计量经济学第五章 异方差性
《计量经济学》第五章精选题及答案
第五章 异方差二、简答题1.异方差的存在对下面各项有何影响? (1)OLS 估计量及其方差; (2)置信区间;(3)显著性t 检验和F 检验的使用。
2.产生异方差的经济背景是什么?检验异方差的方法思路是什么? 3.从直观上解释,当存在异方差时,加权最小二乘法(WLS )优于OLS 法。
4.下列异方差检查方法的逻辑关系是什么? (1)图示法 (2)Park 检验 (3)White 检验5.在一元线性回归函数中,假设误差方差有如下结构:()i i i x E 22σε=如何变换模型以达到同方差的目的?我们将如何估计变换后的模型?请列出估计步骤。
三、计算题1.考虑如下两个回归方程(根据1946—1975年美国数据)(括号中给出的是标准差):t t t D GNP C 4398.0624.019.26-+= e s :(2.73)(0.0060) (0.0736)R ²=0.999t t t GNP D GNP GNP C ⎥⎦⎤⎢⎣⎡-+=⎥⎦⎤⎢⎣⎡4315.06246.0192.25 e s : (2.22) (0.0068)(0.0597)R ²=0.875式中,C 为总私人消费支出;GNP 为国民生产总值;D 为国防支出;t 为时间。
研究的目的是确定国防支出对经济中其他支出的影响。
(1)将第一个方程变换为第二个方程的原因是什么?(2)如果变换的目的是为了消除或者减弱异方差,那么我们对误差项要做哪些假设? (3)如果存在异方差,是否已成功地消除异方差?请说明原因。
(4)变换后的回归方程是否一定要通过原点?为什么?(5)能否将两个回归方程中的R²加以比较?为什么?2.1964年,对9966名经济学家的调查数据如下:资料来源:“The Structure of Economists’Employment and Salaries”, Committee on the National Science Foundation Report on the Economics Profession, American Economics Review, vol.55, No.4, December 1965.(1)建立适当的模型解释平均工资与年龄间的关系。
计量经济学题库第5章异方差
第5章异 方 差习 题一、单项选择题1. 回归模型中具有异方差性时,仍用OLS 估计模型,则以下说法正确的是( )A. 参数估计值是无偏非有效的B. 参数估计量仍具有最小方差性C. 常用F 检验失效D. 参数估计量是有偏的 2.更容易产生异方差的数据为 ( )A. 时序数据B. 修匀数据C. 横截面数据D. 年度数据 3.在具体运用加权最小二乘法时, 如果变换的结果是则Var(u)是下列形式中的哪一种?( )A. B. C. D.4. 在异方差性情况下,常用的估计方法是( )A .一阶差分法 B. 广义差分法 C .工具变量法 D. 加权最小二乘法 5. 在异方差的情况下,参数估计值的方差不能正确估计的原因是( )A. B.C. D. 6. 设,则对原模型变换的正确形式为( )7. 下列说法不正确的是( )A.异方差是一种随机误差现象B.异方差产生的原因有设定误差C.检验异方差的方法有F 检验法D.修正异方差的方法有加权最小二乘法8. 如果回归模型违背了同方差假定,最小二乘估计是( )A .无偏的,非有效的 B. 有偏的,非有效的011yx ux x x x ββ=++2x σ22xσσ2log x σ22()i E u σ≠()0()i j E u u i j ≠≠()0i i E x u ≠()0i E u ≠)()(,2221i i i i i i x f u Var u x y σσββ==++=01212222212...()()()().()()()()i i i i i i i i i i i i i i i i i A y x u B y x u C f x f x f x f x D y f x f x x f x u f x βββββββ=++=+=++=++C .无偏的,有效的 D. 有偏的,有效的 9. 在检验异方差的方法中,不正确的是( )A. Goldfeld-Quandt 方法B. ARCH 检验法C. White 检验法D. DW 检验法10. 在异方差的情况下,参数估计值仍是无偏的,其原因是( )A.零均值假定成立B.序列无自相关假定成立C.无多重共线性假定成立D.解释变量与随机误差项不相关假定成立11. 在修正异方差的方法中,不正确的是( )A.加权最小二乘法B.对原模型变换的方法C.对模型的对数变换法D.两阶段最小二乘法 12. 下列说法正确的是( )A.异方差是样本现象B.异方差的变化与解释变量的变化有关C.异方差是总体现象D.时间序列更易产生异方差二、多项选择题1. 如果模型中存在异方差现象,则会引起如下后果( )A. 参数估计值有偏B. 参数估计值的方差不能正确确定C. 变量的显著性检验失效D. 预测精度降低E. 参数估计值仍是无偏的2. Goldfeld-Quandt 检验法的应用条件是( )A. 将观测值按解释变量的大小顺序排列B. 样本容量尽可能大C. 随机误差项服从正态分布D. 将排列在中间的约1/4的观测值删除掉 E .除了异方差外,其它假定条件均满足三、计算题1.根据某城市1978——1998年人均储蓄(y)与人均收入(x)的数据资料建立了如下回归模型x y6843.1521.2187ˆ+-=se=(340.0103)(0.0622)下面取时间段1978——1985和1991——1998,分别建立两个模型(括号内为t 值), 模型1:模型2:计算F 统计量,即,对给定的,查F 分布表,得临界值。
