得生活经验。
这是当前数学课程改革的大势所趋。
加强应用概率的意识,不仅是学习的需要,更是工作生活必不可少的。
人类认识到随机现象的存在是很早的,但书上讲得都是理论知识,我们不仅仅要学习好理论知识,应用理论来实践才是重中之重。
学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。
(宋体,小四,1.5倍行距)关键词随机现象;条件概率;极限定理;古典概率The applyment of the theory of probability in daily life Abstract Probability theory as an important part of mathematics,in the life of the sue more and more widely, also play an increasingly important role. Strengthen mathematics applied, lets the student with mathematical knowledge andmathematical thinking method to treat, analysis, solve practical life in mathematics activity, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of the application of probability, not only learning, but working life is indispensable. People realize the existence of random phenomenon is early, but telling the theory knowledge, we should not only study the theory knowledge well, the application of theory to practice is more important. Learn probability theory, and using probability knowledge to solve realiticl problems is already a life we necessary accomplishment.Keywords Random phenomenon; Conditional probability; Limit theorem. The classical probability前 言概率论与我的生活息息相关。
概率在生活中的应用——毕业论文
概率在生活中的应用——毕业论文概率是统计学中的一个重要概念,指的是某个事件发生的可能性大小。
概率不仅在数学和统计学领域中得到了广泛应用,更是在现实生活中普遍存在。
本论文将探讨概率在生活中的应用,旨在让人们更好地理解和应用这个概念。
一、概率在赌博中的应用赌博是人类历史上一种古老的娱乐活动,也是概率论的重要应用领域。
在赌博中,人们根据已有的信息,利用概率计算出下一次赌局的胜率,从而进行投注。
例如,在玩扑克牌时,人们会根据已有的牌面,计算出下一张牌出现的可能性,以决定自己是否跟注或加注。
在博彩业中,使用概率论可以制定出公平的规则,确保赌博活动的公正性和合法性。
二、概率在保险行业中的应用保险可以看作是人们将固定的保费交给保险公司,以对将来不确定的经济损失进行风险转移的一种方式。
通过概率分析,保险公司能够计算出不同保单的理论定价,确定实际保费的水平,并了解自己所承担的风险。
同时,保险公司可以利用概率分析调整保险责任和赔付比例,以控制自身的风险水平。
三、概率在金融市场中的应用金融市场是一个风险和收益并存的场所,如何控制风险是金融投资者最关心的问题。
概率论在金融市场中发挥着重要作用。
通过利用概率分析,可以对不同类别的金融资产进行风险测度和风险管理,为投资者提供风险控制的参考指标。
同时,对各种金融市场的行情和交易模式进行概率分析,不仅可以帮助投资者制定正确的投资策略,还有助于金融机构更好地控制自身的风险和稳健运营。
四、概率在医疗保健中的应用在医疗保健领域中,概率论可以帮助医生做出正确的医疗决策,提高医疗保健的效率和质量。
通过对患病率、疾病转归率、治疗效果等因素进行概率分析,可以预估医疗保健工作者在特定情况下采取不同方案的成本和效益,从而找到最优的治疗方案。
五、概率在运输物流中的应用运输物流是一个人口流动极为频繁的领域,在物流和供应链管理中广泛应用了概率论。
通过概率分析,可以量化运输车辆的运行时间和路线,预测货物到达目的地的时间,从而制定最优的配送计划。
概率论总结论文
概率论总结论文第一篇:概率论总结论文概率论与数理统计在生活中的应用摘要:随机现象无处不在,渗透于日常生活的方方面面和科学技术的各个领域,概率论就是通过研究随机现象及其规律从而指导人们从事物表象看到其本质的一门科学。
生活中买彩票显示了小概率事件发生的几率之小,抽签与体育比赛赛制的选择用概率体现了公平与不公平,用概率来指导决策,减少错误与失败等等,显示了概率在人们日常生活中越来越重要。
数理统计在人们的生活中也不断的发挥重要的作用,如果没有统计学,人们在收集资料和进行各项的大型的数据收集工作是非常困难的,通过对统计方法的研究,使得我们处理各种数据更加简便,所以统计也是一门很实用的科学,应该受到大家的重视。
关键字:概率、保险、彩票、统计、数据、应用概率论与数理统计是研究随机现象统计规律的一门数学学科,是对随机现象的统计规律进行演绎和归纳的科学。
随着社会的不断发展,概率论与数理统计的知识越来越重要,运用抽样数据进行推断已经成为现代社会一种普遍适用并且强有力的思考方式。
目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域。
本文将就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,,推导出某些表面上并非直观的结论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性。
一、彩票问题“下一个赢家就是你!”这句响亮的具有极大蛊惑性的话是大英帝国彩票的广告词。
买一张大英帝国彩票的诱惑有多大呢?只要你花上1英镑,就有可能获得2200万英镑!一点小小的投资竟然可能得到天文数字般的奖金,这没办法不让人动心,很多人都会想:也许真如广告所说,下一个赢家就是我呢!因此,自从1994年9月开始发行到现在,英国已有超过90%的成年人购买过这种彩票,并且也真的有数以百计的人成为百万富翁。
如今在世界各地都流行着类似的游戏,在我国各省各市也发行了各种福利彩票、体育彩票,各地充满诱惑的广告满天飞,而报纸、电视上关于中大奖的幸运儿的报道也热闹非凡,因此吸引了不计其数的人踊跃购买。
生活中概率问题论文
生活中概率问题论文
生活中的概率问题
摘要:随着科学的发展,数学在生活中的应用越来越广,生活中的数学无处不在。
而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处。
关键词:概率生活公平
概率论是一门研究随机现象的数量规律学科。
它起源于对赌博问题的研究。
早在16世纪,意大利学者卡丹与塔塔里亚等人就已从数学角度研究过赌博问题。
他们的研究除了赌博外还与当时的人口、保险业等有关,但由于卡丹等人的思想未引起重视,概率概念的要旨也不明确,于是很快被人淡忘了。
概率概念的要旨只是在17世纪中叶法国数学家帕斯卡与费马的讨论中才比较明确。
他们在往来的信函中讨论”合理分配赌注问题”。
该问题可以简化为:甲、乙两人同掷一枚硬币。
规定:正面朝上,甲得一点;若反面朝上,乙得一点,先积满3点者赢取全部赌注。
