正交试验设计思路课件

合集下载

《正交设计》课件

《正交设计》课件
《正交设计》ppt课 件
目录
CONTENTS
• 正交设计简介 • 正交设计的基本原理 • 正交设计实例 • 正交设计的优势与局限性 • 正交设计未来的发展趋势和展望
01
正交设计简介
正交设计的定义
总结词
正交设计是一种实验设计方法,通过合理地选择实验条件和水平,利用正交表安排实验并分析实验结果,以找出 最优的实验条件。
正交设计遵循科学的方法论,能够保证实 验结果的可重复性和可推广性。
正交设计的局限性
对实验条件要求高
正交设计需要严格控制实验条件,以确保实验结果的准确性和可靠性 。然而,在实际操作中,完全控制所有实验条件是十分困难的。
对实验参数敏感度低
正交设计通常采用固定的参数组合进行实验,难以适应参数变化对实 验结果的影响。
在养殖业中,正交设计可以 用于优化养殖环境、饲料配 方、养殖密度等方面的因素 ,提高养殖效益和产品质量 。
在农业工程中,正交设计可 以用于优化灌溉系统、土壤 改良、农业机械等方面的因 素,提高农业生产效率和资 源利用率。
正交设计在医学研究中的应用
01
医学研究中的正交设计是指 通过合理安排治疗方案、药 物剂量、实验条件等方面的 因素,以达到优化医学治疗 的目的。
在处理非线性关系和多因素复杂问题时, 可以结合其他设计方法(如响应曲面法、 遗传算法等)以提高实验效率和准确性。
灵活调整参数组合
根据实际情况灵活调整参数组合,以提高 实验结果的准确性和可靠性。
加强数据处理和分析
对实验数据进行深入的处理和分析,以揭 示隐藏在数据背后的规律和趋势,从而更 好地解释实验结果。
02
正交设计的基本原 理
试验的安排
正交表选择

正交试验设计PPT课件

正交试验设计PPT课件

验设计方法提供依据。
03
扩展正交试验设计的应用领域
研究正交试验设计在其他领域的应用可能性,如社会科学、人文科学等。
谢谢
THANKS
正交表的选择与设计
根据试验目的和因素数量选择合 适的正交表。
确定水平数,即各因素的取值数 量。
确定试验次数,即正交表的行数。
试验方案的制定
根据正交表,确定每个因素的取值组合。 确定试验的顺序,以避免误差的积累。
制定详细的试验步骤和操作规程。
试验数据的收集与分析
按照试验步骤进行试验,并记 录每个试验的结果。
降低试验成本
通过优化试验次数,可以减少 人力、物力和时间的投入,从 而降低试验成本。
加速试验进程
较少的试验次数意味着更短的 时间和更快的反馈,有助于加
速产品研发和优化进程。
因素水平的优化
确定关键因素
在正交试验设计中,首先需要明确哪 些因素是关键因素,并针对这些因素 进行优化。
选择合适水平
针对每个关键因素,选择合适的水平 进行试验,以获得最佳的试验效果。
CHAPTER
人工智能与机器学习在正交试验设计中的应用
机器学习算法优化正交试验设计过程
01
通过机器学习算法,可以自动分析历史数据,预测最佳试验条
件,从而减少试验次数,提高试验效率。
数据挖掘与知识发现
02
利用机器学习技术对大量试验数据进行挖掘,发现隐藏的模式
和关系,为后续试验提供指导。
自动化与智能化
03
结合人工智能技术,实现正交试验设计的自动化和智能化,减
少人为干预,提高试验精度和可靠性。
多目标优化问题的正交试验设计研究
1 2 3
多目标决策理论的应用

