博弈论基础作业及答案

合集下载

微观经济学原理(博弈论)习题与答案

微观经济学原理(博弈论)习题与答案

一、单选题1、现代博弈论的提出人是()A.冯·诺依曼和摩根斯坦B.李嘉图C.萨谬尔森D.亚当·斯密正确答案:A2、在博弈论中()A. 合作博弈就是串谋。

B.占优策略总是存在的。

C.以上都正确。

D.纳什均衡是博弈的一种结果。

正确答案:D3、博弈论中的占优策略是()A.A和C都正确B.为两家博弈参与方带来最佳可能结果的策略。

C.肯定不会成为最佳选择的策略。

D.不管博弈对方如何选择,对己方都是最佳选择的策略正确答案:D4、囚犯困境出现合作的情形最有可能出现()A. 寡头垄断行业面临重复博弈情形时B.垄断竞争行业由占主导地位公司主导的情形下C.垄断企业被迫与寡头垄断行业的企业重复竞争情况下D. 寡头垄断行业一次性博弈情形下正确答案:D5、囚徒困境博弈的标准结果是()A.只有一方承认B.结果不明确C.双方都承认D.双方都不承认正确答案:C6、在一个序贯博弈中,()A.跟随者比先行者有优势B.先行者比跟随者有优势。

C.果存在纳什均衡,先行者有优势D.根据情形不同,先行者和跟随者都有各自的优势正确答案:D7、在博弈论中,()A.合作战略在一次性博弈中比重复博弈更有可能B.合作策略在一次性博弈和重博弈中都有同样可能C.合作策略在重复博弈中比单次博弈更有可能D.我们并不知道合作策略在一次性博弈中是否比重复博弈中更有可能。

正确答案:C8、根据博弈论,在寡头垄断市场博弈中,合作可在()情况下实现。

A.市场中至少有一家公司决定不欺骗。

B. 市场中的部分公司决定不欺骗。

C.市场上的所有公司决定不欺骗。

D.市场中的大多数公司决定不欺骗。

正确答案:C9、A公司与B公司是生产相同产品的两家企业,每家企业要决定产量水平。

矩阵表1给出了两家公司选择高产量与低产量博弈后的利润情形,单位为千万元。

A公司是否有占优策略?如果有,是什么?表1 A、B公司的博弈矩阵A.没有, A公司没有占优策略。

B.有, A公司占优策略应该是低产量C.有, A公司占优策略是与B公司串谋D. 有, A公司占优策略应该是高产量正确答案:B10、A公司与B公司是生产相同产品的两家企业,每家企业要决定产量水平。

博弈论基础吉本斯课后答案

博弈论基础吉本斯课后答案

博弈论基础吉本斯课后答案
一、原题
1. 什么是博弈论?
答:博弈论是一门研究决策者之间的竞争性行为的学科,它研究的是如何在竞争性环境中获得最佳结果。

它涉及到决策者之间的博弈,以及如何利用策略来获得最佳结果。

2. 什么是吉本斯博弈论?
答:吉本斯博弈论是一种研究两个或多个决策者之间的博弈的学科,它研究的是如何在竞争性环境中获得最佳结果。

它是由美国经济学家约翰·吉本斯在20世纪50年代提出的,他提出了一种新的方法来研究博弈,即使用数学模型来分析博弈的结果。

3. 吉本斯博弈论的基本概念是什么?
答:吉本斯博弈论的基本概念是博弈矩阵,它是一个表格,用来描述两个或多个决策者之间的博弈。

它由行和列组成,每一行代表一个决策者,每一列代表另一个决策者,每个单元格中的数字代表每个决策者在每种可能的结果下的收益。

4. 吉本斯博弈论中的均衡点是什么?
答:吉本斯博弈论中的均衡点是指当两个或多个决策者之间的博弈结果达到一种平衡时,每个决策者都不会有更多的收益。

这种平衡可以是一个纳什均衡,也可以是一个非纳什均衡,具体取决于博弈的结构。

【博弈论基础】(吉本斯)课后习题答案

【博弈论基础】(吉本斯)课后习题答案

qm/2 qc q’
π 1 , π1
π3 ,π2 π1 , π 5
π2 ,π3
π 5 , π1 π6 ,π7 π8 ,π8
π4 ,π4
π7 ,π6
其 中 , π 5 = ( a − c) /16 , π 6 = ( a − c) /18 , π 7 = ( a − c) /12 , π 8 = 0 。 此 博 弈 符 合 题
居 中 点 没 有 稳 有 人 会 个 候 选 体 方 法
猪 头 非 整 理 ebwf@
2
Gibbons《 博 弈 论 基 础 》 习 题 解 答 ( CENET)
第 一 章
1.9 略 1.10 按 照 求 解 混 合 战 略 纳 什 均 衡 的 方 法 去 解 这 些 博 弈 , 发 现 不 存 在 混 合 战 略 纳 什 均 衡 , 也 就 证 明 了 。 过 程 略 。 1.11 首 先 重 复 剔 除 严 格 劣 战 略 , 可 得 下 面 的 博 弈 : L T M 2, 0 3, 4 R 4, 2 2, 3
所 以 所 有 的 qi 都 相 等 。 由 此 , 将 Q =
* *
∑q
i
* i
= nqi* 代 入 ( 2) 式 , 可 得 :
qi* = (a − c) /(n + 1) , Q* = n(a − c) /(n + 1) , p* = (a + nc) /(n + 1) 。
当 n 趋 近 于 无 穷 时 , p* 趋 近 于 边 际 成 本 c, 市 场 趋 近 于 完 全 竞 争 市 场 。 1.5 双 方 都 生 产 qm / 2 时 , 每 一 方 的 利 润 都 为 π 1 = ( a − c ) / 8 ; 一 方 生 产 qm / 2 , 另 一 方 生 产 qc

博弈论习题及解答

博弈论习题及解答

※第一章绪论§1.21. 什么是博弈论?博弈有哪些基本表示方法?各种表示法的基本要素是什么?(见教材)2. 分别用规范式和扩展式表示下面的博弈。

两个相互竞争的企业考虑同时推出一种相似的产品。

如果两家企业都推出这种产品,那么他们每家将获得利润400万元;如果只有一家企业推出新产品,那么它将获得利润700万元,没有推出新产品的企业亏损600万元;如果两家企业都不推出该产品,则每家企业获得200万元的利润。

企业B推出不推出企业A推出 (400,400) (700,-600) 不推出(-600,700) (-500,-500)3. 什么是特征函数? (见教材)4. 产生“囚犯困境”的原因是什么?你能否举出现实经济活动中囚徒困境的例子?原因:个体理性与集体理性的矛盾。

例子:厂商之间的价格战,广告竞争等。

※第二章完全信息的静态博弈和纳什均衡1. 什么是纳什均衡? (见教材)2. 剔除以下规范式博弈中的严格劣策略,再求出纯策略纳什均衡。

先剔除甲的严格劣策略3,再剔除乙的严格劣策略2,得如下矩阵博弈。

然后用划线法求出该矩阵博弈的纯策略Nash均衡。

乙甲1 31 2,0 4,22 3,4 2,33. 求出下面博弈的纳什均衡。

乙L R甲U 5,0 0,8 D 2,6 4,5由划线法易知,该矩阵博弈没有纯策略Nash均衡。

由表达式(2.3.13)~(2.3.16)可得如下不等式组Q=a+d-b-c=7,q=d-b=4,R=0+5-8-6=-9,r=-1将这些数据代入(2.3.19)和(2.3.22),可得混合策略Nash均衡((),()) 4. 用图解法求矩阵博弈的解。

