人教版初中数学因式分解分类汇编
人教版初中数学因式分解分类汇编附答案
人教版初中数学因式分解分类汇编附答案一、选择题1.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.2.下列多项式不能使用平方差公式的分解因式是( )A .22m n --B .2216x y -+C .22b a -D .22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.3.把32a 4ab -因式分解,结果正确的是( )A .()()a a 4b a 4b ?+-B .()22a a 4b ?-C .()()a a 2b a 2b +-D .()2a a 2b -【答案】C【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a,再对余下的多项式继续分解.【详解】a3-4ab2=a(a2-4b2)=a(a+2b)(a-2b).故选C.【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4.下列分解因式正确的是()A.x2-x+2=x(x-1)+2 B.x2-x=x(x-1)C.x-1=x(1-1x)D.(x-1)2=x2-2x+1【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A、x2-x+2=x(x-1)+2,不是分解因式,故选项错误;B、x2-x=x(x-1),故选项正确;C、x-1=x(1-1x),不是分解因式,故选项错误;D、(x-1)2=x2-2x+1,不是分解因式,故选项错误.故选:B.【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.5.下列各式中,由等式的左边到右边的变形是因式分解的是()A.(x+3)(x-3)=x2-9 B.x2+x-5=(x-2)(x+3)+1C.a2b+ab2=ab(a+b) D.x2+1=x1 () xx【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是整式的乘法,故A错误;B、没有把一个多项式转化成几个整式积的形式,故B错误;C、把一个多项式转化成了几个整式积的形式,故C正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.6.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+ 【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.7.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.8.计算201200(2)(2)-+-的结果是( )A .2002-B .2002C .1D .2-【答案】A【解析】【分析】直接提取公因式进而计算得出答案.【详解】(-2)201+(-2)200=(-2)200×(-2+1)=-2200.故选:A .【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.9.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.10.若a 2-b 2=14,a-b=12,则a+b 的值为( ) A .-12 B .1 C .12 D .2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a 2-b 2=(a+b )(a-b)=12(a+b)=14∴a+b=12故选C. 点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.11.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.12.下列因式分解正确的是( )A .x 2﹣y 2=(x ﹣y )2B .a 2+a+1=(a+1)2C .xy ﹣x=x (y ﹣1)D .2x+y=2(x+y )【答案】C【解析】【分析】【详解】解:A 、x 2﹣y 2=(x+y )(x ﹣y ),故此选项错误;B 、a 2+a+1无法因式分解,故此选项错误;C 、xy ﹣x=x (y ﹣1),故此选项正确;D 、2x+y 无法因式分解,故此选项错误.故选C .【点睛】本题考查因式分解.13.下列等式从左到右的变形,属于因式分解的是( )A .x 2+2x ﹣1=(x ﹣1)2B .x 2+4x+4=(x+2)2C .(a+b )(a ﹣b )=a 2﹣b 2D .ax 2﹣a=a (x 2﹣1)【答案】B【解析】【分析】因式分解是指将多项式和的形式转化成整式乘积的形式,因式分解的方法有:提公因式法,套用公式法,十字相乘法,分组分解法,解决本题根据因式分解的定义进行判定.【详解】A 选项,从左到右变形错误,不符合题意,B 选项,从左到右变形是套用完全平方公式进行因式分解,符合题意,C 选项, 从左到右变形是在利用平方差公式进行计算,不符合题意,D 选项, 从左到右变形利用提公因式法分解因式,但括号里仍可以利用平方差公式继续分解,属于分解不彻底,因此不符合题意,故选B.【点睛】本题主要考查因式分解的定义,解决本题的关键是要熟练掌握因式分解的定义和方法.14.下面式子从左边到右边的变形中是因式分解的是( )A .()2212x x x x --=--B .