(完整版)三角函数化简求值证明技巧

合集下载

三角函数的化简与证明

三角函数的化简与证明

三角函数的化简与证明三角函数是数学中的重要概念之一,它在解析几何、物理学、工程学等领域中有广泛应用。

在使用三角函数时,我们经常面临的一个问题就是如何将复杂的三角函数化简为简单形式,或者证明两个三角函数之间的等式。

本文将探讨三角函数的化简和证明方法。

一、三角函数的化简1. 三角恒等式三角恒等式是三角函数化简的基础。

它是一种等式关系,使得两个或多个三角函数能够互相转化。

下面是一些常见的三角恒等式:- 余弦函数的平方加正弦函数的平方等于1:$cos^2θ + sin^2θ = 1$- 2倍角公式:$cos(2θ) = cos^2θ - sin^2θ$- 倍角公式:$sin(2θ) = 2sinθcosθ$- 三角和差公式等通过运用这些恒等式,我们可以将复杂的三角函数化简为简单的形式,便于计算和理解。

2. 其他化简方法除了三角恒等式,还有一些其他的化简方法。

例如,使用欧拉公式,将三角函数转化为复指数函数进行化简。

这个方法可以将三角函数的复杂计算转化为简单的指数函数计算,能够提高计算效率。

在实际问题中,我们还可以利用对称性、周期性等性质进行化简。

这需要根据具体问题进行分析和推导,找到合适的化简方法。

二、三角函数的证明1. 等式的证明证明三角函数之间的等式是数学中的重要问题。

通过证明三角函数之间的等式,可以建立它们之间的联系,拓宽我们对三角函数的理解。

在证明三角函数等式时,我们可以运用三角恒等式、代数运算、数学归纳法等方法。

具体的证明过程需要根据问题的要求和条件进行推导。

2. 不等式的证明除了等式的证明,我们还经常需要证明三角函数之间的不等式。

三角函数的不等式证明在数学分析和优化等领域中有广泛应用。

在证明三角函数不等式时,我们可以使用极限、导数、积分和数学归纳法等方法。

通过分析三角函数的性质和变化趋势,找到合适的不等式证明方法。

需要注意的是,在证明过程中,要严谨而准确地推导,避免出现漏洞和错误,确保证明的有效性和可靠性。

三角函数化简求值的技巧

三角函数化简求值的技巧

三角函数化简求值的技巧
一、三角函数的重要性质:
1、正弦函数sin x、余弦函数cos x、正切函数tanx和其逆函数的
关系:
sin x=1/cos x,cos x=1/sin x,tan x=1/cot x,cot x=1/tan x,cos x=1/csc x,csc x=1/cos x。

2、三角函数的基本性质:
sin2x+cos2x=1,sin2x=2sin(x/2)cos(x/2),cos2x=cos2(x/2)
-sin2(x/2),2sin xcos x=sin2x+cos2x=2sin2(x/2)=2cos2(x/2)。

3、三角函数的对称性:
sin(-x)=-sin x,cos(-x)=cos x,tan(-x)=-tan x,cot(-x)=-cot x,csc(-x)=-csc x。

二、用三角函数化简求值的常用方法:
1、用公式和定义:
用三角函数的基本公式来把表达式中的各个项拆分开明确每个项的意义,然后把各个项的值累加求值。

2、用对称性:
对变量进行绝对值化,然后利用三角函数的对称性变换变量或表达式,从而达到化简的目的。

3、用反函数求值:
把表达式中的三角函数换成其对应的反函数,然后利用反函数的性质进行化简,获得原函数的表达式。

四、利用三角函数化简求值的实例:
例1:求Sin(60°)
解:
1、用公式求值:
可以用公式sin 2x=2sin xcos x来求值。

g3.1049三角函数的化简、求值与证明doc

g3.1049三角函数的化简、求值与证明doc

g3.1049 三角函数的化简、求值与证明一、知识回顾1、三角函数式的化简:(1)常用方法:①直接应用公式进行降次、消项;②切割化弦,异名化同名,异角化同角;③ 三角公式的逆用等。

(2)化简要求:①能求出值的应求出值;②使三角函数种数尽量少;③使项数尽量少;④尽量使分母不含三角函数;⑤尽量使被开方数不含三角函数2、三角函数的求值类型有三类:(1)给角求值:一般所给出的角都是非特殊角,要观察所给角与特殊角间的关系,利用三角变换消去非特殊角,转化为求特殊角的三角函数值问题;(2)给值求值:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题的关键在于“变角”,如2(),()()ααββααβαβ=+-=++-等,把所求角用含已知角的式子表示,求解时要注意角的范围的讨论;(3)给值求角:实质上转化为“给值求值”问题,由所得的所求角的函数值结合所求角的范围及函数的单调性求得角。

3、三角等式的证明:(1)三角恒等式的证题思路是根据等式两端的特征,通过三角恒等变换,应用化繁为简、左右同一等方法,使等式两端的化“异”为“同”;(2)三角条件等式的证题思路是通过观察,发现已知条件和待证等式间的关系,采用代入法、消参法或分析法进行证明。

二、基本训练1、已知θ是第三象限角,且4459sin cos θθ+=,那么2sin θ等于 ( )AB、 C 、23 D 、23-2、函数22y sin x x =-+的最小正周期 ( )A 、2πB 、πC 、3πD 、4π3、tan 70cos10(3tan 201)-等于 () A 、1 B 、2 C 、-1 D 、-24、已知46sin (4)4m m mαα--=≠-,则实数m 的取值范围是______。

5、设10,sin cos 2απαα<<+=,则cos2α=_____。

三、例题分析例1、化简:42212cos 2cos 2.2tan()sin ()44x x x x ππ-+-+例2、设3177cos(),45124x x πππ+=<<,求2sin 22sin 1tan x x x +-的值。