解:设局中人1采用混合策略(x,1-x),其中x∈[0,1],于是有:,其中F(x)=min{x+3(1-x),-x+5(1-x),3x-3(1-x)}令z=x+3(1-x),z=-x+5(1-x),z=3x-3(1-x)作出三条直线,如下图,图中粗的折线,就是F(x)的图象由图可知,纳什均衡点与β1无关,所以原问题化为新的2*2矩阵博弈:由公式计算得:。

博弈论习题及解答

博弈论习题及解答

※第一章绪论§1.21. 什么是博弈论?博弈有哪些基本表示方法?各种表示法的基本要素是什么?(见教材)2. 分别用规范式和扩展式表示下面的博弈。

两个相互竞争的企业考虑同时推出一种相似的产品。

如果两家企业都推出这种产品,那么他们每家将获得利润400万元;如果只有一家企业推出新产品,那么它将获得利润700万元,没有推出新产品的企业亏损600万元;如果两家企业都不推出该产品,则每家企业获得200万元的利润。

企业B推出不推出企业A推出 (400,400) (700,-600) 不推出(-600,700) (-500,-500)3. 什么是特征函数? (见教材)4. 产生“囚犯困境”的原因是什么?你能否举出现实经济活动中囚徒困境的例子?原因:个体理性与集体理性的矛盾。

例子:厂商之间的价格战,广告竞争等。

※第二章完全信息的静态博弈和纳什均衡1. 什么是纳什均衡? (见教材)2. 剔除以下规范式博弈中的严格劣策略,再求出纯策略纳什均衡。

先剔除甲的严格劣策略3,再剔除乙的严格劣策略2,得如下矩阵博弈。

然后用划线法求出该矩阵博弈的纯策略Nash均衡。

乙甲1 31 2,0 4,22 3,4 2,33. 求出下面博弈的纳什均衡。

乙L R甲U 5,0 0,8 D 2,6 4,5由划线法易知,该矩阵博弈没有纯策略Nash均衡。

由表达式(2.3.13)~(2.3.16)可得如下不等式组Q=a+d-b-c=7,q=d-b=4,R=0+5-8-6=-9,r=-1将这些数据代入(2.3.19)和(2.3.22),可得混合策略Nash均衡((),()) 4. 用图解法求矩阵博弈的解。

解:设局中人1采用混合策略(x,1-x),其中x∈[0,1],于是有:,其中F(x)=min{x+3(1-x),-x+5(1-x),3x-3(1-x)}令z=x+3(1-x),z=-x+5(1-x),z=3x-3(1-x)作出三条直线,如下图,图中粗的折线,就是F(x)的图象由图可知,纳什均衡点与β1无关,所以原问题化为新的2*2矩阵博弈:由公式计算得:。

博弈论基础作业及答案

博弈论基础作业及答案

博弈论基础作业一、名词解释纳什均衡占优战略均衡纯战略混合战略子博弈精炼纳什均衡贝叶斯纳什均衡精炼贝叶斯纳什均衡共同知识见PPT二、问答题1.举出囚徒困境和智猪博弈的现实例子并进行分析。

囚徒困境的例子:军备竞赛;中小学生减负;几个大企业之间的争相杀价等等;以中小学生减负为例:在当前的高考制度下,给定其他学校对学生进行减负,一个学校最好不减负,因为这样做,可以带来比其他学校更高的升学率。

给定其他学校不减负,这个学校的最佳应对也是不减负。

否则自己的升学率就比其他学校低。

因此,不论其他学校如何选择,这个学校的最佳选择都是不减负。

每个学校都这样想,所以每个学校的最佳选择都是不减负,因此学生的负担越来越重。

请用同样的方法分析其他例子。

智猪博弈的例子:大企业开发新产品;小企业模仿;股市中,大户搜集分析信息,散户跟随大户的操作策略以股市为例:给定散户搜集资料进行分析,大户的最佳选择是跟随。

而给定散户跟随,大户的最佳选择是自己搜集资料进行分析。

但是不论大户是选择分析还是跟随,散户的最佳选择都是跟随。

因此如果大户和散户是聪明的,并且大户知道散户也是聪明的,那么大户就会预见到散户会跟随,而给定散户跟随,大户只有自己分析。

请用同样的方法分析其他例子。

2.请用博弈论来说明“破釜沉舟”和“穷寇勿追”的道理。

破釜沉舟是一个承诺行动。

目的是要断绝自己的退路,让自己无路可退,让自己决一死战变得可以置信。

也就是说与敌人对决时,只有决一死战,这样才可以取得胜利。

否则,如果不破釜沉舟,那么遇到困难时,就很有可能退却,也就无法取得胜利。

穷寇勿追就是要给对方一个退路,由于有退路,对方就不会殊死抵抗。

否则,对方退无可退,只有坚决抵抗一条路,因而必然决一死战。

自己也会付出更大的代价。

3.当求职者向企业声明自己能力强时,企业未必相信。

但如果求职者拿出自己的各种获奖证书时,却能在一定程度上传递自己能力强的信息。

这是为什么?由于口头声明几乎没有成本,因此即便是能力差的求职者也会向企业声明自己能力强。

博弈论十五道题以及答案

博弈论十五道题以及答案

博弈论十五道题以及答案1.博弈理论在哪些方面扩展了传统的新古典经济学?2.法律和信誉是维持市场有序运行的两个基本机制。

请结合重复博弈理论谈谈信誉机制发生作用的几个条件。

3.经济发展史表明,在本来不认识的人之间建立相互之间的信任关系是经济发展的关键。

为什么?4.在传统社会中,即使没有法律,村民之间也可以建立起高度的信任。

请结合博弈理论解释其原因。

5.在旅游地很容易出现假货,而在居民小区的便利店则很少出现假货,请结合博弈论的相关理论进行解释。

6.你如何理解“Credible threats or promises about future behavior can influence current behavior”这句话的?7.有效的法律制度对经济发展具有什么作用?请结合博弈理论谈谈你的理解。

8.试用博弈理论解释家族企业为什么难以实行制度化管理?9.固定资产投资为什么可以作为一种可置信的承诺?10.以汽车保险为例谈谈因为信息不对称所可能产生的道德风险问题,并提出一种解决道德风险的方案。

11.以公司为例,谈谈所有者与经营者的分离可能产生的道德风险问题。

12.在波纳佩岛上,谁能种出特别大的山药,谁的社会地位就高,谁就能赢得人们的尊敬并可担任公共职务。

请结合信号传递模型谈谈波纳佩岛上的这种奇异风俗。

13.一位男生在女朋友过生日时送给女朋友三百元人民币,他的女朋友往往感觉受到了侮辱。

而他女朋友可能会欣然接受父母亲的现金礼物。

请解释其中可能的原因。

14.<圣经>(旧约)中记载了两个母亲争夺一个孩子的故事。

一次,两个女人为争夺一个婴儿争扯到所罗门王殿前,她们都说婴儿是自己的,请所罗门王作主。

所罗门王稍加思考后作出决定:将婴儿一刀劈为两段,两位妇人各得一半。

这时,其中一位妇人立即要求所罗门王将婴儿判给对方,并说婴儿不是自己的,应完整归还给另一位妇人,千万别将婴儿劈成两半。

听罢这位妇人的求诉,所罗门王立即作出最终裁决——婴儿是这位请求不杀婴儿的妇人的,应归于她。

博弈论试题及答案

博弈论试题及答案

博弈论试题及答案【正文】博弈论试题及答案一、选择题1.博弈论是研究:A. 地理分布B. 人类视力C. 决策制定D. 古典文学答案:C2.下列哪个不是博弈论中常见的概念?A. 纳什均衡B. 优势策略C. 输家效应D. 零和博弈答案:C3.描述纳什均衡的最佳方式是:A. 所有参与者都达到最佳策略B. 至少有一个参与者达到最佳策略C. 所有参与者都达到次优策略D. 至少有一个参与者达到次优策略答案:A4.下列哪个案例体现了零和博弈的情况?A. 两国签订贸易协定B. 赌徒在赌博中争夺赌注C. 两家公司合作推出新产品D. 好友一起玩棋盘游戏答案:B5.下列哪个不是博弈论的应用之一?A. 经济决策B. 政治博弈C. 生物进化D. 音乐创作答案:D二、填空题1.博弈论最早由_____________等人于20世纪40年代提出。

