第三章概率-第一节第1.1.1课
概率论第三章 多维随机变量及其分布
![概率论第三章 多维随机变量及其分布](https://img.taocdn.com/s3/m/1341bac3f111f18582d05ae9.png)
1 3
概率论
y
y x
o
x
概率论
四、课堂练习
设随机变量(X,Y)的概率密度是
f
x,
y
k
6
x
y,
0,
0 x 2,2 y 4, 其它.
(1) 确定常数 k;
(2) 求概率 PX 1,Y 3 .
解 (1) 1 f x, ydxdy
R2
k
2 dx
46
0
2
x
y dy
k
2 dx
46
概率论
同理, Y的分布律为:
P{Y y j} pij ˆ p•j , j 1,2,, i1
分别称pi• (i 1, 2,), 和p• j , (j 1, 2,)为(X, Y)关于 X和关于Y的边缘分布律.
概率论
例1 把一枚均匀硬币抛掷三次,设X为三次 抛掷中正面出现的次数 ,而 Y 为正面出现次数与 反面出现次数之差的绝对值 , 求 (X ,Y) 的分布律 和边缘分布律.
也就是说,对于给定的
不同的 对应
不同的二维正态分布,但它们的边缘分布却都是一样的.
此例表明 由边缘分布一般不能确定联合分布.
概率论
五、小结
1. 在这一讲中,我们与一维情形相对照,介 绍了二维随机变量的边缘分布. 2. 请注意联合分布和边缘分布的关系: 由联合分布可以确定边缘分布; 但由边缘分布一般不能确定联合分布.
随机变量维(X,Y )的概率密度 , 或 称为随机变量 X 和 Y 的联合概 率密度.
概率论
一维随机变量X
连续型
F x x
f tdt
x
X的概率密度函数
f x x R
(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)
![(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)](https://img.taocdn.com/s3/m/433b74ef988fcc22bcd126fff705cc1755275f4f.png)
(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)(人教课标版)普通高中课程标准实验教科书《数学》目录(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算本章小结阅读与欣赏聪明在于学习,天才由于积累第二章函数2.1函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.1.5用计算机作函数的图象(选学)2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.3待定系数法2.3函数的应用(Ⅰ)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法本章小结阅读与欣赏函数概念的形成与发展第三章基本初等函数(Ⅰ)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)本章小结阅读与欣赏对数的发明必修二第一章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积实习作业1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系1.2.3空间中的垂直关系本章小结阅读与欣赏散发着数学芳香的碑文第二章平面解析几何初步2.1平面直角坐标系中的基本公式2.1.1数轴上的基本公式2.1.2平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系2.4.1空间直角坐标系2.4.2空间两点的距离公式本章小结阅读与欣赏笛卡儿必修三第一章算法初步1.1算法与程序框图1.1.1算法的概念1.1.2程序框图1.1.3算法的三种基本逻辑结构和框图表示1.2基本算法语句1.2.1赋值、输入和输出语句1.2.2条件语句1.2.3循环语句1.3中国古代数学中的算法案例本章小结阅读与欣赏我国古代数学家秦九韶附录1解三元一次方程组的算法、框图和程序附录2Scilab部分函数指令表第二章统计2.1随机抽样2.1.2系统抽样2.1.4数据的收集2.2用样本估计总体2.2.1用样本的频率分布估计总体的分布2.2.2用样本的数字特征估计总体的数字特征2.3变量的相关性2.3.1变量间的相关关系2.3.2两个变量的线性相关本章小结阅读与欣赏蚂蚁和大象谁的力气更大附录随机数表第三章概率3.1事件与概率3.1.1随机现象3.1.2事件与基本事件空间3.1.3频率与概率3.1.4概率的加法公式3.2古典概型3.2.1古典概型3.2.2概率的一般加法公式(选学)3.3随机数的含义与应用3.3.1几何概型3.3.2随机数的含义与应用3.4概率的应用本章小结阅读与欣赏概率论的起源必修四第一章基本初等函数(Ⅱ)1.1任意角的概念与弧度制1.1.1角的概念的推广1.1.2弧度制和弧度制与角度制的换算1.2任意角的三角函数1.2.1三角函数的定义1.2.2单位圆与三角函数线1.2.3同角三角函数的基本关系式1.2.4诱导公式1.3三角函数的图象与性质1.3.1正弦函数的图象与性质1.3.2余弦函数、正切函数的图象与性质1.3.3已知三角函数值求角教学建模活动本章小结阅读与欣赏三角学的发展第二章平面向量2.1向量的线性运算2.1.1向量的概念2.1.2向量的加法2.1.3向量的减法2.1.4数乘向量2.1.5向量共线的条件与轴上向量坐标运算2.2向量的分解与向量的坐标运算2.2.1平面向量基本定理2.2.2向量的正交分解与向量的直角坐标运算2.2.3用平面