线性空间

合集下载

线性空间的定义与性质

线性空间的定义与性质

s1(x) = A1sin(x+B1)= (A1)sin(x+B1) S[x],
所以, S[x]是一个线性空间.
例5: 在区间[a, b]上全体实连续函数构成的集合 记为C[a, b], 对函数的加法和数与函数的数量乘法, 构 成实数域上的线性空间. (2) 一个集合, 如果定义的加法和乘数运算不是通 常的实数间的加, 乘运算, 则必需检验是否满足八条线 性运算规律. 例6: 正实数的全体记作R+, 在其中定义加法及乘 数运算为: ab = ab, a = a, (R, a, bR+) 验证R+对上述加法与乘数运算构成(实数域R上的)线 性空间. 证明: 对任意a, bR+, R, ab = abR+, a = aR+, 所以对R+上定义的加法与乘数运算封闭.
说明2. 向量(线性)空间中的元素称为向量, 但不一 定是有序数组. 说明3. 判别线性空间的方法: 一个集合, 对于定义 的加法和数乘运算不封闭, 或者运算不满足八条性质 的任一条, 则此集合就不能构成线性空间. 线性空间的判定方法: (1) 如果在一个集合上定义的加法和乘数运算是 通常实数间的加, 乘运算, 则只需检验运算的封闭性. 例1: 实数域上的全体mn矩阵, 对矩阵的加法和 数乘运算构成实数域R上的线性空间, 记作Rmn. Rmn 中的向量(元素)是mn矩阵. 例2: 次数不超过n的多项式的全体记作P[x]n, 即 P[x]n ={ p(x)=a0+a1x+· · · +anxn | a0, a1, · · · , a n R } 对通常多项式加法, 数乘构成向量空间.
二、线性空间的性质
1. 零元素是唯一的. 证明: 假设01, 02是线性空间V中的两个零元素. 则对任何V有, + 01 =, + 02 = , 由于01, 02V, 则有 02+01=02, 01+02=01. 所以 01=01+02 =02+01 =02.

线性空间与线性变换

线性空间与线性变换
个实际得 R元n 素对应起来,从而将抽象具体化进行
研究。
大家学习辛苦了,还是要坚持
继续保持安静
*例3 设R22中向量组{Ai}
1 1
0 2
A1 1 2 A2 1 3
3 1 A3 0 1
2 4 A4 3 7
1 讨论{Ai}得线性相关性、 2求向量组得秩与极大线性无关组、 3把其余得向量表示成极大线性无关组得
求 V1 V2, V1 V2.
§1、3 线性空间V与Fn得同构
坐标关系
V
Fn
V得基{1,2,。。。 n}
由此建立一个一一对应关系
V,X Fn, ()=X
(1+2)=(1)+(2) (k)=k()
在关系下,线性空间V与Fn同构。
同构得性质
定理1、3、1:数域F上两个有限维线性空 间同构得充分必要条件就是她们得维数 相同。 同构保持线性关系不变。 应用: 借助于空间Fn中已经有得结论与方法研 究一般线性空间得线性关系。
1. 求从基(I)到基(II)得过渡矩阵C。
2. 求向量 7 3 在基(II)得坐标Y。 1 2
§1、2 子空间
概述:线性空间V中,向量集合V可以有集合得 运算与关系:
Wi V, W1W2, W1W2, 问题: 这些关系或运算得结果就是否仍然为 线性空间 ?
1、 子空间得概念
定义: 设非空集合WV,W ,如果W中得 元素关于V中得线性运算为线性空间,则称W 就是V得子空间。 判别方法:Important Theorem W就是子空间 W对V得线性运算封闭。
定义: T 得秩=dim R(T); T 得零度=dim N(T)
例 (P018) Rn中得变换 T:设A Rn×n就是一个给定 得 矩阵,XRn,T(X)=AX。 (1)T就是线性变换; (2)Ker(T)就是AX=0得解空间; (3)Im(T)=Span{a1,a2,…,a n}, 其中ai就是矩阵A得列 向量;

第六章 线性空间

第六章 线性空间
2 23 1
首页
上页
下页
返回
结束
19
例5 设1 , 2 , A是n s矩阵, (1 , 2 , 证明 : L( 1 , 2 ,
, n 是n维线性空间V 的一组基, , s ) (1 , 2 , , n ) A
, s )的维数等于A的秩.
证 设秩( A) r , 则存在可逆矩阵P , Q , 使得 Er A P O
(4) 基变换
其中1 , 2 ,
, n 和1 , 2 ,
首页
, n 都是V的
上页 下页 返回 结束
基, A为过渡矩阵, 可逆.
3
性质:设1 , 2 , 则 1 , 2 ,
, n为V 的基, , n ) ( 1 , 2 , , n ) A, , n 也为V 的基 A可逆.
首页 上页 下页 返回 结束
若 V2 , 则因 V2 , 有 ( ) V2 , 与 V2矛盾. 故在V中存在向量x , x V1且x V2 .
注: 此例说明,若V1 ,V2是V的两个非平凡子空 间, 则在V中存在向量x, 使x V1 V2 ,即V V1 V2 .
证 取P n的一组基 1 , 2 , 个 i , 使得A
m 1
i 0.
, n, 令
B ( 1 , 2 , , n )
事实上,若Am1 j 0, j 1,2,
则B可逆, 且有Am1 B O. 于是Am1 O. 与题设矛盾.
令 i , 则Am1 0, Am 0.
k1 l1 k2 l2 则有坐标变换公式 : A kn ln