正交试验设计-讲解版PPT课件

正交试验设计-讲解版PPT课件
7
表 4.1 L9(34)
试验号 列号 1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1
3
2
8
3
2
1
3
9
3
3
2
1
“L”表示正交表,“9”是行数,在试验中表示 试验的条件数,“4”是列数,在试验中表示可以安 排的因子的最多个数,“3”是表的主体只有三个不 同数字,在试验中表示每一因子可以取的水平数。 8
24
表 4.4 例 4.1 直观分析计算表
表头设计
A
B
C
试验号
列号
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
1
2
7
3
1
3
2
8
3
2
1
3
9
3
3
2
1
T1
555 485 555
T2
594 656 523
TT3
502 510 573
T1
185 161.7 185
T2
198 218.7 174.3

《正交实验法》课件

《正交实验法》课件

临床试验设计
正交实验法可用于设计临 床试验方案,优化试验参 数,提高试验的可靠性和 效率。
医学诊断方法优化
通过正交实验法,可以优 化医学诊断方法,提高诊 断的准确性和可靠性。
PART 04
正交实验法的扩展与改进
多因素正交实验设计
பைடு நூலகம்
定义
优点
多因素正交实验设计是正交实验法的 一种扩展,它用于研究多个因素对实 验结果的影响。
对于非水平因素或非参数实验 ,正交实验法可能不适用。
正交表的选择和实验设计需要 经验积累,否则可能导致实验
结果不准确。
PART 02
正交实验法的基本原理
正交表的概念与分类
总结词
正交表是正交实验法中的核心工具,用于安排多因素多水平的实验。
详细描述
正交表是一张预先制定的表格,用于安排实验并记录实验结果。根据实验因素的数量和每个因素的水平数,可以 选择不同的正交表。正交表有多种类型,如L4(2^3)、L8(2^7)等,其中L表示正交表,括号内数字表示实验因素 数和每个因素的水平数。
农药配制
通过正交实验法,可以找 到最佳的农药配方,有效 防治病虫害,同时减少对 环境的负面影响。
种植技术优化
正交实验法可以帮助农业 科研人员优化种植技术, 提高作物的生长速度和抗 逆性。
医学研究中的应用
新药研发
在药物研发过程中,正交 实验法可用于筛选最佳的 药物配方和剂量,提高药 物的疗效和安全性。
交互效应和水平间的差异。
优点
能够同时研究不同水平因素之间 的交互作用,更全面地了解实验
系统的特性。
正交实验与其他实验设计方法的比较
与单因素实验设计比较
单因素实验设计只考虑单个因素对实验结果的影响,无法全面了解多因素之间 的交互作用。正交实验设计能够同时研究多个因素,更全面地了解实验系统的 特性。

正交试验设计原理与实例精品PPT课件

正交试验设计原理与实例精品PPT课件

19世纪20年代,英国统计学家R. A. Fisher首先后马铃薯肥料试验当中,运用 排列均衡的拉丁方,解决了试验时的不均 匀试验条件,获得成功,并创立了“试验 设计”这一新兴学科。“均衡分布”思想 在20世纪50年代应用于工业领域, 60年 代应用于农业领域,使正交试验在科研生 产实际中得到推广。
1 正交试验设计的意义 正交试验属于试验设计方法的一种。简单
地讲,试验设计是研究如何科学安排试验,以 较少的人力物力消耗而取得较多较全面的信息。
试验安排得好,事半功倍;反之则事倍功半, 甚至达不到预期目的。因此,如何进行试验设 计是一个至关重要的问题。
正交试验设计是试验优化的常用技术。 所谓试验优化,是指在最优化思想的指导 下,进行最优设计的一种优化方法。它从 不同的优良性出发,合理设计试验方案, 有效控制试验干扰,科学处理试验数据, 全面进行优化分析,直接实现优化目标, 已成为现代优化技术的一个重要方面。
正交试验设计
在试验研究中,对于单因素或两因素试验,因 其因素少 ,试验的设计 、实施与分析都比较简单 。 但在实际工作中 ,常常需要同时考察 3个或3个以上 的试验因素 ,若进行全面试验 ,则试验的规模将很 大 ,往往因试验条件的限制而难于实施 。正 交设 计就是安排多因素试验 、寻求最优水平组合 的一种 高效率试验设计方法。
2、正交表
2.1 正交表 -正交拉丁方的自然推广
由于正交设计安排试验和分析试验结果都要 用 正交 表,因此,我们先对正交表作一介绍。
安排的4因素3水平的试验,编上试验号,列成另外一 种形式,见正交表L9(34)(表11-6) 。可以由此得到系列 正交表(orthogonal table)。
常用的正交表已由数学工作者制定出来,供进行 正交设计时选用。2水平正交表除L8(27)外,还有L4(23)、 L16(215)等;3水平正交表有L9(34)、L27(213)……等(详 见附表17及有关参考书)。