假定在甲得2点、乙得1点时,赌局由于某种原因中止了,问应该怎样分配赌注才算公平合理。
帕斯卡:若在掷一次,甲胜,甲获全部赌注,乙胜,甲、乙平分赌注。
这两种情况的可能性相同。
所以这两种情况平均一下,甲应得赌金的3/4,乙应得赌金的1/4。
费马:结束赌局至多还要2局,结果为四种等可能情况:
情况1234
胜者甲甲甲乙乙甲乙乙。
数学概率论在现实生活中的应用探讨
数学概率论在现实生活中的应用探讨在我们的日常生活中,数学概率论似乎是一门高深莫测的学科,常常被认为只存在于学术的殿堂里。
然而,事实并非如此。
概率论这一强大的数学工具,其实在我们生活的方方面面都有着广泛而深刻的应用,从简单的日常决策到复杂的商业策略,从娱乐活动到医疗健康,都离不开概率论的身影。
首先,让我们来看看在保险行业中概率论是如何发挥作用的。
保险公司在制定各种保险产品的费率时,需要运用概率论来估算风险。
例如,汽车保险的费率制定就需要考虑到各种因素,如车主的年龄、驾驶记录、车辆类型、使用频率等。
通过对大量数据的分析和概率计算,保险公司能够预测出不同情况下发生事故的可能性,从而确定合理的保险费用。
这样既能保证保险公司在承担风险的同时获得盈利,又能为投保人提供一定的经济保障。
在金融投资领域,概率论同样至关重要。
投资者在选择投资组合时,需要考虑不同资产的收益和风险概率分布。
股票市场的波动充满了不确定性,但通过对历史数据的分析和概率模型的构建,投资者可以评估不同股票的上涨和下跌概率,从而做出更明智的投资决策。
例如,通过计算某只股票价格上涨或下跌的概率,结合预期收益和风险承受能力,投资者可以决定是买入、持有还是卖出该股票。
此外,基金经理在管理投资基金时,也会运用概率论来分散风险,以实现资产的稳健增值。
概率论在彩票和赌博活动中也有着明显的体现。
以彩票为例,虽然购买者都怀着中大奖的梦想,但从概率的角度来看,中大奖的概率通常极低。
比如,某些大型彩票的头奖中奖概率可能只有几千万分之一甚至更低。
这意味着,购买彩票更多的是一种娱乐方式,而不是可靠的致富途径。
在赌博中,无论是赌场中的各种游戏,还是体育赛事的博彩,概率的计算都在影响着胜负的结果和赔率的设定。
然而,需要明确的是,赌博在大多数地区都是受到严格监管甚至是违法的,因为它往往会导致个人财务的困境和社会问题。
在医疗领域,概率论也为疾病的诊断和治疗提供了重要的依据。
医生在诊断疾病时,通常会根据患者的症状、病史、检查结果等信息来评估患病的概率。
论文题目:概率论在生活中的
文献研究: 文献研究:通过 研究方法: 在中国期刊网查 阅有关资料, 阅有关资料,在 图书馆及网上查 阅相关资料, 阅相关资料,为 本文的研究提供 理论支持和方法 指导。 指导。
概率论的定义
概率论
概率论的起源于发展 概率论在生活中的应用
主 要 内 容
小概率事件的定义 小概率原理
小概率事件
日常生活 中小概率 事件举例
彩票 医学 商业 个人生活 工厂生产 灾难预测 其它方面Leabharlann 小概率事件: 小概率事件:
看似不起眼的小概率事件, 看似不起眼的小概率事件,往往 会对生活造成很大的影响,我们 会对生活造成很大的影响, 要努力学好它, 要努力学好它,把它更好地应用 于实际生活。 于实际生活。尽量避免看似不起 眼的小概率事件带来的不便。 眼的小概率事件带来的不便。
应用: 应用:
把理论应用于实际, 把理论应用于实际,让知识更好的 指导生活, 指导生活,学以致用才是学习的目 标。
选题目的:
概率论与我们的生活是密切联系, 概率论与我们的生活是密切联系, 概率论来源于生活, 概率论来源于生活,同时有服务 于生活,尤其是小概率原理。 于生活,尤其是小概率原理。小 概率原理是概率论中一个虽简单 但却颇有实用意义的原理, 但却颇有实用意义的原理,充分 的理解并掌握小概率事件原理, 的理解并掌握小概率事件原理, 尽量避免不起眼的不利小概率事 件给生活带来的不便。 件给生活带来的不便。同时初步 理解学以致用的过程。 理解学以致用的过程。
论文题目: 论文题目:概率论在生活 中的应用— 中的应用 以小概率事件为
例
关键词 创新点 研究方法
主要内容 选题目的 结论
关键词: 关键词:
关键词
概率论: 概率论:
概率论在实际生活中的应用
Yibin University本科生毕业论文题目概率论在实际生活中的应用系别数学学院专业数学教育学生姓名学号年级指导教师职称教务处制表2015年 6月 3日概率论在实际生活中的应用摘要概率论是从数量上研究随机现象统计规律的一门数学学科,是对随机现象进行演绎和归纳的科学。
本文介绍了概率统计的某些知识在实际问题中的应用,主要围绕古典概型,几何概型,全概率公式等相关知识,探讨概率统计知识在工业,保险行业,股票,体育等方面的广泛应用,进一步揭示概率统计与实际生活的密切联系。
关键字概率论;随机事件;生活;应用正文概率论是一门相当有趣的数学分支学科,随着科学技术的发展与计算机的普及,它已广泛地应用于各行各业,成为研究自然科学,社会现象,处理工程和公共事业的有力工具。
目前,概率论与数理统计的很多原理方法已被越来越多地应用到交通、经济、医学、气象等各种与人们生活息息相关的领域.本文就概率论与数理统计的方法与思想,在日常生活中的应用展开一些讨论,从中可以看出概率方法与数理统计的思想在解决问题中的高效性、简捷性和实用性.1常见的重要概念的应用1.1 古典概型在实际问题中的应用古典概率通常又叫等可能概率,是指随机事件中各种可能发生的结果及其出现的次数,都可以由演绎或外推法得知,而无需经过任何统计试验即可计算各种发生结果的概率。
它是概率里最早的一种最简单的概率模型,也是应用最广泛的概率。
许多实际问题,都可以将其转化为古典概率加以解决。
古典概率的计算公式:如果一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是;例1[1]:将15名新生(其中有3名优秀生)随机地分配到三个班级中,其中一班4名,二班5名,三班6名,求:(1)每一个班级各分配到一名优秀生的概率;(2)3名优秀生被分配到一个年级的概率.解:15名新生分别分配给一班4名,二班5名,三班6名的分法有:(1)先将3名优秀学生分配给三个班级各一名,共有种分法,再将剩余的12名新生分配给一班3名,二班4名,三班5名,共有种分法.根据乘法法则,每个班级分配到一名优秀生的分法有种,所以其对应概率为:(2)用表示事件“3名优秀生全部分配到班”中所含基本事件个数中所含基本事件个数中所含基本事件个数由前面的分析知,所以因为互不相容,所以3名优秀生被分配到同一班级中的概率为:类似的利用古典概率求解的问题还有很多,比如博彩,产品抽样调查等。
毕业论文.概率统计在生活中的应用【范本模板】
毕业论文课题学生姓名胡泽学系别专业班级数学与应用数学指导教师二0 一六年三月目录摘要 (I)ABSTRACT (II)第一章绪论............................................................................................................................ - 1 -第二章概率在生活中的应用.................................................................................................. - 2 -2.1在抽签和摸彩中的应用.. (2)2。
2经济效益中的应用 (3)2。
3在现实决策中的应用 (5)2.4在相遇问题中的应用 (8)2.5在预算及检测中的应用 (9)结论.......................................................................................................... 错误!未定义书签。