第1章 线性空间与线性变换讲义

第1章 线性空间与线性变换讲义
定义加法:
a + b = ( x 1 + y1 , x 2 + y 2 , , x n + y n ) T
定义数乘:
ka = ( kx1 , kx 2 , , kx n ) T ,
R n 是数域 R 上的线性空间。 C n 是数域 C 上的线性空间。
4
例2 实数域 R上的全体 m×n 矩阵,对矩阵的加法 和数乘运算构成 R上的线性空间,记作 Rm×n
定义:设 V 是一个非空集合,F 为数域,a, b, g V, 对于任意的a, b V, 总有唯一的元素 g V
与之对应,称 g 为a 与b 的和,记作 g =a +b,且
(1) a + b = b + a ;
( 2 ) (a + b ) + g = a + ( b + g );
( 3) 存在零元素: b V , a V , a + b = a, 称 b 为零元素, 并记 b 为 0 ; ( 4) 存在负元素 a V , b V, a + b = 0; 称 b 为 a 的负元素, 并记 b 为 - a ;
(1) a , b W , 则a + b W (2) a W , k F , 则 ka W
则称W 是V 的子空间。
21
例1. 实数域上 n 维向量的集合
W = { ( 0, x 2 , , x n ) T | x 2 , , x n R }
则 W是 R n 的 子 空 间 。
则 P 称为由基 a 1 , a 2 , , a n 到基 b 1 , b 2 , , b n 的 转移矩阵(或过渡矩阵),其中
p11 p21 P= p n1 p12 p22 pn 2 p1n p2 n pnn

第讲-线性空间与线性变换

第讲-线性空间与线性变换
例1、已知向量空间
V x1, x2, x3, x4 x1 x2 x3 x4 0, x2 x3 x4 0, x1, x2 , x3, x4 R
(1)求V的基和维数;
(2)求V的一组标准正交基。
解 由V的构成可知,V是4元齐次线性方程组
x1 x2
x2 x3
x3 x4 x4 0
证 (1)由加法的定义知 V1 V2 对加法封闭,并容 易验证加法满足交换律与结合律。且
设 1,2分别是V1,V2 中的零元,则1,2 是V1 V2 的
零元。
对1,2 V1 V2 , 存在 1, 2 V1 V2 , 使得
1,2 1, 2 1,2 .
其次由数乘的定义知 V1 V2 对数乘封闭,且
构成V的一个子空间,称之为由1,2, ,s 生成的子空
间,记为L 1,2, ,s .
验证线性空间V的非空子集W是否构成子空间,只 要验证W对于V的两种线性运算的封闭性。
2、线性子空间的有关结果
(1)如果数域P上的线性空间V的非空子集W对于V的
两种线性运算封闭,即对于任意, W 有 W ,又 对于任意 k P, W 有 k W ,则W是V的子空间。
a1, a2 , , an .
设1,2, ,s 是线性空间V中的一组元素,则
dim L 1,2, ,n r1,2, ,n
且元素组 1,2, ,s 的任一极大线性无关组都是生成
子空间 L 1,2, ,s 的基。
设W是数域P上 n 维线性空间V的一个m 维子空间,
1,2, ,m 是W的一组基,则这组元素必可扩充成V 的一组基。即在V中必可找到n m个元素m1,m2, ,n 使得1,2, m,m1, ,n 是V的一组基。
dimV . 即V 不是有限维线性空间。

§7.1 线性空间的定义与性质

§7.1 线性空间的定义与性质

例1 在实数域 R 和 R 集合(正实数全体)
上定义运算 a b aba,b R
o a a R, R
验证 R 对上述定义的加法 与数乘 o 。
运算构成实数域上的线性空间。
解 对加法封闭:对任意的 a,b R ,有
a b ab R 对数乘封闭:对任意的 R, a R ,有 o a a R
⑦ o a a aa a a oa oa
⑧ oa b oab ab ab a b o a ob 经验证 R 所定义的运算构成了线性空间。
例2 设集合 V 为:与向量 0,0,1 不平行的全体
三维数组向量。定义两种运算为:数组向量的加 法和数乘运算。验证集合 V 是否为实数域 R 上 的线性空间。
说明 求差的运算称为减法运算。
定义3 设 W 是线性空间 V 的一个非空子集,若 W 对于 V 中定义的加法与数乘运算也构成一个 线性空间,称 W 是 V 的子空间。
对于子空间,有如下定理加以判别。
定理 设 W 是线性空间 V 的一个非空子集,则 W 是 V 的子空间充要条件是 W 对于 V 的加 法与数乘运算具有封闭性,即
下面再验证满足8条规律: ① a b ab ba b a
② a b c ab c abc abc a b c
③ R 存在零元素1,对 a R 有 a 1 a1 a ④ 对 a R ,有负元素 a1 R ,使
a a1 aa1 1
⑤ 1 a a1 a
⑥ o o a o a a a o a , R
证(6)由 0 0 得
0 0 ,根据加法消去律有 0 0 证(8)若 0 ,据性质(5)可知 0 ;
若 0 ,则 1 存在,有 1 10 ,故
1 1 0 ,证毕

线性代数_第六章

线性代数_第六章
a x1a1 + x2a2 + … + xnan
成立, 则称这组有序数x1, x2, …, xn 为元素a 在 基a1, a2, …, an下的坐标,记作(x1, x2, …, xn )T , 称
为坐标向量.
例4 求四维线性空间R2╳2中矩阵a在基{E11,
E12, E21, E22}下的坐标。
试求P[x]2中向量在这两个基下的坐标变换公式。
§6.3 欧氏空间
线性空间中,只定义了加法与数乘两种 运算;
在线性空间中引入度量的概念后,成为 欧几里德空间;
6.3.1 内积的概念与性质
定义1 设V是实数域R上的线性空间,若在V上定义了一个二元
实函数(a, b),它满足以下条件: 1)对称性 (a, b) (b, a) 2)齐次性 (ka, b) k(a, b) 3)可加性 (ab,g)(a, b)(a, g) 4)非负性 (a, a)≥0, 当且仅当a0时(a, a)0 其中, a,b,g为V中任意元素,则称此二元实函数(a, b)为元素a与 b的内积;定义了内积的线性空间称为内积空间.
例7 齐次线性方程组
AX=0 的全部解向量构成线性空间Rn的一个子 空间,称为(1)的解空间.
例8 设C[a,b]是闭区间[a,b]上所有连续实函 数组成的线性空间,P[x][a,b]是 [a,b]上所有的 实系数多项式集合;
则C[a,b]中的定义加法与数乘, P[x][a,b]构成 C[a,b]的一个子空间.
R, R2, Rn 都是有限维线性空间; P[x]是无限维线性空间;
例1 求齐次线性方程组的解空间N(A)的维数.
x1 x1
2x2 3x2
3x3 x4 10x3 5x4
0