向量坐标表示向量共线条件2.3平面向量的数量积2.3.1向量数量积的物理背景与定义2.3.2向量数量积的运算律2.3.3向量数量积的坐标运算与度量公式2.4向量的应用2.4.1向量在几何中的应用2.4.2向量在物理中的应用本章小结阅读与欣赏向量概念的推广与应用第三章三角恒等变换3.1和角公式3.1.1两角和与差的余弦3.1.2两角和与差的正弦3.1.3两角和与差的正切3.2倍角公式和半角公式3.2.1倍角公式3.2.2半角的正弦、余弦和正切3.3三角函数的积化和差与和差化积本章小结阅读与欣赏和角公式与旋转对称必修五第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例本章小结阅读与欣赏亚历山大时期的三角测量第二章数列2.1数列2.1.1数列2.1.2数列的递推公式(选学)2.2等差数列2.2.1等差数列2.2.2等差数列的前n项和2.3等比数列2.3.1等比数列2.3.2等比数列的前n项和本章小结阅读与欣赏级数趣题无穷与悖论第三章不等式3.1不等关系与不等式3.1.1不等关系与不等式3.1.2不等式的性质3.2均值不等式3.3一元二次不等式及其解法3.4不等式的实际应用3.5二元一次不等式(组)与简单的线性规划问题3.5.1二元一次不等式(组)所表示的平面区域3.5.2简单线性规划本章小结选修1-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的几何性质2.3抛物线2.3.1抛物线级其标准方程2.3.2抛物线的几何性质本章小结阅读与欣赏圆锥面与圆锥曲线第三章导数及其应用3.1导数3.1.1函数的平均变化率3.1.2瞬时速度与导数3.1.3导数的几何意义3.2导数的运算3.2.1常数与幂函数的导数3.2.2导数公式表3.2.3导数的四则运算法则3.3导数的应用3.3.1利用导数判断函数的单调性3.3.2利用导数研究函数的极值3.3.3导数的实际应用本章小结阅读与欣赏微积分与极限思想选修1-2第一章统计案例1.1独立性检验1.2回归分析本章小结“回归”一词的由来附表相关性检验的临界值表第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法本章小结阅读与欣赏《原本》与公理化思想数学证明的机械化——机器证明第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.1.1实数系3.1.2复数的引入3.2复数的运算3.2.1复数的加法和减法3.2.2复数的乘法和除法本章小结复平面与高斯第四章框图4.1流程图4.2结构图本章小结阅读与欣赏冯·诺伊曼选修2-1第一章常用逻辑用语1.1命题与量词1.1.1命题1.1.2量词1.2基本逻辑联结词1.2.1“且”与“或”1.2.2“非”(否定)1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件本章小结阅读与欣赏什么是数理逻辑第二章圆锥曲线与方程2.1曲线与方程2.1.1曲线与方程的概念2.1.2由曲线求它的方程、由方程研究曲线的性质2.2椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线本章小结阅读与欣赏圆锥面与圆锥曲线第三章空间向量与立体几何3.1空间向量及其运算3.1.1空间向量的线性运算3.1.2空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2空间向量在立体几何中的应用3.2.1直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离(选学)本章小结阅读与欣赏向量的叉积及其性质选修2-2第一章导数及其应用1.1导数1.1.1函数的平均变化率1.1.2瞬时速度与导数1.1.3导数的几何意义1.2导数的运算1.2.1常数函数与冥函数的导数1.2.2导数公式表及数学软件的应用1.2.3导数的四则运算法则1.3导数的应用1.3.1利用导数判断函数的单调性1.3.2利用导数研究函数的极值1.3.3导数的实际应用1.4定积分与微积分基本定理1.4.1曲边梯形面积与定积分1.4.2微积分基本定理本章小结阅读与欣赏微积分与极限思想第二章推理与证明2.1合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2直接证明与间接证明2.2.1综合法与分析法2.2.2反证法2.3数学归纳法2.3.1数学归纳法2.3.2数学归纳法应用举例本意小结阅读与欣赏《原本》与公理化思想第三章数系的扩充与复数3.1数系的扩充与复数的概念3.1.1实数系3.1.2复数的概念3.1.3复数的几何意义3.2复数的运算3.2.1复数的加法与减法3.2.2复数的乘法3.2.3复数的除法本章小节阅读与欣赏复平面与高斯选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3二项式定理1.3.2杨辉三角本章小结第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布本章小结阅读与欣赏关于“玛丽莲问题”的争论第三章统计案例3.1独立性检验3.2回归分析本章小结阅读与欣赏“回归”一词的由来附表选修3-1第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身选修3-2暂缺选修3-3第一讲从欧氏几何看球面一平面与球面的位置关系二直线与球面的位置关系和球幂定理三球面的对称性第二讲球面上的距离和角一球面上的距离二球面上的角第三讲球面上的基本图形一极与赤道二球面二角形三球面三角形1.球面三角形2.三面角3.对顶三角形4.