参考文献...................................................................................................................................- 11 -致谢.................................................................................................................................. - 12 -学院毕业论文概率统计在生活中的应用摘要随着时代的发展人类的进步,17—18世纪出现了一门新的学科概率论,概率论逐渐成为了为数不多的可以和传统数学相抗衡的学科之一,并一步步的走向了人们的生活,成为了人们生活中不可或缺的部分。
浅析概率论在生活中的应用毕业论文(一)
浅析概率论在生活中的应用毕业论文(一)概率论作为一门研究随机事件概率规律的学科,不仅在理论研究中有着广泛的应用,也逐渐渗透到我们的日常生活中,无论是从商业、医疗、技术等方面,都得到了广泛应用。
本文就从以下几个方面简要探讨概率论在生活中的应用。
1. 保险行业保险行业一直是概率统计学的应用领域之一。
在保险业中,保险公司要根据统计数据和概率论的知识对客户进行风险分析并制定相应的保险方案。
比如,在车险中,保险公司会根据客户的性别、年龄、车型等信息计算出客户的出险概率,从而制定出相应的保险费用。
这种保险费用制定方式不仅使保险公司能够更加科学地进行风险评估,降低了客户的保险成本,也使得保险公司更加准确地控制保险赔付率,保证了公司的盈利能力。
2. 医学概率论在医学领域中应用广泛。
例如在病人诊断中,一系列试验和检查结果需要根据概率理论进行分析和判断。
医学研究还涉及到新药的测试。
在这种情况下,概率统计学的方法被用来评估患者使用新药的风险,以及新药的作用和副作用。
此外,在流行病学中,概率统计学方法被用来分析疾病的传播和预测未来的疫情。
3. 投资股票交易也是概率论的应用领域之一。
投资者需要了解股票价格变动的概率规律,并且基于概率统计学方法进行分析和预测未来股票价格的趋势。
这需要投资者利用历史数据和统计模型来模拟和预测股票价格。
这种预测方法具有一定的误差,但也给投资者提供了一定的参考信息。
4. 体育竞技体育竞技也是概率论的应用领域。
在足球比赛中,根据球队近期表现、场地、天气等因素,可以利用概率理论来预测哪个球队有更大的获胜概率。
此外,在比赛中,也需要根据概率理论来决定是否采用进攻或者防守策略等。
总结而言,概率论在我们的生活中扮演着重要的角色。
可以帮助我们做出明智的决策,减少我们所面临的风险,并提升我们的成功概率。
因此,概率论的知识对于每个人来说都是十分必要的。
生活中的概率论文
概率的认识过程摘要:概率论渗透到现代生活的方方面面。
正如19世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分,最重要的问题实际上只是概率问题。
你可以说几乎我们所掌握的所有知识都是不确定的,只有一小部分我们能确定地了解。
甚至数学科学本身,归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上。
因此,整个人类知识系统是与这一理论相联系的……”引言:1.婴儿出生时的男女比例一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比应当是1:1,可事实并非如此.1.1 艾滋病的传染概率有多大艾滋病病毒是一种十分脆弱的病毒,它对热和干燥十分敏感。
在干燥的环境中,艾滋病毒10分钟死亡,在60摄氏度的环境中30分钟灭活。
如果一支刚接触病人身体带有血液的注射器,马上刺入正常人体内,其感染的概率小于0.3%。
蚊虫叮咬不会传染艾滋病就是因为这个原因。
1.1.1幸运七星及足彩中奖概率体彩“幸运七星”则属于数字型玩法,即从0000000~9999999共1000万个号码中任选一个七位数号码组成,每个号码均从0~9共10个数字中开出,“幸运七星”头奖的理论中奖概率为1/10000000。
目前最受彩民欢迎的足彩实际上也是一种数字组合型玩法,不过计算方法相对比较简单,13场比赛均选“3、1、0”可组合出3的13次方1594323注单式号码,一等奖的中奖概率为1/1594323,换句话说,每销售320万元的足彩,平均就可能诞生一个一等奖。
而如果将足彩竞猜的场次增加到14场,足彩的头奖中奖概率则降低为1/4782969,难度增加了3倍。
一、什么是小概率事件? (3)二、基本的概率计算方法 (3)三、有意义和无意义的小概率事件 (4)四、小概率事件和不可能事件的分辨 (5)五、我们是不是该相信小概率事件? (6)六、参考文献 (6)一、什么是小概率事件?小概率事件,字面意义就是发生的可能性极小的事件。
比如,北京地区出现日全食;山西洪洞发生里氏5级地震,新疆吐鲁番地区下了一场暴雨,小行星撞地球等等。
概率论与数理统计在日常生活中的应用毕业论文-V1
概率论与数理统计在日常生活中的应用毕业论文-V1概率论与数理统计在日常生活中的应用随着科技的不断发展和社会的变化,概率论与数理统计已经渗透到了我们日常生活的方方面面。
本文将从几个方面介绍概率论与数理统计在日常生活中的应用。
一、医学领域概率论和数理统计在医学领域中的应用是最广泛和重要的。
在医学领域,通过概率模型和统计分析,医生们可以预测一种疾病的流行情况以及预防措施的效果。
例如,对于一种疫苗的疗效验证,医生们需要进行临床试验,并将数据进行统计分析,以确定该疫苗的有效性和安全性。
概率论和数理统计也被广泛运用于研究疾病的产生机理,从而找到治疗和预防疾病的最佳方案。
二、金融领域在金融领域中,概率和统计方法是风险管理和金融产品设计的基础。
比如,在股票、期货、期权等投资领域,金融专家们需要使用概率和统计方法对市场波动进行预测和分析,从而制定最优策略。
另外,在信贷评估和风险控制中,概率和统计方法也被广泛运用。
银行和金融机构可以通过数据分析和建立风险模型,确保风险控制得当,做出更加明智的决策。
三、科学研究概率论和数理统计在科学研究领域也有广泛应用。
例如,在天文学中,概率和统计方法用来分析和解释天文数据,研究宇宙的起源和演化。
在社会科学领域,调查和问卷数据的统计分析可以为社会发展和公共政策提供重要的参考依据。
四、生活中的应用除了上述领域外,概率论和数理统计也在我们的日常生活中发挥着重要作用。
例如,我们可能需要基于天气预报,合理安排出行时间和交通方式。
我们也需要根据生活经验,分析和预测某些事件发生的概率。
此外,如果我们有一个数据集,我们也可以通过概率模型和统计分析来找到数据集中的规律或趋势。
在购物或旅游时,我们可能还需要使用一些概率和统计方法来制定预算和计划。
综上所述,概率论和数理统计已经成为现代社会的重要学科,广泛应用于医学、金融、科学研究和日常生活的方方面面,为人类社会的稳定和发展提供了重要支持。
概率论论文-概率论在生活中的应用
概率论论文--概率论在生活中的应用概率论在生活中的应用【摘要】概率作为数学的一个重要部分,在生活中的应用越来越广,同样也在发挥着越来越广泛的用处。
加强数学的应用性,让我们用数学知识和数学的思维方法去看待,分析,解决实际生活问题,在数学活动中获得生活经验,这是当前课程改革的大势所趋。
加强应用概率的意识,不仅仅是学习的需要,更是工作生活必不可少的。
人类认识到随机现象的存在是很早的,但书上讲的都是理论知识,我们不仅仅要学好理论知识,应用理论来实践才是重中之重。
学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。