高等代数第六章 线性空间

高等代数第六章 线性空间

线性空间的维数
定义7 如果在线性空间V中有n个线性无关 的向量,但是没有更多数目的线性无关的向 量,那么V就称为n维的;如果在V中可以找 到任意多个线性无关的向量,那么V就称为 无限维的。
按照这个定义,几何空间中向量所成的 线性空间是三维的;n元数组所成的空间是n 维的;
由所有实系数多项式所成的线性空间是 无限维的,因为对于任意的N,都有N个线
线性空间的元素也称为向量. 当然,这里 所谓向量比几何中所谓向量的涵义要广泛得 多。线性空间有时也称为向量空间。以下我 们经常是用小写的希腊字母 , , ,代表线 性空间V中的元素,用小写的拉丁字母 k,l, p, 代表数域F中的数
线性空间的性质
1.零元素是唯一的。 假设01,02是线性空间V中的两个元素。
(1,0,,0),
显然
2 (0,1,,0),
n (0,0,,1)
是一组基。对每一个向量 (a1, a2,, an ) ,
都有 a11 a22 ann
所以
(a , 1
a 2
,,
a n
)
就是向量
在这组基下的坐
标。不难证明,
1 ' (1,1,,1), 2 '(0,1,,1), n ' (0,0,,1)
2.如果向量组
线性无关,而且
可以被
线1,性2 ,表出,,r 那么

, ,,
1
2
s
rs
由此推出,两个等价的线性无关的向量
组,必定含有相同个数的向量。
3.如果向量组
1
,
2
,,
r
线性无关,但向
量组
1
,
2
,,
r

线性空间中的基本定义及性质

线性空间中的基本定义及性质

线性空间中的基本定义及性质线性空间是现今数学中的一个基础概念。

它在向量、矩阵、微积分、拓扑等多个数学分支中都有广泛的应用。

本文将简单介绍线性空间的基本定义及其性质。

一、线性空间的基本定义线性空间是一种包含数个元素的空间,其内部具有向量加法运算和数乘运算。

具体来说,设V为一个非空集合,其中的元素称为向量。

若V上有两种运算,一种为向量加法运算,用+表示,另一种为数乘运算,用·表示,则称(V, +, ·)为一个线性空间,满足以下条件:1.加法交换律:对任意u,v∈V,有u+v=v+u;2.加法结合律:对任意u,v,w∈V,有(u+v)+w=u+(v+w);3.存在零向量:存在一个元素0∈V,使得对任意u∈V,有u+0=u;4.对任意向量u∈V,存在相反元素:对任意u∈V,存在一个元素-v∈V,使得u+(-v)=0;5.数乘结合律:对任意α,α∈R,u∈V,有(αα)u=α(αu);6.分配律:对任意α∈R,u,v∈V,有α(u+v)=αu+αv,(α+α)u=αu+αu;7.标量乘法:对任意u∈V,有1u=u。

在以上定义中,R表示实数集合上的乘法运算。

二、线性空间的性质线性空间的定义虽然简单,但它带来了许多重要的性质。

以下是几个典型的例子:1. 零向量唯一性:线性空间中仅存在一个零向量,任何向量加上该零向量等于其本身。

2. 相反元素唯一性:线性空间中任一向量的相反元素是唯一的。

3. 线性组合性质:设{u1,u2,...,un}为V中的向量。

{a1,a2,...,an}为任意实数,则线性组合a1u1+a2u2+...+anun∈V。

其中,每个ai乘以ui叫做向量ui 的系数。

4. 子空间的定义:设V为一个线性空间,如果它的子集W满足:(1)对于任意向量u,v∈W,u+v∈W;(2)对于任意α∈R,u∈W,有αu∈W;则称W是V的一个子空间。