正交试验设计PPT课件精选全文

正交试验设计PPT课件精选全文
所谓均衡分散,是指用正交表挑选出来的 各因素水平组合在全部水平组合中的分布是均 匀的 。 由 图10-1可以看出,在立方体中 ,任 一平面内都包含 3 个“(·)”, 任一直线上都包 含1个“(·)” ,因此 ,这些点代表性强 ,能够 较好地反映全面试验的情况。
上一张 下一张 主 页 退 出
整齐可比是指每一个因素的各水平间 具有可比性。因为正交表中每一因素的任 一水平下都均衡地包含着另外因素的各个 水平 ,当比较某因素不同水平时,其它 因素的效应都彼此抵消。如在A、B、C 3个因素中,A因素的3个水平 A1、A2、 A3 条件下各有 B 、C 的 3个不同水计计 算算
Kk 值值
计 算 极 差
R
绘 制 因 素 指 标 趋


计算各列偏差平方和、 自由度
列方差分析表,
进行F 检验
优水平 优组合
因素主次顺序
结论
分析检验结果, 写出结论
实例:为提高山楂原料的利用率,研究酶法液化工艺 制造山楂原汁,拟通过正交试验来寻找酶法液化的最 佳工艺条件。
例如,要考察增稠剂用量、pH值和杀菌温度对豆奶稳 定性的影响。每个因素设置3个水平进行试验 。
A因素是增稠剂用量,设A1、A2、A3 3个水平;B因素 是pH值,设B1、B2、B3 3个水平;C因素为杀菌温度,设 C1、C2、C3 3个水平。这是一个3因素3水平的试验,各因 素的水平之间全部可能组合有27种 。
9个试验点均衡地分布于整个立方体内 ,有很强 的代表性 , 能 够比较全面地反映选优区内的基本情 况。
上一张 下一张 主 页 退 出
1.3 正交表及其基本性质
1.3.1 正交表
由于正交设计安排试验和分析试验结果都要用正 交表,因此,我们先对正交表作一介绍。

正交试验设计方法(详细步骤)PPT课件

正交试验设计方法(详细步骤)PPT课件

2021
42
6.3 正交试验设计结果的方差分析法
能估计误差的大小 能精确地估计各因素的试验结果影响的重要程度
2021
43
6.3.1 方差分析的基本步骤与格式
设: 用正交表Ln(rm)来安排试验 试验结果为yi(i=1,2,…n)
2021
44
(1)计算离差平方和
①总离差平方和
S S Ti n 1(y i y )2i n 1y i2 1 n(i n 1y i)2 Q P
三个指标都是越大越好
2021
23
对三个指标分别进行直观分析: ➢ 提取物得率:
因素主次:C A B 优方案:C3A2B2 或C3A2B3 ➢ 总黄酮含量: 因素主次:A C B 优方案:A3C3B3 ➢ 葛根素含量 : 因素主次:C A B 优方案:C3A3B2 综合平衡:A3B2C3
2021
53
(6)列方差分析表
2021
54
6.3.2 二水平正交试验的方差分析
正交表中任一列对应的离差平方和:
例6-9
SSj
1 n(K1
K2)2
2021
55
6.3.3 三水平正交试验的方差分析
r=3,所以任一列的离差平方和:
SSj
3( 3 n i1
Ki2) P
例6-10 注意: ➢ 交互作用的方差分析 ➢ 有交互作用时,优方案的确定
n
设: Q
y
2 i
i1
n
T yi i1
P
1( n n i1
yi )2
T2 n
2021
45
②各因素引起的离差平方和
第j列所引起的离差平方和 :
SSj n r(i r1Ki2)T n2n r(i r1Ki2)P