庞浩 计量经济学5第五章 异方差性
同方差
递增型异方差
递减型异方差
复杂型异方差
18
2.借助X-e2散点图进行判断 观察散点的纵坐标是否随解释变量Xi的变化而 变化。
~2 e2e i ei e2 ~2
X 同方差 递增异方差
X
e2
~2 e i
~2 e 2 e i
X 递减异方差 复杂型异方差
X
19
二、戈德菲尔德—夸特 (Goldfeld-Quanadt)检验
3
说明1
矩阵表示: Y X u 随机扰动项向量 其方差—协 u1 u 方差矩阵不 2 u 再是: un n1 而是:
2 2 Var Cov ( ui ) 2 nn
ei X i v i
ei
1 vi Xi
ei X i v i 1 ei vi Xi
③利用上述回归的R2、t统计量、F统计量等判断,R2 好、t统计量和F统计量显著,即可判定存在异方差。 28
说明: 1.也可以用 e i 与可能产生异方差的多个解释变 量进行回归模拟; 2.戈里瑟检验的优点在于不仅检验了异方差是否 存在,同时也给出了异方差存在时的具体表现 形式,为克服异方差提供了方便。 3.试验模型选得不好,也可能导致检验不出是否 存在异方差性。
12 2 2 Var Cov ( ui ) 2 n nn
4
说明2
随机扰动项 ui具有异方差性,可理解释为被解释变量 的条件分散程度随解释变量的变化而变化,如下图所 示:var( ui ) i2 2 f ( X i)(i 1,2,, n)
10
第二节 异方差性的后果
计量经济学第五章
2024/10/15
15
用Eviews的多重共线性对策
Quick/Estimate Equation的对话框中
对数法: 直接输入log(Y) c log(X1) log(X2)… 或 差分法: 输入Y-Y(-1) C X1-X1(-1) X2-X2(-1)… 但差分常常会丢失一些信息,运用时应慎重。
则表明多重共线性存在。
11
对策:
• 去掉关系不大的变量,但应注意遗漏变量问题; • 重新建立模型(差分或对数处理); • 利用事先掌握的信息变换模型;
(如:Cobb-Douglas函数中K与L之间存在多 重
共线性,且它们的系数之和等于1) • 增加样本数.
12
用Eviews的多重共线性检验1
相关系数法 首先同时选择所有的自变量; 然后双击-出现选择栏时点击 Open Group/View/Correlations; 观察各自变量之间的大小。
即选择Quick/Estimate Equation后写入 v_hat c xi x2i x3i…
• 命令scalar LM=@regobs*@R² --Enter 双击LM时,在下边出现LM值./或直接计算。
10
二、多重共线性的检验及对策
诊断方法
• 系数估计值的符号不对; • 参数估计值不稳定; • R2很大,但重要的自变量 t 值很低; • 自变量之间呈高度相关(正负0.8~0.9)
• 首先估计出一般方程 • View/Coefficient Tests/Redundant
Variables-Likelihood Ratio • 出现对话框时,写入删除变量名--OK • 对比删除前后的AIC与SC信息值,信息
值小的结论是应采纳的。
计量经济学第五章异方差性
计量经济学第五章异⽅差性第五章异⽅差性本章教学要求:根据类型,异⽅差性是违背古典假定情况下线性回归模型建⽴的另⼀问题。
通过本章的学习应达到,掌握异⽅差的基本概念包括经济学解释,异⽅差的出现对模型的不良影响,诊断异⽅差的⽅法和修正异⽅差的若⼲⽅法。
经过学习能够处理模型中出现的异⽅差问题。
第⼀节异⽅差性的概念⼀、⼆个例⼦例1,研究我国制造业利润函数,选取销售收⼊作为解释变量,数据为1998年的⾷品年制造业、饮料制造业等28个截⾯数据(即n=28)。
数据如下表,其中y表⽰制造业利润函数,x表⽰销售收⼊(单位为亿元)。
Y对X的散点图为从散点图可以看出,在线性的基础上,有的点分散幅度较⼩,有的点分散幅度较⼤。
因此,这种分散幅度的⼤⼩不⼀致,可以认为是由于销售收⼊的影响,使得制造业利润偏离均值的程度发⽣变化,⽽偏离均值的程度⼤⼩的不同,就是所谓的随机误差的⽅差存在变异,即异⽅差。
如果⾮线性,则属于哪类⾮线性,从图形所反映的特征看,并不明显。
下⾯给出制造业利润对销售收⼊的回归估计。
模型的书写格式为212.03350.1044(0.6165)(12.3666)0.8547,..56.9046,152.9322213.4639,146.4905Y Y X R S E F Y s =+=====通过变量的散点图、参数估计、残差图,可以看到模型中(随机误差)很有可能存在异⽅差性。
例2,改⾰开放以来,各地区的医疗机构都有了较快发展,不仅政府建⽴了⼀批医疗机构,还建⽴了不少民营医疗机构。
各地医疗机构的发展状况,除了其他因素外主要决定于对医疗服务的需求量,⽽医疗服务需求与⼈⼝数量有关。
为了给制定医疗机构的规划提供依据,分析⽐较医疗机构与⼈⼝数量的关系,建⽴卫⽣医疗机构数与⼈⼝数的回归模型。