5. 线性无关性:设V为一个线性空间,{u1,u2,...,un}为其中的向量。

第六章 线性空间

第六章 线性空间

第六章 线性空间§1基本知识§1. 1 基本概念1、集合的相关概念:2、映射:3、单射:4、满射:5、双射(一一映射):6、可逆映射及其逆映射:7、线性空间:8、向量的线性组合: 9、向量组的等价:10、向量的线性相关与无关:11、线性空间的维数(有限维与无限维线性空间): 12、线性空间的基与坐标: 13、过渡矩阵:14、线性空间的子空间: 15、生成子空间: 16、子空间的和:17、两个子空间的直和: 18、有限个子空间的直和: 19、线性空间的同构:§1. 2 基本定理1、基与维数的判定定理:设n ααα,,,21 是线性空间V 上n 个线性无关的向量,如果V 上任何一个向量都可以由它线性表出,那么V 是n 维的,n ααα,,,21 是它的一组基.2、子空间的判定定理:设W 是线性空间V 的一个非空子集,如果W 关于V 的两种运算是封闭的,那么W 是V 的一个子空间.3、生成子空间的相等与维数的判定定理:(1)两个向量组生成相同的子空间的充分必要条件是这两个向量组等价; (2)),,,(),,,(dim 2121r r R L αααααα =.4、基的扩充定理:设m ααα,,,21 是n 维线性空间V 上任意m 个线性无关的向量,如果n m <,那么在V 上必定可以找到m n -个向量n m m ααα,,,211 ++,使得n ααα,,,21 是V 的一组基.5、子空间的交的性质定理:设21,V V 都是线性空间V 的子空间,那么21V V ⋂也是V 的子空间.6、子空间的和的性质定理:设21,V V 都是线性空间V 的子空间,那么21V V +也是V 的子空间.7、维数定理:设21,V V 都是线性空间V 的子空间,那么)dim(dim dim )dim(212121V V V V V V ⋂-+=+.推论:设21,V V 都是线性空间V 的子空间,如果2121dim dim )dim(V V V V +<+,那么{}021≠⋂V V .8、直和的判定定理:设21,V V 都是线性空间V 的子空间,那么如下条件是等价的 (1)21V V +是直和;(2)若221121,,0V V ∈∈=+αααα,则021==αα;(3){}021=⋂V V ;(4)2121dim dim )dim(V V V V +=+9、直和的判定定理续:设m V V V ,,,21 都是线性空间V 的子空间,那么如下条件是等价的(1)m V V V +++ 21是直和;(2)若m i V i i m ,,2,1,,021 =∈=+++αααα,则021====m ααα ;(3){}m i V V ij j i ,,2,1,0 ==⋂∑≠;(4)∑==++m i i m V V V V 121dim )dim(10、直和的存在性定理:设W 是线性空间V 的任何一个子空间,那么一定存在V 的一个子空间U ,使得W U V ⊕=. 11、有限维线性空间同构的判定定理:(1)数域P 任何一个n 维线性空间都同构于n P ;(2)有限维线性空间同构的充分必要条件是,它们的维数相等. §1. 3 基本性质1、线性空间的性质: (1)零元素是唯一的; (2)负元素是唯一的; (3)ααα-=-==)1(;00;00k ; (4)000==⇔=αα或k k .2、过渡矩阵的性质:(1)过渡矩阵都是可逆矩阵;(2)设基n ααα,,,21 到基n βββ,,,21 的过渡矩阵是A ,则基n βββ,,,21 到基n ααα,,,21 的过渡矩阵是1-A ;(3)设基n ααα,,,21 到基n βββ,,,21 的过渡矩阵是A ,n βββ,,,21 到基n γγγ,,,21 的过渡矩阵是B ,则基n ααα,,,21 到基n γγγ,,,21 的过渡矩阵是AB .(4)设基n ααα,,,21 到基n βββ,,,21 的过渡矩阵是A ,向量α在基n ααα,,,21 和n βββ,,,21 下的坐标分别是),,,(21n x x x 和),,,(21n y y y ,则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n y y y A x x x 2121. 3、子空间的交与和的性质:设21,V V 都是线性空间V 的子空间,则如下条件等价 (1)21V V ⊂; (2)121V V V =⋂; (3)221V V V =+;4、同构映射的性质:设τ是线性空间V 到线性空间W 的同构映射,则 (1)0)0(=τ;)()(ατατ-=-;(2))()()()(22112211m m m m k k k k k k ατατατααατ+++=+++ ; (3)⇔线性相关m ααα,,,21 )(,),(),(21m ατατατ 线性相关; (4)同构映射的逆映射1-τ是线性空间W 到线性空间V 的同构映射; (5)若ρ是线性空间W 到线性空间U 的同构映射,则ρτ是线性空间V 到线性空间U 的同构映射.§2 基本题型及其常用解题方法§2. 1 线性空间的判定与证明1、利用定义例6.1(北大教材,P267,3) 2、利用子空间的判定定理 例6.2(北大教材,P267,3)§2.2 基、维数的计算、判定与证明 1、利用定义例6.3(北大教材,P268,8)2、利用定理:设n ααα,,,21 是线性空间V 上的n 个线性无关的向量,若V 上任意一个向量可以由n ααα,,,21 线性表出,那么V 是n 维线性空间且n ααα,,,21 是它的一个基。

线性空间的定义与简单性质

线性空间的定义与简单性质
11 §6.2 线性空间的定义与简单性质
注 ◆ 例 8 中集合 V 满足线性空间定义中的其 他七条公理, 可见第五条虽然比较简单, 但是不可 由其他七条推出.
◆ 在 8 条公理中只有第一条加法满足交换律不 是独立的.
证明 ∵ 2( )=2 2 =(1+1) +(1 +1) =(1 +1 )+(1 +1 )=(+ )+( + )= +( + )+ ,
元素 与它们对应,称为 k 与 的数量乘积,记
= k . 如果加法与数量乘法满足下述规则,那
么 V 称为数域 P 上的线性空间.
加法满足下面四条规则:
1) ;
2) ( ) ( );
3) 在 V 中有一个元素 0,对于 V 中任一元素
都有
+ 0 =
(具有这个性质的元素 0 称为 V 的零元素) ;
7 §6.2 线性空间的定义与简单性质
例 1 在解析几何中, 平面或空间中一切向量 组成的集合 V, 对于向量的加法及实数与向量的乘 法, 构成实数域上的一个线性空间.
例 2 全体 n 维实向量组成的集合 V, 对于向 量的加法及实数与向量的乘法, 构成实数域上的 一个线性空间.
例 3 全体定义在区间 [a,b]上的连续函数组成 的集合V, 对于函数的加法及实数与连续函数的乘 法, 构成实数域上的一个线性空间. 用 C [a,b] 表示.
八条规则其中前四条是加法的运算律这时称v对加法做成一个加群第五六条是数量乘法算律后两条是分配律表示两种运算之间的联系
高等代数
第六章 线性空间 Linear Space
第二节 线性空间的定义与简单性质
2 §6.2 线性空间的定义与简单性质
一、线性空间的概念
定义 1 设 V 是一个非空集合 , P 是一个数域 . 在集合 V 的元素之间定义了一种代数运算,叫做 加法; 这就是说,给出了一个法则,对于 V 中任