答案:冯·诺依曼(John von Neumann)2.博弈论是研究参与者间的_____________和_____________的学科。

答案:互动行为;决策制定3.零和博弈是指参与者的利益总和恒为_____________。

答案:零4.博弈论中的最佳策略指的是在其他参与者采取某个策略时,使某一参与者的_____________最大化的策略。

答案:利益5.斯坦福大学的_____________教授以其对博弈论的突出贡献而获得2005年诺贝尔经济学奖。

答案:约翰·纳什(John Nash)三、简答题1.简要解释博弈论中的纳什均衡。

答:纳什均衡是博弈论中的一个重要概念,指的是在参与者选择自己最佳策略的情况下,不存在任何一个参与者可以通过单独改变自己的策略来获得更好收益的状态。

简言之,纳什均衡是一种理性选择下的稳定状态。

2.举例说明博弈论在实际生活中的应用。

答:博弈论在经济学、政治学、生物学等领域中都有广泛应用。

例如,在贸易谈判中,两个国家之间的博弈就是典型的博弈论应用。

博弈论基础作业及答案

博弈论基础作业及答案

博弈论基础作业一、名词解释纳什均衡占优战略均衡纯战略混合战略子博弈精炼纳什均衡贝叶斯纳什均衡精炼贝叶斯纳什均衡共同知识见PPT二、问答题1.举出囚徒困境和智猪博弈的现实例子并进行分析。

囚徒困境的例子:军备竞赛;中小学生减负;几个大企业之间的争相杀价等等;以中小学生减负为例:在当前的高考制度下,给定其他学校对学生进行减负,一个学校最好不减负,因为这样做,可以带来比其他学校更高的升学率。

给定其他学校不减负,这个学校的最佳应对也是不减负。

否则自己的升学率就比其他学校低。

因此,不论其他学校如何选择,这个学校的最佳选择都是不减负。

每个学校都这样想,所以每个学校的最佳选择都是不减负,因此学生的负担越来越重。

请用同样的方法分析其他例子。

智猪博弈的例子:大企业开发新产品;小企业模仿;股市中,大户搜集分析信息,散户跟随大户的操作策略以股市为例:给定散户搜集资料进行分析,大户的最佳选择是跟随。

而给定散户跟随,大户的最佳选择是自己搜集资料进行分析。

但是不论大户是选择分析还是跟随,散户的最佳选择都是跟随。

因此如果大户和散户是聪明的,并且大户知道散户也是聪明的,那么大户就会预见到散户会跟随,而给定散户跟随,大户只有自己分析。

请用同样的方法分析其他例子。

2.请用博弈论来说明“破釜沉舟”和“穷寇勿追”的道理。

破釜沉舟是一个承诺行动。

目的是要断绝自己的退路,让自己无路可退,让自己决一死战变得可以置信。

也就是说与敌人对决时,只有决一死战,这样才可以取得胜利。

否则,如果不破釜沉舟,那么遇到困难时,就很有可能退却,也就无法取得胜利。

穷寇勿追就是要给对方一个退路,由于有退路,对方就不会殊死抵抗。

否则,对方退无可退,只有坚决抵抗一条路,因而必然决一死战。

自己也会付出更大的代价。

3.当求职者向企业声明自己能力强时,企业未必相信。

但如果求职者拿出自己的各种获奖证书时,却能在一定程度上传递自己能力强的信息。

这是为什么?由于口头声明几乎没有成本,因此即便是能力差的求职者也会向企业声明自己能力强。

博弈论考试题及答案

博弈论考试题及答案

博弈论考试题及答案一、选择题(每题2分,共20分)1. 博弈论中的“囚徒困境”是指什么?A. 两个囚犯相互合作B. 两个囚犯相互背叛C. 两个囚犯中一个合作一个背叛D. 两个囚犯相互猜疑答案:B2. 以下哪个不是博弈论中的基本概念?A. 策略B. 收益C. 公平D. 纳什均衡答案:C3. 在零和博弈中,一个玩家的损失等于另一个玩家的收益,这意味着:A. 总收益为零B. 总收益为正C. 总收益为负D. 总收益不确定答案:A4. 博弈论中的“混合策略”是指:A. 玩家随机选择策略B. 玩家固定选择一种策略C. 玩家根据对手的策略选择策略D. 玩家不使用策略答案:A5. 以下哪个是博弈论中的“完全信息”博弈?A. 拍卖博弈B. 石头剪刀布C. 桥牌D. 信息不对称博弈答案:C6. 博弈论中的“重复博弈”指的是:A. 博弈只进行一次B. 博弈进行多次C. 博弈进行无限次D. 博弈进行有限次但次数未知答案:B7. 以下哪个是博弈论中的“动态博弈”?A. 零和博弈B. 非零和博弈C. 同时博弈D. 顺序博弈答案:D8. 在博弈论中,如果一个策略组合是纳什均衡,那么:A. 每个玩家都有动机单方面改变策略B. 每个玩家都满足于当前策略C. 至少有一个玩家不满意当前策略D. 所有玩家都不满意当前策略答案:B9. 博弈论中的“合作博弈”是指:A. 玩家之间可以形成联盟B. 玩家之间不能形成联盟C. 玩家之间只能通过竞争来获得收益D. 玩家之间只能通过合作来获得收益答案:A10. 以下哪个是博弈论中的“公共知识”?A. 每个玩家的收益函数B. 每个玩家的策略选择C. 每个玩家的偏好D. 每个玩家的个人信息答案:A二、简答题(每题10分,共30分)1. 简述博弈论中的“纳什均衡”概念。

答案:纳什均衡是指在一个博弈中,每个玩家都选择了自己的最优策略,并且没有玩家能够通过单方面改变策略来提高自己的收益。

在纳什均衡状态下,每个玩家的策略是对其他玩家策略的最优反应。

吉本斯《博弈论基础》课后习题答案

吉本斯《博弈论基础》课后习题答案
{ } ((2w1 − w2 ) /(w1 + w2 ), (2w2 − w1) /(w1 + w2 )) ,((2w1 − w2 ) /(w1 + w2 ), (2w2 − w1) /(w1 + w2 ))
1.14
证 明 : 在 混 合 战 略 纳 什 均 衡 中 , 参 与 人 i 的 混 合 战 略 为 pi* , 其 中 选 择 第 j 个 纯 战 略 sij 的 概
1.4 对 于 第 i个 厂 商 , 其 目 标 为 最 大 化 自 己 的 利 润 , 即 :
max πi
=
max( p qi ≥0
− c)qi
=
max qi ≥0
(
a

qi

q−*i
− c)qi

由 一 阶 条 件 ∂π i / ∂qi = 0 , 可 得 : qi* = (a − q−*i − c) / 2 … … ( 1)
率 为 pi*j 。 用 反 证 法 证 明 。
假 设 pi*j > 0 , 且 sij 是 第 一 个 被 重 复 剔 除 劣 战 略 所 剔 除 的 战 略 。 那 么 参 与 人 i 必 定 存 在 另 一
个 纯 战 略 Sik, 使 得 ui (sij , p−i ) < ui (sik , p−i ) , p−i 是 其 他 参 与 人 任 意 的 战 略 组 合 。 因 为 sij 第
经济学家-
经济学家-
Gibbons《博弈论基础》第二章习题解答(部分)
2.1 采用逆向归纳法,先最大化家长的收益:给定孩子的行动 A,来选择自己的行动 B,
MaxV B
(I
p