【关键词】 概率论 经济 生活 保险 彩票1. 在求解最大经济利润问题中的应用如何获得最大利润是商界永远追求的目标,随机变量函数期望的应用为此问题的解决提供了新的思路。
例 1 某公司经销某种原料,根据历史资料:这种原料的市场需求量x (单位:吨) 服从()300500, 上的均匀分布,每售出1 吨该原料,公司可获利1.5千元;若积压1 吨,则公司损失0.5 千元,问公司应该组织多少货源,可使期望的利润最大?分析:此问题的解决先是建立利润与需求量的函数,然后求利润的期望,从而得到利润关于货源的函数,最后利用求极值的方法得到答案.解 设公司组织该货源a 吨,则显然应该有300a 500≤≤,又记y 为在a 吨货源的条件下的利润,则利润为需求量的函数,即()y g x = ,由题设条件知:当x a ≥时,则此a 吨货源全部售出,共获利1.5a ;当x a <时,则售出x 吨(获利1.5x ) 且还有a x -吨积压(获利()0.5a x --) ,所以共获利1.5x ()0.5a x --,由此得(){1.52 0.5a X a X a X a x Y g ≥-<== 从而得()()()()5003001200x y g x p x dx g x dx E +∞-∞==⎰⎰ ()5003001120.5 1.5200200a a x a dx a dx -+=⎰⎰ ()221900300200a -+-= 上述计算表明()y E 是a 的二次函数,用通常求极值的方法可以求得,450a =吨时,能够使得期望的利润达到最大。
概率论与数理统计在日常生活中的应用毕业论文(1)
概率论与数理统计在日常生活中的应用毕业论文(1)概率论与数理统计在日常生活中的应用概述随着大数据时代的到来,概率论与数理统计成为了一门越来越重要的学科。
在日常生活中,我们经常需要运用概率论与数理统计的知识去解决各种问题,如预测天气、交通状况、股市涨跌等等。
本文将探讨概率论与数理统计在日常生活中的应用。
概率论在日常生活中的应用1. 预测天气天气预报是概率论在生活中的一个主要应用。
预测天气需要分析各种气象指标,如温度、湿度、气压、风速等,然后运用概率论模型进行预测。
预测天气的准确性取决于预报员的专业知识以及概率论模型的正确性。
2. 估计风险概率论还可以用于估计风险。
在日常生活中我们经常面临各种风险,如信用卡盗刷、保险赔偿等等。
通过运用概率论,我们可以估计将来的概率,从而采取相应的措施来降低风险。
3. 预测股市涨跌股市涨跌的预测也是概率论在生活中的应用之一。
预测股市涨跌需要分析各种数据,如公司财务数据、市场趋势等等,并将其转换为概率进行预测。
4. 探索游戏规律概率论还可以用于探索各种游戏规律。
例如,玩扑克牌时,我们可以通过概率论计算出某张牌下一次出现的概率,从而更好地规划自己的出牌策略。
数理统计在日常生活中的应用1. 处理数据数理统计可以帮助我们处理各种数据,如调查数据、商业数据等。
通过运用数理统计方法,我们可以更好地理解数据,并从中提取关键信息。
2. 做出决策决策是生活中的一个重要环节,而数理统计可以帮助我们做出正确的决策。
例如,在选择一种产品时,我们可以通过比较其销售数据、用户满意度等数据,从而做出更好的决策。
3. 质量控制数理统计还可以用于质量控制。
通过对生产过程中的数据进行分析,我们可以发现并改善产品质量问题,从而提高产品质量和生产效率。
4. 预测趋势数理统计在预测趋势方面也有广泛的应用。
例如,在分析某个产业或市场的发展趋势时,我们可以通过数理统计方法来预测未来的走势,并据此制定相应的战略。
结论概率论与数理统计作为一门重要学科,在日常生活中发挥着越来越大的作用。
概率论在现实生活中的科学毕业论文
概率论在现实生活中的科学毕业论文引 言概率论是一门与现实生活紧密相连的学科,不过大多数人对这门学科的理解还是很平凡的:投一枚硬币,0.5的概率正面朝上,0.5的概率反面朝上,这就是概率论嘛.学过概率论的人又多以为这门课较为理论化,特别是像母函数,极限定理等内容与现实脱节很大,专业性很强.其实如果我们用概率论的方法对日常生活中的一些看起来比较平凡的内容做些分析,常常会得到深刻的结果.在谈及应用之前,先澄清一下多数人在概率方面的一个误解.大部分人认为一件事概率为0,即为不可能事件.这是不对的,比如甲乙玩一个游戏,甲随机地写出一个大于0小于1的数,乙来猜.①乙一次猜中这个数②乙每秒猜一次,一直猜下去,“最终”猜中这个数.这两件事发生的概率都是0,但显然它们都有可能发生,甚至可以“直观”的讲②发生的可能性大些.这说明概率为0的事也是有可能发生的.不过在我看来,这样的可能性实在是太小了,在实际的操作中认为不可能也是有道理的,但不管怎么说,它们确是可能事件.来看一个应用:[1]在12只金属球中,混有一只假球,并且不知道它是比真球重或轻,用没有砝码的天平来称这些球,试问至少需要多少次称量才能找出这个假球,并确定它是比真球轻或重为了讲清概率论在这个问题中的应用,先讲一下熵的概念.熵是概率论的分支学科--信息论中的概念,它是一个实验不确定程度的量度,熵越大,说明该实验的不确定性越高.比方说,扔一枚硬币是一个实验,扔一枚色子也是一个实验,直观地讲,我们说前者的不确定性要小些;计算结果,前者的熵为lg 2,后者的熵为lg 6,与直观吻合.同样,判断12个球的真假和轻重也是一个实验,它的熵为lg 24,我们要在若干次称量后将其不确定性降为0,也就是要其熵降为0.每用天平称量一次(随便怎样称),天平都有3种结果,于是最多获得lg 3的信息,所以k 次称量最多可得lg 3k ⨯,也就是lg 3k 的信息.令2lg 3lg 24lg 3k k -<<得3k =,至少进行3次实验才能完成要求.当然,这是理论上最少的结果,我们还要找到一个现实可行的方案,实际上,这样的方案也是有的,所以说得到的解是正确的结果.这种方法将看似是智力测验的题目用数学方法解决了.其实用这种方法还可解决4次使用天平,能判断最多多少个球的真假轻重情况的问题.关于这点,可以这样考虑:第一次称量时,所有的球只有两种可能:要么在天平上,要么没有在天平上,且在天平上的球数须是偶数,否则进行的称量是得不到有用的信息的.设在天平上的球数为2u,不在天平上的球数为v,若天平平衡,下面要3次使用天平在个球中找到假球并判其轻重,由前面的结果知的最大值为12;若天平不平,不妨设其左倾,则假球在2u个球中,且其轻重已知(若假球是左盘上的一只则假球比真球重,否则比真球轻).判断这2u个球中哪个球为假球(轻重已判)的实验的熵为lg2u,令23lg3lg2lg3u<<,得u的最大值是13,于是4次使用天平,最多可判断38枚球的真假及轻重情况,具体办法也是有的,由于比较繁琐,这里就不列举了.实际上,把这种方法通过观察、归纳、总结,可得更一般的结论:(35)2kk-次使用天平多能判断(4)k≥个球的真假和轻重状况.这也说明数学的威力所在:它可以将某些东西系统化,得到更一般的结论.说了这么多,其实就是一个意思,课本上学习的是理论,我们还要尽可能与实际生活联系起来,不要把数学学死了,总之一句话,我们学习数学,是为了更好的认识世界.数学文化,也就是数学在生活中的反映吧.而概率论作为数学的一个分支,与我们的现实生活已是密不可分,了解其发展简史并把概率论作为一个工具应用于生活已是一种必要的修养.1 概率论的发展简史概率论同其他数学分支一样,是在一定的社会条件下,通过人类的社会实践和生产活动发展起来的一种智力积累.今日的概率论被广泛应用于各个领域,已成为一棵参天大树,枝多叶茂,硕果累累.[2]正如钟开莱1974年所说:“在过去半个世纪中,概率论从一个较小的、孤立的课题发展为一个与数学许多其它分支相互影响、内容宽广而深入的学科.”概率论发展的每一步都凝结着数学家们的心血,正是一代又一代数学家的辛勤努力才有了概率论的今天.1.1早期的概率现象人类认识到随机现象的存在是很早的.