三角函数化简求值的技巧

三角函数化简求值的技巧
三角函数化简与求值常用技巧
三角函数化简与求值常用技巧
三角函数在高考中通常以中低档题型出现,难度不大,但由 于三角公式的特殊性,解题中往往也涉及一些小的变换技 巧,如果处理得当,往往可以事半功倍,快速而准确地得到 正确结论.通常情况下,三角变换应从“角度、函数、常数、 次数、结构”等几方面着手解决.
一、三角变换,角为先锋 三角函数作为一种特殊函数,其“角”的特殊性不容忽视,因此我们在三角函数恒等变换 中,应该首先注意角的形式,从统一角的角度出发,往往能够达到事半功倍的效果.
【例 1】已 知α、 β为 锐角,cos α=
3 5
,tan (α−β)=−
1 3
,则
tan β=(
)
A、
1 3
B、 3
【变式演练】已知 sin
x-π
4
=3,则
sin
2x 的值为(
)
5
A.- 7 25
B. 7 25
C. 9 25
D.16 25
【解析】法一、sin 2x=cos(2x- π )=1-2sin2(x- π )=1-2×(3)2= 7 ,选 B.
2
4
5 25
法二、依题意得 2(sin x-cos x)=3,1(sin x-cos x)2= 9 ,1-sin 2x=18,sin 2x= 7 ,选
C、
9 13
D、
13 9
【例
1】已 知α、 β为 锐角,cos α=
3 5
,tan (α−β)=−
1 3
,则
tan β=(
)
A、
1 3
B、 3
C、
9 13
D、
13 9
【分析】依题意,可求得 tan α=

三角函数化简与求值,4种突破口,展现恒等变换常用技巧

三角函数化简与求值,4种突破口,展现恒等变换常用技巧

三角函数化简与求值,4种突破口,展现恒等变换常用技巧
利用三角公式进行化简与求值时要注意三看:一看角,即看式子里面各角之间的联系。

二看函数名称,即看是同名还是异名,是"弦"还是"切"。

三看式子的结构特征,即看式子是积与商的形式还是和与差的形式等。

从角入手,化复角为单角
从形入手,利用配方法,先对二次项配方
从名入手,化异名为同名
从幂入手,利用降幂公式先降次
选择不同的突破口,就有不同的解法,正可谓是"条条大路通罗马"!本题展现了三角函数恒丰变换中的几种常用技巧,是一个典型的范例!
更多高考数学知识,敬请关注头条号,数学教育!。

三角函数化简公式及方法

三角函数化简公式及方法

三角函数化简公式及方法三角函数化简就是对复杂的三角函数进行变形,从而变成简单的三角函数,接下来给大家分享三角函数化简常用的公式。

三角函数化简原则(1)看角的特点,充分利用角之间的关系,尽量向同角转化,利用已知角构建求特角;(2)看函数名的特点,向同名函数转化,弦切互相转化;(3)看式子的结构特点,从整体出发,正用、逆用、变形应用这些公式。

另外,根据式子的特点,还可以使用辅助角公式。

三角函数化简常用公式半角公式sin(A/2)=±√((1-cosA)/2)cos(A/2)=±√((1+cosA)/2)tan(A/2)=±√((1-cosA)/((1+cosA))三角函数和差化积公式sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角函数积化和差公式sinAsinB=-[cos(A+B)-cos(A-B)]/2cosAcosB=[cos(A+B)+cos(A-B)]/2sinAcosB=[sin(A+B)+sin(A-B)]/2cosAsinB=[sin(A+B)-sin(A-B)]/2三角函数降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=vercos(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))三角函数辅助角公式asinα+bcosα=(√a^2+b^2)sin(α+β),tanβ=b/a 三角函数化简方法(1)切割化弦;(2)降幂公式;(3)用三角公式转化出特殊角;(4)异角化同角;(5)异名化同名;(6)高次转低次;(7)辅助角公式;(8)分解因式。

三角函数式的化简与证明

三角函数式的化简与证明

高中数学:三角函数式的化简与证明(1)化简:2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x sin 2⎝ ⎛⎭⎪⎫π4+x =12cos2x . 解析:原式=12(4cos 4x -4cos 2x +1)2×sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x ·cos 2⎝ ⎛⎭⎪⎫π4-x =(2cos 2x -1)24sin ⎝ ⎛⎭⎪⎫π4-x cos ⎝ ⎛⎭⎪⎫π4-x =cos 22x 2sin ⎝ ⎛⎭⎪⎫π2-2x =cos 22x 2cos2x =12cos2x . (2)证明:sin α+sin β=2sin α+β2cos α-β2.证明:因为α=α+β2+α-β2,β=α+β2-α-β2,所以sin α+sin β=sin ⎝ ⎛⎭⎪⎫α+β2+α-β2+sin ⎝ ⎛⎭⎪⎫α+β2-α-β2 =sin α+β2cos α-β2+cos α+β2sin α-β2+sin α+β2cos α-β2-cos α+β2sin α-β2=2sin α+β2cos α-β2.1.三角函数式化简的方法(1)弦切互化,异名化同名,异角化同角;降幂或升幂.(2)在三角函数式的化简中“次降角升”和“次升角降”是基本的规律,根号中含有三角函数式时,一般需要升次,去掉根号.2.三角恒等式的证明方法(1)从等式的比较复杂的一边化简变形到另一边,相当于解决化简题目.(2)等式两边同时变形,变形后的结果为同一个式子.(3)先将要证明的式子进行等价变形,再证明变形后的式子成立. 提醒:开平方时正负号的选取易出现错误,所以要根据已知和未知的角之间的关系,恰当地把角拆分,根据角的范围确定三角函数的符号.3.三角函数式的化简遵循的三个原则(1)一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理的变换,从而正确使用公式.(2)二看“名”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”或“弦化切”.(3)三看“形”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”“整式因式分解”“二次式配方”“遇到平方要降幂”等.(1)化简:sin (2α+β)sin α-2cos(α+β).解:原式=sin (2α+β)-2sin αcos (α+β)sin α=sin[α+(α+β)]-2sin αcos (α+β)sin α=sin αcos (α+β)+cos αsin (α+β)-2sin αcos (α+β)sin α=cos αsin (α+β)-sin αcos (α+β)sin α=sin[(α+β)-α]sin α=sin βsin α. (2)证明:cos θ-cos φ=-2sin θ+φ2sin θ-φ2.证明:因为θ=θ+φ2+θ-φ2,φ=θ+φ2-θ-φ2,所以cos θ-cos φ=cos ⎝ ⎛⎭⎪⎫θ+φ2+θ-φ2-cos ⎝ ⎛⎭⎪⎫θ+φ2-θ-φ2 =cos θ+φ2cos θ-φ2-sin θ+φ2sin θ-φ2-cos θ+φ2cos θ-φ2-sin θ+φ2sin θ-φ2=-2sin θ+φ2sin θ-φ2.。