球极三角形第四讲球面三角形一球面三角形三边之间的关系二、球面“等腰”三角形三球面三角形的周长四球面三角形的内角和第五讲球面三角形的全等1.“边边边”(s.s.s)判定定理2.“边角边”(s.a.s.)判定定理3.“角边角”(a.s.a.)判定定理4.“角角角”(a.a.a.)判定定理第六讲球面多边形与欧拉公式一球面多边形及其内角和公式二简单多面体的欧拉公式三用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系一球面上的正弦定理和余弦定理二用向量方法证明球面上的余弦定理1.向量的向量积2.球面上余弦定理的向量证明三从球面上的正弦定理看球面与平面四球面上余弦定理的应用──求地球上两城市间的距离第八讲欧氏几何与非欧几何一平面几何与球面几何的比较二欧氏平行公理与非欧几何模型──庞加莱模型三欧氏几何与非欧几何的意义阅读与思考非欧几何简史选修3-4第一讲平面图形的对称群一平面刚体运动1.平面刚体运动的定义2.平面刚体运动的性质二对称变换1.对称变换的定义2.正多边形的对称变换3.对称变换的合成4.对称变换的性质5.对称变换的逆变换三平面图形的对称群第二讲代数学中的对称与抽象群的概念一n元对称群Sn二多项式的对称变换三抽象群的概念1.群的一般概念2.直积第三讲对称与群的故事一带饰和面饰二化学分子的对称群三晶体的分类四伽罗瓦理论选修4-1第一讲相似三角形的判定及有关性质一平行线等分线段定理二平行线分线段成比例定理三相似三角形的判定及性质1.相似三角形的判定2.相似三角形的性质四直角三角形的射影定理第二讲直线与圆的位置关系一圆周角定理二圆内接四边形的性质与判定定理三圆的切线的性质及判定定理四弦切角的性质五与圆有关的比例线段第三讲圆锥曲线性质的探讨一平行摄影二平面与圆柱面的截线三平面与圆锥面的截线选修4-2引言第一讲线性变换与二阶矩阵一线性变换与二阶矩阵(一)几类特殊线性变换及其二阶矩阵1.旋转变换2.反射变换3.伸缩变换4.投影变换5.切变变换(二)变换、矩阵的相等二二阶矩阵与平面向量的乘法(二)一些重要线性变换对单位正方形区域的作用第二讲变换的复合与二阶矩阵的乘法一复合变换与二阶矩阵的乘法二矩阵乘法的性质第三讲逆变换与逆矩阵一逆变换与逆矩阵1.逆变换与逆矩阵2.逆矩阵的性质二二阶行列式与逆矩阵三逆矩阵与二元一次方程组1.二元一次方程组的矩阵形式2.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量一变换的不变量——矩阵的特征向量1.特征值与特征向量2.特征值与特征向量的计算二特征向量的应用1.Aa的简单表示2.特征向量在实际问题中的应用选修4-5第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式,贝努利不等式本章小结阅读与欣赏附录部分中英文词汇对照表后记选修4-6引言第一讲整数的整除一整除1.整除的概念和性质2.带余除法3.素数及其判别法二最大公因数与最小公倍数1.最大公因数2.最小公倍数三算术基本定理第二讲同余与同余方程一同余1.同余的概念2.同余的性质二剩余类及其运算三费马小定理和欧拉定理四一次同余方程五拉格朗日插值法和孙子定理六弃九验算法第三讲一次不定方程一二元一次不定方程二二元一次不定方程的特解三多元一次不定方程第四讲数伦在密码中的应用一信息的加密与去密二大数分解和公开密钥学习总结报告附录一剩余系和欧拉函数附录二多项式的整除性选修4-7引言第一讲优选法一什么叫优选法二单峰函数三黄金分割法——0.618法1.黄金分割常数2.黄金分割法——0.618法阅读与思考黄金分割研究简史四分数法1.分数法阅读与思考斐波那契数列和黄金分割2.分数法的最优性五其他几种常用的优越法1.对分法2.盲人爬山法3.分批试验法4.多峰的情形六多因素方法1.纵横对折法和从好点出发法2.平行线法3.双因素盲人爬山法第二讲试验设计初步一正交试验设计法1.正交表2.正交试验设计3.试验结果的分析4.正交表的特性二正交试验的应用选修4-9引言第一讲风险与决策的基本概念一风险与决策的关系二风险与决策的基本概念1.风险(平均损失)2.平均收益3.损益矩阵4.风险型决策探究与发现风险相差不大时该如何决策第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介一马尔可夫链简介1.马尔可夫性与马尔可夫链2.转移概率与转移概率矩阵二马尔可夫型决策简介三长期准则下的马尔可夫型决策理论1.马尔可夫链的平稳分布2.平稳分布与马尔可夫型决策的长期准则3.平稳准则的应用案例说明:A版适用于文件生使用,B版适用于理科生使用,B 版比A版略难。
第三章 条件概率与条件期望
![第三章 条件概率与条件期望](https://img.taocdn.com/s3/m/356ea3caa1c7aa00b52acb12.png)
2012/3/2
Copyright©Pei Zhang ,2012
6
例3.2
• 有n个零件,零件i在雨天运转的概率为pi, 在非雨天运转的概率为qi,i=1,2,……,n。 明天下雨的概率为。计算在明天下雨时, 运转的零件数的条件期望。
2012/3/2
Copyright©Pei Zhang ,20Zhang ,2012
12
例3.6(几何分布的均值)
• 连续抛掷一枚正面出现的概率为p的硬 币直至出现正面为止,问需要抛掷的 次数的期望是多少?
2012/3/2
Copyright©Pei Zhang ,2012
13
例3.7
• 某矿工身陷在有三个门的矿井之中,经 第1个门的通道行进2小时后,他将到达 安全地。经第二个门的通道前进3小时 后,他将回到原地。经过第三个门的通 道前进5小时后,他还是回到原地。假 定这个矿工每次都等可能地选取任意一 个门,问直到他到达安全地所需时间的 期望是多少?