高等代数-线性空间

高等代数-线性空间

负向量存在性
(5) 1 ; (6) a( ) a a ,a K;
数乘与加法的协调
(7) (a b) a b,a,b K;
(8) a(b ) (ab).
线性空间_例
例4 Kmn {A (aij )mn | aij K, i 1,2,..., m, j 1,2,..., n}
(2) 数乘
若k K, (a1, a2 ,L , an ) , 则 k (ka1, ka2 ,L , kan ).
n维向量_3
向量运算规则(八条运算规则)
(1) 加法交换律 ;
0向量存在性
(2) 加法结合律 ( ) ( );
(3) 0,, 0 ; (4) , , 0;
例6. 所有偶数集合是数环, 不是数域.
例7. Q( 3) {a b 3 a,b Q}是数域. Q(3 2) {a b3 2 a,b Q} 不是数域, 是数环. W {a3 2 a Q}不是数环, 也非数域.
命题 任一数域必包含0, 1. 命题 任一数域必包含有理数域Q. 命题 R和C之间不存在任何其他数域.
线性映射和线性变换
线性空间理论的应用
矩阵的秩——对矩阵分类 线性方程组解的结构
目的要求
• 掌握数域的定义, 正确判断数域和数环 • 熟练掌握线性空间的概念、基本性质; • 正确判断一个集合对于给定的运算是否构
成一个线性空间
集合
➢ 若干个事物的整体称为集合(记作A, B, C等) ➢ 组成集合的事物称为元素(记作a, b, c等) ➢ 集合具有:确定性、互异性、无序性
a11 a22 L amm ,
则称 是1,2 ,L
,

m
线性组合,
或称向量 可

§6.2 线性空间的定义

§6.2 线性空间的定义

§6.2 线性空间的定义
线性空间是数学中一个非常重要的基础概念,也被称为向量空间。

它是由一组称作向量的元素所构成的集合,并且这个集合也需要满足一定的运算规则。

具体来说,线性空间必须满足以下条件:
1. 加法性质:对于任意的 a、b 属于线性空间 V,其和 a+b 也属于 V。

6. 存在零元素:线性空间中必须存在一个元素 0,使得对于任意的 a 属于 V,有a+0=0+a=a。

以上这些条件都是线性空间必须满足的性质,只有同时满足以上所有条件,才能称为线性空间。

线性空间不仅可以是实数域上的,也可以是复数域或其他的数域,只要满足上述条件就行。

此外,线性空间的向量元素也可以是多维的,相应地,加法和数量乘法也要进行多维的运算。

总之,线性空间是数学中的一个非常重要的概念,它是在广泛的应用领域中得到了广泛的应用,包括物理、经济、计算机科学等领域,是许多高等数学学科的基础,深入理解并掌握线性空间的性质和应用,对于建立和发展许多数学理论和应用具有重要的意义。

第六章线性空间

第六章线性空间

第六章线性空间§ 1集合•映射一、集合集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西• 组成集合的东西称为这个集合的元素•用a M表示a是集合M的元素,读为:a属于M .用a F M表示a不是集合M的元素,读为:a不属于M .所谓给出一个集合就是规定这个集合是由哪些元素组成的•因此给出一个集合的方式不外两种,一种是列举法:列举出它全部的元素,一种是描述法:给出这个集合的元素所具有的特征性质.设M是具有某些性质的全部元素所成的集合,就可写成M = "a |a具有的性质—不包含任何元素的集合称为空集,记作'.如果两个集合M与N含有完全相同的元素,即a M当且仅当a N,那么它们就称为相等,记为M二N .如果集合M的元素全是集合N的元素,即由a • M可以推出a • N,那么M 就称为N的子集合,记为M N或N二M .两个集合M和N如果同时满足M N和N二M .,则M和N相等.设M和N是两个集合,既属于M又属于N的全体元素所成的集合称为M 与N 的交,记为M N .属于集合M或者属于集合N的全体元素所成的集合称为M与N的并,记为M N .二、映射设M和M •是两个集合,所谓集合M到集合M的一个映射就是指一个法则,它使M中每一个元素a都有M •中一个确定的元素a •与之对应.如果映射二使元素a > M与元素a • M对应,那么就记为a ■就为a在映射二下的像,而a称为a ■在映射二下的一个原像.M到M自身的映射,有时也称为M到自身的变换.关于M到M •的映射匚应注意:1)M与M •可以相同,也可以不同;2)对于M中每个元素a,需要有M •中一个唯一确定的元素a •与它对应;3)—般,M •中元素不一定都是M中元素的像;4)M中不相同元素的像可能相同;5)两个集合之间可以建立多个映射.集合M到集合M ■的两个映射二及.,若对M的每个元素a都有二(a)二.(a)则称它们相等,记作二二...例1 M是全体整数的集合,M •是全体偶数的集合,定义-(n) = 2n, n M ,这是M到M •的一个映射.例2 M是数域P上全体n级矩阵的集合,定义5(A) A|,A M .这是M到P的一个映射.例3 M是数域P上全体n级矩阵的集合,定义二2(a)二aE , a P .E是n级单位矩阵,这是P到M的一个映射.例4对于f(x) P[x],定义r f(X))= f (x)这是P[X]到自身的一个映射.例5设M,M是两个非空的集合,a0是M中一个固定的元素,定义「(a)二a0,a M .这是M到M •的一个映射.例6设M 是- -个集合,定义二(a)二 a ,a M .即二把M的每个元素都映到它自身,称为集合M的恒等映射或单位映射,记为1 M .例7任意一个定义在全体实数上的函数y 二f(x)都是实数集合到自身的映射,因此函数可以认为是映射的一个特殊情形.对于映射可以定义乘法,设匚及.分别是集合M到M,M ■到M “的映射,乘积.二定义为(.;「)(a) = (;「(a)) ,a M ,即相继施行;「和.的结果,.;「是M到M ”的一个映射.对于集合集合M到M的任何一个映射匚显然都有1M一"M .映射的乘法适合结合律.设匚,•「分别是集合M到M,M ■到M ,M “到M托勺映射,映射乘法的结合律就是(-);「- (;「).设二是集合M到M •的一个映射,用;「(M )代表M在映射二下像的全体,称为M在映射二下的像集合.显然;「(M ) M .如果二(M )二M •,映射二称为映上的或满射.如果在映射二下,M中不同元素的像也一定不同,即由a^ - a2一定有二(耳)=二(a?),那么映射二就称为1-1的或单射.一个映射如果既是单射又是满射就称1-1对应或双射.对于M到M •的双射二可以自然地定义它的逆映射,记为匚* .因为二为满射,所以M •中每个元素都有原像,又因为二是单射,所以每个元素只有一个原像,定义二'(a)二a,当二(a) = a .显然,二」是M ■到M的一个双射,并且'■- '■- = = 1 M '.不难证明,如果匚,.分别是M到M , M ■到M ”的双射,那么乘积v就是M到M “的一个双射.§ 2线性空间的定义与简单性质一、线性空间的定义.例1 在解析几何里,讨论过三维空间中的向量.向量的基本属性是可以按平行四边形规律相加,也可以与实数作数量算法•不少几何和力学对象的性质是可以通过向量的这两种运算来描述的.10按平行四边形法则所定义的向量的加法是V3的一个运算;2°解析几何中规定的实数与向量的乘法是R X V3到V3的一个运算.30由知道,空间上向量的上述两种运算满足八条运算规律.例2.数域P上一切矩阵所成的集合对于矩阵的加法和数与矩阵的乘法满足上述规律.定义1令V是一个非空集合,P是一个数域.在集合V的元素之间定义了一种代数运算,叫做加法;这就是说给出了一个法则,.对于V中任意两个向量〉与,在V中都有唯一的一个元素与它们对应,称为〉与]的和,记为 =:'■.在数域P与集合V的元素之间还定义了一种运算,叫做数量乘法;这就是说,对于数域P中任一个数k与V中任一个元素—在V中都有唯一的一个元素:与它们对应,称为k与〉的数量乘积,记为:二k〉.如果加法与数量乘法满足下述规则,那么V称为数域P上的线性空间.加法满足下面四条规则::1) :- - - = ■ ■ :■;2)(、£);3)在V中有一个元素0^ V ,都有: (具有这个性质的元素0称为V的零元素);4) -• V , 「V , st 〉• 1 = 0 ( 1 称为〉的负元素).数量乘法满足下面两条规则:5) 1——:;6)k(l:)=(kl):;数量乘法与加法满足下面两条规则:7)(k 亠丨):-k::亠丨、;;8)k (;*_亠 | ;)= k 很亠k |;在以上规则中,k,l等表示数域P中任意数;:•「,等表示集合V中任意元素.例3数域P上一元多项式环P[x],按通常的多项式加法和数与多项式的乘法,构成一个数域P上的线性空间.如果只考虑其中次数小于n的多项式,再添上零多项式也构成数域P上的一个线性空间,用P[x]n表示.例4元素属于数域P的m n矩阵,按矩阵的加法和数与矩阵的数量乘法,构成数域P上的一个线性空间,用P mn表示•例5全体实函数,按函数加法和数与函数的数量乘法,构成一个实数域上的线性空间.例6数域P按照本身的加法与乘法,即构成一个自身上的线性空间.例7以下集合对于所指定的运算是否作成实数域R上的线性空间:1)平面上全体向量所作成的集合V ,对于通常向量的加法和如下定义的纯量乘法:a :二0,a R^ - V .2)R上n次多项式的全体所作成的集合W对于多项式的加法和数与多项式的乘法•例8设V是正实数集,R为实数域.规定,二---■(即〉与]的积),a O :■ —a(即〉的a次幕),其中〉J • V,a・R.则V对于加法①和数乘。