博弈论练习题及答案

博弈论练习题及答案

博弈论练习题(一)一、下面哪些问题适用博弈来模型化∶1、石油输出国组织(OPEC)成员国选择其年产量;2、通用汽车公司向USX购买钢材;3、两厂商,一家制造螺钉,一家制造螺帽,是用公制还是英制;4、公司董事会为其总经理(CEO)设立一项期股安排;5、联合果品公司决定招募工人;6、一电力公司估计了未来10年对电力的需求后,决定是否购置一套新的发电机组。

问题1和3可以用博弈来模型化二、博弈论与经济学的关系是什么?经济学的变化趋势是什么?答:(1)博弈论与经济学的关系:1、博弈论在经济学中的应用最广泛、最成功。

2、经济学家对博弈论的贡献越来越大。

3、经济学和博弈论研究的模式是一样的。

经济学和博弈论都强调个人理性,即在给定的约束条件下追求效用最大化。

(2)经济学发展的几个趋势博弈论成为主流经济学的基石,反映了经济学发展的几个趋势∶1、经济学研究的对象越来越转向个体。

2、经济学越来越转向人与人关系的研究,特别是人与人之间行为的相互影响及作用,人们之间利益的一致与冲突,竞争与合作的研究。

3、经济学越来越重视对信息的研究,特别是信息不对称对个人选择及制度安排的影响。

三、博弈论的构成要素有哪些?答:广义上讲博弈论则主要由以下五大要素构成:一,决策主体(Player):又称局中人或博弈方,指的是博弈中能独立决策、独立行动并承担决策结果的个人或组织。

二,策略空间(Strategy space):又称策略集,是指供参与者选择的策略和行动空间。

三,效用(Utility):也就是博弈者之间相互争夺的利益。

博弈双方或多方都是围绕一定利益展开的,因此博弈胜负的评判结果主要是靠策略选择后的得失来衡量。

四,次序(Orders):即各博弈方在决策时有先后之分,因为博弈方在决策选择上要不时地调整改善,一定要十分注重次序轻重的问题。

如果决策的次序和实施时间不同,则博弈的结果必会有所差别。

五,博弈均衡:博弈虽然是为了利益和胜利,但并非是利益尽占,而是要遵循均衡理论。

博弈论习题及其解答

博弈论习题及其解答
第三章 多元线性回归模型
一、经典多元线性回归模型
1、多元线性回归模型的一般形式
Yi = b0 + b1 X 1i + b2 X 2i + L bk X ki + U i i = 1, 2,L n
k个解释变量,n期观测值,矩阵形式为:
Y = Xb + U
其中:
Y1 1 X11 L Xk1 U1 b0 1 X12 L Xk 2 Y2 U2 b Y = X = U = b= 1 M M M M M M Y 1 X L X U b 1n kn n n k
该方程组可以写成矩阵形式如下:
X ' X b = X 'Y

求解该方程组得到:
b =

(X
'X
)
1
X 'Y
矩阵微分法
∧ ' Q = ∑e = ∑Yi Yi = ee = Y X b Y X b 2 i ∧ 2 ∧ '
= Y Y Y X b b X Y + b X X b = Y Y 2Y X b+ b X X b
= nσ u2 ( k + 1) σ u2 = ( n k 1) σ u2
所以,U的方差的无偏估计量为:
σ
∧ 2 U
e 'e = n k 1
五、拟合优度检验
1、可决系数的调整
R2 = ESS b' X ' X b n Y = 2 TSS Y 'Y n Y
2 2


2
∧ ∧ ∧ ∧ ∧ ∧ ∧ Y Y = Y 2Y Y + nY = Y 'Y nY = b' X ' X b nY ∑ i ∑ i ∑i 2 ∑Y i Y = ∑Yi 2Y ∑Y i + nY = Y 'Y nY 2 2 2

“博弈论”习题及参考答案

“博弈论”习题及参考答案

《博弈论》习题一、单项选择题1.博弈论中,局中人从一个博弈中得到的结果常被称为( )。

A.效用B.支付C.决策 D.利润2.博弈中通常包括下面的内容,除了( )。

A.局中人 B.占优战略均衡C.策略D.支付3.在具有占优战略均衡的囚徒困境博弈中( )。

A.只有一个囚徒会坦白B.两个囚徒都没有坦白C.两个囚徒都会坦白D.任何坦白都被法庭否决了4.在多次重复的双头博弈中,每一个博弈者努力( )。

A.使行业的总利润达到最大 B.使另一个博弈者的利润最小C.使其市场份额最大D.使其利润最大5.一个博弈中,直接决定局中人支付的因素是( )。

A. 策略组合 B. 策略C. 信息 D. 行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最佳行为,此时的博弈具有()。

A.囚徒困境式的均衡 B.一报还一报的均衡C.占优策略均衡D.激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的策略称为()。

A.一报还一报的策略 B.激发策略C.双头策略D.主导企业策略8.在囚徒困境的博弈中,合作策略会导致( )。

A.博弈双方都获胜 B.博弈双方都失败C.使得先采取行动者获胜D.使得后采取行动者获胜9.在什么时候,囚徒困境式博弈均衡最可能实现()。

A. 当一个垄断竞争行业是由一个主导企业控制时B.当一个寡头行业面对的是重复博弈时C.当一个垄断行业被迫重复地与一个寡头行业博弈时D.当一个寡头行业进行一次博弈时10.一个企业采取的行为与另一个企业在前一阶段采取的行为一致,这种策略是一种( )。

A.主导策略 B.激发策略C.一报还一报策略D.主导策略11.关于策略式博弈,正确的说法是( )。

A. 策略式博弈无法刻划动态博弈B. 策略式博弈无法表明行动顺序C. 策略式博弈更容易求解D. 策略式博弈就是一个支付矩阵12.下列关于策略的叙述哪个是错误的( ):A. 策略是局中人选择的一套行动计划;B.参与博弈的每一个局中人都有若干个策略;C. 一个局中人在原博弈中的策略和在子博弈中的策略是相同的;D. 策略与行动是两个不同的概念,策略是行动的规则,而不是行动本身。