考点12三角化简和求值方法总结

考点12三角化简和求值方法总结

一、利用诱导公式化简求值时的原则:1.“负化正”,2.“大化小”, 3.“小化锐”,4.“锐求值”,二、利用倍角公式化简求值:二倍角公式实际就是由两角和公式中令_______所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α= 2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”三、基础梳理1.同角三角函数的基本关系:(1)平方关系:____________________ (2)商数关系:__________________2.诱导公式公式一:公式二:公式三:公式四:公式五:公式六:3.两角和与差的正弦、余弦、正切公式(1)C (α-β): (2)C (α+β):(3)S (α+β): (4)S (α-β):(5)T (α+β): (6)T (α-β):4.二倍角的正弦、余弦、正切公式:(1)S 2α:(2)C 2α: (3)T 2α:5.有关公式的逆用、变形等(1)tan α±tan β=______________(2)cos 2α=______________,sin 2α=_______________;(3)1+sin 2α=_________________,1-sin 2α=________________,sin α±cos α=________.6.函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)=___________或f(α)=_______________,其中φ可由a ,b 的值唯一确定.一个口诀:诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法:在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式______________化成正、余弦.(2)和积转换法:利用_______________的关系进行变形、转化.(3)巧用“1”的变换:_________________________三个防范(1)利用诱导公式进行化简求值时,其步骤:去负-脱周-化锐.特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.(3)注意求值与化简后的结果一般要尽可能有理化、整式化.两个技巧:(1)拆角、拼角技巧:2α=__________;α=_______;β=__________;α-β2=_________.(2)化简技巧:切化弦、“1”的代换等.三个变化:(1)变角: (2)变名: (3)变式:【方法总结】一、利用诱导公式化简求值时的原则1.“负化正”,运用公式三将任意负角的三角函数化为任意正角的三角函数.2.“大化小”,利用公式一将大于360°的角的三角函数化为0°到360°的三角函数,利用公式二将大于180°的角的三角函数化为0°到180°的三角函数.3.“小化锐”,利用公式六将大于90°的角化为0°到90°的角的三角函数.4.“锐求值”,得到0°到90°的三角函数后,若是特殊角直接求得,若是非特殊角可由计算器求得.二、利用倍角公式化简求值二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α= 2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.【考点剖析】一.明确要求1.利用两角和与差的正弦、余弦、正切公式进行三角函数式的化简、求值是高考常考的点.2.考查同角三角函数的基本关系式、考查诱导公式在三角函数化简求值中的运用.3.考查三角函数中的倍角公式以及转化思想和运算求解能力,属于容易题.二.命题方向1.考查利用三角函数的公式对三角函数式进行化简求值.2.公式逆用、变形应用是高考热点.3.题型以选择题、解答题为主.三.规律总结基础梳理1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1;(2)商数关系:sin αcos α=tan α.2.诱导公式公式一:sin(α+2kπ)=sin α,cos(α+2kπ)=cosα,其中k ∈Z.公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tan α.公式三:sin(-α)=-sinα,cos(-α)=cosα.公式四:sin(π-α)=sinα,cos(π-α)=-cosα.公式五:sin ⎝⎛⎭⎫π2-α=cosα,cos ⎝⎛⎭⎫π2-α=sinα. 公式六:sin ⎝⎛⎭⎫π2+α=cosα,cos ⎝⎛⎭⎫π2+α=-sinα 3.两角和与差的正弦、余弦、正切公式(1)C (α-β):cos(α-β)=cosαcosβ+sinαsinβ;(2)C (α+β):cos(α+β)=cosαcosβ-sinαsinβ;(3)S (α+β):sin(α+β)=sinαcosβ+cosαsinβ; (4)S (α-β):sin(α-β)=sinαcosβ-cosαsinβ;(5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β; (6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.4.二倍角的正弦、余弦、正切公式(1)S 2α:sin 2α=2sinαcosα;(2)C 2α:cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;(3)T 2α:tan 2α=2tan α1-tan2α. 5.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tanαtanβ);(2)cos2α=1+cos 2α2,sin2α=1-cos 2α2; (3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin ⎝⎛⎭⎫α±π4. 6.函数f(α)=acos α+bsin α(a ,b 为常数),可以化为f(α)=a2+b2sin(α+φ)或f(α)=a2+b2cos(α-φ),其中φ可由a ,b 的值唯一确定.一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限.三种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos2θ(1+tan2θ)=tan π4=….三个防范(1)利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐.特别注意函数名称和符号的确定.(2)在利用同角三角函数的平方关系时,若开方,要特别注意判断符号.(3)注意求值与化简后的结果一般要尽可能有理化、整式化.两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β=α+β2-α-β2;α-β2=⎝⎛⎭⎫α+β2-⎝⎛⎭⎫α2+β. (2)化简技巧:切化弦、“1”的代换等.三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等.。

