有理数全章复习(按知识点分类复习)

合集下载

七年级数学有理数知识点章节复习与练习题

七年级数学有理数知识点章节复习与练习题
2.如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是( )
A. B. C. D.
三、相反数
1.概念:只有符号不同的两个数叫做互为相反数。0的相反数仍是0.
2.几何定义:在数轴上原点的两侧,到原点的距离相等的两点所表示数为相反数。
3.任何一个数都有它的相反数
4.相反数性质:a与b互为相反数,则a+b=0.
1.如果a和b是符号相反的两个数,在数轴上a所对应的数和b所对应的点相距6个单位长度,如果a=-2,则b的值为_________________.
2.已知x、y互为相反数,则-15(x+y)=__________________.
3.如果a的相反数是最大的负整数,b的相反数是最小的正整数,a+b=___________.
注意:循环小数是无限小数,也称作无限循环小数。整数和分数都可以写成有限小数或无限循环小数,所以有理数也可以分类为有限小数和无限循环小数。
1.下列说法中正确的是( )
A、一个有理数,不是正数就是负数 B、一个有理数,不是整数就是分数
C、有理数可分为非负有理数和非正有理数 D、整数和小数统称有理数
2.若两个有理数的和是正数,那么一定有结论( )
2.计算:
3.计算
七、科学计数法
将一个大于10的数字表示成 的形式(其中1≤a<10,n表示正整数),这种记数方法叫科学记数法.
1.某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是( )
A.2.3×105辆 B.3.2×105辆 C.2.3×106辆 D.3.2×106辆
四、绝对值
在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

有理数全章复习

有理数全章复习

有理数全章复习理解有理数的概念和性质:有理数是指可以表示为两个整数的比值的数,这里的整数可以是正整数、负整数或零。

有理数的性质主要包括有理数的加减乘除运算性质、有理数大小的比较,以及有理数的乘方、开方运算等。

一、有理数的加减乘除运算性质:1.有理数的加法性质:-交换律:a+b=b+a-结合律:(a+b)+c=a+(b+c)-存在零元素:a+0=a-存在相反元素:a+(-a)=02.有理数的减法性质:-减法的定义:a-b=a+(-b)-减法与加法的关系:a-b=a+(-b)3.有理数的乘法性质:-交换律:a*b=b*a-结合律:(a*b)*c=a*(b*c)-分配律:a*(b+c)=a*b+a*c4.有理数的除法性质:-除法的定义:a÷b=a*(1/b)二、有理数的大小比较:1.同号比大小:正数大于负数,负数小于正数;正数之间、负数之间,绝对值大的数大。

2.异号比大小:两个数绝对值相比,绝对值大的数小。

三、有理数的乘方和开方运算:1.有理数的乘方:-正数的指数性质:a^m*a^n=a^(m+n)-负数的指数性质:a^(-m)=1/a^m-零的指数性质:a^0=1(a≠0)- 乘方的分配律:(ab)^n = a^n * b^n2.有理数的开方:-非负数的开方:√a*√a=a(a≥0)- 开方的分配律:√(ab) = √a * √b有理数的应用:1.在数轴上表示有理数:-正数表示:从0向右的数轴上的点表示,数值与点的位置对应。

-负数表示:从0向左的数轴上的点表示,数值与点的位置对应。

-零的表示:数轴上的0点表示。

2.数与有理数的运算:-数的加减法:将数转换为有理数进行运算。

-有理数与有理数的加减法:按照有理数的加减法规则进行运算。

3.比例与比例运算:-比例的定义:两个比例相等叫做比例,表示为a:b=c:d。

- 比例的性质:比例的两个比值相等,乘法性质:a:b = ac:bd。

-比例方程的解法:根据比例的性质,设置比例方程求解。

人教版七年级数学上册第一章有理数全章总复习

人教版七年级数学上册第一章有理数全章总复习

知识清单
2.有理数的减法
(1)法则:减去一个数等于加上这个数的__相___反__数___;
(2)字母表示:a-b=a+___(_-_b_)____. 3.有理数的乘法 (1)法则:两数相乘,同号得__正__,异号得__负__,并把绝对值 __相__乘___;任何数与0相乘仍得__0__; (2) 几个不为0的有理数相乘,积的符号由_负__因__数___的个数决 定,当_负___因__数__有奇数个时,积为_负___,当_负__因___数__有偶数个 时,积为_正___;
知识清单
7有理数的混合运算的运算顺序 先算__乘__方___,再算__乘__除____,最后算__加__减____;如果有括号,就 先算_括__号__里__面___的____.
正整数), n的值比原数的整数位数少1. 解:(1)2800万 =28000000 =2.8×107
(2)1600亿 =1600000பைடு நூலகம்0000 =1.6×1011 (3)731000000 =7.31×108
例题讲解
例4按括号内的要求,用四舍五入法对下列各数取近似数: (1). 5.95(精确到0.1); (2). 32.3(精确到个位); (3). 1.645(精确到0.01); (4). 1.0725(精确到千分位).
3
3
8
正数集合 +8, 0.5,
20%, 5 , ┉8
负数集合
-3,1 2 ,
1 3
,-3.314,
-12 ┉
分数集合
1
2 3

1 3

0.5,-3.14,
20%, ┉
5, 8
自然数集合 0,+8, ┉
课堂练习

第一章 有理数总复习

第一章 有理数总复习

第一章有理数总复习一、知识归纳:1、数轴是一条规定了原点、方向、长度单位的直线。

有了数轴,任何一个有理数都可以用它上面的一个确定的点来表示。

在数的研究上它起着重要的作用。

它使数和最简单的图形——直线上的点建立了对应关系,它揭示了数和形之间的内在关系,因此它是数形结合的基础。

但要注意数轴上的所有点并不是都有有理数和它对应。

借助于数轴上点的位置关系可以比较有理数的大小,法则是:在数轴上表示的两个有理数,右边的数总比左边的数大。

2、相反数是指只有符号不同的两个数。

零的相反数是零。

互为相反的两个数位于数轴上原点的两边,离开原点的距离相等。

有了相反数的概念后,有理数的减法运算就可以转化为加法运算。

3、绝对值:在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

显然有:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零。

对于任何有理数a,都有a ≥0。

4、倒数可以这样理解:如果a 与b 是非零的有理数,并且有a×b=1,我们就说a 与b 互为倒数。

有了倒数的概念后,有理数的除法运算就可以转化为乘法运算。

5、有理数的大小比较:(1)正数都大于零,负数都小于零,即负数<零<正数;(2)两个正数,绝对值大的数较大;(3)两个负数,绝对值大的数反而小;(4)在数轴上表示的有理数,右边的数总比左边的大;6、科学记数法:是指任何数记成a×10n的形式,其中用式子表示| a |的范围是0<|a|<10。

7、近似数与精确度:近似数:一个与实际数很接近的数,称为近似数;精确度:右边最后一位数所在的位数,就是精确到的数位。

二、有理数的运算法则1、有理数的加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0 相加,仍得这个数。