正交试验设计法.ppt

正交试验设计法.ppt
影响试验指标的因素往往很多,要根据专业知 识和实践经验认真筛选,筛选的原则是: (1)为减少工作量,一般应尽量少选。为此,应 选择影响大的、未曾研究过的、未掌握其作用规律 的因素为试验因素,而把其他因素作为可控的试验 条件加以确定。 (2)在不影响试验次数的情况下,可以适当增加 试验因素。尤其在初步筛选试验中。
1. 极差分析的内容
1.

图示

极 差


K jm 、K jm
计算


Rj

因素主次
2.
优水平

最优组合

交互作用
变化趋势
2. 极差分析举例
(1) 单指标正交试验的极差分析
用大麻秆制取配抄新闻纸用APMP,要求白度 在55%ISO以上。采用正交试验优化化学预处理的条 件,拟采用的水平因素表如下。
以大麻秆APMP制浆试验为例。
大麻秆APMP试验结果
A B C D 白度(%) 得率(%) 裂断长(km)
1 4.0 2.0 30 60 51.0
83.6
2.71
2 4.0 2.5 40 70 53.3
82.8
2.87
3 4.0 3.0 50 80 53.8
82.1
2.94
4 5.0 2.0 40 80 51.5
有交互列的L827正交表的表头设计
因素 A B A×B C A×C B×C D
列号 1 2 3 4 5
67
• 表中实际安排了ABCD四个因素,其余分别是 某两个因素的交互列。
6. 编制试验方案
杨木浆脂肪酶脱树脂试验方案表
试验号 A
试验因素
B
C
试验结果(树 D 脂降低率/%)

正交试验设计法 ppt课件

正交试验设计法  ppt课件

PPT课件
21
正交试验设计法
5.6 计算分析试验结果
5.6.2.3.2 图示说明
为直观起见,用因素的水平变化为横坐标,指标的算数平均 值为纵坐标,画出水平与指标图,如图1:
从图中可明显看出最佳方案应为:A3B2C2。而正交试验选出 的最佳方案为A3B3C2,即第9号方案,显然,正交试验中的9个方 案中没有A3B2C2这一方案,其是否为最佳方案,需要通过正式试 验来验证。
◆正交表中,任意两列,每1行组成1个数字对,有多少行
就有多少个这样的数字对,这些数字对都是完全有序的
◆各种数字出现的次数必须相同,这是正交表必须满足的
的两个特性。
◆ 其他正交表如:L8(27)、 L12(211)、L18(37)、L32
(49)、L25(56)等都满足这两个特性。
PPT课件
12Βιβλιοθήκη 正交试验设计法PPT课件
22
正交试验设计法
5.6.2.3.2 图示说明
PPT课件
23
正交试验设计法
5.7 验证性实验
为了与正交试验选出的最佳方案进行对比,用A3B2C2方案和 A3B3C2方案各做一次验证试验,转化率分别为74%和65%,说明 A3B2C2方案实为最佳方案。
上例表明,最佳方案虽然不在正交试验9个方案中,但通过计 算分析即可准确选出,这充分说明了正交试验法的科学性。
10
正交试验设计法
再以L9(34)为例:
表2 L9(34)表