从太古时代起,估计各种可能性就一直是人类的一件要事.早在古希腊哲学家就已经注意到必然性与偶然性问题;我国春秋时期也已有可考词语(辞海);即使提到数学家记事日程上的可考记载,也至少可推到中世纪.有史记载15世纪上半叶,就已有数学家在考虑这类问题了.如在意大利数学家帕乔利1494年出版的《算术》一书中就有以下问题:两人进行赌博,规定谁先获胜6场谁为胜者.一次,当甲已获胜5场,乙也获胜2场时,比赛因故中断.那么,赌注该如何分配呢?所给答案为将赌注分成7份,按5:2分给甲乙两人.当卡丹看到上述问题时,以为所给分法不妥.他考虑到接下去比赛的几种可能结果,并确定赌注应按10:1来分配(现在看来,其分法也是错误的).卡丹著有《论赌博》一书,其中提出一些概率计算问题.如掷两颗骰子出现的点数和的各种可能性等.此外,卡丹与塔塔利亚还考虑了人口统计、保险业等问题.但是他们的研究工作,对数学家来说,赌博味道太浓了一些,以致数学家们对其嗤之以鼻.近代自然科学创始人之一—伽利略解决了以下问题:同时投下三颗骰子,点数和为9的情形有6种:(126),,、(135),,、(144),,、(225),,、(234),,和(333),,.点数和为10的情形也有6种:(136),,、(145),,、(226),,、(235),,、(244),,和(334),,,那么出现点数和为9与10的机会应相同,而经验告知,出现10的机会比出现9的机会要多,原因何在?伽利略利用列举法得出同时掷三颗骰子出现点数和为9的情形有25种,而出现点数和为10的情形却有27种.可见,已经产生了概率论的某些萌芽.1654年7月29日,法国骑士梅累向数学神童—帕斯卡提出了一个使他苦恼很久的问题:“两个赌徒相约若干局,谁先赢了S局则赢.若一人赢1局,另一人赢5局,赌博中止,问赌本应怎么分?”帕斯卡对此思考良久,又将其转给业余数学王子—费马.在数学史上有名的来往信件中,两人取得了一致意见:在被迫停止的赌博中,应当按每个局中人赌赢的数学期望来分配桌面上的赌注.帕斯卡与费马用各自不同的方法解决这个问题,帕斯卡长于计算,运用数学归纳法,推导出数学内含的规律性,而费马以敏锐的观察力,严格的推理,建立起数学概念.以掷骰子为例来说明他们的解法.即谁先胜3局,则可得到全部赌注,在甲胜2局,乙胜1局时,赌局中止了,问怎样分配赌注才算公平合理.帕斯卡分析认为:甲已胜2局,乙也胜1局,如再赌一局,则或者甲大获全胜,赢得全部赌金,或者乙胜,则甲与乙胜的局数变成相等,甲、乙应平分赌金.把这两种情况平均一下,甲应得赌金的34,乙则得赌金的14.费马认为:由甲已胜a局,乙已胜b局,要结束这场赌博最多还需要赌几局,在这个例子中,最多还需要玩两局,结果有四种等可能的情况:(甲胜,甲胜),(甲胜,乙胜),(乙胜,甲胜),(乙胜,乙胜).在前面三种情况下,甲赢得全部赌金,仅第四种情况能使乙获得全部赌金.因此甲有权分得赌金的34,而乙应分赌金的14.费马和帕斯卡虽然没有明确定义概率的概念,但是,他们定义了使某赌徒取胜的机遇,也就是赢的情况数与所有可能情况数的比,这实际上就是概率,所以概率的发展被认为是从帕斯卡和费马开始的.正如对概率论有卓越贡献的法国数学家泊松后来所说:“由一位广有交游的人向一位严肃的冉森派所提出的一个关于机会游戏的问题乃是概率演算的起源”.当荷兰数学家惠更斯到巴黎的时候,听说帕斯卡与费马在研究概率问题,便也参与进来,并于1657年出版了《论赌博中的计算》一书.书中给出了第一批概率论概念和定理(如加法定理、乘法定理).在概率论的现代表述中,概率是基本概念,数学期望则是第二级的概念,但在历史上,顺序却相反,先有“期望”概念,而古典概型的概率定义,完全可以从期望概念中导出来.因此,可以认为概率论从此诞生了.[3]1.2成熟中的概率论最早对概率论来严格化进行尝试的,是俄国数学家伯恩斯坦和奥地利数学家冯·米西斯.他们都提出了一些公理来作为概率论的前提,但他们的公理理论都是不完善的.作为测度论的奠基人,博雷尔在1905年指出概率论理论如果采用测度论术语来表述将会方便许多,并首先将测度论方法引入概率论重要问题的研究,特别是1909年他提出并在特殊情形下解决了随机变量序列,服从强大数定律的条件问题.博雷尔的工作激起了数学家们沿这一崭新方向的一系列探索,其中尤以原苏联数学家科尔莫戈罗夫的研究最为卓著.从二十世纪二十年代中期起,科尔莫戈罗夫开始从测度论途径探讨整个概率论理论的严格表述.1926年,他推导了弱大数定律成立的主要条件,后又对博雷尔提出的强大数定律问题给出了一般的结果,推广了切比雪夫不等式,提出了科尔莫戈罗夫不等式,创立了可数集马尔可夫链理论,他最著名的工作是1933年以德文出版的经典性著作《概率论基础》.科尔莫戈罗夫是莫斯科函数论学派领导人鲁金的学生,对实际函数论的运用可以说是炉火纯青.他在这部著作中建立起集合测度与事件概率的类比、积分与数学期望的类比、函数正交性与随机变量独立性的类比……,等等.这种广泛的类比终于赋予了概率论以演绎数学的特征.科尔莫戈罗夫的公理系统逐渐获得了数学家们的普遍承认,由于公理化,概率论成为一门严格的演绎科学,取得了与其他数学分支同等的地位.科尔莫戈罗夫热爱教育事业,经常在大学生和进修生中挑选人才,参加讨论班.1934年,他与概率论另一位创始人辛钦共同主持概率论讨论班.在他们培养的学生中有6位成为前苏联科学院院士或通信院士.1980年科尔莫戈罗夫荣获沃尔夫奖.[4] 公理化概率论首先使随机过程的研究获得了新的起点,随机过程作为随时间变化的偶然量的数学模型,是现代概率论研究的重要主题.莱维从1938年开始创立研究随机过程的新方法,即着眼于轨道性质的概率方法. 1948年出版的《随机过程与布朗运动》,提出了独立增量过程的一般理论,并以其为基础极大地推进了对作为一类特殊马尔可夫过程的布朗运动的研究.1939年维尔引进“鞅”这个名称,但鞅论的奠基人是美国概率论学派的代表人物杜布.杜布从1950年开始对鞅概念进行了系统的研究而使鞅论成为一门独立的分支.鞅论使随机过程的研究进一步抽象化,不仅丰富了概率论的内容,而且为其他数学分支如调和分析、复变函数、位势理论等提供了有力的工具.从1942年开始,日本数学家伊藤清引进了随机积分与随机微分方程,为一门意义深远的数学新分支——随机分析的创立与发展奠定了基础.[5]概率论不仅是“数学之树”的一庞大支条,而且还有若干强壮的根(如下表),直接扎在实际应用环境的大地上.“芳草有情皆碍马,好云无处不遮楼”.正如英国的逻辑学家和经济学家杰文斯所说,概率论是“生活真正的领路人,如果没有对概率的某种估计,我们就寸步难行,无所作为.”2 概率统计在实际生活中的应用2.1关于男女色盲比例的问题例1[6]从随机抽取的467名男性中发现有8名色盲,而433名女性中发现1人色盲,在01.0=α水平上能否认为女性色盲的比例比男性低?解 设男性色盲的比例为1p ,女性色盲的比例为2p ,那么要检验的假设为210:p p H ≥ 211:p p H <由备择假设,利用大样本的正态近似得,在0.01α=水平的拒绝域为{}33.2-≤u由样本得到的结果知:433,467==m n1.043346718ˆ,00231.04331ˆ,01713.04678ˆ21=++=====p p p 则 ()2326.2ˆ1ˆ11ˆˆ21=-⎪⎭⎫ ⎝⎛+-=p p m n p pu未落在拒绝域中,因此在0.01α=水平上可以认为女性色盲的比例低于男性.2.2我国出生人口性别比出生人口性别比,通常是为了便于观察与比较所定义的每出生百名女婴相对的出生男婴数.20世纪50年代中期,联合国在其出版的《用于总体估计的基本数据质量鉴定方法》(手册Ⅱ)认为:出生性别比偏向于男性.一般来说,每出生100名女婴,其男婴出生数置于107102-之间.此分析明确认定了出生性别比的通常值域为107102-之间.