由此可得,互为相反数的两数相加的0;三个数相加先把前两个数相加,或先把后两个数相加,和不变。

第一章有理数复习

第一章有理数复习

第一章:有理数复习【一】知识要点 【1】有理数的分类 1.2.按正负分【例题1】(1)把下列各数进行分类 ① 0 ②-5 ③ 1 ④ 1.5 ⑤2 ⑥ 722- ⑦ -(-3)⑧ 312--⑨ -12018 ⑩ (-2)3整数集合( ) 分数集 合( )非负整数集合 ( ) 非负数集合( ) (2)下列说法正确的有( )个①0是最小的数 ②绝对值最小的数是0 ③任何数的绝对值都是正数 ④最大的负整数是-1 ⑤倒数等于它本身的有1,-1,0有理数正有理数负有理数温馨提示: 1.化简结果中含有π或无限不循环的小数都不是有理数 2.正数和零统称非负数,负数和零统称非正数 正整数正分数 负整数 负分数有理数【2】相关概念1.数轴:规定了原点、正方向、单位长度的一条直线2.相反数:3.绝对值①几何定义:一个数a 的绝对值就是数轴上表示这个数a 的点离开原点的距离,绝对值越大离原点越远②代数定义:⎩⎨⎧≤-≥=)0()0(a a a a a (注意0)4.倒数:若两个数的积是1,那么这两个数互为倒数5.科学计数法6.近似数和有效数字7.数的大小比较方法:数轴上从左到右依次递增,数轴上的点与实数..是一一对应 ①代数定义:只有符号不同......的两个数叫做相反数 ②几何定义:数轴上在原点的两旁,到原点距离相等的两个点代表的数互为相反数③求一个数或式子的相反数,就在它的前面加上‘-’④a 的相反数是-a ,a-b 的相反数是-(a-b )=b-a,a+b 的相反数是-(a+b)=-a-b (注意括号),相反数等于它本身的只有0 ⑤性质:若a,b 互为相反数,则a+b=0,或a=-b 1、非负数的绝对值等于它本身,非正数的绝对值是它的相反数 2、绝对值符号去掉规律:非负数各项不变号,非正数各项都变号 3、一个数的绝对值(或者平方)等于正数.............,那么这个数有两个..①a,b 互为倒数 ab=1②倒数等于它本身只有±1,切记0没有倒数形式:ax10n (a 是整数位数只有一位的数,n 是整数), 当a ≥10时,n=原数整数位数-1 , 当a <1时,n=-(原数第一个非0数字前所有0的个数) ①保留近似数的方法有:四舍五入法、进一法、去尾法 ②近似数可以用计数单位或科学计数法表示 ③有效数字是从左边第一个不是零的数字起以后的所有数字都是这个数的有效数字 ④通过测量得到的数都是近似数 ①差法 ②数轴法 ③两个负的绝对值法 ④平方法 ⑤商法8.非负数性质【例题2】正负数应用(1)如果提高10分表示+10分,那么下降8分表示____,不升不降用___表示. (2)巴黎与北京的时间差为-7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是()A. 7月2日21时B. 7月2日7时C. 7月1日7时D. 7月2日5时 (3)某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如9:15记为-1,10:45记为1等等,依此类推,上午7:45应记为【例题3】数轴、相反数、绝对值、倒数、非负数应用(1)已知 a ,b 互为相反数,c ,d 互为倒数,m-1的绝对值是2,则m dccd b a -+-+222=(2)在数轴上到表示-1的点的距离为7个单位长度的点有_____个,它们表示27(4)绝对值不大于2的整数有________,它们的和是 ,积是 ((6)已知|x|=4,|y|=2且y <0,则x+y 的值为(7) ①π-14.3=②20171-2018131-4121-311-21++++。

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结一、有理数的定义有理数是整数(正整数、0、负整数)和分数的统称。

整数可以看作是分母为 1 的分数。

例如,5 可以写成 5/1。

分数是指把单位“1”平均分成若干份,表示这样一份或几份的数。

例如 1/2、3/4 等。

二、有理数的分类1、按定义分类有理数可以分为整数和分数。

整数包括正整数、0、负整数。

例如:3、0、-5 等。

分数包括正分数和负分数。

例如:1/2、-3/4 等。

2、按性质分类有理数可以分为正有理数、0、负有理数。

正有理数包括正整数和正分数。

例如:2、3/5 等。

负有理数包括负整数和负分数。

例如:-3、-7/8 等。

三、数轴1、数轴的定义规定了原点、正方向和单位长度的直线叫做数轴。

2、数轴的三要素原点、正方向、单位长度,缺一不可。

3、有理数与数轴的关系任何一个有理数都可以用数轴上的一个点来表示。

数轴上的点所表示的数,右边的总比左边的大。

正数都大于 0,负数都小于 0,正数大于负数。

四、相反数1、相反数的定义只有符号不同的两个数叫做互为相反数。

例如,5 和-5 互为相反数,0 的相反数是 0。

2、相反数的性质互为相反数的两个数之和为 0。

即:若 a 和 b 互为相反数,则 a + b = 0 。

3、求一个数的相反数在一个数前面加上“”号,就得到这个数的相反数。

例如,7 的相反数是-7 ;-3 的相反数是 3 。

五、绝对值1、绝对值的定义数轴上表示数 a 的点与原点的距离叫做数 a 的绝对值,记作|a| 。

2、绝对值的性质正数的绝对值是它本身;负数的绝对值是它的相反数;0 的绝对值是 0 。

即:若 a > 0 ,则|a| = a ;若 a = 0 ,则|a| = 0 ;若 a < 0 ,则|a| = a 。

3、绝对值的非负性任何有理数的绝对值都是非负数,即|a| ≥ 0 。

六、有理数的比较大小1、正数大于 0 , 0 大于负数,正数大于负数。

2、两个负数比较大小,绝对值大的反而小。

《有理数》全章复习和巩固[基础]

《有理数》全章复习和巩固[基础]