根据四川省2000年21个地市州医疗机构数与⼈⼝数资料对模型估计的结果如下:i iX Y 3735.50548.563?+-= (291.5778) (0.644284) t =(-1.931062) (8.340265)785456.02=R 774146.02=R 56003.69=F式中Y 表⽰卫⽣医疗机构数(个),X 表⽰⼈⼝数量(万⼈)。
计量经济学 第五章 异方差性
的分散程度,因此同方差性指的是所有观测值的
分散程度相同。
6
异方差性的含义
设模型为
Y i 1 2 X 2 i 3 X 3 i . . . k X k i u i i 1 , 2 , . . . , n
如果对于模型中随机误差项 u i 有:
V a r(u i)i2 , i 1 ,2 ,3 ,...,n (5.3)
的替代变量,对所选函数形式回归。用回归所得
到的 β 、 t 、F 等信息判断,若参数 显β 著不为零,
即认为存在异方差性。
38
第四节 异方差性的补救措施
主要方法:
●模型变换法 ● 加权最小二乘法 ● 模型的对数变换
39
一、模型变换法
以一元线性回归模型为例:
Yi 12Xiui
经检验
u
存在异方差,且
26
(二)检验的特点
要求变量的取值为大样本 不仅能够检验异方差的存在性,同时在多变量的 情况下,还能判断出是哪一个变量引起的异方差。
27
(三)检验的基本步骤:
以一个二元线性回归模型为例,设模型为: Y t= β 1+ β2X 2t+ β3X 3t+ ut
并且,设异方差与 X 2t , X 3t 的一般关系为 σ t 2 = α 1 + α 2 X 2 t+ α 3 X 3 t+ α 4 X 2 2 t+ α 5 X 3 2 t+ α 6 X 2 tX 3 t+ v t
Yi 1 2X2i ui*
X 3i
(u 5i* .5)
当被略去的 X 3 i 与 X 2 i 有呈同方向或反方向变 化的趋势时,随 X 2 i 的有规律变化会体现在(5.5)
第五章-异方差性-答案说课讲解
第五章-异方差性-答案第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。
( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。
( F )3. 存在异方差时,可以用广义差分法进行补救。
(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。
(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。
( T )二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B )A. B. C. D. 7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=A. B. C. D. ∑=i i x y n 1b ˆ 8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模型时,应将模型变换为( C )。
计量经济学 第五章习题答案
第五章异方差性5.2答案:(1)EVIEWS估计的结果为:Yˆi= 9.3475+0.6371X iT=(2.5691) (32.0088)R2 =0.9464 F=1024.564(2)首先,用Goldfeld-Quandt法进行检验。
将样本X按递减顺序排序,去掉中间1/4的样本,再分为两个部分的样本,即N1=N2=22。
分别对两个部分样本求最小二乘估计,在样本区为1—22的Eviews估计如下:样本区39—60的Eviews估计如下:得到两个部分各自的残差平方和,即∑e 12 =2495.840∑e 22 =603.0148求F 统计量为: F=∑∑e e 2221=2495.840/603.0148=4.1390给定α=0.05,查F 分布表,得临界值为F 0.05=(20,20)=2.12.比较临界值与F 统计量值,有F =4.1390>F 0.05=(20,20)=2.12,说明该模型的随机误差项存在异方差。
其次,用White 法进行检验结果如下:给定α=0.05,在自由度为2下查卡方分布表,得χ2=5.9915。
比较临界值与卡方统计量值,即nR2=10.8640>χ2=5.9915,同样说明模型中的随机误差项存在异方差。
(2)用权数W1=1/X,作加权最小二乘估计,得如下结果用White法进行检验得如下结果:F-statistic 3.138491 Probability 0.050925Obs*R-squared 5.951910 Probability 0.050999。
比较临界值与卡方统计量值,即nR2=5.9519<χ2=5.9915,说明加权后的模型中的随机误差项不存在异方差。
其估计的结果为:Yˆi= 10.3705+0.6309X iT=(3.9436) (34.0467)R2 =0.21144 F=1159.176 DW=0.95855.3答案:(1)EVIEWS估计结果:Yˆi= 179.1916+0.7195X iT=(0.808709) (15.74411)R2 =0.895260 F=247.8769 DW=1.461684 (2)利用White方法检验异方差,则White检验结果见下表:由上述结果可知,该模型存在异方差。