从此出生性别比值下限不低于102、上限不超过107的值域一直被国际社会公认为通常理论值,其他值域则被视为异常.例2近年来,越来越多的话题围绕着我国的人口性别比例而展开.下图(表1)所示的是我国2005年到2010年的出生人口性别比例的变化情况.2005-2010年中国人口性别比由图可以看出,在2005年到2010年之间,我国的人口性别比一直都保持在118到121之间,超出了国际社会公认为通常理论值102107-很多.3.3电影院的座位问题定理1 设2σ=i DX ,则对任意R x ∈,有()x du e x n a X P x u n Φ==⎪⎪⎭⎫ ⎝⎛≤-⎰∞--∞→2221lim πσ 记为().1,0~N n aX σ-这一结果称为Lindeberg-Levy 定理,是这两位学者在20世纪20年代证明的.历史上最早的中心极限定理是1716年建立的De Moivre-Laplace 定理,它是前一个结果的特例,具体为lim )()x nX p x x →∞≤=Φ.[7]例3设某地扩建电影院,据分析平均每场观众数1600=n 人,预计扩建后,平均34的 观众仍然会去该电影院,在设计座位时,要求座位数尽可能多,但空座达到200或更多的概率不能超过0.1,问应该设多少座位?解 把每日看电影的人编号为1600,,2,1 ,且令11216000i i X i ⎧==⎨⎩,第个观众还去电影院,,,不然. 则由题意31(1)(0)44i i p X p X ====,.又假定各观众去电影院是独立选择,则 ,,21X X 是独立随机变量,现设座位数为m ,则按要求121600(2000.1p X X X m +++≤-≤).在这个条件下取m 最大.当上式取等号时,m 取最大,因为3160012004np =⨯=,=m 应满足0.1Φ=. 查正态分布表即可确定1377≈m ,所以,应该设1377个座位.3 总结兴趣是最好的老师,可以激发学生的学习热情,更可以引导学生成为学习的主人,学习数学需要死记硬背熟能生巧,但并不排除用兴趣引导和激励.将兴趣转化为志趣,转化为学习的动力,将其带到数学学习的每一个部分.本文我们主要通过讲解三个生活中遇到的悖论问题,使人们在生活与学习中,能更好的理解悖论给我们带来的困惑,解决了人们在意识上的一些错误观点.对于这些因为意识的错觉而存在的悖论问题,我们仍有待于进一步研究.上面列举了概率统计在实际生活中的一些简单应用,其实日常生活中到处都有概率统计的影子.通过统计我们可以了解一些指数的变化趋势等,通过概率计算我们了解了彩票、摸奖等的中奖率等.概率统计的足迹可以说是已经深入到每一个领域,在实际问题的应用随处可见.相信人类能够更好的应用好概率统计,使之更好的为人类的发展做贡献.参考文献[1]梅长林,周家良.实用统计方法[M].北京:科学出版社,2002.[2]杨虎,钟波,刘琼荪.应用数理统计[M].北京:清华大学出版社,2006.[3]张国权.应用概率统计[M]. 北京:科学出版社,2003.[4]吴传志.应用概率统计[M].重庆:重庆大学出版社,2004.[5]郑长波.生活中的概率问题举例[J].沈阳师范大学学报,2007,7(5):23-26.[6]魏宗舒,等.概率论与数理统计教程[M].北京:高等教育出版社,2008.[7]王梓坤.概率论基础及其应用[M].北京:科学出版社,1976.。
概率论在实际生活中的应用
概率论在实际生活中的应用论文摘要:概率论是从数量上研究随机现象统计规律的一门数学学科,是对随机现象进行演绎和归纳的科学[1]。
概率论的表述,能够使人们清楚直观的看清现象,理解、掌握、运用概率论知识和概率计算方法,对解决各种概率相关问题能起到促进和深化的作用。
本文就概率论在经济,市场,体育,博弈,加密,保险方面的应用进行了简单的介绍,通过一些贴近生活的例子,说明了概率论的应用为生活带来了极大的便利,从数字的角度清晰的解析了问题的关键部分,也为许多问题提供了一个方法。
关键词:概率论;生活;应用Application of probability theory in real lifeAbstract:Are quantitative research in probability theory random statistical laws of a mathematical discipline, is carried out on random phenomena of deductive and inductive science. Description of the probability theory, to make it clear and intuitive to see, understand and master, using probability theory knowledge and probability calculation methods for solving various probability-related issues can play a role in promoting and deepening. This article on probability theory in economic, market, sports, games, encryption,application of insurance to a simple introduction, through a number of examples of daily life, describes the application of probability theory to live brings great convenience, clear analysis from a digital perspective the key part of the problem, also provide a method for many of the problems.Keywords: Probability theory;Life;Applications引言概率论问题的应用十分宽泛,这里就经济,交通,体育,博弈学,密码学方面进行简单的举例,通过这些贴近生活的具体实例说明概率论的方法可以为解决实际问题提供方法,为生活提供便利。
浅谈概率论在生活中的应用---毕业论文
【标题】浅谈概率论在生活中的应用【作者】秦挺【关键词】起源和发展运用总结【指导老师】宋安超【专业】数学与应用数学【正文】1引言概率论是通过大量的同类型随机现象的研究,从中揭示出某种确定的规律,而这种规律性又是许多客观事物所具有的,因此,概率论有着极其广泛的应用。
概率论与以它作为基础的数理统计学科一起,在自然科学,社会科学,工程技术,军事科学及工农业生产等诸多领域中都起着不可或缺的作用。
直观地说,卫星上天,导弹巡航,飞机制造,宇宙飞船遨游太空等都有概率论的一份功劳;及时准确的天气预报,海洋探险,考古研究等更离不开概率论与数理统计;电子技术发展,影视文化的进步,人口普查及教育等同概率论与数理统计也是密不可分的。
根据概率论中用投针试验估计值的思想产生的蒙特卡罗方法,是一种建立在概率论与数理统计基础上的计算方法。
借助于电子计算机这一工具,使这种方法在核物理、表面物理、电子学、生物学、高分子化学等学科的研究中起着重要的作用。
概率论作为理论严谨,应用广泛的数学分支正日益受到人们的重视,并将随着科学技术的发展而得到发展。
2 预备知识2.1概率论的起源三四百年前在欧洲许多国家,贵族之间盛行赌博之风。
掷骰子是他们常用的一种赌博方式。
因骰子的形状为小正方体,当它被掷到桌面上时,每个面向上的可能性是相等的,即出现点至点中任何一个点数的可能性是相等的。
有的参赌者就想:如果同时掷两颗骰子,则点数之和为与点数之和为,哪种情况出现的可能性较大?世纪中叶,法国有一位热衷于掷骰子游戏的贵族德?梅耳,发现了这样的事实:将一枚骰子连掷四次至少出现一个六点的机会比较多,而同时将两枚骰子掷24次,至少出现一次双六的机会却很少。