吉本斯-博弈论基础答案

吉本斯-博弈论基础答案
2
1 2 的收益贴现到t期可得 1 − δ (a − c) / 8 , 1 2 2 触发战略有效的条件是: 1 − δ (a − c ) / 8 > (a − c) / 4 ,得到: δ > 1/ 2
(可参见谢识予的《经济博弈论》习题解答) 。 2.14 略 2.15 (1)垄断的产量、价格、利润: π=Q(a-Q)-CQ 利润最大化时:a-2Q=C,从而 Q=(a-c)/2. 此时价格为(a-c)/2。 (2)古诺均衡下的产量、价格、利润: π=(a-∑qi) qi -cqi
(*)
因 此 当 增 加 S 时 , U1 ( I c − S ) 会 减 小 , 同 时 , d ( S + B ) / dS > 0 , ∴ S + B 会 增 加 ,
∴ U 2 ( S + B ) 会增加,因为(*)式, U 2 ( S + B ) 增加的幅度比 U1 ( I1 − S ) 减小的幅度大,所以
如果参与者推断自然选择左边博弈的概率23参与者2选l如果参与者推断自然选择左边博弈的概率23参与者2选l和选r无差异如果参与者推断自然选择左边博弈的概率23参与者2选r如果参与者推断自然选择左边博弈的概率23参与者2选l如果参与者推断自然选择左边博弈的概率23参与者2选l和选r无差异如果参与者推断自然选择左边博弈的概率23参与者2选r自然选择左边博弈时参与者1选t参与者2选l
由 一 阶 条 件 ∂π i / ∂qi = 0 , 可 得 : qi = (a − q− i − c) / 2 … … ( 1)
* *
( 1) 式 两 端 乘 以 2, 再 减 qi , 可 得 : qi = a − Q − c … … ( 2), 对 于 任 意 的 i 都 成 立 。