()()22a b a b a b +-=-C .()()2422x x x -=+-D .()2222a b a b ab +=++ 【答案】C【解析】【分析】根据把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解进行分析即可.【详解】A 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.B 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.C 选项:等式右边是乘积的形式,故是因式分解,符合题意.D 选项:等式右边不是乘积的形式,故不是因式分解,不符合题意.故选:C.【点睛】考查了因式分解的意义,关键是掌握因式分解的定义(把一个多项式化为几个整式的积的形式).15.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.16.若a b c 、、为ABC ∆三边,且满足222244a c b c a b -=-,则ABC ∆的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均有可能 【答案】D【解析】【分析】把已知等式左边分解得到()()()2220a b a b c a b ⎡⎤+--+=⎣⎦,-a b =0或()222c a b -+=0,即a=b 或222c a b =+,然后根据等腰三角形和直角三角形的判定方法判断.【详解】因为a b c 、、为ABC ∆三边,222244a c b c a b -=-所以()()()2220a b a b c a b ⎡⎤+--+=⎣⎦ 所以-a b =0或()222c a b -+=0,即a=b 或222c a b =+所以ABC ∆的形状是等腰三角形、等腰三角形、等腰直角三角形故选:D【点睛】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.17.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0 【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.18.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.19.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.20.计算(-2)2015+(-2)2016的结果是 ( )A .-2B .2C .22015D .-22015【答案】C【解析】【分析】【详解】(-2) 2015+(-2)2016=(-2) 2015×(-2)+(-2) 2015=(-2) 2015×(1-2)=22015.故选C.点睛:本题属于因式分解的应用,关键是找出各数字之间的关系.。
人教版初中数学因式分解分类汇编含答案
人教版初中数学因式分解分类汇编含答案一、选择题1.将多项式x 2+2xy+y 2﹣2x ﹣2y+1分解因式,正确的是( )A .(x+y )2B .(x+y ﹣1)2C .(x+y+1)2D .(x ﹣y ﹣1)2 【答案】B【解析】【分析】此式是6项式,所以采用分组分解法.【详解】解:x 2+2xy+y 2﹣2x ﹣2y+1=(x 2+2xy+y 2)﹣(2x+2y )+1=(x+y )2﹣2(x+y )+1=(x+y ﹣1)2.故选:B2.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .3.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.4.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.5.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.6.计算201200(2)(2)-+-的结果是( )A .2002-B .2002C .1D .2-【答案】A【解析】【分析】直接提取公因式进而计算得出答案.【详解】(-2)201+(-2)200=(-2)200×(-2+1)=-2200.故选:A .【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.7.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ yB .x ≥ yC .x < yD .x > y【答案】D【解析】【分析】判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系.【详解】解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>,0x y ∴->,x y ∴>,故选:D .【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.8.若a 2-b 2=14,a-b=12,则a+b 的值为( )A .-12B .1C .12D .2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a 2-b 2=(a+b )(a-b)=12(a+b)=14∴a+b=12故选C. 