《有理数》全章复习与巩固(基础)撰稿:吴婷婷审稿:常春芳【学习目标】1.理解正负数的意义,掌握有理数的概念.2.理解并会用有理数的加、减、乘、除和乘方五种运算法则进行有理数的混合运算.3.学会借助数轴来理解绝对值、有理数比较大小等相关知识.4. 理解科学记数法及近似数的相关概念并能灵活应用.5. 体会数学知识中体现的一些数学思想.【知识网络】【要点梳理】要点一、有理数的相关概念1.有理数的分类:(1)按定义分类:(2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:2.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如π.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0.要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“-”号即可.(3)多重符号的化简:数字前面“-”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a 的绝对值记作a .(2)几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.要点二、有理数的运算1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a ÷b=a ·1b(b ≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0.(6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩偶数,则幂为正,例如: 2(3)9-=, 3(3)27-=-.2.运算律:(1)交换律: ① 加法交换律:a+b=b+a ; ②乘法交换律:ab=ba ;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab )c=a(bc)(3)分配律:a(b+c)=ab+ac要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法、近似数及精确度1.科学记数法:把一个大于10的数表示成10na ⨯的形式(其中110a ≤<,n 是正整数),此种记法叫做科学记数法.例如:200 000=5210⨯.2.近似数:接近准确数而不等于准确数的数,叫做这个精确数的近似数或近似值.如长江的长约为6300㎞,这里的6300㎞就是近似数.要点诠释:一般采用四舍五入法取近似数,只要看要保留位数的下一位是舍还是入.3.精确度:一个近似数四舍五入到哪一位,就称这个数精确到哪一位,精确到的这一位也叫做这个近似数的精确度.要点诠释:(1)精确度是指近似数与准确数的接近程度.(2)精确度有两种形式:①精确到哪一位.②保留几个有效数字.这两种的形式的意义不一样,一般来说精确到哪一位可以表示误差绝对值的大小,例如精确到0.1米,说明结果与实际数相差不超过0.05米,而有效数字往往用来比较几个近似数哪个更精确些.【典型例题】 类型一、有理数相关概念1.若一个有理数的:(1)相反数;(2)倒数;(3)绝对值;(4)平方;(5)立方,等于它本身.则这个数分别为(1)________;(2)________;(3)________;(4)________;(5)________.【答案】(1)0; (2)1和-1;(3)正数和0;(4)1和0;(5)-1、0和1【解析】根据定义,把符合条件的有理数写全.【总结升华】要全面正确地理解倒数,绝对值,相反数等概念.举一反三:【高清课堂:有理数专题复习 357133 概念的理解与应用】【变式】(1)321-的倒数是 ;321-的相反数是 ;321-的绝对值是 . -(-8)的相反数是 ;21-的相反数的倒数是_____. (2)某种食用油的价格随着市场经济的变化涨落,规定上涨记为正,则-5.8元的意义是 _ ;如果这种油的原价是76元,那么现在的卖价是 .(3) 上海浦东磁悬浮铁路全长30km ,单程运行时间约为8min,那么磁悬浮列车的平均速度用科学记数法表示约为 m /min.(4) 若a 、b 互为相反数,c 、d 互为倒数,则=++)(323b a cd ____ . (5) 近似数0.4062精确到 位,近似数 5.47×105精确到 位,近似数3.5万精确到位, 3.4030×105精确到千位是 .【答案】(1)35-; 213; 213;-8;2 (2)降价5.8元,70.2 元;(3)33.7510⨯;(4)3; (5)万分;千;千;3.40×1052.如果(x-2)2+|y-3|=0,那么(2x-y)2005的值为( ).A .1B .-1C .22006D .32005【思路点拨】利用非负数的性质,求出y ,x 的值再代入计算.【答案】A【解析】 因为(x-2)2,|y-3|都是非负数,且(x-2)2+|y-3|=0, 所以由非负数的性质先求出x=2,y =3的值,代入得: (2x-y)2005=12005=1.【总结升华】偶次方与绝对值都具有非负性.3.在下列两数之间填上适当的不等号: 20052006________20062007. 【思路点拨】根据“a-b >0,a-b =0,a-b <0分别得到a >b ,a =b ,a <b ”来比较两数的大小.【答案】<【解析】法一:作差法 由于20052006200520072006200610200620072006200720062007⨯-⨯-==-<⨯⨯,所以2005200620062007< 法二:倒数比较法:因为2006112007112005200520062006=+>+= 所以2005200620062007< 【总结升华】比较大小常用的有五种方法,要根据数的特征选择使用. 举一反三:【变式】比较大小:(1)199-________0.001; (2)23-________-0.68 【答案】(1)< (2)>类型二、有理数的运算4.(1)(﹣12)﹣5+(﹣14)﹣(﹣39)(2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|(3)()1526061215⎡⎤⎛⎫⎛⎫---+⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(4)()()5410.751252⎡⎤⎛⎫-⨯-÷-+- ⎪⎢⎥⎝⎭⎣⎦(5)231111312112132442434(0.2)⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 【答案与解析】解:(1)(﹣12)﹣5+(﹣14)﹣(﹣39) =﹣12﹣5﹣14+39=﹣31+39=8(2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4|=﹣9÷9﹣6+4=﹣1﹣6+4=﹣3(3)()1526061215⎡⎤⎛⎫⎛⎫---+⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ =×60﹣×60﹣×60 =10﹣25﹣8=﹣23(4)()()5410.751252⎡⎤⎛⎫-⨯-÷-+- ⎪⎢⎥⎝⎭⎣⎦=﹣×[(﹣)÷(﹣)﹣32]=﹣×[2﹣32]=﹣×[﹣30]=24(5)231111312112132442434(0.2)⎛⎫⎛⎫⎛⎫÷-++-⨯- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 3124575512416543415⎛⎫⎛⎫=⨯-++-⨯- ⎪ ⎪⎝⎭⎝⎭⎛⎫- ⎪⎝⎭ 14575524242412540434⎛⎫=-+⨯+⨯-⨯+ ⎪⎝⎭12705633012540=-++-+1121403912040=-+= 【总结升华】有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,同级运算从左到右依次进行计算,然后利用各种运算法则计算,有时可以利用运算律来简化运算.举一反三:【变式】计算:(1)11(2)(2)22-⨯÷⨯- (2)()20064261031-+--⨯- 【答案】解:(1)111(2)(2)(1)(2)(1)2(2)4222-⨯÷⨯-=-÷⨯-=-⨯⨯-= (2)()20064261031-+--⨯-=-16+4-3×1 =-15类型三、数学思想在本章中的应用5.(1)数形结合思想:有理数a 在数轴上对应的点如图所示,则a ,-a ,1的大小关系.A .-a <a <1B .1<-a <aC .1<-a <aD .a <1<-a(2)分类讨论思想:已知|x|=5,|y|=3.求x-y 的值.(3)转化思想:计算:3135()147⎛⎫-÷- ⎪⎝⎭ 【答案与解析】解:(1)将-a 在数轴上标出,如图所示,得到a <1<-a ,所以大小关系为:a <1<-a . 所以正确选项为:D .(2)因为| x|=5,所以x 为-5或5因为|y|=3,所以y 为3或-3.当x =5,y =3时,x-y =5-3=2当x =5,y =-3时,x-y =5-(-3)=8当x =-5,y =3时,x-y =-5-3=-8当x =-5,y =-3时,x-y =-5-(-3)=-2故(x-y )的值为±2或±8(3)原式=33135(7)357724614142⎛⎫--⨯-=⨯+⨯= ⎪⎝⎭ 【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”.举一反三:【变式】若a 是有理数,|a|-a 能不能是负数?为什么?【答案】解:当a >0时,|a|-a =a-a =0;当a =0时,|a|-a =0-0=0;当a <0时,|a|-a =-a-a =-2a >0.所以,对于任何有理数a ,|a|-a 都不会是负数.类型四、规律探索6.将1,12-,13,14-,15,16-,…,按一定规律排列如下:请你写出第20行从左至右第10个数是________.【思路点拨】通过观察题目所给的图形、表格或一段语言叙述,然后归纳总结,寻找规律. 【答案】1200- 【解析】 认真观察可知,第1行有1个数,第2行有2个数,第3行有3个数,……,所以第20行有20个数,从第1行到第20行共有1+2+3+…+20=210个数,所以第20行最后一个数的绝对值应是1210;又由表中可知,凡是分母是偶数的分数是负数,故第20行最后一个数是1210-,以此类推向前10个,则得到第20行第10个数是1200-. 【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并将规律表示出来.【巩固练习】一、选择题1.下列判断正确的个数有( )(1)任何一个有理数的相反数和它的绝对值都不可能相等.(2)若两个有理数互为相反数,则这两个数互为倒数.(3)如果两个数的绝对值相等,那么这两个有理数也相等.A .0个B .1个C .2个D .3个2.下列各数中最大的是( )A .23B .-32C .(-3)2D .(-2)33. 在-(-2),-|-7|,-|+1|,|-)511(-|32+,中,负数的个数是 ( ) A .1个 B .2个 C .3个 D .4个4.据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示( )A .2.02×210人B .202×810人C .2.02×910人D .2.02×1010人 5.若-1<a<0,则a ,2a ,a1从小到大排列正确的是( ) A .a 2<a<a 1 B .a <a 1< a 2 C .a 1<a< a 2 D .a < a 2 <a 16.在数轴上距2.5有3.5个单位长度的点所表示的数是( )A .6B .-6C .-1D .-1或67.a,b 两数在数轴上的位置如图,则下列正确的是( )A . a+b>0B . ab>0C .ba >0 D .a-b>0 8.已知有理数a ,b 在数轴上对应的两点分别是A ,B .请你将具体数值代入a ,b ,充分实验验证:对于任意有理数a ,b ,计算A , B 两点之间的距离正确的公式一定是( )A .a b -B .||||a b +C .||||a b -D .||a b -二、 填空题9.对某种盒装牛奶进行质量检测,一盒装牛奶超出标准质量2克,记作+2克,那么-3克表示_____.10.水池中的水位在某天八个不同时刻测得记录为:(规定向上为正,向下为负,单位:厘米)+3,0,-1,+5,-4,+2,-3,-2,那么这里0的含义是___________.11.德国科学家贝塞尔推算出天鹅座第61颗暗星距离地球102 000 000 000 000千米,用科学记数法表示出暗星到地球的距离为___ _____千米,精确到千亿位为 千米.12.7=x ,则______=x ; 7=-x ,则______=x .13.已知实数a , 在数轴上如下图所示,则|1|-a = .14.若|a-2|+|b+3|=0,则3a+2b= .15.()221---= .16.观察下列算式:23451=+⨯ ,24462=+⨯,25473=+⨯,24846⨯+=,请你在观察规律之后并用你得到的规律填空:250___________=+⨯.三、 解答题17.计算: (1)222172(3)(6)3⎛⎫-+⨯-+-÷- ⎪⎝⎭(2)4211(10.5)[2(3)]3---⨯⨯--(3)21-49.5+10.2-2-3.5+19 (4)323233351914321251943252⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯--⨯⨯-+⨯- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 18.已知a 、b 互为倒数,c 、d 互为相反数,且x 的绝对值为3,求2x 2-(ab-c-d)+|ab+3|的值.19.某地的气象观测资料表明,高度每增加1km ,气温大约下降6℃,若该地地面温度为18℃,高空某处气温为-48℃,求此处的高度.20.先观察下列各式: 11111434⎛⎫=- ⎪⨯⎝⎭;111147347⎛⎫=- ⎪⨯⎝⎭;11117103710⎛⎫=- ⎪⨯⎝⎭;...;1111(3)33n n n n ⎛⎫=- ⎪++⎝⎭,根据以上观察,计算:1111447710+++⨯⨯⨯ (120052008)+⨯的值. 【答案与解析】一、选择题1.【答案】 A2.【答案】C【解析】只有A 、C 两项的结果为正,只要比较23、(-3)2的大小即可.由23=8,(-3)2=9,可知: (-3)2最大.3.【答案】 C【解析】负数有三个,分别是:-|-7|,-|+1|,)511(-+4.【答案】D5.【答案】C【解析】由-1<a<0可知2a 为正数,而其它两数均为负数,且| a |<a1,所以a >a 1,所以a1<a< a 2. 6.【答案】D【解析】2.5+3.5=6, 2.5-3.5=-17.【答案】D【解析】由图可知,a 、b 异号,且b 的绝对值较大.8.【答案】D【解析】按正负对a ,b 分类讨论.二、填空题9.【答案】低于标准质量3克10.【答案】水位无变化11.【答案】1.02×1014,1.020×101412.【答案】7,7±±13.【答案】1-a【解析】由图可知:a-1<0,所以 │a-1│=-(a-1)=1- a.14.【答案】0【解析】∵|a-2|+|b+3|=0,∴a-2=0,b+3=0,即a=2,b=-3.∴3a+2b=6-6=0;15.【答案】-5【解析】()221415---=--=- .16.【答案】 24852450⨯+=【解析】观察可得规律为:2(4)4(2)n n n ⨯++=+.三、解答题17.【解析】解: (1) 原式14929(6)9=-+⨯+-÷ 4918(6)949185485=-++-⨯=-+-=-(2) 原式111111511[2(9)]11112232366⎛⎫=---⨯⨯--=--⨯⨯=--=- ⎪⎝⎭ (3)原式=[(21+19)+10.2]+[(-49.5-3.5)-2]=50.2-55=-4.8(4) 原式=32233519422519435⎡⎤⎛⎫⎛⎫⎛⎫-⨯--⨯+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦27943191627008251943258⎛⎫=-⨯-⨯+=-⨯= ⎪⎝⎭ 18.【解析】解:将ab =1,c+d =0,|x|=3代入所给式子中得: 2×32-1+|1+3|=21.所以2x 2-(ab-c-d)+|ab+3|=2119.【解析】解:18(48)116km --= 则此高空比地面高11km ,又地面高度应为0,所以此高空处的高度为11 km .20.【解析】解:原式111111111111343473710320052008⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…WORD 格式整理专业知识分享 111111111344771020052008⎛⎫=-+-+-+⋅⋅⋅+- ⎪⎝⎭1112007669132008320082008⎛⎫=-=⨯= ⎪⎝⎭。