• 连续地做每次成功率为p的独立试验。N 是首次成功时的试验次数,求Var(N)
2012/3/2
Copyright©Pei Zhang ,2012
16
三、通过取条件期望计算概率
• E是一个事件,定义示性随机变量X为:
1,若E发生 X 0,若E不发生 由X的定义推出: E[X]=P(E) E[X|Y=y]=P(E|Y=y)
7
第二节
连续随机变量的条件概率与条件期望
• X和Y是连续随机变量,联合密度函数为 f(x,y),那么在Y=y时X的条件概率密度函数 定义为:
f ( x, y ) f X |Y ( x | y) fY ( y )
• 给定Y=y时X的条件期望定义为:
说课稿 人教版 高中数学必修三 第三章第一节《概率的基本性质》
![说课稿 人教版 高中数学必修三 第三章第一节《概率的基本性质》](https://img.taocdn.com/s3/m/7b80d295a417866fb94a8e8b.png)
概率的基本性质一、说教材1.教材分析《概率的基本性质》是人教版高中数学必修第三册第三章第一节的内容。
本节内容是在学生学习了频率和概率的基础上,与集合类比研究事件的关系、运算和概率的性质。
它不仅使学生加深对频率和概率的理解,还能进一步认识集合,同时为后面“古典概型”和“几何概型”的学习打下基础。
因此,本节内容在学习概率知识的过程中起到承上启下的重要过渡作用。
2. 教学目标通过以上对教材的分析,并依据新课标的要求,我确定了以下教学目标:首先,知识与技能目标是:了解随机事件间的基本关系与运算;掌握概率的几个基本性质,并会用其解决简单的概率问题。
其次,过程与方法目标是:在借助掷骰子试验探究事件的关系和运算的过程中,体会类比的数学思想方法;通过研究概率的基本性质,发展分析和推理能力。
最后,情感态度和价值观目标是:通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的兴趣。
3.教学重点和难点根据上述对教材的分析以及制定的教学目标,我确定本节课的教学重点为:事件的关系与运算;概率的加法公式及其应用。
考虑到学生已有的知识基础与认知能力,我确定本节课的教学难点是:互斥事件与对立事件的区别与联系。
二、说学情奥苏伯尔认为:“影响学习的最重要的因素,就是学习者已经知道了什么,要探明这一点,并应据此进行教学”,因而在教学之始,必须关注学生的基本情况。
学生在学习本节课以前,已经掌握了集合关系、运算,频率与概率的内在联系,对用频率估计概率研究问题的方法也有所掌握,特别是学生进入高二以后,数学学习能力有了很大提高,他们的观察探究能力也有了长足的进步。
学生在学习本节课内容时,一般会出现的问题或困难是:概率加法公式的发现以及将其公式化的过程。
三、说教法教学方法是课堂教学的基本要素之一。
它在学生获取知识、培养科学的思维方法和能力,特别是创造能力的过程中,具有重要的作用。
对于本课我主要采用的教法是以启发式教学法为主,讨论交流法为辅的教学方法。
3-1概率论
![3-1概率论](https://img.taocdn.com/s3/m/01a9c06e0b1c59eef8c7b494.png)
例5 设二维随机变量 ( X , Y ) 的概率密度
2 x y , x0 , y0 , ke f ( x, y ) , 其它. 0
试求: ⑴ 常数 k 的值; ⑵ 分布函数 F ( x, y) ; ⑶ 概率 P{Y X }; ⑷ 概率 P{X Y 1};
得
A( B 2 )(C 2 ) 1, A( B )(C ) 0, 2 2 A( B 2 )(C 2 ) 0.
则
A 2 , B , C 2 2 P{ X 3, Y 4} F (3, 4)
pij P{( X , Y ) (i, j )} P{( X i) (Y j )}
独立性
i 3
P{ X i} P{Y j}
i 3 i j 3 j 3 j
C 0.6 0.4 C 0.7 0.3
① P{ X Y } P00 P 11 P 22 P 33 ? ② P{ X Y } P 10 P 20 P 21 P 30 P 31 P 32 ? ③ P{ X 1 Y } P01 P 12 P 23 ?
p12 P{ X 1, Y 2}
1 P{ X 1}P{Y 1| X 1} 0 0 4
1 2 1 P{ X 1}P{Y 2 | X 1} 4/ 4 1/ 3 1/12 , p21 2 / 4 1/ 3 1/ 6
2 F ( x, y ) f ( x, y ) ③ 若 f ( x, y ) 在点 ( x, y ) 连续,则有 xy
④ P{( X , Y ) ( x, y)} 0 ,即连续型随机变量在某点的 概率为0。 ⑤ P{( X ,Y ) G} f ( x, y)dxdy , G表示xoy平面上的区域, 落在此区域上的概率相当于以 G为底,以曲面z f ( x, y) 为顶的曲顶柱体体积。
课件3:3.1.1 随机事件的概率
![课件3:3.1.1 随机事件的概率](https://img.taocdn.com/s3/m/5e4b925d974bcf84b9d528ea81c758f5f61f291a.png)
频率
频数
4.概率 (1)定义:对于给定的随机事件 A,如果随着试验次数 的增加,事件 A 发生的频率 fn(A)会稳定在某个常数上, 把这个常数记为 P(A),称它为事件 A 的概__率__. (2)由概率的定义可知,事件 A 的概率可以通过大量 的重复试验后,用频率值估计概率. (3)必然事件的概率为_1_,不可能事件的概率为_0_, 因此概率的取值范围是[_0_,_1_] .
【变式与拓展】 3.某篮球运动员在同一条件下进行投篮练习,结果如下表:
投篮次数 n/次 8 10 15 20 30 40 50 进球次数 m/次 6 8 12 17 25 32 38
(1)填写表中的进球频率; (2)这位运动员投篮一次,进球的概率大约是多少? 解:(1)从左到右依次填:0.75,0.8,0.8,0.85,0.83,0.8,0.76. (2)由于进球频率都在 0.8 左右摆动,故这位运动员投篮一次,进球 的概率约是 0.8.
第三章 概率
3.1 随机事件的概率
3.1.1 随机事件的概率
1.事件的分类 (1)确定事件: ①必然事件:在条件 S 下,_一__定__会__发__生_的事件; ②不可能事件:在条件 S 下,_一__定__不__会__发__生_的事件. 必然事件与不可能事件统称为相对于条件 S 的确定事件. (2)随机事件: 在条件 S 下,_可__能__发__生__也__可__能__不_发__生__的事件. 确定事件和随机事件统称为事件,一般用大写字母 A,B, C…表示.
(B ) A.3 个都是男生
B.至少有 1 个男生
C.3 个都是女生
D.至少有 1 个女生
2.抛掷一枚骰子两次,请就这个试验写出一个随机事件: 两__次__的__点__数__都__是__奇__数__,一个必然事件:_两__次__点__数__之__和__不__小__于__2_, 一个不可能事件:_两__次__点__数__之__差__的__绝__对__值__等__于___6__.