线性空间与子空间的定义与性质

线性空间与子空间的定义与性质

线性空间与子空间的定义与性质线性空间是线性代数中的基本概念之一,它是由一组元素及其对应的运算所构成的数学结构。

本文将介绍线性空间的定义和性质,并讨论其子空间的特点。

一、线性空间的定义线性空间也称为向量空间,它由定义在一个域上的元素所组成,这些元素称为向量。

一个线性空间必须满足以下条件:1. 封闭性:对于任意向量a和b,其线性组合a+b也是线性空间中的向量。

2. 可加性:对于任意向量a、b和c,满足(a+b)+c = a+(b+c)的结合律。

3. 零向量:存在一个零向量0,使得对于任意向量a,有a+0=a。

4. 负向量:对于每个向量a,存在一个负向量-b,使得a+b=0。

5. 数乘性:对于任意向量a和标量k,其标量倍数ka也是线性空间中的向量。

6. 数乘分法:对于任意标量k和l,以及向量a,满足(kl)a=k(la)的结合律。

7. 数乘加法混合性:对于任意向量a和标量k、l,满足(k+l)a=ka+la 的分配律。

8. 数加分法混合性:对于任意向量a、b和标量k,满足k(a+b)=ka+kb的分配律。

二、线性子空间的定义线性子空间是指线性空间中的一个子集,它也是一个线性空间。

对于给定的线性空间V,如果集合W是V的子集,并且满足以下条件:1. 零向量:零向量0属于W。

2. 封闭性:对于任意向量a和b,若a和b都属于W,则其线性组合a+b也属于W。

3. 数乘性:对于任意向量a和标量k,若a属于W,则其标量倍数ka也属于W。

三、子空间的性质线性子空间具有如下性质:1. 非空性:线性子空间不能是空集。

2. 零向量唯一性:线性子空间中的零向量是唯一的。

3. 维数性质:设V是一个线性空间,W是V的一个有限维子空间,如果W的一组基包含n个向量,则W的任意一组线性无关的向量组也包含不超过n个向量。

4. 直和性质:设V是一个线性空间,W是V的一个子空间。

如果存在一个子空间U,使得V是U和W的直和,即任意向量v∈V都可以唯一地表示成v=u+w,其中u∈U,w∈W,则称V是子空间U和W 的直和。

线性空间线性空间的定义及性质知识预备集合笼统的说

线性空间线性空间的定义及性质知识预备集合笼统的说

第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体。

集合的表示:枚举、表达式集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。

★数域:一种数集,对四则运算封闭(除数不为零)。

比如有理数域、实数域(R)和复数域(C)。

实数域和复数域是工程上较常用的两个数域。

线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。

1.线性空间的定义:设V是一个非空集合,其元素用zx,,等表示;K是一个数域,y其元素用m,等表示。

如果V满足[如下8条性质,分两类]:k,l(I)在V中定义一个“加法”运算,即当Vx∈,时,有唯一的和y+(封闭性),且加法运算满足下列性质:x∈yV(1)结合律z=+)()(;+y+zxyx+(2)交换律x+;=yyx+(3)零元律存在零元素O,使x+;x=O(4)负元律 对于任一元素V x ∈,存在一元素V y ∈,使O y x =+,且称y 为x 的负元素,记为)(x -。