三角化简、求值和证明

三角化简、求值和证明

【考点剖析】1.命题方向预测:(1)考查利用三角函数的公式对三角函数式进行化简求值. (2)公式逆用、变形应用是高考热点. (3) 题型以选择题、解答题为主. 2.课本结论总结:(1)同角三角函数的基本关系 ①平方关系:sin 2α+cos 2α=1; ②商数关系:sin αcos α=tan α.(2)诱导公式公式一:sin(α+2k π)=sin α,cos(α+2k π)=αcos ,其中k ∈Z . 公式二:sin(π+α)=αsin -,cos(π+α)=αcos -, tan(π+α)=tan α.公式三:sin(-α)=αsin -,cos(-α)=αcos . 公式四:sin(π-α)=sin α,cos(π-α)=αcos -. 公式五:)2sin(απ-=αcos ,)2cos(απ-=sin α. 公式六:)2sin(απ+=αcos ,)2cos(απ+=αsin -诱导公式的记忆口诀为:奇变偶不变,符号看象限 (3)两角和与差的正弦、余弦、正切公式①C (α-β):cos(α-β)=βαβαsin sin cos cos +; ②C (α+β):cos(α+β)=βαβαsin sin cos cos -; ③S (α+β):sin(α+β)=βαβαsin cos cos sin +; ④S (α-β):sin(α-β)=βαβαsin cos cos sin -;⑤T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;⑥T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.(4)二倍角的正弦、余弦、正切公式 ①S 2α:sin 2α=ααcos sin 2;②C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; ③T 2α:tan 2α=2tan α1-tan 2α. 3.名师二级结论:(1)有关公式的逆用、变形等①tan α±tan β=)tan tan 1)(tan(βαβα +; ②cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;③1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,)4sin(2cos sin πααα+=+.(2)函数αααsin cos )(b a f +=(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b2cos(α-φ),其中φ可由a ,b 的值唯一确定. (3)三种方法在求值与化简时,常用方法有:①弦切互化法:主要利用公式tan α=sin αcos α化成正、余弦.②和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化. ③巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4=….(4)三个防范①利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负-脱周-化锐.特别注意函数名称和符号的确定.②在利用同角三角函数的平方关系时,若开方,要特别注意判断符号. ③注意求值与化简后的结果一般要尽可能有理化、整式化.4.考点交汇展示:1.【2017课标3,文6】函数1ππ()sin()cos()536f x x x =++-的最大值为( ) A .65B .1C .35D .152.【2018届北京市通州区三模】已知函数.(Ⅰ)求的最小正周期;(Ⅱ)求证:当时,.1.【2018届福建省两大名校一模】将函数的图象向左平移()个单位长度,所得图象对应的函数为偶函数,则的最小值为( )A .B .C .D .2.【2017浙江,18】已知函数f (x )=sin 2x –cos 2x –x cos x (x ∈R ). (Ⅰ)求)32(πf 的值. (Ⅱ)求)(x f 的最小正周期及单调递增区间.【2016高考上海文数】方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________ .【2017江苏,16】已知向量(cos ,sin ),(3,[0,π].x x x ==∈a b (1)若a ∥b ,求x 的值;(2)记()f x =⋅a b ,求()f x 的最大值和最小值以及对应的x 的值.【考点分类】考向一 利用两角和差的正弦、余弦、正切公式求值1.【2018年全国卷II 文】已知,则__________.2.【2018年江苏卷】已知为锐角,,.(1)求的值;(2)求的值.【易错点睛】在化简与求值时,一定要注意“所求角”与“已知角”的内在联系,往往起到“事半功陪”的效果.例.已知3sin25α=(2)2παπ<<,1tan()2αβ-=,则tan()αβ+=()A.-2 B.-1 C.211- D.211考向二利用倍角公式以及诱导公式求值1. 【2018年新课标I卷文】已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,,且,则A. B. C. D.2.【2018届福建省百校临考冲刺】若,且,则()A. B. C. D.3.【2018年浙江卷】已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,它的终边过点P().(Ⅰ)求sin(α+π)的值;(Ⅱ)若角β满足sin(α+β)=,求cosβ的值.【热点预测】1.【2018年全国卷Ⅲ文】若,则A. B. C. D.2.【广东省东莞市2018年考前冲刺】()A. 1 B. C. D.3.【2018届江西省南昌市二轮测试卷(八)】已知函数,若,则()A. B. C. D.4.【2019届江西省都昌县第一中学高三第一次调研】已知,则()A. B. C. D.5.【2018届安徽省六安市第一中学高三上第二次月考】()A. B. -1 C. D. 16.【名校联盟2018年高考二模】已知,,则的值是A. B. C. D.7.【2018届湖北省5月冲刺】已知为锐角,为第二象限角,且,,则()A. B. C. D.8.【2018届黑龙江省仿真模拟(三)】已知,,则A. B. C. D.9.【2018届福建省罗源第一中学5月校考】已知角的终边经过点,将角的终边顺时针旋转后得到角,则()A. B. C. D.10.【2018届江西省南昌市二轮测试六】如图直角坐标系中,角、角的终边分别交单位圆于两点,若点的纵坐标为,且满足,则的值A. B. C. D.11.【2017北京,理12】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称.若1sin3α=,cos()αβ-=___________.12.如图,在平面直角坐标系xOy 中,点,,A B C 均在单位圆上,已知点A 在第一象限的横坐标是3,5点B 在第二象限,点()1,0.C(1)设,COA θ∠=求sin 2θ的值; (2)若AOB ∆为正三角形,求点B 的坐标13.【福建省晋江市(安溪一中、养正中学、惠安一中、泉州实验中学四校)联考】已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边经过点,且.(1)求实数的值; (2)若均为锐角,,求的值.14.【2018届江苏省盐城中学考前热身2】已知向量,且共线,其中.(1)求的值;(2)若,,求的值.。

三角函数的化简与证明

三角函数的化简与证明

三角函数的化简与证明一、知识点 1、化简(1)化简目标:项数习量少,次数尽量低,尽量不含分母和根号 (2)化简三种基本类型:1) 根式形式的三角函数式化简 2) 多项式形式的三角函数式化简3) 分式形式的三角函数式化简(3)化简基本方法:用公式;异角化同角;异名化同名;化切割为弦;特殊值与特殊角的三角函数值互化。

2、证明及其基本方法 (1)化繁为简法 (2)左右归一法 (3)变更命题法(4)条件等式的证明关键在于分析已知条件与求证结论之间的区别与联系。

3、无论是化简还是证明都要注意: (1)角度的特点 (2)函数名的特点 (3)化切为弦是常用手段 (4)升降幂公式的灵活应用 二、范例解析例1:(1)已知α为第四象限角,化简:ααααααcos 1cos 1sin sin 1sin 1cos +-++-(2)已知360270<<α,化简α2cos 21212121++解:(1)因为α为第四象限角 所以原式=αααααα2222cos 1)cos 1(sin sin1)sin 1(cos --+--()ααααααααααs i n c o s c o s 1s i n 1s i n c o s 1s i n c o s s i n 1c o s -=---=--+-=(2)360270<<α,02cos,0cos <>∴αα所以原式=2cos2cos2cos 1cos 212122cos 1212122ααααα-==+=+=++思路点拨:根式形式的三角函数式化简常采用有理化如(1)或升幂公式如(2) 例2、P(55 例1)试求函数Y=sinx+cosx+2sinx cosx +2 的最大值,最小值.?解:练习:a,b 为何值时,函数()x b a x b a y 22cos2sin++-=的值为2?(a=3,b=1)思路点拨:注意角度α22-x 与α-x 关系,先化简整理。