高中化学 人教版选修4 课件:第三章 第一节 第1课时 强弱电解质(36张PPT)
![高中化学 人教版选修4 课件:第三章 第一节 第1课时 强弱电解质(36张PPT)](https://img.taocdn.com/s3/m/23a4f217ff00bed5b9f31d89.png)
5.强、弱电解质在熔融态的导电性: 离子型的强电解质由离子构成,在熔融态时产生自由移 动的离子,可以导电;而共价型的强电解质以及弱电解质 由分子构成,熔融态时仍以分子形式存在,所以不导电。
栏 目 链 接
尝试
应用
1 .下列物质的水溶液能导电,但属于非电解质的是
( ) A.CH3COOH C.NH4HCO3 B.Cl2 D.SO2
栏 目 链 接
尝试
应用 解析:选项中的四种物质的水溶液都能导电,但原因有 所不同。CH3COOH和NH4HCO3均为电解质,水溶液理应 能导电;Cl2和SO2水溶液能导电,是因为它们与水反应的生
成物均为电解质,故溶液也导电(Cl2+H2O
SO2+H2O 为非电解质。 答案:D
HCl+HClO,
H2SO3)。电解质和非电解质都属于化合物,
栏 目 链 接
♨ 特别提示: 1. 强、弱电解质的范围: , 强电解质:强 酸、强碱、绝大多数盐,弱电解质:弱酸、弱碱、水。 2. 强、弱电解质与溶解性的关系: , 电解质的强弱取决 于电解质在水溶液中是否完全电离,与溶解度的大小无关。 一些难溶的电解质,但溶解的部分能全部电离,则仍属强电 解质;如:BaSO4、BaCO3等。
栏 目 链 接
Cl2是单质,它既不是电解质又不是非电解质,因此只有SO2
要点二
强弱电解质电离方程式的书写
电离:电解质在水溶液或熔融状态下离解成自由移动离 子的过程。电离不需要通电,且一般为吸热的。电离方程式 的书写如下: 1.强电解质 完全 电离,符号用“________” ,如 HCl_________________________________________________ === H++Cl- _______________________; CH3COONH4____________________________________ ===CH3COO-+NH ____________________________________; Ba(OH)2_________________________________________ ===Ba2++2OH- _______________________________。
第三章 常用概率分布之正态分布
![第三章 常用概率分布之正态分布](https://img.taocdn.com/s3/m/43688e39af45b307e871971c.png)
图4.13 离均差的绝对值≤1 , 2 和3 的概率值
随机变量x在区间( μ – kσ, μ + kσ )外取值的概率P ( x<μ – kσ ) + P( x>μ + kσ )为两尾概率,记为α P ( x<μ – kσ ) + P( x>μ + kσ )=α P ( x<μ – kσ ) = P( x>μ + kσ )=α/2 两尾分位数Uα
=0.0227
0.020
fN (x)
0.020
fN (x)
0.016
0.016
0.012
0.012
0.008
P( y 40) 0.9773
P( y 26) 0.2119
0.008
0.004
0.004
0.000 10 15 20 25 30 35 40 45
0.000 10 15 20 25 30 35 40 45
第三章
常用概率分布
第一节 事件与概率 第二节 概率分布 第三节 二项式分布 第四节 正态分布 第五节 样本平均数抽样分布与标准误 第六节 t分布,x2分布和F分布
第三章
常用概率分布
第一节 事件与概率 第二节 概率分布 第三节 二项式分布 第四节 正态分布 第五节 样本平均数抽样分布与标准误 第六节 t分布,x2分布和F分布
首先计算:
查附表2,当u=-0.8时,FN(26)=0.2119,说明这 一分布从-∞到26范围内的变量数占全部变量数的 21.19%,或者说,y≤26概率为0.2119. 同理可得: FN(40)=0.9773
所以:P(26<y≤40)=FN(40)-FN(26)=0.9773-0.2119
大学概率论第三章----随机向量
![大学概率论第三章----随机向量](https://img.taocdn.com/s3/m/b37df6604b73f242336c5f4c.png)
大学概率论第三章----随机向量第三章 随机向量第一节 二维随机向量及其分布1、二维随机向量及其分布函数定义1:设E 是一个随机试验,它的样本空间是{}e Ω=.设X(e)与Y(e)是定义在同一样本空间Ω上的两个随机变量,则称(X(e),Y(e))为Ω上的二维随机向量或二维随机变量。
简记为(X,Y).定义2:设(X,Y)是二维随机向量,对于任意实数x,y ,称二元函数 F(x,y)=P{X ≦x ,Y ≦y}为二维随机向量(X,Y)的分布函数或联合分布函数。
(X,Y)的分布函数满足如下基本性质: (1)F(x,y)是变量x,y 的不减函数. (2)0≦F(x,y)≦1,(,)0y F y -∞=对于任意的 ,(,)0x F x -∞=对于任意的(,)0(,)1F F -∞-∞=+∞+∞=,(3)(,), (,)(0,)(,)(,0)F x y x y F x y F x y F x y F x y =+=+关于是右连续的,即, 1122121222211211(4)(,)(,),, (,)(,)(,)(,)0x y x y x x y y F x y F x y F x y F x y <<--+≥对于任意和,有2、二维离散型随机变量定义3:若二维随机向量(X,Y)的所有可能取值是有限对或无限可列多对,则称(X,Y) 为二维离散型随机向量。