项目
1
2
3
4
1
1
1
1
1
2
1
2
2
2
3
1
3
3
3

正交试验设计(多指标)【优质PPT】

正交试验设计(多指标)【优质PPT】

2021/10/10
34
综合平衡法
通过各因素对各指标影响的综合分析,得 出较好的试验方案是: B3 粒度 第3水平:8 C1 碱度 第1水平:1.1 A2 水份 第2水平:9
2021/10/10
35
2) 综合评分法
综合评分法 综合评分法是:先按重要性程度不同
给各个指标赋以权数,再对各试验计 算加权指标,化为单一指标问题。
2021/10/10
33
综合平衡法
水份A对各指标的影响:从表看出,对 裂纹度来讲,水份的极差最大,即水份 是影响最大的因素,水份取A2水平最 好,但对抗压强度和落下强度来讲,水
份的极差都是最小的,是影响最小的因 素。对抗压强度来讲,水份取A2最好, 取A3次之;对落下强度来讲,水份取 A3最好,取A2次之。对3个指标综合 考虑,水份取A2水平为好。
次数相同 两性质合称为“正交性” :使试验点在试验范围内排列
整齐、规律,也使试验点在试验范围内散布均匀
2021/10/10
8
(2)混合水平正交表 各因素的水平数不完全相同的正交表
2021/10/10
9
混合水平正交表性质:
(1)表中任一列,不同数字出现次数相同 (2)每两列,同行两个数字组成的各种不同的水平搭配出
6.2.1 单指标正交试验设计及其结果的直观分析 例:
单指标:乳化能力 因素水平:3因素3水平(假定因素间无交互作用)
2021/10/10
12
(1)选正交表
要求: 因素数≤正交表列数 因素水平数与正交表对应的水平数一致 选较小的表
选L9(34)
2021/10/10
13
(2)表头设计
(1) 明确试验目的,确定评价指标 (2) 挑选因素(包括交互作用),确定水平 (3) 选正交表,进行表头设计 (4) 明确试验方案,进行试验,得到结果 (5) 对试验结果进行统计分析 (6) 进行验证试验,作进一步分析

《正交试验设计》课件

《正交试验设计》课件

,实现经济效益和环境效益的双重提升。
展望与挑战
技术更新换代
随着科技的快速发展,正交试验设计面临着技术更新换代的挑战。如何跟上科技发展的步 伐,不断更新和完善正交试验设计的方法和工具,是未来发展的重要课题。
数据安全与隐私保护
在大数据时代,数据安全和隐私保护成为越来越重要的问题。在进行正交试验设计的过程 中,如何确保数据的安全性和隐私性,防止数据泄露和滥用,是亟待解决的问题。
科学性
正交试验设计遵循科学的试验设计原则,能够保证试验结果的准确性 和可靠性,为后续的数据分析和解释提供坚实的基础。
实用性
正交试验设计广泛应用于各种领域,如工业、农业、医学等,能够解 决实际生产和科研中的各种问题,具有很高的实用价值。
易用性
正交试验设计的操作过程相对简单,容易掌握,不需要过多的数学和 统计知识。
利用正交表合理安排多因素多水 平试验,通过统计分析找到最优
的试验条件。
通过正交表的特点,保证试验的 均衡性和代表性,提高试验效率


通过正交试验设计,可以有效地 减少试验次数,降低试验成本,
缩短试验周期。
正交试验设计的应用领域
化工、制药、农业、食品等领域
01
在这些领域中,正交试验设计被广泛应用于产品研发、工艺优
《正交试验设计》 ppt课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 正交试验设计简介 • 正交试验设计的基本原理 • 正交试验设计的实例分析 • 正交试验设计的优缺点 • 正交试验设计的未来发展与展望 • 总结与思考
01
正交试验设计简介
定义与特点
缺点
假设限制

正交试验设计(PPT 19页)

正交试验设计(PPT 19页)