有理数知识点汇总

有理数知识点汇总
0

注意:①|a|≥0即对任意有理数a,它的绝对值是非负数
②绝对值最小数为0
(5)、有理数数的比较: ①在数轴上表示的两个数右边的总 比左边的大。 ②两个正数比较大小,绝对值大的数大; 两个负数绝对值大的反而小。 ③正数都大于零,负数都小于零,正数大于负数。 ④作差法:a-b>0↔a>b ⑤作商法:a/b>1,b>0↔a>b
第一章 有理数
1.1正数和负数
(1)正数:大于零的数叫做正数。如:1,0.25,…,69。 负数:小于零的数叫做负数。如:-1,-3.8,-1/4,…,-25。 零: 零既不是正数也不是负数 整数:正数、0、负数 (2)用正负数表示两个意义相反的量。
把一些数放在一起,就组成一个数的集合,简称数集(set of number)。 所有正数组成的集合,叫 做正数集合; 所有负数组成的集合叫做负数集合; 所有整数组成的集合叫整数集合; 所有分数组成的集合叫分数集合; 所有有理数组成的集合叫有理数集合; 所有正整数和零组成的集合叫做自然数集。
乘法运算律: 1交换律:两个数相乘,交换因数的位置,积不变
ab = ba ; 2结合律:三个数相乘,先把前面两个数相乘,或者先把后两个数相 乘,积不变。 (ab)c= a(b c ) ; 3分配律:一个数于两个数的和相乘,等于把这个数分别于这两个 数相乘,再把积相加。a(b+c)= ab+ac 。
倒数:①乘积为1的两个数互为倒数。
-a -5 -4 -3 -2 -1 0 1 2 3 a 4
有理数的分类
(4)、绝对值:数轴上表示数a的点与原点的距离叫做数 a的绝对值,符号表示为( |a| )
A -5 -4 -3 -2 -1 0 1 2 3 B 4
一个正数的绝对值是 是它本身 ,一个负数的绝对值是 它的相反数 0的绝对值是 。