设(X,Y)的一切可能值为(,) , ,1,2,i j X Y i j =L ,且(X,Y)取各对可能值的概率为,(,), ,1,2,i j i j P X Y P i j ==L(1) 非负性:,0, ,1,2,i j P i j ≥=L ;,(2)1ij i jp =∑规范性:, (,){,}i i ijx x y yX Y F x y P X x Y Y p ≤≤=≤≤=∑∑离散型随机变量的联合分布函数为定义4:{,}(,1,2,...)(,)ij P X x Y Y p i j X Y X Y ≤≤==称为二维离散型随机变量的概率分布或分布律,或随机变量和的联合分布律。
第三章 概率分布
![第三章 概率分布](https://img.taocdn.com/s3/m/e2ad3ec959eef8c75ebfb3a6.png)
f(0)
0.0039
0.0039
f(1)
0.0469
0.0508
f(2)
0.2109
0.2617
f(3)
0.4219
0.6836
f(4) 总和
0.3164 1.0000
1.0000
NP(x) 0.39 4.69 21.09 42.19 31.64 100.00
精品课件
例2:某批鸡种蛋的孵化率是0.90,今从该 批种蛋中每次任选5个进行孵化,试求孵出 小鸡的各种可能概率。
(2)当p值趋于0.5时,分布趋于对称。
精品课件
图4—9 n值不同的二项分布比较
图4—10 p值不同的二项分布比 较
精品课件
2、二项分布的参数 • 总体平均数(次数):
μx=np • 总体标准差(次数):
σx= npq
如例1,n=4, p=0.75,可求红花出现的株数为 4×0.75=3株,σ=(4×0.75×0.25)1/2=0.866株
在一般情况下,随机事件的概率p是不可能准确 得到的。通常以试验次数n充分大时随机事件A的 频率作为该随机事件概率的近似值。
即
P(A)=p≈m/n (n充分大)
精品课件
概率有如下基本性质:
1、对于任何事件A,有0≤P(A)≤1; 2、必然事件的概率为1,即P(U)=1; 3、不可能事件的概率为0,即P(V)=0。
精品课件
三、概率计算
(一)事件的相互关系 1、和事件
事件A和事件B至少有一件发生而构成的新 事件称为事件A和事件B的和事件,以A+ B表示。 2、积事件 事件A和事件B同时发生,以A·B表示
精品课件
3、互斥事件 事件A和事件B不能同时发生,A·B=V 如新生儿男为A,女为B
随机事件的概率教学反思及说课稿
![随机事件的概率教学反思及说课稿](https://img.taocdn.com/s3/m/0fb75b5af01dc281e53af07f.png)
《3.1.1随机事件的概率》说课稿梁潇一、教材的地位和作用“随机事件的概率”是人教A版《数学必修3》第三章第一节的内容,本节课是其中的第一课时.课程标准要求:“在具体情境中,了解随机事件发生的不确定性和频率的稳定性,进一步了解概率的意义以及频率与概率的区别”.并指出:“概率教学的核心问题是让学生了解随机现象与概率的意义”.要求“教师应通过日常生活中的大量实例,鼓励学生动手试验,正确理解随机事件发生的不确定性及其频率的稳定性,并尝试澄清日常生活遇到的一些错误认识.”本节课“随机事件的概率”主要研究事件的分类,概率的意义,概率的定义及统计算法。
现实生活中存在大量不确定事件,而概率正是研究不确定事件的一门学科。
作为“概率统计”这个学习领域中的第一节课它在人们的生活和生产建设中有着广泛的应用,它以初中概率学为基础,又为选修2-3重新进行了知识建构,所以它在教材中处于非常重要的位置。
二、教学目标1、教学目标:(1)知识目标:使学生了解必然事件,不可能事件,随机事件的概念;理解频率和概率的含义和两者的区别和联系.(2)能力目标:培养学生观察和思考问题的能力,提高综合运用知识的能力和分析解决问题的能力.(3)德育目标:结合随机事件的发生既有随机性,又存在着统计规律性,了解偶然性寓于必然性之中的辨证唯物主义思想.(4)情感目标:通过师生、生生的合作学习,培养学生团结协作的精神和主动与他人合作交流的意识.同时,概率的定义与性质是学生学习概率的基石,其中也蕴含了重要的数学思想,因此,我确定重点、难点和教学方法如下:2、教学重点:①事件的分类;②概率的统计定义;③概率的性质.3、教学难点:随机事件的发生所呈现的规律性.4、教学方法:以多媒体教学课件为教学辅助.三、学情分析学生在初中阶段学习了概率初步,对频率与概率的关联有一定的认识,有阅读、观察的基础,具备一定的合作交流,自主探究能力。
但学生的表达能力、归纳能力相对较弱,教学过程中要不断增强学生学习的兴趣,让学生主动发掘本节课的重点。
第三章 概率分布
![第三章 概率分布](https://img.taocdn.com/s3/m/49192953783e0912a2162a62.png)
第二节 概率分布
概率:一次试验某一个结果发生的可能性大小 概率分布:试验的全部可能结果及各种可能结果发生 的概率
一、随机变量 随机试验的所有可能结果中,若对于每一种可能结果 都有唯一的实数x与之对应,则称x为随机试验的随 机变量。
【例4.3】 对100头病畜用某种药物进行治疗,其可能 结果是“0头治愈”、 “1头治愈”、“2头治愈”、 “…”、“100头治愈”。若用x表示治愈头数,则x的 取值为0、1、2、…、100。
【例4.4】 孵化一枚种蛋可能结果只有两种,即“ 孵出小鸡”与“未孵出小鸡”。 若用变量x表示试验 的两种结果,则可令x=0表示“未孵出小鸡”,x=1表 示“孵出小鸡”。
【例4.5】 测定某品种猪初生重,表示测定结果的 变量x所取的值为一个特定范围(a,b),如0.5―1.5kg,x 值可以是这个范围内的任何实数。
但在相同条件下进行大量重复试验时,其试验结
果却呈现出某种固有的特定的规律性——频率的稳定
性,通常称之为随机现象的统计规律性
概率
论与数理统计
(二)随机试验与随机事件
1、随机试验 通常我们把根据某一研究目的 ,在一定条件下对 自然现象所进行的观察或试验统称为随机试验。