计量经济学第五章 异方差
X 20000
5.3异方差的侦查
利用残差图——绘制残差平方与X散点图
(一般把异方差看成是由于解释变量的变化而引起的)
5.1异方差的概念
三、异方差产生的原因 模型设定误差:省略了重要的解释变量
例:真实模型 Yi 1 2 X 2i 3 X 3i i 采用模型 Yi 1 2 X 2i i
如果X3随着X2的不同而对Y产生不同的影响,则 该影响体现在扰动项中。
测量误差: 一方面,测量误差常常在一定时间内逐渐增加,如X 越大,测量误差就会趋于增大 另一方面,测量误差随时间变化趋于减少,如抽样技 术的改进使得测量误差减少。
)
2 i
5.1异方差的概念
6 Y
4
300 Y
200
2
100
0 0
X
0
X
10
20
30
0
5000
10000
15000
20000
250
Y
二、常见的异方差类型: 200
递增型异方差:
150
100
递减型异方差:
50
条件异方差(略):
0 0
X
10
20
30
时间序列数据和截面数据中都有可能存在异方差。
经济时间序列中的异方差常为递增型异方差。
ˆ 2 ei2 (Yi ˆX i )2 (( ˆ) X i i )2
n 1
n 1
n 1
5.2异方差的后果
E (vaˆr(ˆ ))
E(
ˆ 2
X
2 i
)
E(
(( ˆ)X
(n 1)
计量经济学课后思考题答案
第五章 异方差性思考题5.1 简述什么是异方差?为什么异方差的出现总是与模型中某个解释变量的变化有关?答 :设模型为),....,,(....n 21i X X Y i i 33i 221i =μ+β++β+β=,如果其他假定均不变,但模型中随机误差项的方差为),...,,()(n 21i Var 2i i =σ=μ,则称i μ具有异方差性。
由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,所以异方差的出现总是与模型中某个解释变量的变化有关。
5.2 试归纳检验异方差方法的基本思想,并指出这些方法的异同。
答:各种异方差检验的共同思想是,基于不同的假定,分析随机误差项的方差与解释变量之间的相关性,以判断随机误差项的方差是否随解释变量变化而变化。
其中,戈德菲尔德-跨特检验、怀特检验、ARCH 检验和Glejser 检验都要求大样本,其中戈德菲尔德-跨特检验、怀特检验和Glejser 检验对时间序列和截面数据模型都可以检验,ARCH 检验只适用于时间序列数据模型中。
戈德菲尔德-跨特检验和ARCH 检验只能判断是否存在异方差,怀特检验在判断基础上还可以判断出是哪一个变量引起的异方差。
Glejser 检验不仅能对异方差的存在进行判断,而且还能对异方差随某个解释变量变化的函数形式进行诊断。
5.3 什么是加权最小二乘法?它的基本思想是什么?答:以一元线性回归模型为例:12i i i Y X u ββ=++经检验i μ存在异方差,公式可以表示为22var()()i i i u f X σσ==。
选取权数 i w ,当2i σ 越小 时,权数i w 越大。
当 2i σ越大时,权数i w 越小。
将权数与 残差平方相乘以后再求和,得到加权的残差平方和:2i 21i 2i i X Y w e w )(**β-β-=∑∑,求使加权残差平方和最小的参数估计值**ˆˆ21ββ和。
这种求解参数估计式的方法为加权最小二乘法。
计量经济学:异方差
(1)布罗施-帕甘(Breusch-Pagan)检验
例4.2 使用BP检验对例4.1的回归模型进行异方差检验。 解:EViews中进行BP检验的结果如下:
从中可以看出,无论是使用F检验还是LM检验,在5%的显著性水 平下,均可拒绝随机误差项不存在异方差的原假设
2)怀特(White)检验
20000 X
30000
40000
(2)用 X e%i2 的散点图进行判断
第三节 异方差的检验
方法2:作X-ei2散点图
从图中可以看出,随着居 民可支配收入X的提高,随 机误差项平方ei2呈递增趋 势。表明随机误差项存在 递增型异方差。
ESQU
320000 280000 240000 200000 160000 120000
概 率 密 度
X1 X2 X3
同方差
概
率
Y
密
Y
度
E(Y|X) = β0 + β 1X
X
X1 X2 X3 异方差
E(Y|X) = β 0 + β 1X
X
异方差的矩阵表示
2 1
Var(u)
0 M
0
2 2
M
L L M
0
0
0
0
0
L
2 n
2、异方差的类型
•同方差性假定的意义是:每个ui围绕其零均值的离差,并不随解释 变量X的变化而变化,不论解释变量X的观测值是大还是小,每个ui
E(ˆ )(ˆ ) E ( X X )1 X Y ( X X )1 X Y
E ( X X )1 X X U ( X X )1 X X U
第五章 异方差性 答案
第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。
( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。
( F )3. 存在异方差时,可以用广义差分法进行补救。