博弈论习题和参考答案与解析

博弈论习题和参考答案与解析

博弈论?习题一、单项选择题1.博弈论中,局中人从一个博弈中得至口的结果常被称为〔〕. A?效用B.支付C.决策D.利润2.博弈中通常包括下面的内容,除了〔〕.A.局中人B.占优战略均衡C策略D?支付3.在具有占优战略均衡的囚徒困境博弈中〔〕.A.只有一个囚徒会坦白氏两个囚徒都没有坦白C?两个囚徒都会坦白D.任何坦白都被法庭否决了4.在屡次重复的双头博弈中,每一个博弈者努力〔〕.A.使行业的总利润到达最大B?使另一个博弈者的利润最小C?使其市场份额最大D.使其利润最大5.一个博弈中,直接决定局中人支付的因素是〔〕A.策略组合B.策略C信息D.行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最正确行为,此时的博弈具有〔〕0A.囚徒困境式的均衡B.一报还一报的均衡C.占优策略均衡D?激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的策略称为〔〕.A.一报还一报的策略B.激发策略8.在囚徒困境的博弈中,合作策略会导致〔〕oA博弈双方都获胜B博弈双方都失败C使得先米取行动者获胜D使得后米取行动者获胜9.在什么时候,囚徒困境式博弈均衡最可能实现〔〕oA.当一个垄断竞争行业是由一个主导企业限制时B.当一个寡头行业面对的是重复博弈时C.当一个垄断行业被迫重复地与一个寡头行业博弈时D.当一个寡头行业进行一次博弈时一个企业米取的彳丁为10.与另一个企业在前一阶段采取的行为一致〞这种策略是一种〔〕A.主导策略B.激发策略C.一报还一报策略D.主导策略11-关于策略式博弈,正确的说法是〔〕0A.策略式博弈无法刻划动态博弈B.策略式博弈无法说明行动顺序C.策略式博弈更容易求解D.策略式博弈就是一个支付矩阵12.以下关于策略的表达哪个是错误的〔〕:A.策略是局中人选择的一套行动方案;B.参与博弈的每一个局中人都有假设干个策略;C.一个局中人在原博弈中的策略和在子博弈中的策略是相同的;D.策略与行动是两个不同的概念,策略是行动的规那么,而不是行动本身.13.囚徒困境说明〔〕:A.双方都独立依照自己的利益行事,那么双方不能得到最好的结果;B.如果没有某种约束,局中人也可在〔抵赖,抵赖〕的根底上到达均衡;C.双方都依照自己的利益行事,结果一方赢,一方输;D.每个局中人在做决策时,不需考虑对手的反响14.一个博弈中,直接决定局中人损益的因素是〔〕:A.策略组合B.策略C信息D.行动15.动态博弈参与者在关于博弈过程的信息方面是〔〕A不对称的B对称的C不确定的D无序的16.古诺模型表达了寡头企业的〔〕决策模型A本钱B价格C产量D质量17.伯特兰德模型表达了寡头企业〔〕决策模型.A本钱价格C产量 D 质量18.用囚徒困境来说明两个寡头企业的情况,说明了:〔〕A、每个企业在做决策时,不需考虑竞争对手的反响E. 一个企业制定的价格对其它企业没有影响C、企业为了预防最差的结果,将不能得到更好的结果D、一个企业制定的产量对其它企业的产量没有影响19.子博弈精炼纳什均衡〔〕:A.是一个一般意义上的纳什均衡;B.和纳什均衡没有什么关系;C.要求某一策略组合在每一个子博弈上都构成一个纳什均衡;D.要求某一策略组合在原博弈上都构成一个纳什均衡.20.在一般产品销售市场上,以下哪种原因导致了逆向选择.〔〕A产品质量的不确定性B私人信息C公共信息D产品价格21.完全信息动态博弈参与者的行动是〔〕A无序的B有先后顺序的C不确定的D因环境改变的22.市场交易中普遍存在的讨价还价属于哪种博弈.〔〕A完全信息静态博弈B完全信息动态博弈C不完全信息静态博弈D不完全信息动态博弈23.下面哪种模型是一种动态的寡头市场博弈模型〔〕A古诺模型B伯川德模型C斯塔克尔伯格模型D田忌齐威王赛马24?博弈方根据一组选定的在两种或两种以上可能行为中随机选择的策略为血玄〔、A纯策略B混合策略C激发策略D 一报还一报策略25.影响重复博弈均衡结果的主要因素是〔〕A博弈重复的次数B信息的完备性C支付的大小DA和B26.在动态博弈战略行动中,只有当局中人从实施某一威胁所能获得的总收益()不实施该威胁所获得的总收益时,该威胁才是可信的.A大于B等于C小于D以上都有可能二、判断正误并简要说明理由I,纳什均衡一定是上策均衡,上策均衡一定是纳什均衡.2?在一个博弈中博弈方可以有很多个.3.在一个博弈中只可能存在一个纳什均衡.4.由于零和博弈中博弈方之间关系都是竞争性的、对立的,因此零和博弈就是非合作博弈.5.在一个博弈中如果存在多个纳什均衡那么不存在上策均衡.6.曲于两个罪犯只打算犯罪一次〞所以被捕后才出现了不合作的问题即囚徒困境.但如果他们打算重复合伙屡次,比方说20次,那么对策论预测他们将采取彼此合作的态度,即谁都不招供.7,在博弈中纳什均衡是博弈双方能获得的最好结果.8.在博弈中如果某博弈方改变策略后得益增加那么另一博弈方得益减少.9,纳什均衡即任一博弈方单独改变策略都只能得到更小利益的策略组合.10.囚徒的困境博弈中两个囚徒之所以会处于困境,无法得到较理想的结果,是由于两囚徒都不在乎坐牢时间长短本身,只在乎不能比对方坐牢的时间更长.11.斯塔克博格产量领导者所获得的利润的下限是古诺均衡下它得到的利润.12.在有限次重复博弈中,存在最后一次重复正是破坏重复博弈中局中人利益和行为的相互制约关系〞使重复博弈无法实现更高效率均衡的关键问题.13.子博弈精炼纳什均衡不是一个纳什均衡.14.零和博弈的无限次重复博弈中,可能发生合作,局中人不一定会一直重复原博弈的混合战略纳什均衡.15.原博弈惟一的纳什均衡本身是帕雷托效率意义上最正确战略组合,符合各局中人最大利益:采用原博弈的纯战略纳什均衡本身是各局中人能实现的最好结果,符合所有局中人的利益,因此,不管是重复有限次还是无限次,不会和一次性博弈有区别.16.在动态博弈中,由于后行动的博弈方可以先观察对方行为后再选择行为 ,因此总是有利的.入计算与分析题1、A、B两企业利用广告进行竞争.假设A、B两企业都做广告,在未来销售中,A企业可以获得20万元利润,B企业可获得8万元利润;假设A企业做广告,B企业不做广告,A企业可获得25万元利润,B企业可获得2万元利润;假设A企业不做广告,B企业做广告,A企业可获得10万元利润,B企业可获得12万元利润;假设A、B两企业都不做广告,A企业可获得30万元利润,B企业可获得6万元利润.〔,〕画出A、B两企业的损益矩阵.〔2 〕求纯策略纳什均衡.2、可口可乐与百事可乐〔参与者〕的价格决策:双方都可以保持价格不变或者提升价格〔策略〕;博弈的目标和得失情况表达为利润的多少〔收益〕;利润的大小取决于双方的策略组合〔收益函数〕;博弈有四种策略组合,其结局是:〔1〕双方都不涨价,各得利润10单位;〔2 〕可口可乐不涨价,百事可乐涨价,可口可乐利润100,百事可乐利润-30 ;(3 )可口可乐涨价,百事可乐不涨价,可口可乐利润-20,百事可乐利润30 ;(4 )双方都涨价,可口可乐利润140,百事可乐利润35 ;画出两企业的损益矩阵求纳什均衡.3、假定某博弈的报酬矩阵如下:(1)如果(上,左)是上策均衡,那么,a>?, b>?, g<?, f>?(2 )如果(上,左)是纳什均衡,上述哪几个不等式必须满足4、北方航空公司和新华航空公司分享了从北京到南方冬天度假胜地的市场.如果它们合作,各获得500000元的垄断利润,但不受限制的竞争会使每一方的利润降至60000元.如果一方在价格决策方面选择合作而另一方却选择降低价格,那么合作的厂商获利将为零,竞争厂商将获利900000元.(1)将这一市场用囚徒困境的博弈加以表示.(2 )解释为什么均衡结果可能是两家公司都选择竞争性策略.5、博弈的收益矩阵如下表:⑴如果(上/左)是占优策略均衡/那么a、b、c、d、G、f、g、h之间必然满足哪些关系〔尽量把所有必要的关系式都写出来〕〔2 〕如果〔上,左〕是纳什均衡,那么〔1〕中的关系式哪些必须满足〔3 〕如果〔上,左〕是上策均衡,那么它是否必定是纳什均衡为什么〔4 〕在什么情况下,纯策略纳什均衡不存在6、猪圈里有一头大猪和_头小猪,猪圈的一头有一个饲料槽,另一头装有限制饲料供给的按钮.按一下按钮就会有,0个单位饲料进槽,但谁按谁就要付出2个单位的本钱.谁去按按纽那么谁后到;都去按那么同时到.