则有O x x =-+)(。

(II )在V 中定义一个“数乘”运算,即当K k V x ∈∈,时,有唯一的V kx ∈(封闭性),且数乘运算满足下列性质: (5)数因子分配律 ky kx y x k +=+)(; (6)分配律 lx kx x l k +=+)(; (7)结合律 x kl lx k )()(=; (8)恒等律 x x =1; 则称V 为数域K 上的线性空间。

注意以下几点:1)线性空间是基于一定数域来的。

同一个集合,对于不同数域,就可能构成不同的线性空间,甚至对有的数域能构成线性空间,而对其他数域不能构成线性空间。

2)两种运算、八条性质。

数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则是抽象的、形式的。

3)除了两种运算和八条性质外,还应注意唯一性、封闭性是否满足。

第六章 线性空间

第六章 线性空间

第六章 线性空间一.内容概述(一) 基本概念⒈线性空间的定义-----两个集合要明确。

两种运算要封闭,八条公理要齐备。

V ,数域F V ∙V →V V ∈∀βα、 使V ∈+βα。

V F ⨯→V ∀k V ∈使k V ∈α。

满足下述八条公理:⑴αββα+=+; ⑵)()(γβαγβα++=++; ⑶对于,V ∈α都有αα=+0,零元素;⑷对于V ∈α,都有0=+βα,称β为α的负元素,记为α-; ⑸βαβαk k k +=+)(;⑹αααl k l k +=+)(;⑺)()(ααl k kl =; ⑻αα=1。

常用的线性空间介绍如下:(ⅰ)2V 、3V 分别表示二维,三维几何空间。

(ⅱ)nF 或nP 表示数域)(P F 上的n 维列向量构成的线性空间。

(ⅲ)[]x F 表示数域上全体多项式组成的线性空间。

[]x F n 表F 上次数不大于n 的多项式集合添上零多项式构成的线性空间。

(ⅳ)()F M n m ⨯表示数域F 上n m ⨯矩阵的集合构成的线性空间。

当n m =时,记为()F M n m ⨯。

(ⅴ)[]b a R ,表示在实闭区间[]b a ,上连续函数的集合组成的线性空间。

⒉基,维数和坐标------刻画线性空间的三个要素。

⑴基 线性空间()F V 的一个基指的是V 中一组向量{}n ααα,,21 满足(ⅰ)n ααα,,21 线性无关;(ⅱ)V 中每一向量都可由n ααα,,21 线性表出。

⑵维数 一个基所含向量的个数,称为维数。

记为V dim 。

⑶坐标 设n ααα,,21 为()F V n 的一个基。

()F V n ∈∀α有n n a a a αααα+++= 2211则称有序数组n a a a ,,21 为α关于基n ααα,,21 的坐标。

记为(n a a a ,,21 )。

⑷过渡矩阵 设()F V n 的二个基n ααα,,21 (ⅰ)n βββ ,,21(ⅱ)且∑==ni iij j a 1αβn j 2,1=则称n 阶矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

称 1 , 2 ,, m 为矩阵 A 的行向量组.
线性方程组的向量形式
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 设线性方程组 (1) am 1 x1 am 2 x2 amn xn bm

向量表示矩阵
1 2 n
a11 a 21 矩阵 A a m1 a1n a 2 n ( , ,, ), 1 2 n a mn 称 1 , 2 ,, n 为矩阵 A 的列向量组. a12 a 22 am 2
a
1 a a 构成线性空间 R (kl ) a a kl (a l )k k (l a ) (k l ) a a k l a k a l (k a ) (l a ) k (a b) (ab)k a k b k a k b k (k a ) (k b)
若干个同维数的列向量 (同维数的行向量) 所组成的集合
向量组就是指
a11 a 21 矩阵 A a m1
a12 a 22 am 2
a1n 1 1 a2 n 2 2 , a mn 1 1
向量的线性运算满足八条运算律
设 、 、 是n维向量,0是n维零向量,k、 l
是任意实数。 (1) + = + (2) ( + ) + = + ( + ) (3) + 0 = (4) + (- ) = 0 (5) 1· = (6) ( k l ) = k ( l ) (7) k ( + ) = k + k (8) ( k + l ) = k + l
(k11 k 2 2 k m m )
(k1 )1 (k 2 ) 2 (k m ) m {k1 1 k 2 2 k m m | ki R i 1,2,, m}
设 = ( a1, a2, …, an ), = (b 1, b 2, …, b n ), 是数
规定:
(1) 加法:
+ = ( a1 + b1, a2 + b2, …, an + bn) = ( a1, a2, …, an )
(2) 数与向量的乘法:
向量的加法及数乘统称为向量的线性运算。
如没特别说明所给向量默认为列向量
行向量和列向量是特殊的矩阵,所以向量相等 与向量的线性运算均按矩阵运算来进行。
规定:两个向量 = ( a1, a2, … an ), = (b 1, b 2, … b n )
相等,记 = ai = bi ( i = 1, 2, … , n)
2、n 维向量的线性运算
设V1 ,V2向量空间 V 的两个子空间 例4: 则(1) V1 +V2 1 2 1 V1 , 2 V2 仍是V 的子空间,称为V1 ,V2的和空间; V2 V1且 V2 (2) V1 仍是V 的子空间,称为V1 ,V2的交空间。
§1
向量空间
一、n维向量的定义及运算
一个n维向量。 记为: = ( a1, a2, … an )
n维向量是二维、 三维向量的推广
1.定义 由n个数组成的有序数组(a1, a2, … an)称为
其中第 i 个数 ai ( i = 1, 2, … , n ) 称为 n 维向量
的第 i 个分量或第i个坐标。
(2) V1 = { ( 1, a2, … , an ) | ai R, i = 2, 3, … n }
不是一个向量空间,
( 1, a2, … , an ) V1 1 时,
三、子空间
定义
设V是一个线性空间,V1 V,若V1也是一 个线性空间 ,则称 V1 是 V 的一个子空间。
称为由 1, 2, … , m 生成的向量空间,
对于向量 1 , 2 , , m R
n

