博弈论基础作业及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具体理由自己思考,方法是倒推法。
三、计算题
1.试计算表1中的战略式博弈的重复剔除劣战略均衡。
表1 一个战略式表述博弈
B
L
M
R
A
U
1,2
3,1
2,4
M
5,6
7,1
2,6
D
3,1
2,0
7,8
对B而言,战略M严格劣于R;(因为1<4, 1<6,0<8),因此剔除B的战略M;构成新的博弈如下
B
L
R
A
U
1,2
请用同样的方法分析其他例子。
2.请用博弈论来说明“破釜沉舟”和“穷寇勿追”的道理。
破釜沉舟是一个承诺行动。目的是要断绝自己的退路,让自己无路可退,让自己决一死战变得可以置信。也就是说与敌人对决时,只有决一死战,这样才可以取得胜利。否则,如果不破釜沉舟,那么遇到困难时,就很有可能退却,也就无法取得胜利。穷寇勿追就是要给对方一个退路,由于有退路,对方就不会殊死抵抗。否则,对方退无可退,只有坚决抵抗一条路,因而必然决一死战。自己也会付出更大的代价。
4.五个海盗抢得100颗钻石,他们为分赃发生了争议,最后达成协议,由抓阄确定出分赃顺序,然后按照程序进行分赃。首先由1号海盗提出分赃方案,五人共同举手表决。若赞成的占一半以上(不包括一半的情况),就按1号提出的方案分赃,否则1号将被扔到海里喂鲨鱼。接着由2号提出方案,四人共同举手表决。若赞成的占一半以上(不包括一半的情况),就按2号提出的方案分赃,否则2号将被扔到海里喂鲨鱼,依此类推。如果你是1号海盗,你该提什么样的方案?说明理由。
博弈论基础作业
一、名词解释
纳什均衡 占优战略均衡纯战略混合战略子博弈精炼纳什均衡
贝叶斯纳什均衡 精炼贝叶斯纳什均衡 共同知识
见PPT
二、问答题
1.举出囚徒困境和智猪博弈的现实例子并进行分析。
囚徒困境的例子:军备竞赛;中小学生减负;几个大企业之间的争相杀价等等;
以中小学生减负为例:在当前的高考制度下,给定其他学校对学生进行减负,一个学校最好不减负,因为这样做,可以带来比其他学校更高的升学率。给定其他学校不减负,这个学校的最佳应对也是不减负。否则自己的升学率就比其他学校低。因此,不论其他学校如何选择,这个学校的最佳选择都是不减负。每个学校都这样想,所以每个学校的最佳选择都是不减负,因此学生的负担越来越重。
找两个数字下都划线的,显然有两个纯战略纳什均衡: 和
据Wilson的奇数定理,可能有一个混合战略均衡。
设1选 的概率为 ,那么选D的概率为
设2选 的概率为 ,那么选R的概率为 ,
如果存在混合战略,那么2选战略L和R的期望收益应该应该相等,因此应有
自己求解(2分)
同样,1选战略U和D的期望收益应该应该相等
请用同样的方法分析其他例子。
智猪博弈的例子:大企业开发新产品;小企业模仿;股市中,大户搜集分析信息,散户跟随大户的操作策略
以股市为例:给定散户搜集资料进行分析,大户的最佳选择是跟随。而给定散户跟随,大户的最佳选择是自己搜集资料进行分析。但是不论大户是选择分析还是跟随,散户的最佳选择都是跟随。因此如果大户和散户是聪明的,并且大户知道散户也是聪明的,那么大户就会预见到散户会跟随,而给定散户跟随,大户只有自己分析。
B
R
A
M
2,6
D
7,8
在新的博弈中,对于A而言,战略M严格劣于D(因为2<7),因此剔除A的战略M,构成新的博弈如下:
B
R
A
D
7,8
因此,重复剔除(弱)劣战略均衡为(D,R)
(ps: 如果同学们用划线的方法求纳什均衡,就可以发现纯战略nash均衡有两个:(M,L)和(D,R)但采用剔除弱劣战略的方法,把其中一个纳什均衡剔除掉了)
假设(1)五个强盗都很聪明,而且大家知道大家很聪明,大家知道大家知道大家很聪明,如此等等。
(2)每个海盗都很贪婪,希望获得尽可能多的钻石,但是又不想为了钻石丢掉性命。
(3)给定一个方案,只有该方案大于他的备选方案所获的钻石时,海盗才选择赞成。
第一个海盗的提议应该是:五个海盗分别获得的钻石数目为97,0,1,0,2,或者97,0,1,2,0。
3.当求职者向企业声明自己能力强时,企业未必相信。但如果求职者拿出自己的各种获奖证书时,却能在一定程度上传递自己能力强的信息。这是为什么?
由于口头声明几乎没有成本,因此即便是能力差的求职者也会向企业声明自己能力强。当然能力强的人也会声明自己的能力强。也就是说不同类型的求职者为了赢得职位会做出同样的声明。这样口头声明就不能有效的传递信息,因此企业不会轻易相信。而求职者拿出获奖证书就成了一个信号博弈。由于获得证书是要付出代价的,但代价却引人而异。能力强的个人可以相对轻易获得证书,而能力弱的个人却很难获得证书,以至于能力弱的人认为化巨大的代价获得证书,从而获得企业的职位是不划算的,因此干脆就不要获奖证书。因此获奖证书就成为个人能力的信号。
得混合均衡:?
3.市场里有两个企业1和2。每个企业的成本都为0。市场的逆需求函数为P=16-Q。其中P是市场价格,Q为市场总产量。
(1)求古诺(Cournot)均衡产量和利润。
(2)求斯坦克尔伯格(Stackelberg)均衡产量和利润。
(1)设两个企业的产量分别为 , ,有 ,因此利润函数分别为:
利润最大化的一阶条件分别为:
因此企业1和企业2的反应函数分别为:
联立,得到 。自己求解
(2)设企业1先行,企业2跟进。两个企业的产量分别为 , ,因此利润函数分别为:
由逆向归纳法,在第二阶段,企业2在已知企业1的产量的情况下,最优化自己的产量,从而得到企业2的反应函数:
2,4
M
5,6
2,6
D
3,1
7,8
在新的博弈中,
对于A而言,战略U严格劣于D(因为1<3,2<7),因此剔除A的战略U,构成新的博弈如下:
B
L
R
A
M
5,6
2,6
D
3,1
7,8
对于新的博弈中,已经没有严格的劣战略,因此没有严格的劣战略可以剔除。所以该博弈不是重复剔除严格劣战略可解的。
但是存在弱劣战略。对于B而言,战略L弱劣于R(因为6=6,1<8),因此剔除B的弱劣战略L,构成新的博弈如下:
2.试给出下述战略式表述博弈的所有纳什均衡。
LΒιβλιοθήκη Baidu
1
2,2
3,3
4,4
1,2
给定1选择U,2的最佳选择是R(因为2<3),在相应位置划线
给定1选择D,2的最佳选择是L(因为4>2),在相应位置划线
给定2选择L,1的最佳选择是D(理由自己写),在相应位置划线
给定2选择R,1的最佳选择是U(理由自己写),在相应位置划线
相关文档
最新文档