随机试验满足下述三个特性
(1)可重复性:试验可以在相同条件下多次重复进行; (2)结果多样性:每次试验的可能结果不止一个,并且事先 知道会有哪些可能的结果; (3)未知性:每次试验总是恰好出现这些可能结果中的一个, 但在一次试验之前却不能肯定这次试验会出现哪一个结果。
一类随机现象或不确定性现象:事前不可预言其 结果的,即在保持条件不变的情况下,重复进行观察, 其结果未必相同。即在个别试验中其结果呈现偶然性、 不确定性现象。例
随机现象特点:
2019-2020学年数学必修三北师大版课时跟踪检测:第3章 概率 §1 1.1 1.2 Word版含解析
![2019-2020学年数学必修三北师大版课时跟踪检测:第3章 概率 §1 1.1 1.2 Word版含解析](https://img.taocdn.com/s3/m/06a138a1a5e9856a57126021.png)
第三章§11.1频率与概率1.2生活中的概率课时跟踪检测一、选择题1.下列事件:①某路口单位时间内通过“红旗”牌轿车的车辆数;②n边形内角和为(n-2)×180°;③某同学竞选学生会主席的成功性;④一名篮球运动员,每场比赛所得分数.其中是随机事件的是()A.①②③④B.①②③C.①③④D.②③④解析:②是必然事件,故选C.答案:C2.下列说法正确的是()①频数和频率都能反映一个对象在试验总次数中出现的频繁程度;②每个试验结果出现的频数之和等于试验的样本总数;③每个试验结果出现的频率之和不一定等于1;④概率就是频率.A.①B.①②④C.①②D.③④解析:频数指事件发生的次数;频率指在本次试验中该事件发生的次数与试验次数的比值;而概率是大量重复试验后频率的稳定值,因此①②正确,③④不正确.答案:C3.在5张不同的彩票中有2张奖票,5个人依次从中各抽取1张,则每个人抽到奖票的概率()A.递减B.递增C.相等D.不确定解析:每个人抽得奖票的概率为25,与抽取顺序无关.答案:C4.下列说法正确的是()A.在2016年出生的367人中,没有两人生日为同一天B.一位同学做抛硬币试验,掷了10次,一定有5次“反面朝上”C.某地发行福利彩票,其回报率为45%,某人花了100元买该福利彩票,就有45元的回报D.某运动员投篮命中的概率为70%,但他投篮10次并不一定命中7次解析:由367人中至少有2人生日相同可知,A错误;概率一定的事件在具体的试验中具有偶然性,B、C错误.故选D.答案:D5.给出下列四个命题:①设有一批产品,其次品率为0.05,则从中任取200件,必有10件是次品;②做100次抛硬币的试验,结果51次出现正面,因此,出现正面的概率是mn=51100;③随机事件发生的频率就是这个随机事件发生的概率;④抛掷骰子100次,得点数1的结果是18次,则出现1点的频率是9 50.其中正确命题的个数为()A.1 B.2C.3 D.4解析:对于①,由于次品率为0.05,故从中任取200件,可能会有10件次品,故①不正确;对于②,做100次抛硬币的试验,51次出现正面,故出现正面的频率为51100,而概率不一定是51100,故②不正确;③显然不正确;④显然正确,故正确命题的个数为1个.答案:A6.全国高考数学试题中,共有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是14,某家长说:“要是都不会做,每题都随机选择其一个选项,则一定有3题答对.”这句话()A.正确B.错误C.不一定D.无法解释解析:把解答一个选择题作为一次试验,答对的概率是14,说明做对的可能性大小是14.做12道选择题,即进行了12次试验,每个结果都是随机的,那么答对3题的可能性较大,但是并不一定答对3道.也可能都选错,或仅有1,2,4,…题,甚至12个题都选择正确.答案:B二、填空题7.一个三位数字的密码锁,每位上的数字都可在0到9这十个数字中任选,某人忘记了密码最后一个号码,那么此人开锁时,在对好前两位数字后,随意拨动最后一个数字恰好能开锁的概率为________.解析:最后一个号码是0到9中的任意一个,可打开锁的只有一个,所以恰好能开锁的概率为110=0.1.答案:0.18.如果袋中装有数量差别很大而大小相同的白球和黑球(只是颜色不同),从中任取一球,取了10次有9个白球,估计袋中数量最多的是________.解析:取了10次有9个白球,则取出白球的频率是910,估计其概率约是910,取出黑球的概率约是110,那么取出白球的概率大于取出黑球的概率.所以估计袋中数量最多的是白球.答案:白球9.(2019·全国卷Ⅱ)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为________.解析:由题意得,经停该站高铁列车所有车次的平均正点率的估计值为10×0.97+20×0.98+10×0.9910+20+10=0.98.答案:0.98三、解答题10.在生产过程中,测得纤维产品的纤度(表示纤维粗细的一种量)共有100个数据,将数据分组如下表:解:纤度落在[1.38,1.50)中的频数是30+29+10=69,则纤度落在[1.38,1.50)中的频率是69100=0.69,所以估计纤度落在[1.38,1.50)中的概率为0.69. 纤度小于1.42的频数是4+25+30=59,则纤度小于1.42的频率是59100=0.59,所以估计纤度小于1.42的概率为0.59.11.在“六一”儿童节来临之际,某妇女儿童用品商场为吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满100元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得80元、50元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可直接获得15元的购物券.转转盘和直接获得购物券,你认为哪种方式对顾客更合算,请说明理由.