(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。
(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。
( T ) 二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法 3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验 5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用 6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B ) A. B.C. D.7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )A. B.C. D. ∑=ii x y n 1b ˆ8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=∑∑=2ˆxxy b 22)(ˆ∑∑∑∑∑--=x x n y x xy n b xyb=ˆ型时,应将模型变换为( C )。
计量经济学 第五章 异方差 ppt课件
H0:ut不存在异方差, H1:ut存在异方差。
10
5.4 异方差检验
(2) White检验
④在同方差假设条件下,统计量
TR 2 2(5)
其中T表示样本容量,R2是辅助回归式的OLS估计的可决系数。 自由度5表示辅助回归式中解释变量项数(注意,不计算常数 项)。T R 2属于LM统计量。 ⑤判别规则是
2
1
0
-1
1
0 20 40 60 80 100 120 140 160 180 200
-2
-3 0
T
50
100
150
200
散点图
残差图
7
5.4 异方差检验
(1) Goldfeld-Quandt 检验
H0: ut 具有同方差, H1: ut 具有递增型异方差。
①把原样本分成两个子样本。具体方法是把成对(组)的观 测值按解释变量顺序排列,略去m个处于中心位置的观测值 (通常T 30时,取m T / 4,余下的T- m个观测值自然分成 容量相等,(T- m) / 2,的两个子样本。)
主对角线上的部分或全部元素都不为零,误差项就是自相关的。
异方差通常有三种表现形式,(1)递增型,(2)递减型,(3)条件自回
归型。 7
Байду номын сангаас
6
Y 6
4
DJ P Y
5
2
4
0
3
-2
2
-4
1
-6
0 20 40 60 80 100 120 140 160 180 200
-8
计量经济学第五章异方差性参考答案讲解
计量经济学第五章异⽅差性参考答案讲解第五章异⽅差性课后题参考答案 5.1(1)因为22()i i f X X =,所以取221iiW X =,⽤2i W 乘给定模型两端,得 312322221i i ii i i i Y X u X X X X βββ=+++ 上述模型的随机误差项的⽅差为⼀固定常数,即22221()()i i i iu Var Var u X X σ==(2)根据加权最⼩⼆乘法,可得修正异⽅差后的参数估计式为***12233Y X X βββ=-- ()()()()()()()***2****22232322322*2*2**2223223?i i i i i i i i i i i i i i i i i iW y x W x W y x W x x W x W x W x x β-=-∑∑∑∑∑∑∑()()()()()()()***2****23222222332*2*2**2223223?ii ii i i iii i i ii i i i i iW y x W x W y x W x x Wx W x W x x β-=-∑∑∑∑∑∑∑其中22232***23222,,iii i i i iiiW XW X W Y X X Y WWW ===∑∑∑∑∑∑******222333i i i i i x X X x X X y Y Y=-=-=- 5.2 (1)2222211111 ln()ln()ln(1)1 u ln()1Y X Y X Yu u X X X u ββββββββββ--==+≈=-∴=+ [ln()]0 ()[ln()1][ln()]11E u E E u E u µ=∴=+=+=⼜(2)[ln()]ln ln 0 1 ()11i i iiP P i i i i P P i i E P E µµµµµµµ===?====∑∏∏∑∏∏不能推导出所以E 1µ()=时,不⼀定有E 0µ(ln )= (3)对⽅程进⾏差分得:1)i i βµµ--i i-12i i-1lnY -lnY =(lnX -X )+(ln ln则有:1)]0i i µµ--=E[(ln ln5.3(1)该模型样本回归估计式的书写形式为:Y = 11.44213599 + 0.6267829962*X (3.629253) (0.019872)t= 3.152752 31.5409720.944911R =20.943961R = S.E.=9.158900 DW=1.597946 F=994.8326(2)⾸先,⽤Goldfeld-Quandt 法进⾏检验。
计量经济学ppt课件 异方差性