第一章《有理数》复习总结

第一章《有理数》复习总结

第一章《有理数》复习总结有理数是整数和分数的统称,包括正数、负数和零。

有理数可以表示为p/q的形式,其中p和q都是整数,且q不等于0。

p称为分子,q称为分母。

1.有理数的大小比较:(1)对于同号的有理数,绝对值越大,数值越大;(2)对于异号的有理数,正数大于负数,绝对值越小,数值越大。

2.有理数的加减乘除:(1)加法:拆分有理数,按照整数部分和小数部分相加;(2)减法:将减数变为相反数,再进行加法运算;(3)乘法:分别计算分子和分母的乘积,然后化简;(4)除法:将除数变为倒数,再进行乘法运算。

3.有理数的约分和化简:(1)约分:将分子和分母同时除以最大公因数,使得分数不可再约分;(2)化简:将带有分数线的有理数化为最简形式。

4.有理数的绝对值:(1)正数的绝对值是其本身;(2)负数的绝对值是其相反数;(3)零的绝对值是零。

5.有理数的相反数:(1)正数的相反数是负数;(2)负数的相反数是正数;(3)零的相反数是零。

6.计算混合数的值:(1)将整数部分和小数部分分开,分别计算;(2)将结果相加或相减,得到最终的结果。

7.有理数的乘方:(1)有理数的整数次方,将底数连乘或连除相应次数;(2)底数是分数,将底数化为整数的形式进行计算。

8.有理数的乘法逆元:(1)有理数的乘法逆元是其倒数;(2)除零外,任意非零有理数的乘法逆元存在。

9.有理数的混合运算:(1)先进行括号内的运算,再进行乘除法运算,最后进行加减法运算;(2)若有多个加法或减法运算,按照从左到右的顺序进行。

10.有理数在坐标轴上的表示:(1)正数表示点在原点的右侧;(2)负数表示点在原点的左侧;(3)零表示点在原点。

有理数在数学中有着广泛的应用,比如在数轴上定位、计算中的加减乘除、分数和小数的运算等。

学好有理数不仅需要掌握各种运算规则和性质,还需要大量的练习和实践。

通过不断的练习和思考,可以提高解决实际问题的能力,培养思维和逻辑思维能力。

总之,有理数作为数学的一个重要概念,是我们平日生活中接触最多的数的形式。

有理-数-总-复-习知识点讲解

有理-数-总-复-习知识点讲解

有理数总复习------知识点、考点一、有理数的基本概念1.负数⑴数的分类与范围扩展---解释为什么会产生负数:相反量的出现,方便表示、书写、计算⑵正负数的规定性及由规定性产生的正数、0、负数分类法、大小关系。

带“-”的不一定是负数,可能为正,亦可能为0。

⑶理解0的含义:既可表示生活、生产、计算中没有了、不存在,当然也可表示一种状态,比如温度0度表示不是没有温度而是温度客观存在的一种状态。

再比如规定往什么方向前进、水位的变化,此时0表示在原地没动或没有变化。

⑷正数、负数在表示一对相反量时有习惯的约定性,比如水位上升0.1米记作+0.1米,水位没有变化记作0米。

水位下降0.1米,记作-0.1米。

这就是人们习惯上升这种正向思维,“+”表示上升、“-”表示下降。

正数、负数在表示一对相反量时还有临时的约定性,比如还以水位变化为例。

水位上升0.1米记作-0.1米,水位没有变化记作0米。

水位下降0.1米,记作+0.1米。

这样表示不是不可以,这样表示的话正负数也表达了相反,但不符合人们的思维习惯,总感觉别扭。

不过有些情况下约定性不是习惯性的、固定的,比如站在某点要往相反的两个方向作不同的运动,比如向西与向东,这两个方向往东、往西可选定其中任何一个方向距始发点某点的运动距离为正,相对应的另一方向的运动距离为负,切忌两个方向的运动距离同时记为正或同时记为负。

比如向东5米记为+5米,向西2米需记为-2米。

当然也可把向东5米记为-5米,向西2米需记为+2米。

双重相反关系的转化问题,比如水位上升记作+,水位下降-2米是什么意思呢?表示的并不是下降2米后又紧接着降2米,表示的是往下降的相方向变化2米,那下降的相方向变化是什么?不就是上升吗?所以,水位下降-2米就记作+2米。