三角函数解题技巧和公式(已整理)技巧归纳以及练习题

三角函数解题技巧和公式(已整理)技巧归纳以及练习题

浅论关于三角函数的几种解题技巧本人在十多年的职中数学教学实践中,面对三角函数内容的相关教学时,积累了一些解题方面的处理技巧以及心得、体会。

下面尝试进行探讨一下:一、关于)2sin (cos sin cos sin ααααα或与±的关系的推广应用:1、由于ααααααααcos sin 21cos sin 2cos sin )cos (sin 222±=±+=±故知道)cos (sin αα±,必可推出)2sin (cos sin ααα或,例如: 例1 已知θθθθ33cos sin ,33cos sin -=-求。

分析:由于)cos cos sin )(sin cos (sin cos sin 2233θθθθθθθθ++-=-]cos sin 3)cos )[(sin cos (sin 2θθθθθθ+--=其中,θθcos sin -已知,只要求出θθcos sin 即可,此题是典型的知sin θ-cos θ,求sin θcos θ的题型。

解:∵θθθθcos sin 21)cos (sin 2-=- 故:31cos sin 31)33(cos sin 212=⇒==-θθθθ ]cos sin 3)cos )[(sin cos (sin cos sin 233θθθθθθθθ+--=- 3943133]313)33[(332=⨯=⨯+=2、关于tg θ+ctg θ与sin θ±cos θ,sin θcos θ的关系应用:由于tg θ+ctg θ=θθθθθθθθθθcos sin 1cos sin cos sin sin cos cos sin 22=+=+ 故:tg θ+ctg θ,θθcos sin ±,sin θcos θ三者中知其一可推出其余式子的值。

例2 若sin θ+cos θ=m 2,且tg θ+ctg θ=n ,则m 2 n 的关系为( )。

三角函数的化简与求值

三角函数的化简与求值

1.三角恒等变换的两原则(1)化繁为简:变复角为单角,变不同角为同角,化非同名函数为同名函数,化高次为低次,化多项式为单项式,化无理式为有理式。

(2)消除异差:消除已知与未知、条件与结论、左端与右端以及各项的次数、角、函数名称、结构式等方面的差异。

2.三角函数式的化简 (1)化简要求①三角函数名称尽量少;②次数尽量低;③能求值的尽量求值; ④尽量使分母不含三角函数;⑤使被开方数不含三角函数. (2)化简思路对于和式,基本思路是降次、消项和逆用公式;对于三角分式,基本思路是分子与分母约分或逆用公式;对于二次根式,注意二倍角公式的逆用,另外,还可以用切割化弦、变量代换、角度归一等方法 (3)化简的方法弦切互化,异名化同名,异角化同角,降幂或升幂,和差化积,积化和差等。

3.三角恒等式的证明 (1)证明三角恒等式的方法观察等式两边的差异(角、函数、运算的差异),从解决某一差异入手(同时消除其他差异),确定从该等式的哪些证明(也可两边同时化简),当从解决差异方面不易入手时,可采用转换命题法或用分析法等。

(2)证明三角条件等式的方法首先观察条件与结论的差异,从解决这一差异入手,确定从结论开始.通过变换,将已知表达式代入得出结论,或通过变换已知条件得出结论,如果这两种方法都证不出来,可采用分析法;如果已知条件含参数,可采用消去参数法;如果已知条件是连比的式子,可采用换元法等。

1. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。

即首先观察角与角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。

基本的技巧有:(1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--,22αβαβ++=⋅,()()222αββααβ+=---等),如 (1)已知2tan()5αβ+=,1tan()44πβ-=,那么tan()4πα+的值是_____ (答:322);(2)已知02πβαπ<<<<,且129cos()βα-=-,223sin()αβ-=,求cos()αβ+的值(答:490729); (3)已知,αβ为锐角,sin ,cos x y αβ==,3cos()5αβ+=-,则y 与x 的函数关系为______(答:43(1)55y x x =<<)(2)三角函数名互化(切化弦),如 (1)求值sin 50(13tan10)+(答:1);(2)已知sin cos 21,tan()1cos 23αααβα=-=--,求tan(2)βα-的值(答:18)(3)公式变形使用(tan tan αβ±()()tan 1tan tan αβαβ=±。

高考数学难点突破_难点16__三角函数式的化简与求值

高考数学难点突破_难点16__三角函数式的化简与求值

高考数学难点突破_难点16__三角函数式的化简与求值在高考数学中,三角函数式的化简与求值是一个很常见的难点。

在解决这一难点时,我们需要掌握一些基本的化简公式和常用的解题技巧。

首先,我们来回顾一下一些常见的三角函数化简公式:1.两角之和的三角函数公式:sin(A+B) = sinA·cosB + cosA·sinBcos(A+B) = cosA·cosB - sinA·sinBtan(A+B) = (tanA + tanB) / (1 - tanA·tanB)2.两角之差的三角函数公式:sin(A-B) = sinA·cosB - cosA·sinBcos(A-B) = cosA·cosB + sinA·sinBtan(A-B) = (tanA - tanB) / (1 + tanA·tanB)3.倍角的三角函数公式:sin2A = 2sinA·cosAcos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan2A = (2tanA) / (1 - tan^2A)4.半角的三角函数公式:sin(A/2) = ±√[(1 - cosA) / 2]cos(A/2) = ±√[(1 + cosA) / 2]tan(A/2) = ±√[(1 - cosA) / (1 + cosA)](在这里需要根据A的范围来确定取正还是取负)掌握了这些基本的化简公式后,我们可以运用它们来解决一些常见的难点问题。