2
经变换的模型的随机误差项 vi =
ui f(X i
)
已是同方差,
f (Xi )常见的设定形式及对应的 vi 情况
函数形式
Xi
Xi2
(a0 a1Xi )2
var(ui )
2Xi 2Xi2
2 (a0 a1Xi )2
vi ui X i ui X i ui (a0 a1Xi )
var( i ) 2 2
则有
Yi = f(Xi )
β1 f(X i
)
+
β2
Xi + f(Xi )
ui f(Xi )
记: Y *
Y f (X
)
;
X
* 1
1 f (X
)
;
X
* 2
X ;v f (X)
u f (X)
38
随机误差项 vi 的方差为
var(vi ) var(
ui ) f (Xi)
f
1 (X
i
)
var(ui
)
Yˆi = βˆ1 + βˆ2 Xi 由上两式得残差: ei Yi -Yˆi
绘制出
ei2
对
X
的散点图
i
◆如果 ui 不随 Xi 而变化,则表明不存在异方差;
◆如果 ui 随 Xi 而变化,则表明存在异方差。
20
二、Goldfeld-Quanadt检验
作用:检验单调递增性(或递减性)异方差。
基本思想:将样本分为两部分,然后分别对两个样 本进行回归,并计算两个子样的残差平方和所构成 的比,以此为统计量来判断是否存在异方差。
36
一、模型变换法
以一元线性回归模型为例:
异方差
第一节 异方差的概念
例:以某一行业的企业为样本建立企业生产函数模 型 Yi=Ai1 Ki2 Li3ei 被解释变量:产出量Y 解释变量:资本K、劳动L、技术A, 那么:每个企业所处的外部环境对产出量的影响被 包含在随机误差项中。 每个企业所处的外部环境对产出量的影响程度不同 ,造成了随机误差项的异方差性。 这时,随机误差项的方差并不随某一个解释变量观 测值的变化而呈规律性变化,呈现复杂型。
第三节 异方差性的检验
三、戈里瑟(Gleiser)检验 1969年戈里瑟提出的,它不但可以检验异方差是 否存在,而且可以近似探测随机误差项的方差是 怎样随解释变量的变化而变化的。 基本思想:由OLS法得到残差 e i ,取 e i 的绝对 值 ,然后将 对某个 X i回归,根据回归模 ei ei 型的显著性和拟合优度来判断是否存在异方差。
二、异方差性的后果
ˆ
2
e
2 i
n2
ˆ s(1 )
ˆ ki
2
2
ˆ2
(Xi X )
2
但是,在异方差的情况下
ˆ* s( i ) ˆ ki i
2 2
ˆ i ki
2 2
ˆ ki
2
2
i ki ki
2
2
=
ˆ s(i )
i Байду номын сангаасi
第三节 异方差性的检验
第五章 异方差性 答案
第五章 异方差性一、判断题1. 在异方差的情况下,通常预测失效。
( T )2. 当模型存在异方差时,普通最小二乘法是有偏的。
( F )3. 存在异方差时,可以用广义差分法进行补救。
(F )4. 存在异方差时,普通最小二乘法会低估参数估计量的方差。
(F )5. 如果回归模型遗漏一个重要变量,则OLS 残差必定表现出明显的趋势。
( T ) 二、单项选择题1.Goldfeld-Quandt 方法用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 2.在异方差性情况下,常用的估计方法是( D )A.一阶差分法B.广义差分法C.工具变量法D.加权最小二乘法 3.White 检验方法主要用于检验( A )A.异方差性B.自相关性C.随机解释变量D.多重共线性 4.下列哪种方法不是检验异方差的方法( D )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验 5.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即( B )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用 6.如果戈里瑟检验表明,普通最小二乘估计结果的残差与有显著的形式的相关关系(满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为( B ) A. B.C. D.7.设回归模型为,其中()2i2i x u Var σ=,则b 的最有效估计量为( D )A. B.C. D. ∑=ii x y n 1b ˆ8.容易产生异方差的数据是( C )A. 时间序列数据B.平均数据C.横截面数据D.年度数据9.假设回归模型为i i i u X Y ++=βα,其中()2i 2i X u Var σ=,则使用加权最小二乘法估计模i e i x i i i v x e +=28715.0i v i x 21i x i x 1ix 1i i i u bx y +=∑∑=2ˆxxy b 22)(ˆ∑∑∑∑∑--=x x n y x xy n b xyb=ˆ型时,应将模型变换为( C )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同方差时,方差表达式为: Var( 2 )
2
xi2
32
三、对预测的影响
尽管参数的OLS估计量仍然无偏,并且基于此的预测也是 无偏的,但是由于参数估计量不是有效的,从而对Y的预 测也将不是有效的。 置信区间偏大或者偏小!