⑸相反量关系规定后,在表记之后的语言描述上注意用正方向词汇统一描述,避免双重相反关系的误出现。

比如水位上升0.1米记作+0.1米,水位下降0.1米,记作-0.1米。

有理数单元复习资料

有理数单元复习资料

有理数单元复习资料有理数是数学中的一个重要概念,它包括整数和分数。

在学习有理数的过程中,我们需要了解有理数的性质、运算规则以及解决有理数相关问题的方法。

本文将为大家提供一些有理数单元的复习资料,帮助大家巩固知识,提高学习效果。

一、有理数的性质有理数具有以下几个重要性质:1. 有理数可以表示为分数的形式,分子和分母都是整数。

2. 有理数可以用小数表示,小数可以是有限的,也可以是无限循环的。

3. 有理数的加法、减法、乘法和除法运算仍然是有理数。

4. 有理数具有传递性,即如果a<b,b<c,那么a<c。

二、有理数的运算规则在进行有理数的运算时,我们需要遵循一定的规则:1. 加法和减法运算:- 同号相加减,取绝对值相加减,结果的符号与原来的符号相同。

- 异号相加减,取绝对值相减,结果的符号取绝对值较大的数的符号。

2. 乘法和除法运算:- 同号相乘除,结果为正数。

- 异号相乘除,结果为负数。

- 任何数除以0都是无意义的。

三、有理数的应用有理数在实际生活中有着广泛的应用,下面介绍几个常见的应用场景:1. 温度计:温度的正负可以用有理数表示,0度以下为负数,0度以上为正数。

2. 账户余额:账户余额可以是正数(存款)或负数(透支)。

3. 距离和位移:距离和位移可以用有理数表示,正数表示向右或向上,负数表示向左或向下。

4. 比赛得分:比赛得分可以用有理数表示,正数表示得分,负数表示失分。

四、有理数的解题方法解决有理数相关问题时,我们可以采用以下几种方法:1. 计算法:根据题目给出的条件,进行有理数的加减乘除运算,得出最终结果。

2. 图形法:将有理数表示在数轴上,利用数轴上的点和线段表示有理数的大小关系。

3. 约分法:对于分数,可以进行约分,化简为最简形式,便于计算和比较大小。

4. 取反法:对于解题过程中出现的负数,可以通过取反变成正数,简化计算。

五、总结有理数是数学中的重要概念,掌握有理数的性质、运算规则以及解题方法对于学习数学和解决实际问题都具有重要意义。

(完整版)《有理数》章节知识点归纳总结

(完整版)《有理数》章节知识点归纳总结

曙光教育有理数章节知识点归纳总结一、基本运算和基本看法自己之迷①倒数是它自己的数是±1②绝对值是它自己的数是非负数(正数和0)③平方等于它自己的数是0, 1④立方等于经自己的数是±1, 0⑤偶数次幂等于自己的数是0、 1⑥奇数次幂等于自己的数是±1, 0⑦相反数是它自己的数是0数之最①最小的正整数是 1②最大的负整数是 -1③绝对值最小的数是0④平方最小的数是0⑤最小的非负数是0⑥最大的非正数0⑦没有最大和最小的有理数⑧没有最大的正数和最小的负数例、填空:①两个互为相反数的数的和是_____;② ____与它绝对值的差为0;③两个互为相反数的数的商是___; (0 除外 )④ ____ 的倒数等于它自己;⑤ ____的绝对值与它自己互为相反数;⑥____ 的平方与它的立方互为相反数;⑦ _ __ 的倒数与它的平方相等;⑧ ____的平方是 4, _____的绝对值是 4;1、( 1)、(6) ( 9) ___,( 2)、(6) ( 9) ___ ,( 3)、(9)___,( 4)、(14)___,( 6)( 56)( 5)、1647___ ,(6)、64___ ,( 7)、( 3)3____ ,( 8)、(2) 4____ ,( 9)、24____ ,(10)、(1) 2008____ ,( 11)、(2) 3____ ,(12)、655___ ,( 13)、11___ ,( 14)、5) (3)___,32(610( 15)、0.253___ ,(16)、 0.54____ ,8( 17)、55___ ,(18)、10___,20( 19)、(5.9)( 6.1)___ ,( 20)、(7)(56)0( 13)___ 。

( 21)、(2) 2=--------------(22)、32=--------------( 23)、(2) 2=--------------( 24)、 2 2=--------------3( 25)、23=--------------( 26 )、22=--------------3( 27)、( 1)2009=-----------( 28)、12007=------------( 29 ) ()2=16,( 30 ) 1 4 1 3( 31 )3 2 24( 32 )(23) 21 10( 33 )22212225( 34 )5222( 35 )1曙光教育2、下面有四种说法,其中正确的选项是 ( )A. 一个有理数奇次幂为负,偶次幂为正B. 三数之积为正,则三数必然都是正数C. 两个有理数的加、减、乘、除(除数不为零) 、乘方结果仍是有理数D. 一个数倒数的相反数,与它相反数的倒数不相等 3、以下判断错误的选项是( )( A )任何数的绝对值必然是正数; ( B )一个负数的绝对值必然是正数; ( C )一个正数的绝对值必然是正数;( D )任何数的绝对值都不是负数;4、以下四个命题:( 1)任何有理数都有相反数; (2) 一个有理数和它的相反数之间最少还有一个有理数;( 3)任何有理数都有倒数; ( 4)一个有理数如果有倒数,则它们之间最少还有一个有理数; ( 5)数轴上点都表示有理数; ( 6)任何一个有理数的平方 必 是 正 数 。

七年级第一章有理数全章复习

七年级第一章有理数全章复习

七年级第一章有理数全章复习
第一章有理数
一、有理数分类
复习练习:
1、下面关于有理数的说法正确的是( A )
A. 整数集合和分数集合合在一起就是有理数集合
B. 正数集合与负数集合合在一起就构成整数集合
C. 正数和负数统称为有理数
D. 正数、负数和零统称为有理数
2、若两个有理数的和是正数,那幺一定有结论( D )
A. 两个加数都是正数
B. 两个加数有一个是正数
C. 一个加数正数,另外一个加数为零
D. 两个加数不能同为负数
4. 下面说法正确的有( B )
①一个有理数不是整数就是分数②一个有理数不是正数就是负数③一个整数不是正数就是负数④一个分数不是正数就是负数
A.1 个
B.2 个
C.3 个
D.4 个
二、数轴
1、像这样规定了原点、正方向和单位长度的直线叫做数轴.
2、数轴的三要素:原点、正方向、单位长度,缺一不可.
3、在数轴上比较两个有理数大小的法则:
①在数轴上表示的两个数,右边的数总比左边的大。

第二章有理数及其计算(复习)

第二章有理数及其计算(复习)

12. 计算:1-2+3-4+5-6+…+99-100=____ _;
计算: 11 12 1 2000 =_________。 13.当 x=___时, x 2 3 有最___值是_____;当 x=____时, 5 x 22 有最___值是______。
14.已知点 4 和点 9 之间的距离为 5 个单位,有这样的关系 5 9 4 ,那么点 10 和点 3.2 之间的距离是
3. 绝对值不大于 3 的自然数有_____________;绝对值小于 4 的负整数有_______________; 绝对值小于 100 的所有整数的积是__________、和是__________。
4.若 x y ,则 x 与 y 的关系是__________;若,则 x2 y 2 ,则 x 与 y 的关系是__Fra bibliotek_______;
若 x2 36, 则 x=________;若 x 2 3, 则 x=________。
5.已知 m 3 +(n+2)2=0,则 nm 的值为

如果∣ a 4 ∣与( b 3 ) 2 互为相反数,那么 (a b)2011 的值是_________。
6. 用“小于”号比较大小: 5 , 6 , 17 :____________________________。 6 7 21
(3)75460≈__________(保留 1 个有效数字);(4)90990≈__________(保留 2 个有效数 字) 7、有理数运算:①减去一个数等于____________________,符号表示:__________________;
②除以一个数等于____________________,符号表示:__________________。