点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为( ) A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】 2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.10.不论x ,y 为任何实数,22428x y x y +--+ 的值总是( )A .正数B .负数C .非负数D .非正数【答案】A【解析】x²+y²-4x-2y+8=(x²-4x+4)+(y²-2y+1)+3=(x-2)2+(y-1)2+3≥3,不论x,y 为任何实数,x²+y²-4x-2y+8的值总是大于等于3,故选A.【点睛】本题考查了因式分解的应用,解题的关键是要明确要判断一个算式是正数时总是将其整理成一个完全平方公式加正数的形式.11.下列各因式分解正确的是( )A .﹣x 2+(﹣2)2=(x ﹣2)(x+2)B .x 2+2x ﹣1=(x ﹣1)2C .4x 2﹣4x+1=(2x ﹣1)2D .x 3﹣4x=2(x ﹣2)(x+2)【答案】C【解析】【分析】分别根据因式分解的定义以及提取公因式法和公式法分解因式得出即可.【详解】A .﹣x 2+(﹣2)2=(2+x)(2﹣x),故A 错误;B .x 2+2x ﹣1无法因式分解,故B 错误;C.4x 2﹣4x+1=(2x ﹣1)2,故C 正确;D 、x 3﹣4x= x(x ﹣2)(x+2),故D 错误.故选:C .【点睛】此题主要考查了提取公因式法与公式法分解因式以及分解因式的定义,熟练掌握相关公式是解题关键.12.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.13.若a b c 、、为ABC ∆三边,且满足222244a c b c a b -=-,则ABC ∆的形状是( ) A .直角三角形B .等腰三角形C .等腰直角三角形D .以上均有可能 【答案】D【解析】【分析】把已知等式左边分解得到()()()2220a b a b c a b ⎡⎤+--+=⎣⎦,-a b =0或()222c a b -+=0,即a=b 或222c a b =+,然后根据等腰三角形和直角三角形的判定方法判断.因为a b c 、、为ABC ∆三边,222244a c b c a b -=-所以()()()2220a b a b c a b ⎡⎤+--+=⎣⎦ 所以-a b =0或()222c a b -+=0,即a=b 或222c a b =+所以ABC ∆的形状是等腰三角形、等腰三角形、等腰直角三角形故选:D【点睛】本题考查因式分解的应用:利用因式分解解决求值问题;利用因式分解解决证明问题;利用因式分解简化计算问题.14.已知三个实数a ,b ,c 满足a ﹣2b +c <0,a +2b +c =0,则( )A .b >0,b 2﹣ac ≤0B .b <0,b 2﹣ac ≤0C .b >0,b 2﹣ac ≥0D .b <0,b 2﹣ac ≥0 【答案】C【解析】【分析】根据a ﹣2b +c <0,a +2b +c =0,可以得到b 与a 、c 的关系,从而可以判断b 的正负和b 2﹣ac 的正负情况.【详解】∵a ﹣2b +c <0,a +2b +c =0,∴a +c =﹣2b ,∴a ﹣2b +c =(a +c )﹣2b =﹣4b <0,∴b >0,∴b 2﹣ac =222222a c a ac c ac +++⎛⎫-= ⎪⎝⎭=2222042a ac c a c -+-⎛⎫= ⎪⎝⎭…, 即b >0,b 2﹣ac ≥0,故选:C .【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b 和b 2-ac 的正负情况.15.下列各式分解因式正确的是( )A .2112(12)(12)22a a a -=+-B .2224(2)x y x y +=+C .2239(3)x x x -+=-D .222()x y x y -=- 【答案】A【解析】根据因式分解的定义以及平方差公式,完全平方公式的结构就可以求解.【详解】 A. 2112(12)(12)22a a a -=+-,故本选项正确; B. 2222224(2)(2)=+44x y x y x y x xy y +≠+++,,故本选项错误;C. 222239(3)(3)=69x x x x x x -+≠---+,,故本选项错误;D. ()22()x y x y x y -=-+,故本选项错误. 故选A.【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握平方差公式,完全平方公式.16.下列等式从左到右的变形,属于因式分解的是( )A .()21x x x x -=- B .()22121x x x x -+=-+ C .()()21323x x x x -+=+- D .()a b c ab ac -=-【答案】A【解析】【分析】根据因式分解的意义:把一个多项式转化成几个整式积的形式叫因式分解,可得答案.【详解】解:A 、把一个多项式转化成几个整式积的形式,符合题意;B 、右边不是整式积的形式,不符合题意;C 、是整式的乘法,不是因式分解,不符合题意;D 、是整式的乘法,不是因式分解,不符合题意;故选:A .【点睛】本题考查了因式分解的意义,掌握因式分解的意义是解题关键.17.若n ()是关于x 的方程的根,则m+n 的值为( ) A .1B .2C .-1D .-2 【答案】D【解析】【分析】将n 代入方程,提公因式化简即可.【详解】解:∵是关于x 的方程的根, ∴,即n(n+m+2)=0, ∵∴n+m+2=0,即m+n=-2,故选D.