例:某农场对四块大豆试验田作施肥试验。每块田以不同的方式施以磷肥
和氮肥,其产量如下:
可以看出
当施氮肥和不施氮肥时,施以4公斤磷肥后的增产数量是不同的 当施磷肥和不施磷肥时,施以6公斤氮肥后的增产数量是不同的6 若N, P分别起作用时增产为50, 30kg。但同时施时其效果并不是
4 正交表的性质
二 挑升温因速素度、A 选恒温水温平度、B 制恒温定时因间素C 水降平温速表度D
1 300C晶/小体时退火6工00艺0C 试验因6小素时水平表1.5安培
因素
2水平 500C/小时
4500C
2小时
1.7安培
3 1000C/小时 5000C * 4小时 *150C/小时 *
*
10
晶体退火工艺试验安排及试验结果分析表
1 合理安排试验,减少实验次数,当因素越多时,正交
试验设计的这一优越性越突出 2 在众多影响因素中,分清因素主次,抓住主要矛盾 3 正交试验设计是掌握各影响因素与产品质量指标之间
关系的有效手段,为生产过程的质量控制提供有利的条件 4 找出最优的设计参数和工艺条件 5 指出进一步试验方向
3
三 正交表及其特点
2 因素 ● 定义:在试验中,影响试验结果的试验条件称为因素 ● 分类:可控因素:在试验中可以人为地加以调节和控制的因素。 不可控因素:由于自然、技术和设备等条件的限制,暂时还不能为人
们控制和调节的因素。如气温、降雨量等
● 在正交试验中,所考察的因素都是可控因素,被考察因素通常以大写英文字 母A、B、C…表示。
12
六 试验结果分析
1 计算试验结果总和
2 对每一列计算每个水平的试验结果总和Байду номын сангаасij Tij——第j列第i水平的试验结果之和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二、无交互作用的正交设计与数据分析
试验设计一般有四个步骤: 1. 试验设计 2. 进行试验获得试验结果 3. 数据分析 4. 验证试验
例1 磁鼓电机是彩色录像机磁鼓组件的关 键部件之一,按质量要求其输出力矩应大于 210g.cm。某生产厂过去这项指标的合格率较低, 从而希望通过试验找出好的条件,以提高磁鼓 电机的输出力矩。
譬如:考察两个因子,先固定A在A1,发 现B3好,再固定B3,发现A1好,但是实际上 好的条件是A2B2。
B1 B2 B3 A1 50 56 62 A2 56 70 60 A3 54 60 58
因子与水平
试验中要加以考察而改变状态的因素称 为因子,常用大写英文字母A、B、C… 等表示。因子在试验中所取的状态称为 水平。因子A的水平用代表因子的字母 加下标表示,记为A1,A2,…Ak.。
在正交设计中n个试验条件是一起给出的 的,称为“整体设计”,并且均匀分布在试验 空间中。
表 头 设 计 ABC 列 号1 2 3 4
表4.3 试验计划与试验结果
试验号
1 2 3 4 5 6 7 8 9
因子 充磁量 定位角度 定子线圈匝数 试验结果y
10-4T (π/180)rad