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结

《有理数》章节知识点归纳总结有理数是数学中的一个重要分支,它是数轴上所有的整数、分数以及它们的相反数所组成的集合。

在现实生活中,有理数广泛应用于商业、经济、金融、科学、工程等领域。

了解有理数的基本概念、性质、运算规律等知识点,可以帮助我们更好地理解数学中的相关问题。

下面进行有理数章节知识点归纳总结。

一、有理数的基本概念1. 有理数的定义:有理数是指可以表示为两个整数的比值的数。

其中,分母不为零。

2. 有理数的分类:(1)正有理数:大于零的有理数,如1/2、3、7.8等。

(2)负有理数:小于零的有理数,如-1/2、-3、-7.8等。

(3)零:0既不是正有理数也不是负有理数,它是唯一的一个既是整数又是分数的数。

3. 有理数的表示方法:有理数可以用分数的形式表示,也可以用小数的形式表示。

对于有限不循环小数,可以用有限小数的形式表示;对于无限循环小数,可以用循环小数的形式表示。

二、有理数的性质1. 有理数的比较:对于任意两个不相等的有理数a和b,它们之间只有三种关系:a>b、a<b或a=b。

2. 有理数的绝对值:一个有理数a的绝对值是它到原点的距离,记作|a|。

其中,若a>0,则|a|=a;若a<0,则|a|=-a。

3. 有理数的反数:对于任意一个有理数a,它的相反数是一个数-b,使得a+b=0。

其中,a被称为-b的相反数,-a也被称为b的相反数。

4. 有理数的倒数:对于任意一个非零有理数a,它的倒数是一个数1/a,使得a×(1/a)=1。

5. 有理数的运算律:(1)加法交换律:a+b=b+a。

(2)加法结合律:(a+b)+c=a+(b+c)。

(3)乘法交换律:ab=ba。

(4)乘法结合律:(ab)c=a(bc)。

(5)分配律:a(b+c)=ab+ac。

三、有理数的运算1. 有理数加法:对于任意两个有理数a和b,它们的和记作a+b。

若a和b符号相同,则将它们的绝对值相加,并加上公共符号;若a和b符号不同,则将它们的绝对值相减,并取它们的绝对值的较大者,再加上符号。

有理数全章总结

有理数全章总结

第一章《有理数》知识点有理数的分类分数:有限小数,无限循环小数,百分数。

特别的,π不是有理数。

一、基本概念1、正数与负数①表示大小②在实际中表示意义相反的量:上升5米记为5; -8则表示下降8米。

③带“-”号的数并不都是负数,如-a可以是正数、负数或0.④0既不是正数也不是负数。

0是整数,也是自然数。

例.某圆形零件的直径要求是(30±0.1mm),下表中6个已生产出来的零件圆孔直径的检测结(2)哪些零件的误差最小?2、数轴(1)三要素:原点、正方向、单位长度;(2)数轴上的点与有理数:①数轴上的点与有理数一一对应②右边的数>左边的数;例1:数轴上的两点A、B分别表示-6和-3,那么A、B两点间的距离是()A、-6+(-3)B、-6-(-3)C、|-6+(-3)|D、|-3-(-6)|例2数轴上表示整数的点称为整点某数轴的单位长度为1cm,若在数轴上随意画出一条长2005cm长的线段AB,则线段AB盖住的的整点有()个A、2003或2004B、2004或2005;C、2005或2006;D、2006或20073、相反数①只有符号不同的两个数,叫做互为相反数,0的相反数是0 ②a的相反数-a③a与b互为相反数:a+b=0 ④a-b的相反数是:-a+b或b-a⑤a+b的相反数是:-a-b ⑥求一个数的相反数方法:在这个数的前面加“-”号.⎧⎨⎩⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等。

例:(- 2)2004+(- 2)2005=4、绝对值①一般地,数轴上表示数a 的点与原点距离,表示成|a |。

几何意义:从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。

a (a ≥0) 绝对值是它本身的数是非负数(正数和0)②|a |= -a (a ≤0) 绝对值是它相反的数是非正数(负数和0) 其它简单变形:|a+b |=a+b,则a+b 为正数 例 若|-2a |=-2a,则a 为:③|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a ·b|;例1:若ab ≠0,则b a a b +的取值不可能是( )A 0B 1C 2D -2例2:如果有理数a,b 满足∣ab -2∣+(1-b)2=0,试求1111(1)(1)(2)(2)(2007)(2007)ab a b a b a b ++++++++++的值。

有理数知识点考点复习

有理数知识点考点复习

有理数知识点基础复习有理数知识点基础复习考点1、正数和负数 正数:大于零的数负数:小于零的数(在正数前面加上负号“—”的数) 注意:①0既不是正数也不是负数,它是正负数的分界点②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数例1、向北走200米与向南走100米,若规定向北走为正,则向北走200米可记作,向南走100米,原地不动记作例2、七年级一班第一小组五名同学某次数学测验的平均成绩为90分,一名同学以平均成绩为标准,超过平均分记正,将五名同学的成绩分别记作—10分,—4分, 0分,4分,10分。

这五名同学的实际成绩分别是多少分?例3、观察下面依次排列的一列数,请接着写出后面的数,你能说出第15个、第101个、第2010个的数是什么?1)、—1、—2、+3、—4、—5、+6、—7、—8、、、⋯⋯ 2)、—1、 1 2 、—3、 1 4 、—5、 1 2 、—7、1 8 、、、⋯⋯易错点:1、误认为凡带正号的数就是正数,误认为凡带负号的数就是负数 例:a 一定是正数吗?2、对于“0”的含义理解不准确 例:下列说法错误的是()A 、0是自然数B 、0是整数C 、0是偶数D 、海拔0米表示没有海拔考点2、有理数1、有理数的分类正整数整数0按定义分:有理数负整数分数正分数负分数正整数正有理数正分数按性质符号分:有理数0负有理数负整数负分数注意:1、有理数只包括正数和分数,无限不循环小数不是有理数,如圆周率就不是有理数了。

2、0是整数不是分数例1、把下列各数填在相应的集合内:π,14错误!未找到引用源。

,-3,2,-1,-0.58,0,-3.14,错误!未找到引用源。

,0.618,10整数集合:{⋯}分数集合:{⋯}非负数集合:{⋯}例2、下列说法正确的是()A有理数分为正数和负数B有理数-a一定表示负数C正整数、正分数、负整数、负分数统称为有理数D有理数包括整数和分数2、数轴(重点)定义:规定了原点、正方向、单位长度的直线数轴的含义:(1)数轴是一条直线,可以向两边无限延伸(2)数轴的三要素:原点、正方向、单位长度、这三者缺一不可(3)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。

初中数学知识点归纳全

初中数学知识点归纳全

⎧⎪⎨⎪⎩一、本章知识结构图正整数负整数整数正分数负分数分数有理数数轴比较大小有理数的运算加法减法交换律结合律分配律乘法除法乘方点与数的对应一、基本概念1、正数与负数①表示大小②在实际中表示意义相反的量③带“-”号的数并不都是负数1.正数、负数和零的概念正数负数零象1、2.5、、48等大于零的数叫正数象-1、-2.5,,-480叫做零,0既不是正数也不是负数12﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,不能被2整除的数是奇数,3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。

4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。

分数和小数的区别:分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。

如圆周率就不能表示成分数。

5. 数0既不是正数,也不是负数,0是正数与负数的分界。

0的意义已不仅是表示“没有”.2、数轴原点①三要素正方向单位长度1.数轴的概念(1)规定了原点、正方向和单位长度的直线叫做数轴.这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可.二是这三个要素都是规定的.(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数.2.数轴的画法(1)画直线(一般画成水平的)、定原点,标出原点“O”.(2)取原点向右方向为正方向,并标出箭头.(3)选适当的长度作为单位长度,各点。

(4)标注数字时,负数的次序不能写错,3.用数轴比较有理数的大小(1)在数轴上表示的两数,右边的数总比左边的数大。

(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。

(3)比较大小时,用不等号顺次连接三个数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、 规定了 _______________________ 的直线叫数轴。

第一章 有理数全章复习考点一:用正负数表示相反意义的量1、 七年级一班某次数学测验的平均成绩为 80 分,数学老师以平均成绩为基准,记作 0 ,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简记为 +10 ,– 15 , 0 ,+20 ,– 2.问这五位同学的实际成绩分 别是多少分2 、如果规定收入为正,支出为负.收入 500 元记作 500 元,那么支出 237 元应记作 ( ) A .-500 元B .-237 元C .237 元D . 500 元3.有4 包真空小包装火腿,每包以标准克数( 450 克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的 ( )A .+2B .-3C .+3D . +44. 某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:现从中任意拿出两袋不同品牌的大米, 这两袋大米的质量最多相差 ( )A .0.8kgB . 0.6kgC . 0.4kgD . 0.5kg考点二:有理数的分类1 、 _____ 、 ____ 和 _________ 成为整数, __________ 和 __________ 统称为分数。