1.求三角函数值:高考中经常会出现需要求一些特定角度的三角函数值的问题。

我们可以通过套用基本的化简公式,将所给的角度化简到我们熟悉的角度(如30°,45°,60°等),然后代入公式求值即可。

例如,要求sin75° 的值,我们可以化简为sin(45°+30°),然后套用两角之和的公式,得到sin45°·cos30° + cos45°·sin30°。

三角函数化简与求值的常用技巧

三角函数化简与求值的常用技巧

三角函数化简与求值的常用技巧文/寇友松一、角度变换这类问题的特点很明显,通常我们只需要把题设中的角度进行适当的和差运算,便可与所求式中的角度建立起等式关系,进而利用两角和与差的三角展开式求得结果.常见的角度变换有:ββαα-+=)(,)]()[(21βαβαα-++=,)()2(βαβαα---=,)()(2βαβαα-++=,)()(2βαβαβ--+=,)2()2(2βαβαβα---=+等.高考预测题1 已知135)sin(=-βα,135)sin(-=+βα,且⎪⎭⎫ ⎝⎛∈-ππβα,2,⎪⎭⎫ ⎝⎛∈+ππβα2,23,求α2sin 和β2cos 的值.解析 联系已知条件中的角度与所求关系式中的角度间的关系,容易观察出)()(2βαβαα-++=, )()(2βαβαβ--+=,从而可利用两角和与差的正弦展开式和余弦展开式进行求解. 135)sin(=-βα,且⎪⎭⎫ ⎝⎛∈-ππβα,2,∴1312)cos(-=-βα. 又135)sin(-=+βα,且⎪⎭⎫ ⎝⎛∈+ππβα2,23,∴1312)cos(=+βα. ∴)]()sin[(2sin βαβαα-++=)sin()cos()cos()sin(βαβαβαβα-++-+= =1351312)1312(135⨯+-⨯-169120=. 同理得12cos -=β.二、切、割化弦当已知式子中出现切、割、弦的混合结构式时,化切、割为两弦是常用的三角函数求值技巧.高考预测题2 求212cos 412csc }312tan 3(2--︒︒︒的值. 解析原式=)112cos 2(212sin 1)312cos 12sin 3(2--︒︒︒︒︒︒︒︒︒-=24cos 212cos 12sin 12cos 312sin 3=︒︒︒︒-24cos 24sin 12cos 312sin 3︒︒︒-=48sin 21)6012sin(32 34-=.三、公式的活用与变形学生对三角函数公式的应用不仅要会正用,还要善于活用和变形应用,只有这样,才能达到熟练掌握公式的目的. 如βαβαβαtan tan 1tan tan )tan(-+=+常变形为以下三种形式: (1);)tan(tan tan tan tan 1βαβαβα++=- (2));tan tan 1)(tan(tan tan βαβαβα-+=+(3).tan tan )tan()tan(tan tan βαβαβαβα--+=+高考预测题3 .50tan 70tan 350tan 70tan ︒︒︒︒-+= .解析 将两角和的正切公式变形得,);50tan 70tan 1)(5070tan(50tan 70tan ︒︒︒︒︒︒-+=+故原式︒︒︒︒︒--=50tan 70tan 3)50tan 70tan 1(120tan ︒︒︒︒-+-=50tan 70tan 350tan 70tan 33 .3-=高考预测题4 .80cos 40cos 20cos ︒︒︒⋅⋅= .解析 观察到式中的倍角关系,可考虑借助二倍角的正弦公式的变形式来求解. 故︒︒︒⋅⋅80cos 40cos 20cos ︒︒︒︒=20sin 280cos 40cos 40sin ︒︒︒=20sin 480cos 80sin ︒︒=20sin 8160sin .81= 小结:通过对倍角公式的变形应用,我们可以得到如下结论:);(2cos 22sin sin 2sin 2sin 2sin 2sin *1221N n n n n n ∈=⋅⋅⋅⋯⋅⋅---ααααααα).(2sin 22sin cos 2cos 2cos 2cos 2cos *1221N n n n n n ∈=⋅⋅⋅⋯⋅⋅---ααααααα四、对偶法在三角学中,如果把某个三角式中的角的弦值化成同角互余(名)的弦值,则该式叫做原式的对偶式.在解决有关问题时,如果能灵活地运用对偶的数学思想,合理地构造对偶式,并能与原式进行和、差、积的运算,就能使问题巧妙地得到解决.高考预测题5 157cos 156cos 155cos 154cos 153cos 152cos 15cos πππππππ= . 解析 整体看待上式,然后构造出它的对偶式,从而使原问题化难为易.设=A ,157cos 156cos 155cos 154cos 153cos 152cos15cos πππππππ =B ,157sin 156sin 155sin 154sin 153sin 152sin 15sin πππππππ由倍角公式可得,=⋅B A 12811514sin 1512sin 1510sin 158sin 156sin 154sin 152sin πππππππ 1281=157sin 156sin 155sin 154sin 153sin 152sin 15sin πππππππ.1281B = 显然,0≠B 由,1281B AB =得,.1281=A 故157cos 156cos 155cos 154cos 153cos 152cos 15cos πππππππ.1281= 五、齐次式高考预测题6 已知,21tan =α (1)求ααααsin 3cos 5cos 2sin 4+-的值; (2)求αααα22cos 5cos sin 3sin 2+-的值.解析 关于正弦、余弦的齐次式和齐次分式,如,cos sin θθb a y +=+=θ2sin a y θθcos sin b ,cos 2θc +θθθθθθθθ2222221121cos cos sin sin cos cos sin sin c b a c b a y ++++=等,可将其转化为关于θtan 的表达式,进而求值. (1) ,21tan =α∴,0cos ≠α 将ααααsin 3cos 5cos 2sin 4+-的分子和分母同时除以αcos 得,ααααsin 3cos 5cos 2sin 4+-=.021352214tan 352tan 4=⨯+-⨯=+-αα (2)αααα22cos 5cos sin 3sin 2+-αααααα2222cos sin cos 5cos sin 3sin 2++-=1tan 5tan 3tan 222++-=ααα.516= 六、正、余弦定理法高考预测题7 ︒︒︒︒++105cos 45sin 3105cos 45sin 22= . 解析 因为上述表达式的结构特点与余弦定理的表达式很相似,所以可考虑构造特定的ABC ∆,然后借助正、余弦定理来求解.由正、余弦定理得,.sin cos sin sin 2sin sin 222C C B A B A =-+于是原式=︒︒︒︒-+15sin 45sin 315sin 45sin 22.令,120,15,45︒︒︒===C B A 则有原式=︒︒︒︒︒⨯-+120cos 15sin 45sin 215sin 45sin 222︒=120sin 2.43=七、和差代换高考预测题8 ︒︒︒︒++50cos 20sin 50cos 20sin 22= .解析 本题除了可以利用正、余弦定理法求解外,还可以适当地引入参量,然后借助和差代换的方法达到求解的目的.设.50cos ,20sin b a b a -=+=︒︒于是)50cos 20(sin 21︒︒+=a =)40sin 20(sin 21︒︒+.10cos 21︒= )50cos 20(sin 21︒︒-=b )40sin 20(sin 21︒︒-=.10sin 23︒-= 故原式)(()()(22b a b a b a b a -+++-++=223b a +=︒︒+=10sin 4310cos 4322.43=。