【点睛】本题考查了一元二次方程的求解,属于简单题,提公因式求出m+n 是解题关键.18.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.19.下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】【分析】根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.【详解】A.x 2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x 2-y 2=(x+y)(x-y),故该选项因式分解错误,不符合题意,C.xy-x=x(y-1),故该选项正确,符合题意,D.x 2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,故选:C .【点睛】本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.20.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【解析】【分析】根据提公因式法和公式法进行判断求解即可.【详解】 A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.。
初中因式分解公式大全
初中因式分解公式大全因式分解是初中数学中的一个重要知识点,它是解决代数式的一个重要方法。
因式分解的目的是将一个代数式分解成若干个乘积的形式,从而更容易进行计算和求解。
在初中阶段,因式分解公式是学生们需要掌握的基础知识之一。
下面我们将介绍一些常见的初中因式分解公式,希望能对大家的学习有所帮助。
一、一次因式分解公式。
1. a^2 b^2 = (a + b)(a b)。
这是一个一次因式分解的基本公式,它可以用来分解两个平方数之差。
当我们遇到类似的代数式时,可以利用这个公式来进行因式分解,从而简化计算过程。
二、二次因式分解公式。
1. a^2 + 2ab + b^2 = (a + b)^2。
这是一个常见的完全平方公式,它可以用来分解一个完全平方的代数式。
在实际问题中,我们经常会遇到完全平方的情况,因此掌握这个公式对于解题非常有帮助。
2. a^2 2ab + b^2 = (a b)^2。
这是完全平方公式的另一种形式,与上一个公式相对应。
当我们遇到完全平方差的情况时,可以利用这个公式进行因式分解。
三、三次因式分解公式。
1. a^3 + b^3 = (a + b)(a^2 ab + b^2)。
这是一个常见的立方和公式,它可以用来分解两个立方数的和。
在代数式的计算中,有时会遇到这种情况,因此掌握这个公式对于解题非常有帮助。
2. a^3 b^3 = (a b)(a^2 + ab + b^2)。
这是立方差公式,与上一个公式相对应。
当我们遇到两个立方数的差时,可以利用这个公式进行因式分解,从而简化计算过程。
四、其他常见因式分解公式。
1. a^2 + b^2 = (a + b)(a bi)(a + bi)。
这是一个关于复数的因式分解公式,它可以用来分解两个复数的和。
在高中阶段学习复数时,这个公式会被进一步应用和拓展。
2. a^3 + b^3 + c^3 3abc = (a + b + c)(a^2 + b^2 + c^2 ab ac bc)。
人教版初中数学因式分解分类汇编含解析
人教版初中数学因式分解分类汇编含解析一、选择题1.下列各式从左到右的变形中,属于因式分解的是( )A .m (a +b )=ma +mbB .a 2+4a ﹣21=a (a +4)﹣21C .x 2﹣1=(x +1)(x ﹣1)D .x 2+16﹣y 2=(x +y )(x ﹣y )+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.2.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形B .钝角三角形C .等腰三角形D .等边三角形【答案】C【解析】【分析】已知等式左边分解因式后,利用两数相乘积为0两因式中至少有一个为0得到a=b ,即可确定出三角形形状.【详解】已知等式变形得:(a+b )(a-b )-c (a-b )=0,即(a-b )(a+b-c )=0,∵a+b-c ≠0,∴a-b=0,即a=b ,则△ABC 为等腰三角形.故选C .【点睛】此题考查了因式分解的应用,熟练掌握因式分解的方法是解本题的关键.3.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D .a (m +n )=am +an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A 、变形的结果不是几个整式的积,不是因式分解;B 、把多项式10x 2﹣5x 变形为5x 与2x ﹣1的积,是因式分解;C 、变形的结果不是几个整式的积,不是因式分解;D 、变形的结果不是几个整式的积,不是因式分解;故选:B .【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.4.下列各式从左到右的变形中,是因式分解的为( ).A .()x a b ax bx -=-B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A 、是整式的乘法运算,故选项错误;B 、右边不是积的形式,故选项错误;C 、x 2-1=(x+1)(x-1),正确;D 、等式不成立,故选项错误.