假设大猪先到,大猪吃到9个单位,小猪吃到一个单位;假设同时到,大猪吃7个单位,小猪吃3个单位;假设小猪先到,大猪吃六个单位,小猪吃4个单位.求〔1〕各种情况组合扣除本钱后的支付矩阵〔2 〕求纳什均衡.7、设啤酒市场上有两家厂商,各自选择是生产高价啤酒还是低价啤酒,相应的利润〔单位:万元〕由以下图的得益矩阵给出:1〕有哪些结果是纳什均衡(2 )两厂商合作的结果是什么8、求出以下博弈的所有纯策略纳什均衡.9、求出下面博弈的纳什均衡(含纯策略和混合10、根据两人博弈的损益绸邛仲I答问题:(1) ◎出两人各自的金部策略.图示均衡点.(2 )求出斯塔克博格rstackelberg )均衡情况下的产量、价格和利润.(3)说明导致上述两种均衡结果差异的原因.13.下面的得益矩阵两博弈方之间的一个静态博弈,该博弈有没有纯策略的纳什均衡,博弈的结果是什么14.两个兄弟分一块冰激凌.哥哥先提出一个分割比例 ,弟弟可以接受或拒绝,接受那么按哥哥的提议分割,假设拒绝就自己提出一个比例.但这时候冰激凌已化得只剩1/2 了,对弟弟提议的比例哥哥也可以接受或拒绝,假设接受那么按弟弟的建议分割,假设拒绝冰激凌会全部化光.由于兄弟之间不应该做损人不利己的是“因此我们假设接受和拒绝利益相同时兄弟俩都会接受.求该博弈的子博弈完美纳什均衡.15?如果学生在测试之前全面复习,考好的概率为90%,如果学生只复习一局部重点,那么有50% 的概率考好.全面复习花费的时间tl = 100小时,重点复习之需要花费t2=20小时.学生的效用函数为:U二W-2巳其中W是测试成绩,有上下两种分数Wh和Wl, e为努力学习的时间.问老师如何才能促使学生全面复习16?在以下监工与工人之间的博弈中,试用划线法分析该博弈有无纯策略纳什均衡;如果没有,那么写出混合策略纳什均衡的结果.监工17 ?求解以下博弈的纳什均衡.博弈方29 18 ?某人正在打一场官司,不请律师肯定会输,请律师后的结果与律师的努力程度有关.假设当律师努力工作〔100小时〕时有50%的概率能赢,律师不努力工作<10小时〕那么只有15%的概率能赢.如果诉讼获胜可得到250万元赔偿,失败那么没有赔偿.由于委托方无法监督律师的工作,因此双方约定根据结果付费,赢官司律师可获赔偿金额的10%,失败那么律师一分钱也得不到.如果律师的效用函数为m 0.05e,其中m是报酬e是努力小时数,且律师有时机本钱5万元.求这个博弈的均衡.四、论述题Is解释"囚犯困境;并举商业案例说明.2、用〃小偷与守卫的博弈"说明〃鼓励〔监管〕悖论"博弈论?习题参考答案>单项选择题r 5 B. B. C.D ' A.11 15. B. C. A.6 10 C. A. A.D. C.16 20 C. B. C.21 26. B. B. C. B. D. A.,判断正误并简要说明理由1. F 上策均衡是比纳什均衡更严格的均衡.所以上策均衡一定是纳什均衡 一定是上策均衡,2. T 博弈类型按局中人数多少分为单人博弈、双人博弈和多人博弈3. IF 博弈双方偏好存在差异的条件下,一个博弈模型中可能存在多个纳什均衡4. T 零和博弈才旨参与博弈各方在严格竞争下,一方收益等于另一方损失与损失之和恒为零,所以双方不存在合作可能性而纳什均衡不 ,如性别战.,博弈各方收益 ,只能有一个5.T上策均衡是通过严格下策消去法〔重复剔除下策〕所得到的占优策略纳什均衡6.IF只要两囚犯只打算合作有限次,其最优策略均为招供.比方最后一次合谋,两小偷被抓住了,由于将来没有合作时机了,最优策略均为招供.回退到倒数第二次,既然已经知道下次不会合作,这次为什么要合作呢.依此类推,对于有限次内的任何一次,两小偷均不可能合作.7.F纳什均衡是上策的集合,指在给定的别人策略情况下,博弈方总是选择利益相对较大的策略,并不保证结果是最好的.团F局中人总是以自己的利益最大化选择自己的策略,并不以对方收益的变化为目标9.T纳什均衡是上策的集合,指在给定的别人策略情况下,没有人会改变自己的策略而减低自己的收益10.F局中人总是以自己的利益最大化选择自己的策略,并不以对方收益的变化为目标11.T虽然斯塔格伯格模型各方利润总和小于古诺模型〞但是领导者的利润比古诺模型时12..T无限次重复博弈没有结束重复确实定时间;而在有限次重复博弈中,存在最后一次重复,并且正是有结束重复确实定时间,使重复博弈无法实现更高效率均衡.13.F子博弈精炼纳什均衡一定是一个纳什均衡.14.F零和博弈的无限次重复博弈中,所有阶段都不可能发生合作,局中人会一直重复原博弈的混合战略纳什均衡.15.T原博弈惟一的纳什均衡本身是帕雷托效率意义上最正确战略组合,因此不管是重复有限次还是无限次,不会和一次性博弈有区别.16.F动态博弈是指各博弈方的选择和行动又先后次序的博弈.动态博弈的信息盯以是不对称的.所以策略分为先发制人和.斯塔克伯格博弈揭示“先发制人〞更有禾L而"后发制人"后行动的博弈方可以先观察对方行为后再选择行为反而处于不利境地.三、计算与分析题Is (1)(2)纯策略纳什均衡为(做广告,做广告),(不做广告,不做广告)得长价-20, 30140,35纳什均衡〔不涨价,不涨价〕,〔涨价,涨价〕.从帕累托均衡角度,为〔涨价,涨价〕3、〔 1〕如果〔上/左〕是上策均衡,那么,a>e b>d, g<c, f>h 〔2 〕如果〔上〕左〕是纳什均衡,a>e b>d,不等式必须满足新华航空北方航空 合作竞争50, 50 90, 00, 90 6, 65、 略纳什均衡为〔按,等〕 7、略8、纯策略纳什均衡〔氏甲〕,〔⑴不存在纯策略纳什均衡合作肓争⑵设甲选择"U"的概率为概率为1-P1乙选择"『的概率为P2,贝V选择" R" 的概率为1-P2对甲而言,最正确策略是按定的概率选〃上"和‘下’,使乙选择“左〃和〃右"的期望值相等即PI*8+ (l-PI) *0-P1*1+ (1-P1) *5解得PI = 5/12即⑸12, 7/12 )按5/12概率选〃上“、7/12概率选〃下"为甲的混合策略Nash均衡对乙而言,最正确策略是按一定的概率选“左“和“右",使乙选择〃上"和‘下’的期望值相等即P2*5+(l-P2)*0- P2*2 + (l-P2)*4即(4/7, 3/7肢4/7概率选‘左’、3/7概率选"右"为乙的混合策略Nash均衡10、略.11、见笔记12、见笔记.13、首先,运用严格下策反复消去法的思想,不难发现在博弈方1的策略中,B是相对于T的严格下策.把博弈方1的B策略消去后又可以发现,博弈方2的策略中C是相对于R的严格下策,从而也可以消去.两个博弈方各消去一个策略后的博弈是如下的两人2X 2博弈,己经不存在任何严格下策.再运用划线或箭头法,很容易发现这个2X2博弈有两个纯策略纳什均衡(M,L )和(1R ) 0由于两个纯策略纳什均衡之间没有帕累托效率意义上的优劣关系,一次性静态博弈的结果不能肯定.由于双方在该博弈中可能采取混合策略,因此实际上该博弈的结果可以是4个纯策略组合中的任何一个.14.假设哥的方案是SI: 1-S1淇中S1是自己的份额,弟的方案是S2: 1-S2, S2是哥的份额,那么可用如下的扩展形表示该博弈:Hi SiC5V2eS? 2)CO O)运用逆推归纳法先分析最后一阶段哥的选择.由于只要接受的利益不少于不接受的利益哥就会接受,因此在这个阶段只要弟的方案满足S2/2 $0,也就是S2$0,哥就会接受,否那么不会接受.由于冰激凌的份额不可能是负数,也就是说由于哥不接受弟的方案冰激凌会全部化掉〞因此任何方案哥都会接受.现在回到前一阶段弟的选择.由于弟知道后一阶段哥的选择方法,因此知道如果不接受前一阶段哥提出的比例,自己可以取S2=0,独享此时还未化掉的1/2块冰激凌;如果选择接受前一阶段哥的提议,那么自己将得到出1,显然只要l-Sn/2 ,即S1W1/2,弟就会接受哥的提议.再回到第一阶段哥的选择.哥清楚后两个阶段双方的选择逻辑和结果 ,因此他在这一阶段选择Sl = 1/2,正是能够被弟接受的自己的最大限度份额,超过这个份额将什么都不能得到,因此SI二1/2是最正确选择.综上,该博弈的子博弈完美纳什均衡是:哥哥开始时就提议按(1/2J/2)分割,弟弟接受.15.此题中老帅的调控于段高分和低分的差距.该博弈的扩•展形如下:只有当Ul» U2时学生才会选择全面复习.根据Ul» U2我们可以算出Wh- WD 400o这就是老师能有效全面复习需要满足的条件.其实在奖学金与成绩挂钩时,Wh- W1也可以理解成不同等奖学金的差额.16泄有纯策略均衡,只有混合策略均衡((0. 