三角函数化简求值常用技巧

三角函数化简求值常用技巧

三角函数化简求值常用技巧三角函数式的化简和求值是高考考查的重点内容之一。

掌握化简和求值问题的解题规律和一些常用技巧,以优化我们的解题效果,做到事半功倍。

这也是解决三解函数问题的前提和出发点。

一、切割化弦例1、已知 )2(cot tan22≥=+m m x x ,求xx 4cos 14cos 3-+的值。

解: 24cos 14cos 34cos 1)4cos 3(24cos 12cos 444cos 1)2cos 1(484cos 12sin 48)4cos 1(812sin 2112sin 412sin 2112sin 41cos sin 2)cos (sin cos sin cos sin sin cos cos sin 2cot tan 2222222222222244222222m x x m x x x x x x x x x x x x x x x x x x x x x x x x x x x =-+∴=-+=-+=---=--=--=-=-+=+=+∴=+Θ 点评:由已知式与待求式的差异知,若选择“从已知到未知”,必定要“切切割化弦”;利用降幂公式实现已知与未知的统一。

二、统一配凑例2、已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值. 解:注意到2α= (α-β)+(α+β),于是可用配凑法求解。

∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π, ∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=点评:本题以凑角的形式来实现未知与已知的统一,这是三角函数化简求值的常用技巧之一。

三、异角化同例3、已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:22=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x x x x x x x x x x x x x x x x x x x x x ππππππππππ又解Θ 点评:本题求解关键是将如何将已知条件中的角与目标关系式中的角统一起来。

三角函数的化简与推导

三角函数的化简与推导

三角函数的化简与推导三角函数是数学中常见的函数类型,广泛应用于几何、物理等领域。

在解题过程中,为了简化计算和推导,需要进行三角函数的化简和推导。

本文将介绍常用的三角函数化简和推导方法。

一、三角函数的基本关系三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)以及它们的倒数函数。

它们之间存在一些基本关系:1. 正切函数与正弦函数的关系:tanθ = sinθ / cosθ2. 余切函数与余弦函数的关系:cotθ = cosθ / sinθ3. 正弦函数和余弦函数的平方和恒等于1:sin^2θ + cos^2θ = 1这是三角恒等式中的一个,由于其重要性,被称为“勾股定理”。

二、三角函数化简的常用方法1. 和差化积:sin(A ± B) = sinAcosB ± cosAsinBcos(A ± B) = cosAcosB ∓ sinAsinB这些公式可用于将和差形式的三角函数化为乘积形式,从而简化计算。

2. 二倍角公式:sin(2θ) = 2sinθcosθcos(2θ) = cos^2θ - sin^2θ = 1 - 2sin^2θ = 2cos^2θ - 1这些公式可将一个角的三角函数表示为另一个角的三角函数,方便推导和计算。

3. 半角公式:sin(θ/2) = ±√[(1 - cosθ) / 2]cos(θ/2) = ±√[(1 + cosθ) / 2]这些公式可将一个角的三角函数表示为半角的三角函数,常用于解题和化简。

三、三角函数的推导方法三角函数的导数是求解各种问题中常见的步骤。

下面列出几个常用的三角函数导数公式:1. 正弦函数的导数:d/dx(sin(x)) = cos(x)2. 余弦函数的导数:d/dx(cos(x)) = -sin(x)3. 正切函数的导数:d/dx(tan(x)) = sec^2(x)4. 余切函数的导数:d/dx(cot(x)) = -csc^2(x)这些公式可以用于求解函数的导数,对于复杂的函数关系,可以通过链式法则以及基本的三角函数导数公式来推导导数。

三角函数化简的方法技巧

三角函数化简的方法技巧

三角函数化简的方法技巧三角函数是数学中常见的函数,它们在许多领域中都有广泛的应用。

化简三角函数是数学中的重要技巧,它可以简化复杂的表达式,使计算更加简单和直观。

以下是一些常用的三角函数化简方法和技巧。

1. 基本公式使用三角函数的基本公式是化简的基础。

例如,正弦函数的基本公式是:$$\sin^2\theta + \cos^2\theta = 1$$这个公式可以用来化简包含正弦函数的表达式。

根据需要,还可以使用余弦函数、正切函数和余切函数的基本公式。

2. 和差化积公式和差化积公式是一种常见的化简方法。

对于两个角度$\alpha$ 和 $\beta$,我们有以下的和差化积公式:$$\sin(\alpha \pm \beta) = \sin\alpha \cos\beta \pm \cos\alpha\sin\beta$$$$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha\sin\beta$$这些公式可以用来化简包含和差角的三角函数表达式,并将它们转化为乘积形式。

3. 二倍角公式二倍角公式是化简三角函数的另一种常用方法。

对于角度$\theta$,我们有以下的二倍角公式:$$\sin2\theta = 2\sin\theta\cos\theta$$$$\cos2\theta = \cos^2\theta - \sin^2\theta$$这些公式可以用来将包含二倍角的三角函数表达式转化为简单的乘积形式。

4. 三倍角公式类似于二倍角公式,三倍角公式也是化简三角函数的方法之一。

对于角度 $\theta$,我们有以下的三倍角公式:$$\sin3\theta = 3\sin\theta - 4\sin^3\theta$$$$\cos3\theta = 4\cos^3\theta - 3\cos\theta$$这些公式可以用来将包含三倍角的三角函数表达式转化为简单的表达形式。