故选:C .【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.5.下列因式分解正确的是( )A .()2211x x +=+B .()22211x x x +-=- C .()()22x 22x 1x 1=-+- D .()2212x x x x -+=-+ 【答案】C【解析】【分析】依据因式分解的定义以及提公因式法和公式法,即可得到正确结论.【详解】解:D 选项中,多项式x 2-x+2在实数范围内不能因式分解;选项B ,A 中的等式不成立;选项C 中,2x 2-2=2(x 2-1)=2(x+1)(x-1),正确.故选C .【点睛】本题考查因式分解,解决问题的关键是掌握提公因式法和公式法的方法.6.已知4821-可以被在60~70之间的两个整数整除,则这两个数是( )A .61、63B .61、65C .61、67D .63、65 【答案】D【解析】【分析】由()()()()()()24242412686421212121221121=+-=+++--,多次利用平方差公式化简,可解得.【详解】解:原式()()24242121=+-,()()()()()()()()()24121224126624122121212121212163652121=++-=+++-=⨯⨯++ ∴这两个数是63,65.选D.【点睛】本题考查的是因式分解的应用,熟练掌握平方差公式是解题的关键.7.不论x ,y 为任何实数,22428x y x y +--+ 的值总是( )A .正数B .负数C .非负数D .非正数【答案】A【解析】x²+y²-4x-2y+8=(x²-4x+4)+(y²-2y+1)+3=(x-2)2+(y-1)2+3≥3,不论x,y 为任何实数,x²+y²-4x-2y+8的值总是大于等于3,故选A.【点睛】本题考查了因式分解的应用,解题的关键是要明确要判断一个算式是正数时总是将其整理成一个完全平方公式加正数的形式.8.若实数x 满足2210x x --=,则322742017x x x -+-的值为( )A .2019B .2019-C .2020D .2020-【答案】D【解析】【分析】根据2210x x --=推出x 2-2x=1,然后把-7x 2分解成-4x 2-3x 2,然后把所求代数式整理成用x 2-2x 表示的形式,然后代入数据计算求解即可.【详解】解:∵x 2-2x-1=0,∴x 2-2x=1,2x 3-7x 2+4x-2017=2x 3-4x 2-3x 2+4x-2017,=2x (x 2-2x )-3x 2+4x-2017,=6x-3x 2-2017,=-3(x 2-2x )-2017=-3-2017=-2020故选D.【点睛】本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.9.已知x ﹣y =﹣2,xy =3,则x 2y ﹣xy 2的值为( )A .2B .﹣6C .5D .﹣3 【答案】B【解析】【分析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.10.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×13=83, 故选C .【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.11.下列从左到右的变形,是因式分解的是( )A .2(a ﹣b)=2a ﹣2bB .221(a b)(a b)1-=-+++a bC .2224(2)x x x -+=-D .22282(2)(2)x y x y x y -=-+ 【答案】D【解析】【分析】根据因式分解的定义,把一个多项式变形为几个整式的积的形式是分解因式进行分析即可得出.【详解】解:由因式分解的定义可知:A. 2(a ﹣b)=2a ﹣2b ,不是因式分解,故错误;B. 221(a b)(a b)1-=-+++a b ,不是因式分解,故错误;C. 2224(2)x x x -+=-,左右两边不相等,故错误;D. 22282(2)(2)x y x y x y -=-+是因式分解;故选:D【点睛】本题考查了因式分解的定义,熟知因式分解的定义和分解的规范要求是解题关键.12.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.13.若三角形的三边长分别为a 、b 、c ,满足22230a b a c b c b -+-=,则这个三角形是( )A .直角三角形B .等边三角形C .锐角三角形D .等腰三角形 【答案】D【解析】【分析】首先将原式变形为()()()0b c a b a b --+=,可以得到0b c -=或0a b -=或0a b +=,进而得到b c =或a b =.从而得出△ABC 的形状.【详解】∵22230a b a c b c b -+-=,∴()()220a b c b c b -+-=,∴()()220b c a b --=,即()()()0b c a b a b --+=,∴0b c -=或0a b -=或0a b +=(舍去),∴b c =或a b =,∴△ABC 是等腰三角形.故选:D .【点睛】本题考查了因式分解-提公因式法、平方差公式法在实际问题中的运用,注意掌握因式分解的步骤,分解要彻底.14.已知a 、b 、c 为ABC ∆的三边长,且满足222244a c b c a b -=-,则ABC ∆是( )A .