33
课前复习
1、什么是异方差?
异方差性是指模型中随机误差项的方差不是常量,而且它的变化与 解释变量的变动有关。
ei2
9
2 (2)绘制 的散点图。选择变量名 Xt e对 t 与 。(注意选择变量的顺序,先选的变量将在 e2 图形中表示横轴, 后选的变量表示 纵轴),进入数 据列表,再按路 径view/ graph/ scatter,可得散 点图,见右图:
X
10
2.判断
由图可以看出,残差平方 对解释变量 e2
3
具体案例分析
一、问题的提出和模型设定
为了给制定医疗机构的规划提供依据,分析比 较医疗机构与人口数量的关系,建立卫生医疗 机构数与人口数的回归模型。 假定医疗机构数与人口数之间满足线性约束, 则理论模型设定为: Yi Yi = b1 +b2 X i +ui 其中 Yi表示卫生医疗机构数, X i 表示人口数。
地区
眉山 宜宾 广安 达州 雅安 巴中 资阳 阿坝 甘孜
人口数(万人) 医疗机构数 (个) X Y 339.9 827
508.5 438.6 620.1 149.8 346.7 488.4 82.9 88.9 1530 1589 2403 866 1223 1361 536 594
乐山
南充
345.9
通常认为,截面数据较时间序列数据更容易产生
异方差。这是因为同一时点不同对象的差异,一 般说来会大于同一对象不同时间的差异。不过, 在时间序列数据发生较大变化的情况下,也可能 出现比截面数据更严重的异方差。
29
第二节 异方差性的后果
本节基本内容:
●对参数估计统计特性的影响 ●对参数显著性检验的影响 ●对预测的影响
其中,G-Q检验、White检验、ARCH 检验和 Glejser 检验都 要求大样本。 其中G-Q检验、White检验和 Glejser 检验对时间序列和截面 数据模型都可以检验,ARCH 检验只适用于时间序列数据模 型中。 G-Q检验和 ARCH 检验只能判断是否存在异方差,White检 验在判断基础上还可以判断出是哪一个变量引起的异方差。 Glejser 检验不仅能对异方差的存在进行判断,而且还能对异 方差随某个解释变量变化的函数形式进行诊断。
53
54
55
(四)检验的特点
●变量的样本值为大样本
●数据是时间序列数据
●只能判断模型中是否存在异方差,而不能诊断出哪一个
变量引起的异方差。
56
五、Glejser检验--戈里瑟检验
(一)检验的基本思想
由OLS法得到残差,取得绝对值,然后将对某个 解释变量回归,根据回归模型的显著性和拟合优 度来判断是否存在型显示的结果和问题
●人口数量对应参数的标准误差较小; ● t统计量远大于临界值,可决系数和修正的可决系 数结果较好,F检验结果明显显著; 表明该模型的估计效果不错,可以认为人口数量每增 加1万人,平均说来医疗机构将增加5.3735人。 然而,这里得出的结论可能是不可靠的,平均说来 每增加1万人口可能并不需要增加这样多的医疗机构, 所得结论并不符合真实情况。 有什么充分的理由说明这一回归结果不可靠呢?更 为接近真实的结论又是什么呢?