____________ 和________ 统称为有理数。

练习巩固:21、在– 2,+3.5 ,0,,– 0.7 ,11 中.负分数有⋯⋯⋯⋯⋯⋯⋯⋯3116、比 3 21大而比 213小的所有整数的和为考点三:数轴B 、2个C 、3 个D 、4 个2 、不超过 (3323) 的最大整数是A 、–4B –3C 、3D 、43.在数 8.3 、-4、0 、-(- 5)、 4、下列说法中正确的个数有+6 、-|-10|、1 中,正数有 )个;① 一个有理数不是整数就是分数 ② 一个有理数不是正数就是负数 ③ 一个整数不是正的,就是负的④ 一个分数不是正的,就是负的5 、在数+ 8.3 ,- 4 ,- 0.8 , 0 , 90 ,- - 24 |中,是正数, 不是整数。

练习巩固:1 、在数轴上,点 A 所表示的数为2 ,那么到点 A 的距离等于3 个单位长度的点所表示的数是2、把下面的直线补充成一条数轴,然后在数轴上标出下列各数:1–3,+l ,2 ,-l.5 , 6.23. 2 的相反数是()A. 2 B.- 2 C.0.5 D .-0.54. 如图,数轴上 A点表示的数减去 B 点表示的数,结果是()A.8 B .-8C.2 D .-25. 数轴上的一点由+3 出发,向左移动 4 个单位,又向右移动了 5 个单位,两次移动后,这一点所表示的数是;6.写出一个满足下列条件之一的有理数:(1 )它在数轴上表示的点在原点的左边;(2 )它是一个小于-2 的偶数;答:;7、已知点 A、B 是数轴上的点,完成下列各题:( 1 )如果点 A 表示数-3,将点 A向右移动7个单位长度,那么终点 B 表示的数是,A、B两点间的距离是;( 2 )如果点 A表示数是3,将点 A向左移动7 个单位长度,再向右移动5个单位长度,那么终点 B表示的数是,A、B 两点间的距离是;( 3 )一般地,如果点 A表示数为 a,将点 A向右移动 b 个单位长度,再向左移动 c个单位长度,那么请你猜想终点 B 表示的数是, A、B 两点间的距离是.8、 a 、b 是有理数,它们在数轴上的对应点的位置如下图所示:把a、-a、b、-b 按照从小到大的顺序排列正确的是()A -b <-a < a < bB - a < -b< a < bC - b < a < - a < bD -b<b<-a< a9. 数轴上的两点 A、B 分别表示-6 和- 3 ,那么 A、B 两点间的距离是()A、-6+(-3)B、-6-(-3)C、| -6+(-3)|D、|- 3 -(-6)|10. 数轴上表示数5和表示14的两点之间的距离是_______________考点四:相反数1 、只有不同的两个数叫做互为相反数;0 的相反数是。

一般地:若 a 为任一有理数,则a 的相反数为_______ .2、相反数的相关性质:( 1 )、相反数的几何意义:表示互为相反数的两个点(除0 外)分别在原点O 的 _________ ,并且到原点的距 ________ 。

2、互为相反数的两个数,和__________ .练习巩固:1.一个数是 2 的相反数,另一个数比-2 大-3 ,则这两个数的和是;2 .在等式3 2 15 的两个方格内分别填入一个数,使这两个数是互为相反数且等式成立,则第一个方格内的数是___________________ .3. 两个非零有理数的和为0,则它们的商是()A.0 B.-1 C.+ 1 D.不能确定考点四:绝对值1、一般地,数轴上表示数 a 的点与原点的叫做数 a 的绝对值,记作∣ a∣;一个正数的绝对值是;一个负数的绝对值是它的;0 的绝对值是. 任一个有理数 a 的绝对值用式子表示就是:(1)当 a 是正数(即a>0 )时,∣ a∣=;(2)当 a 是负数(即a<0 )时,∣ a∣=;(3)当a=0 时,∣ a∣=;练习巩固:1、比较下列各对数的大小.(1)4 ______________ 3(2)4 5 ______________________ 4 5542 、绝对值小于 2.5 的所有负整数的积是;3.如果| a| =5 ,| b|=3 ,则 a+b= ;考点五:科学计数法、近似数1、把一个大于10 的数记成_______________ 的形式(其中 a _________________ ,n 是_______ ),叫做科学记数法.练习巩固:2、长城总长约为6700010 米,用科学计数法表示为(保留两位有效数字)()A. 6.7 ×10 5米B.6.7×106米C.6.7 ×107米D.6.7×108米3. 0.20356 精确到0.001 可写为____________________ .4. 104000 精确到万可写为 _________________________ .5、 3.21 ×10 6精确到__________ 位.考点五:有理数的运算1、有理数的加法法则(1)_____________________________________________________________________________ .(2)______________________________________________________________________________________________(3)_________________________________________________________________2 、加法交换律:_________________________________________________3 、加法结合律:______________________________________________________4 、有理数减法法则:__________________________________________________5 、有理数的乘法法则:___________________________________________________________6 、倒数的性质:互为倒数的两个数乘积是_________ .7 、几个不是0 的数相乘,负因数的个数是_________ 时,积是正数;负因数的个数是_________ 时,积是A 、90 分B 、75 分C 、91 分D 、 81 分8、 l 米长的小棒,第 1 次截止一半,第 次截去剩下的一半,如此下去,第 6 次后剩下的小棒长A 、B 、C 、D 、1219. 的倒数是232 64 12810. 甲、乙、丙三地的海拔高度分别为40 米、- 15 米、 - 10 米,那么最低的地方比最高的地方低 A .-55 米 B .55 米C . 50 米11 .下列说法正确的是 ( )A .两个数的差一定小于被减数B .减去一 个正数,C . 0 减去任何数,差都是负数D .减去一 个负数,定大于被减数 负数。

8、写出有理数乘法的三个运算律: ( 1) __________________ (2) _________________ (3) _________________________ ( 都用字母表示 ) 9、有理数的法则:法则一: _____________________________________________________________________ 法则二: ______________________________________________________________________10 、 ________________________________________ , 叫做乘方,乘方的结果叫做 _______在 a n 中, a 叫做 ______ ,n 叫做 ________ .11 、乘方运算的符号确定:负数的 ________ 是负数,负数的 ________ 是正数;正数的 ________________都是正数; 0 的 ____________________ 都是 0. 练习巩固:1、两个有理数的和为 5 ,其中一个加数是– 7 ,那么另一个加数是第四次又比第三次高 10 分.那么小明第四次测验的成绩是2 、某旅游景点 11 月 5 日的最低气温为 2, 最高气温为 8℃,那么该景点这天的温差是 ___ . C3、计算: ( 1)100( 1)101__________ .4、平方得 2 1的数是 ___ ;立方得– 64 的数是 ___ .45、下列算式中,积为负数的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()A 、0 ( 5)B 、 4 (0.5) ( 10)C 、 (1.5) ( 2) D、( 2) ( 15) ( 23)6、下列各组数中,相等的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()3292A 、–1 与(– 4)+(–3)B 、3与–(– C 、 与D 、( 4)2与– 164 167 、小明近期几次数学测试成绩如下:第一次 85 分,第二次比第一次高 第三次比第二次低 12 分,()D . 5 米7A . 1 B. -1C . -1 和 1D . -1 、0 和 113 、 ( 5)6表示的意义是()A . 6 个—5 的积 B.-5 乘以 6 的积 C . 5 个—6 的积 D .6 个—5 的和14. 在- 5、1、-3、5、-2 中任意取三个相乘,其中最大的积是 _______ ,最小的积是 ____ 。

相关文档
最新文档