这是什么原因呢?后人称此为著名的德?梅耳问题。
又有人提出了“分赌注问题”:两个人决定赌若干局,事先约定谁先赢得局便算赢家。
如果在一个人赢局,另一人赢局时因故终止赌博,应如何分赌本?诸如此类的需要计算可能性大小的赌博问题提出了不少,但他们自己无法给出答案。
概率论与数理统计在日常生活中的应用毕业论文
概率论与数理统计在日常生活中的应用毕业论文————————————————————————————————作者:————————————————————————————————日期:中国地质大学2014届本科生毕业论文II概率论与数理统计在日常经济生活中的应用摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。
概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。
本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。
关键词:概率论数理统计经济生活随机变量贝叶斯公式中国地质大学2014届本科生毕业论文III Probability Theory and Mathematical StatisticsIn our daily economic lifeAbstract: As an instrumental discipline, Mathematics plays a very important role in our daily life and scientific research. Probability theory and mathematical statistics as an important part of mathematics in life has become increasingly widespread in recent years, probability theory and mathematical statistics knowledge is increasingly penetrate into economics, psychology, genetics and other disciplines, in addition to our everyday lives, are related to the probability of gambling, lottery, weather, sports and other school has a very close relationship. This article focuses on the theory of probability and mathematical statistics application in our lives, through the introduction of the first half of some basic knowledge of probability theory and mathematical statistics, numerical characteristics, including the fundamental nature of probability, random variables and their distributions, Bayesian formula , the central limit theorem, combined with the second half of the cases discussed the theory of probability and mathematical statistics in guiding role in our lives, we can say, probability theory and mathematical statistics is now one of the most active, the most widely used discipline .Key words: Probability Mathematical Statistics Economic Life Random Variables Bayesian Law目录摘要 (I)Abstract (II)第一章基本知识 (2)1.1 概率的基本性质 (2)1.2 随机变量的数字特征 (2)1.3 点估计 (4)1.4 贝叶斯公式 (5)1.5 中心极限定理 (6)1.6 随机变量及其分布 (7)第二章在日常生活中的应用 (9)2.1 在中奖问题中的应用 (9)2.2 在经济管理决策中的应用 (9)2.3 在经济损失估计中的应用 (10)2.4 在求解经济最大利润中的应用 (11)2.5 在保险问题中的应用 (11)2.6 在疾病诊断中应用 (12)第三章结束语 (13)致谢 (14)参考文献 (15)第一章 基本知识§1.1 概率的重要性质1.1.1定义设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学号:1001114119概率论在生活中的应用学院名称:数学与信息科学学院专业名称:数学与应用数学年级班别: 10级二班姓名:指导教师:2014年3月概率论在生活中的应用摘要概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。
加强数学的应用性,让学生学用数学的知识和思维方法去看待,分析,解决实际生活的问题,在数学活动中获得生活经验。
这是当前数学课程改革的大势所趋。
加强应用概率的意识,不仅是学习的需要,更是工作生活必不可少的。
人类认识到随机现象的存在是很早的,但书上讲得都是理论知识,我们不仅仅要学习好理论知识,应用理论来实践才是重中之重。
学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。
(宋体,小四,1.5倍行距)关键词随机现象;条件概率;极限定理;古典概率The applyment of the theory of probability in daily life Abstract Probability theory as an important part of mathematics,in the life of the sue more and more widely, also play an increasingly important role. Strengthen mathematics applied, lets the student with mathematical knowledge andmathematical thinking method to treat, analysis, solve practical life in mathematics activity, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of the application of probability, not only learning, but working life is indispensable. People realize the existence of random phenomenon is early, but telling the theory knowledge, we should not only study the theory knowledge well, the application of theory to practice is more important. Learn probability theory, and using probability knowledge to solve realiticl problems is already a life we necessary accomplishment.Keywords Random phenomenon; Conditional probability; Limit theorem. The classical probability前 言概率论与我的生活息息相关。