● ● ● ● 图示检验法 Goldfeld-Quanadt检验 White检验 ARCH检验
37
38
图形举例
用1998年四川省各地市州农村居民家庭消费支出与家庭纯 收入的数据,绘制出消费支出对纯收入的散点图,其中用 X 1 表示家庭纯收入。 Y1 表示农村家庭消费支出,
39
40
残差图形分析
异方差。
48
49
50
51
5.2 下表是消费Y与收入X的数据,试根据所给数据资料完成以下问题: (1)估计回归模型中的未知参数和,并写出样本回归模型的书写格式; (2)用Goldfeld-Quandt法和White法检验模型的异方差性; (3)选用合适的方法修正异方差。 表5.8
Y 55 65 70 80 79 84 98 95 90 75 74 110 113 125 108 115 140 120 145 130 X 80 100 85 110 120 115 130 140 125 90 105 160 150 165 145 180 225 200 240 185
i
的散点图主要分布 X
随 的变动
在图形中的下三角部分,大致看出残差平方
呈增大的趋势,因此,模型很可能存在异方差。但是否确实 2
存在异方差还应通过更进一步的检验。
ei
Xi
11
(二)Goldfeld-Quanadt检验
1. EViews软件操作
(1)对变量取值排序(按递增或递减)。在Procs菜单里选 Sort Current Page/Sort Workfile Series命令,出现排序 对话框,键入 X ,如果以递增型排序,选“Ascenging”, 如果以递减型排序,则应选“ Descending” ,点 ok 。本例 选递增型排序,这时变量 Y 与 X 将以 X 按递增型排序。 ( 2 )构造子样本区间,建立回归模型。在本例中,样本容 量 n 21 ,删除中间1/4的观测值,即大约5个观测值,余下部 分平分得两个样本区间:1—8和14—21,它们的样本个数均 是8个,即
30
一、对参数估计统计特性的影响
(一)参数估计的无偏性仍然成立 参数估计的无偏性仅依赖于基本假定中的零均值 假定(即 E(ui ) 0)。所以异方差的存在对无偏性 的成立没有影响。 (二)参数估计的方差不再是最小的 同方差假定是OLS估计方差最小的前提条件,所 以随机误差项是异方差时,将不能再保证最小二 乘估计的方差最小。
某地区消费Y与收入X的数据(单位:亿元)
Y 152 144 175 180 135 140 178 191 137 189 55 70 75 65 74 80 84 79 90 98 X 220 210 245 260 190 205 265 270 230 250 80 85 90 100 105 110 115 120 125 130 Y 95 108 113 110 125 115 130 135 120 140 140 152 140 137 145 175 189 180 178 191 X 140 145 150 160 165 180 185 190 200 205 210 220 225 230 240 245 250 260 265 270
12
在Sample菜单里,将区间定义为1—8,然后用OLS方法 求 得如下结果(表1)
13
在Sample菜单里,将区间定义为14—21,再用OLS方法求 得如下结果(表2)
14
(3)求F统计量值。基于表1和表2中残差平方和的 数据,即Sum squared resid的值。由表1计算得到 的残差平方和为 ,由表2计算得到的 残差平方和为 。 根据Goldfeld-Quanadt检验,F统计量为
2、产生异方差性的主要原因有哪些 ?
主要原因:模型中略去的变量随解释变量的变化而呈规律性的变化、 变量的设定问题、截面数据的使用,利用平均数作为样本数据等。
3、存在异方差性的后果有哪些 ? (1)对模型的OLS估计仍然具有无偏性 (2)最小方差性不成立 (3)导致参数的显著性检验失效 (4)预测的精度降低
15
16
17
18
19
20
21
第五章 异 方 差 性
本章讨论四个问题:
●异方差的实质和产生的原因 ●异方差产生的后果 ●异方差的检测方法 ●异方差的补救
22
第一节 异方差性的概念
本节基本内容:
●异方差性的实质 ●异方差产生的原因
23
25
图形表示
概 率 密 度
Y
X
26
27
28
(四)截面数据中总体各单位的差异
在得到表 5.2 估计结果后,用生成命令生成序列, 记 为 e2 。 生 成 过 程 如 下 , 先 按 路 径 : Procs/Generate Series,进入Generate Series by Equation 对话框,键入下式并点“ OK” 即可:
e2 resid ^ 2
8
生成序列图示
4
四川省2000年各地区医疗机构数与人口数
地区 人口数(万人) 医疗机构数 (个) X Y 1013.3 6304 成都
自贡 攀枝 花 泸州 德阳 绵阳 广元 遂宁 内江 315 103 463.7 379.3 518.4 302.6 371 419.9 911 934 1297 1085 1616 1021 1375 1212
二、Goldfeld-Quanadt检验 戈德菲尔德-夸特检验
作用:检验递增性(或递减性)异方差。
基本思想:将样本分为两部分,然后分别对两个样 本进行回归,并计算两个子样的残差平方和所构成 的比,以此为统计量来判断是否存在异方差。
(一) 检验的前提条件
1、要求检验使用的为大样本容量。 2、除了同方差假定不成立外,其它假定均满足。
1、掌握检验模型异方差的方法(重点是G-Q 检验和White检验)的原理及其基本思路
2、掌握修正异方差的方法(重点是加权最小 二乘法)的原理及其基本思路
3、掌握异方差的实操方法(习题5.2)
4、注意事项:修正异方差后必须对模型进行
再次检验是否存在异方差
第三节 异方差性的检验