25,0.75 ),(0. 5,0. 5 ))17. 可以根据画线法求得有唯一纯策略均衡(上,左)18.参见第15题四、论述题1、解释〃囚犯困境〃,并举商业案例说明.(1)假设条件举例:两囚徒被指控是一宗罪案的同案犯.他们被分别关在不同的牢房无法互通信息.各囚徒都被要求坦白罪行.如果两囚徒都坦白,各将被判入狱5年;如果两人都不坦白,两囚徒可以期望被从轻发落入狱2年;如果一个囚徒坦白而另一个囚徒不坦白,坦白的这个囚徒就只需入狱1年,而不坦白的囚徒将被判入狱10年.(2)囚徒困境的策略矩阵表.每个囚徒都有两种策略:坦白或不坦白.表中的数字分别代表囚徒甲和乙的得益.囚徒乙3〕分析:通过划线法可知:在囚徒困境这个模型中,纳什均衡就是双方都〃坦白〃.给定甲坦白的情况下,乙的最优策略是坦白;给定乙坦白的情况下,甲的最优策略也是坦白.这里双方都坦白不仅是纳什均衡,而且是一个上策均衡,即不管对方如何选择,个人的最优选择是坦白.其结果是双方都坦白.4〕商业案例:寡头垄断厂商经常发现它们自己处于一种囚徒的困境.当寡头厂商选择产量时,如果寡头厂商们联合起来形成卡特尔,选择垄断利润最大化产量,每个厂商都可以得到更多的利润.但卡特尔协定不是一个纳什均衡,由于给尢双方遵守协议的情况下,每个厂商都想增加生产,结果是每个厂商都只得到纳什均衡产量的利润,它远小于卡特尔产量下的利润.2用〞小偷与守卫的博弈〃说明〃鼓励〔监管〕悖论〃.〔1〕假设条件举例:偷窃和预防偷窃是小偷和门卫之间进行博弈的一场游戏.门卫可以不睡觉,或者睡觉.小偷可以采取偷、不偷两种策略.如果小偷知道门卫睡觉, 他的最正确选择就是偷;如果门卫不睡觉,他最好还是不偷.对于门卫,如果他知道小偷想偷,他的最正确选择是不睡觉,如果小偷采取不偷,自己最好去睡觉.〔2 〕小偷与门卫的支付矩阵表〔假定小偷在门卫睡觉时一定偷成功,在门卫不睡觉时偷一定会被抓住〕:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
具体理由自己思考,方法是倒推法。
三、计算题
1.试计算表1中的战略式博弈的重复剔除劣战略均衡。
表1 一个战略式表述博弈
B
L
M
R
A
U
1,2
3,1
2,4
M
5,6
7,1
2,6
D
3,1
2,0
7,8
对B而言,战略M严格劣于R;(因为1<4, 1<6,0<8),因此剔除B的战略M;构成新的博弈如下
B
L
R
A
U
1,2
请用同样的方法分析其他例子。
2.请用博弈论来说明“破釜沉舟”和“穷寇勿追”的道理。
破釜沉舟是一个承诺行动。目的是要断绝自己的退路,让自己无路可退,让自己决一死战变得可以置信。也就是说与敌人对决时,只有决一死战,这样才可以取得胜利。否则,如果不破釜沉舟,那么遇到困难时,就很有可能退却,也就无法取得胜利。穷寇勿追就是要给对方一个退路,由于有退路,对方就不会殊死抵抗。否则,对方退无可退,只有坚决抵抗一条路,因而必然决一死战。自己也会付出更大的代价。
假设(1)五个强盗都很聪明,而且大家知道大家很聪明,大家知道大家知道大家很聪明,如此等等。
(2)每个海盗都很贪婪,希望获得尽可能多的钻石,但是又不想为了钻石丢掉性命。
(3)给定一个方案,只有该方案大于他的备选方案所获的钻石时,海盗才选择赞成。
第一个海盗的提议应该是:五个海盗分别获得的钻石数目为97,0,1,0,2,或者97,0,1,2,0。
利润最大化的一阶条件分别为:
因此企业1和企业2的反应函数分别为:
联立,得到 。自己求解
(2)设企业1先行,企业2跟进。两个企业的产量分别为 , ,因此利润函数分别为:
由逆向归纳法,在第二阶段,企业2在已知企业1的产量的情况下,最优化自己的产量,从而得到企业2的反应函数:
2.试给出下述战略式表述博弈的所有纳什均衡。
L
1
2,2
3,3
4,4
1,2
给定1选择U,2的最佳选择是R(因为2<3),在相应位置划线
给定1选择D,2的最佳选择是L(因为4>2),在相应位置划线
给定2选择L,1的最佳选择是D(理由自己写),在相应位置划线
给定2选择R,1的最佳选择是U(理由自己写),在相应位置划线
找两个数字下都划线的,显然有两个纯战略纳什均衡: 和
据Wilson的奇数定理,可能有一个混合战略均衡。
设1选 的概率为 ,那么选D的概率为
设2选 的概率为 ,那么选R的概率为 ,
如果存在混合战略,那么2选战略L和R的期望收益应该应该相等,因此应有
自己求解(2分)
同样,1选战略U和D的期望收益应该应该相等
2,4
M
5,6
2,6
D
3,1
7,8
在新的博弈中,
对于A而言,战略U严格劣于D(因为1<3,2<7),因此剔除A的战略U,构成新的博弈如下:
B
L
R
A
M
5,6
2,6
D
3Hale Waihona Puke 17,8对于新的博弈中,已经没有严格的劣战略,因此没有严格的劣战略可以剔除。所以该博弈不是重复剔除严格劣战略可解的。
但是存在弱劣战略。对于B而言,战略L弱劣于R(因为6=6,1<8),因此剔除B的弱劣战略L,构成新的博弈如下:
B
R
A
M
2,6
D
7,8
在新的博弈中,对于A而言,战略M严格劣于D(因为2<7),因此剔除A的战略M,构成新的博弈如下:
B
R
A
D
7,8
因此,重复剔除(弱)劣战略均衡为(D,R)
(ps: 如果同学们用划线的方法求纳什均衡,就可以发现纯战略nash均衡有两个:(M,L)和(D,R)但采用剔除弱劣战略的方法,把其中一个纳什均衡剔除掉了)
3.当求职者向企业声明自己能力强时,企业未必相信。但如果求职者拿出自己的各种获奖证书时,却能在一定程度上传递自己能力强的信息。这是为什么?
由于口头声明几乎没有成本,因此即便是能力差的求职者也会向企业声明自己能力强。当然能力强的人也会声明自己的能力强。也就是说不同类型的求职者为了赢得职位会做出同样的声明。这样口头声明就不能有效的传递信息,因此企业不会轻易相信。而求职者拿出获奖证书就成了一个信号博弈。由于获得证书是要付出代价的,但代价却引人而异。能力强的个人可以相对轻易获得证书,而能力弱的个人却很难获得证书,以至于能力弱的人认为化巨大的代价获得证书,从而获得企业的职位是不划算的,因此干脆就不要获奖证书。因此获奖证书就成为个人能力的信号。
请用同样的方法分析其他例子。
智猪博弈的例子:大企业开发新产品;小企业模仿;股市中,大户搜集分析信息,散户跟随大户的操作策略
以股市为例:给定散户搜集资料进行分析,大户的最佳选择是跟随。而给定散户跟随,大户的最佳选择是自己搜集资料进行分析。但是不论大户是选择分析还是跟随,散户的最佳选择都是跟随。因此如果大户和散户是聪明的,并且大户知道散户也是聪明的,那么大户就会预见到散户会跟随,而给定散户跟随,大户只有自己分析。
博弈论基础作业
一、名词解释
纳什均衡 占优战略均衡纯战略混合战略子博弈精炼纳什均衡
贝叶斯纳什均衡 精炼贝叶斯纳什均衡 共同知识
见PPT
二、问答题
1.举出囚徒困境和智猪博弈的现实例子并进行分析。
囚徒困境的例子:军备竞赛;中小学生减负;几个大企业之间的争相杀价等等;
以中小学生减负为例:在当前的高考制度下,给定其他学校对学生进行减负,一个学校最好不减负,因为这样做,可以带来比其他学校更高的升学率。给定其他学校不减负,这个学校的最佳应对也是不减负。否则自己的升学率就比其他学校低。因此,不论其他学校如何选择,这个学校的最佳选择都是不减负。每个学校都这样想,所以每个学校的最佳选择都是不减负,因此学生的负担越来越重。
4.五个海盗抢得100颗钻石,他们为分赃发生了争议,最后达成协议,由抓阄确定出分赃顺序,然后按照程序进行分赃。首先由1号海盗提出分赃方案,五人共同举手表决。若赞成的占一半以上(不包括一半的情况),就按1号提出的方案分赃,否则1号将被扔到海里喂鲨鱼。接着由2号提出方案,四人共同举手表决。若赞成的占一半以上(不包括一半的情况),就按2号提出的方案分赃,否则2号将被扔到海里喂鲨鱼,依此类推。如果你是1号海盗,你该提什么样的方案?说明理由。
得混合均衡:?
3.市场里有两个企业1和2。每个企业的成本都为0。市场的逆需求函数为P=16-Q。其中P是市场价格,Q为市场总产量。
(1)求古诺(Cournot)均衡产量和利润。
(2)求斯坦克尔伯格(Stackelberg)均衡产量和利润。
(1)设两个企业的产量分别为 , ,有 ,因此利润函数分别为:
相关文档
最新文档