记为 L (1, 2, … , m )
设 1 (2,0), 2 (1,1), L(1) ? L(1,2 ) ?
L(2 ) ?
例 3: 齐次线性方程组 A m nX = 0 的解集合记为 V = {X | A m n X = 0}, 证明 V 是 R n 的一个子空间。
向量空间是线性空间的特例,线性空间称为 广义向量空间
思考 (1) V = {0}构成向量空间吗?
(2) V1 = { ( 1, a2, … , an ) | ai R, i = 2, 3, … n }
构成向量空间吗吗?
0 = 0, 解答 (1) V = {0},由于 0 + 0 = 0,k·
V = {0} 构成一个向量空间,称为零空间。
思考 非齐次线性方程组 A m nX 构成线性空间吗?
AX1 b AX2 b
n 1
= b 的解集合
A( X1 X 2 ) ?
不构成线性空间
2b
思考 正实数的全体记作 R ,在其中定义加法和数乘
a b ab, a a ( R, a, b R ) R 对上述线性运算构成线性空间吗? 解 先验R 证对加法和数乘运算封闭。略 再验证满足八条运算规律: a b ab ba b a (a b) c a (b c) a 1 a 1 a, 1相当于R 中零元素 1 a 1 1, 1 aa 相当于 a 在 中负元素 R a
( 2)
二、向量空间
若集合 V非空, R为实数域,且定义了 定义 加法(记为 )和数乘(记为 )两种运算 如果集合 V对于加法及数乘两种运算封闭, 即 (1) 若 V , V , 则 V ; (2) 若 V , R, 则 V 并满足八条运算规律 则称集合 V 为数域R上的线性空间 += + 1· = ( + ) + = + ( + ) ( k l ) = k ( l ) +0= ( k + l ) = k + l + (- ) = 0 k ( + ) = k + k
零向量 0 = ( 0, 0, … , 0 ) 负向量 对 = ( a1, a2, … an ) 称 ( -a1, -a2, …, -an ) 为 的负向量。记为- 。
行向量 = ( a1, a2, …, an )
- = (-a1, -a2, …, -an )
a1 1 n n 维行向量即 行矩阵 a2 T ( a , a , , a ) 列向量 1 2 n a n维列向量即 n 1列矩阵 n
(6,5,1 / 2,1)T .
n 维向量的实际意义
确定飞机的状态,需 要以下6个参数: 机身的仰角 ( ) 2 2 机翼的转角 ( )
(0 2 ) 飞机重心在空间的位置参数P(x,y,z)
机身的水平转角 所以,确定飞机的状态,需用6维向量 a ( x , y , z , , , )
n 1 n 1
证:设X1和X2是齐次线性方程组AX=0的解,
即 A X1 = 0, A X2 = 0
则 (1) A( X1 + X2 )= 0,X1 + X2 仍是 AX = 0的解
(2) R , A( X1 ) = 0,X1仍是AX = 0 的解。
故 V 是 R n 的一个子空间。 V 称为齐次线性方程组 AX = 0 的解空间。
例1 设 1 ( 2,4,1,1) ,
T
2 ( 3,1,2,5 / 2) ,
T
如果向量满足 31 2( 2 ) 0, 求 .
解 由题设条件, 有
31 2 2 2 0
1 ( 2 2 31 ) 2 2 3 1 2 T T 3 ( 3,1,2,5 / 2) ( 2,4,1,1) 2
例如
(1) 全体 n 维向量构成一个线性空间,称为 n维向
特别有R3 , R 2 , R . (2) 实数域R上全体 m n 矩阵组成的集合Rm n
量空间:记作 Rn ;
按矩阵的加法和数乘运算是一个线性空间。 (3) 定义在闭区间[a,b]上的全体连续函数的集合 C[a,b]按照函数的加法和数乘是一个线性空间。
令 i
a1 j a2 j a mj
( j 1,2,, n),
则线性方程组 (1) 可表为:
b1 b2 b m
1 x1 2 x2 n xn
i 1,2,, m}
证明:L 构成一个向量空间。 证: , L, R k11 k 2 2 k m m 1 k 2 2 k m m k1 2 k m m ) (k11 k 2 2 k m m ) (k11 k 2 )1 (k 2 k 2 ) 2 (k m k m ) m L (k1 k1
1. 理解n维向量的概念。 2.理解向量组线性相关、线性无关的定义,了解有关 的重要性质并会进行判别。 3.理解向量组的最大无关组与向量组的秩的概念,并 会求向量组的最大无关组与向量组的秩。 4.知道维向量空间、子空间、基底、维数、坐标等概 念,知道基变换和坐标变换。 5.了解向量内积的概念,了解标准正交基的概念,会 用线性无关向量组正交规范化的施密特(Schmidt)方法。 6.了解线性变换的概念,了解正交变换和正交矩阵的 概念和性质。 7.理解线性变换的特征值与特征向量的概念并掌握其 求法。 8.了解相似矩阵的概念及性质。了解矩阵对角化的充 要条件。会求实对称矩阵的相似对角形矩阵。
相关文档
最新文档