2022届高三数学一轮复习三角函数之三角公式的化简与求值 题型方法归纳

2022届高三数学一轮复习三角函数之三角公式的化简与求值 题型方法归纳

高考数学专题—三角函数(三角公式的化简与求值)高中阶段三角函数公式主要包括:同角三角公式、诱导公式、两角和差公式、二倍角公式、和差化积与积化和差关系式。

(1)同角三角公式—主要用于正弦、余弦、正切之间的计算与推导(2)诱导公式—将角的三角函数值推广到全体实数(3)两角和差与二倍角公式—研究不同角度之间的公式一、三角函数求值与化简必会的三种方法(常用)(1)弦切互化法:主要利用公式tan α=;形如,asin2x+bsin xcos x+ccos2x等类型可进行弦化切;(2)“1”的灵活代换法:1=sin2θ+cos2θ=(sinθ+cosθ)2-2sinθcosθ=tan等;(3)和积转换法:利用(sinθ±cosθ)2=1±2sinθcosθ,(sinθ+cosθ)2+(sinθ-cosθ)2=2的关系进行变形、转化.例1、【2020年高考全国Ⅰ卷理数】已知,且,则A.B.C.D.【答案】A【解析】,得, 即,解得或(舍去),又.故选:A . 例2、cos 150−sin 150cos 150+sin 150=A,−√3 B,0 C√3 D,√33法一:利用两角和差公式,求出cos 150,sin 150因为cos 150=cos (450−300)=cos 450cos 30°−sin 450sin 300=√6+√24同理可得sin 150=√6−√24所以cos 15o −sin 150cos 150+sin 150=√6+√24−√6−√24√6+√24+√6−√24=√33故选D法二:利用利用同角的正弦与余弦平方和为1,求解。

因为sin 150>0,cos 150>0 所以令cos 150−sin 150cos 150+sin 150=t (t >0)t 2=cos 2150−2cos 150sin 150+sin 2150cos 2150+2cos 150sin 15°+sin 215°=1−sin 3001+sin 300=13故选D法三:利用平方差公式,将非特殊角转化为特殊角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三讲
一、三角函数的化简、计算、证明的恒等变形的应用技巧
1、网络
2、三角函数变换的方法总结
(1)变换函数名
对于含同角的三角函数式,通常利用同角三角函数间的基本关系式及诱导公式,通过“切割化弦”,“切割互化”,“正余互化”等途径来减少或统一所需变换的式子中函数的种类,这就是变换函数名法.它实质上是“归一”思想,通过同一和化归以有利于问题的解决或发现解题途径。

【例1】已知θ同时满足和,且a、b 均不为0,求a、b的关系。

练习:已知sin(α+β)=,cos(α-β)=,求的值。

2)变换角的形式
对于含不同角的三角函数式,通常利用各种角之间的数值关系,将它们互相表示,改变原角的形式,从而运用有关的公式进行变形,这种方法主要是角的拆变.它应用广泛,方式灵活,如α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α/2可看作α/4的倍角;(45°+α)可看成(90°+2α)的半角等等。

【例2】求sin(θ+75°)+cos(θ+45°)-cos(θ+15°)的值。

练习已知,求的值
【例3】已知sinα=Asin(α+β)(其中cosβ≠A),试证明:tan(α
+β)=
提示:sin[(α+β)-β]=Asin (α+β)
(3)以式代值
利用特殊角的三角函数值以及含有1的三角公式,将原式中的1或其他特殊值用式子代换,往往有助于问题得到简便地解决。

这其中以“1”的变换为最常见且最灵活。

“1”可以看作是sin2x+cos2x, sec2x-tan2x, csc2x -cot2x,tanxcotx, secxcosx, tan45°等,根据解题的需要,适时地将“1”作某种变形,常能获得较理想的解题方法。

【例4】化简:
(4)和积互化
积与和差的互化往往可以使问题得到解决,升幂和降次实际上就是和积互化的特殊情形。

这往往用到倍、半角公式。

【例5】解三角方程:sin2x+sin22x=sin23x
(5)添补法
与代数恒等变换一样,在三角变换中有时应用添补法对原式作一定的添项裂项会使某些问题很便利地得以解决。

将原式“配”上一个因子,同时除以这个式子也是添补法的一种特殊情形。

【例6】求证:=
(6)代数方法
三角问题有时稍作置换,用各种代数方法对三角函数式作因式分解、等量置换等的变形,从而将三角问题转换成代数问题来解,而且更加简捷。

这其中有设元转化、利用不等式等方法。

【例7】锐角α、β满足条件,则下列结论中正确的是()
A.α+β≠
B. α+β<
C. α+β>
D. α+β=
(7)数形结合
有的三角变换问题蕴含着丰富的几何直观,此时若能以数思形,数形渗透,两者交融,则可开辟解题捷径。

利用单位圆,构造三角形,利用直线、曲线的方程等方法都是数形结合的思想。

【例9】已知:,,求的值。

5. 非特殊角的化简、求值问题的解题方法探究
非特殊角的化简求值是给角求值中一类常见的三角求值类型,对于此类求值问题,由于涉及到的三角公式及其变形灵活多样,因而如何利用三角公式迅速准确的求值应是解决这类问题的重点,现在我们通过一个题目的解法探寻,体会非特殊角三角函数的求法。

【题目】求的值。

练习
1 若,则的值为()
A. B.
C. D.
2 函数的值域是()
A. B. C. D.
3. 已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为()
A. B. C. D.
4. 等于()
A. -1
B. 1
C. 2
D. -2
二、辅助角公式及其应用 辅助角公式
对于形如y=asinx+bcosx 的三角式,可变形如下: y=asinx=bcosx =
++++a b x a a b
x b a b
222
2
2
2
(sin cos )·
·。

1 求周期
例1 求函数y x x x =+-+244
32cos()cos()sin π
π
的最小正周期。

2. 求最值
例2. 已知函数f(x)=cos 4
x-2sinxcosx-sin 4
x 。

若x ∈[,
]02
π
,求f(x)的最大值和最小值。

3求值域
例4. 求函数f x k x k x x ()cos(
)cos()sin()=+++--++61326132233
2πππ
(,)x R k Z ∈∈的值域。

4 图象对称问题
例6. 如果函数y=sin2x+acos2x 的图象关于直线x=-
π
8
对称,那么a=( ) (A )2 (B )-2 (C )1 (D )-1
5. 图象变换 例7 已知函数。

R x ,1x cos x sin 2
3
cos 21y 2∈++=
该函数的图象可由y x x R =∈sin ()的图象经过怎样的平移和伸缩变换得到? 6. 求值
例8. 已知函数f(x)=x sin 32-+sinxcosx 。

设α∈(0,π),f(2
α
)=2341-,求sin α的值。

7. 求系数 例9. 若函数f(x)=
)2x
cos(2x sin a )
x 2
sin(4x 2cos 1-π-+π+的最大值为2,试确定常数a 的值。

8. 解三角不等式
例10. 已知函数f(x)=sin 2
x+sin2x ,x ]2,0[π∈,求使f(x)为正值的x 的集合。

相关文档
最新文档