输出力矩
(g.cm)
(一)试验的设计
在安排试验时,一般应考虑如下几步:
(1)明确试验目的; (2)明确试验指标; (3)确定因子与水平; (4)选用合适的正交表,进行表头设计, 列出试验计划。
在本例中:
试验目的:提高磁鼓电机的输出力矩 试验指标:输出力矩 确定因子与水平:
表4.2 因子水平表
因子
水平 一
A:充磁量(10-4T)
正交表
选择部分条件进行试验,再通过数据分析 来寻找好的条件,这便是试验设计问题。 通过少量的试验获得较多的信息,达到试 验的目的:发现那些因子对试验结果确有 影响,因子的什么水平组合是最好的。
利用正交表进行试验设计的方法就是正交 试验设计。
表4.1 L9(34)
试验号 列号 1
2
3
4
1
1
(三)数据分析
1. 数据的直观分析
(1)寻找最好的试验条件 在A1水平下进行了三次试验:#1,#2,#3,
而在这三次试验中因子B的三个水平各进行了一次 试验,因子C的三个水平也各进行了一次试验。
在A2水平下进行了三次试验:#4,#5,#6, 在这三次试验中因子B与C的三个水平各进行了一 次试验。
在A3水平下进行了三次试验:#7,#8,#9, 在这三次试验中因子B与C的三个水平各进行了一 次试验。
常用的正交表有两大类
(1)一类正交表的行数n,列数p,水平数 qn=qk, k=2,3,4,…, p=(n-1)/(q-1)
如:L4(23),L8(27),L16(215),L32(231) 等这类正交表可以考察因子间交互作用
(2)另一类正交表的行数,列数,水平数之 间不满足上述的两个关系
如: L12(211), L18(37),L36(313)等
正交试验设计
一、试验设计的基本概念与正交表
多因素试验遇到的最大困难是试验次数太 多,若十个因素对产品质量有影响,每个因素 取两个不同状态进行比较,有210=1024、 如 果每个因素取三个不同状态310=59049个不同 的试验条件
在多因素试验中,有人采用“单因素轮换 法”,但是这种方法不一定能找到好的条件
1
1
1
2
1
2
2
2
3
1
3
3
3
4
2
1
2
3
5
2
2
3
1
6
2
3
Hale Waihona Puke 1273
1
3
2
8
3
2
1
3
9
3
3
2
1
“L”表示正交表,“9”是行数,在试验中表示 试验的条件数,“4”是列数,在试验中表示可以安 排的因子的最多个数,“3”是表的主体只有三个不 同数字,在试验中表示每一因子可以取的水平数。
正交表具有正交性,这是指它有如下两个特点:
在一次试验中每个因子总取一个特定 的水平,称各因子水平的一个组合为一个 处理或一个试验条件。
试验指标与试验结果
衡量试验条件好坏的特性(可以是质量特性也 可以是产量特性或其它)称为指标,用y表示。
由于y是一个随机变量,因此可以假定它有 如下的结构式:y=μ+ε 其中μ是一个依赖于试验条件的常量,随试 验条件的变化而改变,ε是一个随机变量,常假定 它服从正态分布N(0,σ2)。
900
B:定位角度((π/180)rad) 10
C:定子线圈匝数(匝)
70
二三
1100 11 80
1300 12 90
选表:首先根据因子的水平数,找出一类 正交表,再根据因子的个数确定具体的表,把 因子放到表的列上去,称为表头设计。
把放因子的列中的数字改为因子的真实水 平,便成为一张试验计划表, 每一行便是一个 试验条件。
将全部试验分成三个组,那么这这三组数据 间的差异就反映了因子A的三个水平的差异,为此 计算各组数据的和与平均:
T1=y1+y2+y3=160+215+180=555,
T1T1/3185
T2=y4+y5+y6=168+236+190=594,
(1)每列中不同的数字重复次数相同。 在表L9(34)中,每列有3个不同数字:1,2,3,
每一个出现3次。 (2)将任意两列的同行数字看成一个数对,那
么一切可能数对重复次数相同。 在表L9(34)中,任意两列有9种可能的数对:
(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)每一 对出现一次。
157
(3)1300 (2) 11 (1) 70
205
(3)1300 (3) 12 (2) 80
140
9个试验点的分布
3 5
C3
2
C2
4
1
C1 A1
A2
7 9
6
8
B3
B2
A3 B1
(二)做试验,并记录试验结果
在进行试验时,要注意几点: 1. 除了所考察的因子外的其它条件,尽可
能保持相同 2. 试验次序最好要随机化 3. 必要时可以设置区组因子
(1) 900 (1) 10 (1) 70
160
(1) 900 (2) 11 (2) 80
215
(1) 900 (3) 12 (3) 90
180
(2)1100 (1) 10 (2) 80
168
(2)1100 (2) 11 (3) 90
236
(2)1100 (3) 12 (1) 70
190
(3)1300 (1) 10 (3) 90
相关文档
最新文档