比如:太阳每天都会东升西落,这件事发生的概率就是100%或者说是1,因为它肯定会发生;而太阳西升东落的概率就是0,因为它肯定不会发生。
但生活中的很多现象是既有可能发生,也有可能不发生的,比如某天会不会下雨、买东西买到次品等等,这类事件的概率就介于0和100%之间,或者说0和1之间。
在日常生活中无论是股市涨跌,还是发生某类事故,但凡捉摸不定、需要用“运气”来解释的事件,都可用概率模型进行定量分析。
不确定性既给人们带来许多麻烦,同时又常常是解决问题的一种有效手段甚至唯一手段。
走在街头,来来往往的车辆让人联想到概率;生产、生活更是离不开概率。
在令人心动的彩票摇奖中,概率也同样指导着我们的实践。
继股票之后,彩票也成了城乡居民经济生活中的一个热点。
然而彩票中奖的概率是很低的。
有笑话说全世界的数学家都不会去买彩票,因为他们知道,在买彩票的路上被汽车撞死的概率远高于中大奖的概率。
随着科学的发展,数学在生活中的应用越来越广,生活的数学更是无处不在。
而概率作为数学的一个重要部分,同样也在发挥着越来越广泛的用处。
抽样调查,评估,彩票,保险,甚至在日常生活中购买蔬菜水果之类的时候也经常会遇到要计算概率的时候,下面就通过几个例子具体看看在这些方面中概率论的应用。
1具体实例1.1.1 由先尝后买看概率论在生活中的应用例1.1.1 在水果批发市场上打算买几箱苹果,他询问卖主所售苹果的质量如何,卖主说一箱里(假设为100个)顶多有四、五个坏的。
李老师随后挑了一箱,打开后随机抽取了10个苹果,心想这10个中有不多于2个坏的就买,可他发现10个苹果中有3个是坏的。
于是李老师对卖主说,你的一箱苹果里不止有5个坏的。
卖主反驳说,我的话并没有错,也许这一箱苹果中就这3个坏的,让你碰巧看见了。
李老师的指责有道理吗?解:我们来看一看。
假设这一筐有100个苹果,其中有5个坏的。
我们把“坏苹果数大于2”用符号{}2>Y 表示,他是互斥事件{}{}{}54Y 3===Y Y 、、的并,应用古典概率的定义,可求得所抽的10个中坏苹果数等于3的概率()00639.031010035795≈==C C C Y P同样可求得其中坏苹果数为4、5的概率分别是()00025.041010045695≈==C C C Y P()000000.051010055595≈==C C C Y P于是由概率加法原则可得“坏苹果数大于2”的概率()()()()0066.05432==+=+==>Y P Y P Y P Y P如果这筐苹果里的坏苹果少于5个,那么打开一筐任取10个发现多与2个坏苹果的概率会更小。
这就是说一次抽查10个,发现多于2个坏的几率会更小。
是几乎不可能发生的。
现在居然发生了,李老师正是根据几乎不可能发生的事情而居然发生了这个矛盾去否定卖方的说法。
在数学中把李老师的这种根据,即“概率很小的事件,在一次实验中几乎不可能发生。
”叫做小概率原理。
这是人们常常恪守的一条原理。
那么,卖方说的没有理由吗?也就是说假如这筐苹果里真的只有三个坏的,抽查的10个中恰巧包含了这3个,如果真是这样,那么这时就犯了把合格的(称其为真的)一筐(批)判成不合格的(称其为假的)一筐(批)判成不合格的(称其为假的)一筐(批)的错误。
我们称这种错误为弃真性质的错误,又称其为第一类错误。
在这个问题中,这种可能性(概率)不超过0.66%,可以说抽查10000个这样的筐,才可能出现66个弃真性质的错误,它是一个小概率事件。
显然买方已经把允许弃真性质错误的概率规定的够小的了,根据小概率原理卖方说的理由不成立。
李老师用这样抽样检查来决定买不买东西也有风险。
例如,若李老师所看的那筐有10个坏的(次品),然而李老师所抽的那10个全是好的(合格品),于是李老师以为这一筐里的坏的不超过5个(为合格批),相信了卖方的话。
这时李老师就犯了取伪性质的错误(把不合格批判为合格批)。
我们把这种错误称为取伪性质的错误,也叫第二类错误。
那么,这时李老师犯取伪性质错误的概率是多少呢?下面我们来算一算。
先用古典概型定义分别算出抽查的10个中所含次品个数及其对应的概率,将其列成下表:则他犯取伪性质错误的概率为()()()939981.020510.0407995.0330476.0210=++==+=+==X P X P X P β 而当筐里有40个坏苹果时,用“抽查10个,其中有不超过2个坏的”标准就买,犯取伪性质错误的概率用同样的方法可以求。
先应用古典概率定义计算然后列成下表:再求()()()153806.0115291.0034160.0004355.0210=++==+=+==X P X P X P β 即这时犯取伪错误的概率为0.153806由对以上例题的研究和分析可以得出结论,“先尝后买”对卖方还是有一定风险的,但是当商品不能一一全面检查时,先尝后买(抽样检查)的确不失为一个好方法,所以它能长盛不衰。
从而0>'y ,即函数()()xx xp p p y ----=2112在区间()+∞∞-,上是单调递增函数。
因为当01==y x 时,所以,当01>>y x 时。
特别取()为正整数n n x =,则当2≥=n x 时,有0>y ,即()()02]11[2>----nn np p p ,所以,97d d >。
由此可得:6897d d d d >>>这就是说,在系统6图——系统9图所示的四个系统中,其可靠性由好到差排列的顺序是:系统7、系统9、系统8、系统6.通过上面的讨论可以看出,对于同样数目,同样性能的元件,由于系统的构成情况不同,它的可靠性也不一样。
因此,在基本情况相同的情况下,我们总是寻求优良的系统组成方式,从而使系统的可靠性更好一些。
了解系统可靠性的一些结论,并把它运用到我们的生产实践和生活实践当中去,必将收到良好的效果。
1.4大数定律在保险业的应用1.4.1问题的提出]5[重复试验中事件的频率的稳定性,是大量随机现象的统计规律性的典型表型。
人们在实践中认识到频率具有稳定性,进而由频率的稳定性预见概率的存在;有频率的性质推断概率的性质,并在实际运用中用频率的值来估计概率的值。
其实,在大量随机现象中,不但事件的频率具有稳定性,而且大量随机现象的平均结果一般也具有这种稳定性;单个随机地行为对大量随机现象共同产生的总平均效果几乎不发生影响。
这就是说,尽管单个随机现象的将具体实现不可避免地引起随机偏差,然而在大量随机现象共同作用时,由于这些随机偏差互相抵消、补偿和拉平,至于总的平均结果趋于稳定。
]6[例如,在随机地抛掷一枚均匀硬币的实验例子中,每一次实验的结果可能是正面,也可能是反面,但当抛掷次数变得很大时,每一次抛掷的结果对总的发生频率的影响就变得很小,于是正、反两面出现的就趋于稳定,其值围绕着0.5做微小的波动;又如在分子物理学中,气体对容器壁的压力等于单位时间内撞击容器壁单位面积上的气体分子的总影响。
尽管每个气体分子运动的速度、方向以及撞击容器壁的1)|1(|lim 1=<-∑=∞→εEX X n P nk k n 件的发生,而此事件又与有些随机事件有关,这些随机事件的数目无限增多,而且每一个这样的事件产生的影响又非常微小。
2.4.2大数定理的定义】【7设{}k X 是相互独立切具有公共分布的随机变量序列。