解:由题意可得转转盘所获得的购物券为80×120+50×320+20×520=16.5(元),因为16.5元>15元,所以选择转转盘对顾客更合算.12.在调查运动员服用兴奋剂的时候,给出两个问题作答,无关紧要的问题:“你的身份证号码的尾数是奇数吗?”敏感的问题是:“你服用过兴奋剂吗?”然后要求被调查的运动员掷一枚硬币,如果出现正面,就回答第一个问题,否则回答第二个问题.由于回答哪一个问题只有被测者知道,所以应答者一般乐意如实地回答问题.如果我们把这种方法用于300个被调查的运动员,得到80个“是”的回答,试估计他们中服用过兴奋剂的百分率.解:因为掷硬币出现正面向上的概率是12,大约有150人回答了第一个问题,又身份证号码尾数是奇数或偶数的可能性是相同的,因而在回答第一个问题的150人中大约有一半,即75人回答了“是”,所以有5个回答“是”的人服用过兴奋剂.因此我们估计他们中大约有3.33%的人服用过兴奋剂.13.某中学高一年级有12个班,要从中选2个班代表学校参加某项活动,由于某种原因,1班必须参加.另外再从2至12班中选1个班,有人提议用如下的方法:掷两个骰子,得到的点数和是几就选几班,你认为这种方法公平吗?解:掷两颗骰子,每颗骰子下落时得到的点数有6种结果,故基本事件数为n=6×6=36.从下表中可以看出掷两颗骰子得到的点数和是2,3,4,5,6,7,8,9,10,11,12的情况分别有1种,2种,3种,4种,5种,6种,5种,4种,3种,2种,1种.1点2点3点4点5点6点1点234567 2点345678P(点数和是2)=P(点数和是12)=1 36,P(点数和是3)=P(点数和是11)=236=118,P(点数和是4)=P(点数和是10)=336=112,P(点数和是5)=P(点数和是9)=436=19,P(点数和是6)=P(点数和是8)=5 36,P(点数和是7)=636=16.∴当两个骰子的点数和是7时的概率最大,其值为1 6.由以上分析知,掷两颗骰子得到的点数和是几就选几班,这种方法不公平.若按这种选法,显然7班被选中的机会最大,2班和12班被选中的机会最小.。
第三章 概率与概率分布 华中农业大学生物统计学讲义
![第三章 概率与概率分布 华中农业大学生物统计学讲义](https://img.taocdn.com/s3/m/25a76b55e87101f69f319530.png)
该试验样本空间由10个等可能的基本事件构成,即n=10,而事 件A所包含的基本事件有3个,即抽得编号为1、2、3中的任何一 个,事件A便发生。
P(A)=3/10=0.3
P(B)=5/10=0.5
12 3 4 5
6
7
8 9 10
一、概率基本概念
A=“一次取一个球,取得红球的概率”
10个球中取一个球,其可能结果有10个基本事件(即每个球 被取到的可能性是相等的),即n=10 事件A:取得红球,则A事件包含3个基本事件,即m=3
P(A)=3/10=0.3
12 3 4 5
6
7
8
9 10
一、概率基本概念
B= “一次取5个球,其中有2个红球的概率” 10个球中任意取5个,其可能结果有C105个基本事件,即n= C105 事件B =5个球中有2个红球,则B包含的基本事件数m= C32 C73
P(B) = C32 C73 / C105 = 0.417
2、在一定条件下可能发生也可能不 发生。
(二)频率(frequency)
一、概率基本概念
若在相同的条件下,进行了n次试验,在这n 次试验中,事件A出现的次数m称为事件A出现的 频数,比值m/n称为事件A出现的频率(frequency), 记为W(A)=m/n。
0≤W(A) ≤1
例:
一、概率基本概念
设样本空间有n个等可能的基本事件所构成,其中事件A包 含有m个基本事件,则事件A的概率为m/n,即P(A)=m/n。
古典概率(classical probability) 先验概率(prior probability)
一、概率基本概念
1 2 3 4 5 6 7 8 9 10
随机抽取一个球,求下列事件的概率; (1)事件A=抽得一个编号< 4 (2)事件B =抽得一个编号是2的倍数
3.1.1 用树状图或表格求概率 教案 北师大版数学
![3.1.1 用树状图或表格求概率 教案 北师大版数学](https://img.taocdn.com/s3/m/08d3525f53d380eb6294dd88d0d233d4b04e3f57.png)
3.1.1 用树状图或表格求概率教案
一枚硬币时出现“正面朝上”和“反面朝上”的概率相同;无论掷第一枚硬币出现怎样的结果,掷第二枚硬币时出现“正面朝上”和“反面朝上”的概率都是相同的.
指出:我们通常利用树状图或表格列出所有可能出现的结果.
现在再来解决刚开始的问题:做一做:小明、小凡和小颖都想去看周末电影,但只有一张电影票.三人决定一起做连续抛掷两枚均匀的硬币游戏,谁获胜谁就去看电影.
小明:两枚正面朝上,我获胜
小颖:两枚反面朝上,我获胜
小凡:一枚正面朝上、一枚反面朝上,我获胜
你认为这个游戏公平吗?
解:连续掷两枚均匀的硬币总共有4种结果,每种结果出现的可能性相同.其中:
小明获胜的结果有1种:(正,正),所以小明获胜的概率
是1 4;
小颖获胜的结果有1种:(反,反),所以小颖获胜的概率
也是1 4;
小凡获胜的结果有2种:(正,反)(反,正),所以小凡获
胜的概率是21 42
;
因此,这个游戏对三人是不公平的.
归纳:利用树状图或表格,我们可以不重复、不遗漏地列出所有可能的结果,从而比较方便地求出某些事件发生的概率.
一只箱子里面有3个球,其中2个白球,1个红球,他们1.在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸一个球,那么两次都摸到黄球的概率是( )
A. B.
C. D.
2. 一个袋中有2个红球,2个黄球,每个球除颜色外都相同,从中一次摸出2个球,2个球都是红球的可能性( )
A. B.
C.
D.
基础作业
21
41
6121
4161
树状图。