直角三角形B .等腰三角形或直角三角形C .等腰三角形D .等腰直角三角形【答案】B【解析】【分析】移项并分解因式,然后解方程求出a 、b 、c 的关系,再确定出△ABC 的形状即可得解.【详解】移项得,a 2c 2−b 2c 2−a 4+b 4=0,c 2(a 2−b 2)−(a 2+b 2)(a 2−b 2)=0,(a 2−b 2)(c 2−a 2−b 2)=0,所以,a 2−b 2=0或c 2−a 2−b 2=0,即a =b 或a 2+b 2=c 2,因此,△ABC 等腰三角形或直角三角形.故选B .【点睛】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a 、b 、c 的关系式是解题的关键.15.把x 2-y 2-2y -1分解因式结果正确的是( ).A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x 2-(y 2+2y+1),=x 2-(y+1)2,=(x+y+1)(x-y-1).故选A .16.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.17.下列从左到右的变形属于因式分解的是( )A .(x +1)(x -1)=x 2-1B .m 2-2m -3=m(m -2)-3C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3) 【答案】D【解析】【分析】根据因式分解的定义,因式分解是把多项式写出几个整式积的形式,对各选项分析判断后利用排除法求解.【详解】解:A 、(x+1)(x-1)=x 2-1不是因式分解,是多项式的乘法,故本选项错误; B 、右边不全是整式积的形式,还有减法,故本选项错误;C 、右边不是整式积的形式,分母中含有字母,故本选项错误;D 、x 2-5x +6=(x -2)(x -3)符合因式分解的定义,故本选项正确.故选:D .【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.18.下列等式从左到右的变形,属于因式分解的是( )A .2(3)(2)6x x x x +-=+-B .24(2)(2)x x x -=+-C .2323824a b a b =⋅D .1()1ax ay a x y --=-- 【答案】B【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A .是整式乘法,故A 错误;B .是因式分解,故B 正确;C .左边不是多项式,不是因式分解,故C 错误;D .右边不是整式积的形式,故D 错误.故选B .【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.19.下列因式分解正确的是( )A .()22121x x x x ++=++B .()222x y x y -=-C .()1xy x x y -=-D .()22211x x x +-=- 【答案】C【解析】【分析】根据平方差公式,提公因式法分解因式,完全平方公式,对各选项逐一分析判断即可得答案.【详解】A.x 2+2x+1=(x+1)2,故该选项不属于因式分解,不符合题意,B.x 2-y 2=(x+y)(x-y),故该选项因式分解错误,不符合题意,C.xy-x=x(y-1),故该选项正确,符合题意,D.x 2+2x-1不能因式分解,故该选项因式分解错误,不符合题意,故选:C .【点睛】本题考查因式分解,因式分解首先看是否有公因式,如果有先提取公因式,然后再利用公式法或十字相乘法进行分解,要分解到不能再分解为止.20.下列各式从左到右因式分解正确的是( )A .()26223x y x y +=--B .()22121x x x x +=+--C .()2242x x =--D .()()311 x x x x x =+-- 【答案】D【解析】【分析】因式分解,常用的方法有:(1)提取公因式;(2)利用乘法公式进行因式分解【详解】 A 中,需要提取公因式:()26223+1x y x y +=--,A 错误;B 中,利用乘法公式:()2221x x x +=--1,B 错误;C 中,利用乘法公式:2()4()22x x x =-+-,C 错误;D 中,先提取公因式,再利用乘法公式:()()311x x x x x -=+-,正确 故选:D【点睛】在进行因式分解的过程中,若能够提取公因式,往往第一步是进行提取公因式,在观察剩下部分是否还可进行因式分解.。
人教版八年级数学上册 14.3 因式分解大归类讲义
因式分解大归类知识点:因式分解:【定义】 把一个单项式或多项式化成几个整式的 乘积 的形式,这种式子变形叫做这个单项式或多项式因式分解,也叫做把个单项式或多项式分解因式。
整式乘法与因式分解的对比如:x x x x +=+2)1(, 称这种式子变形为整式的 乘法 。
反过来,)1(2+=+x x x x ,像这种式子的变形过程,称为多项式的因式分解。
一、提公因式法例1:把c ab b a 323128+分解因式 (温馨提示:方法是先“找”,再“提”)“找”238b a 与c ab 312的公因式:(1)先看系数:8和12的最大公约数是 ;(2)再找字母部分:3a 和a 的公因式是 (指数最小的就是它们的公因式),2b 和3b 的公因式是 ,所以,238b a 与c ab 312的公因式就是 。
解,原式=bc ab a ab 3424222⋅+⋅例2:把()()c b a c b a +-+236分解因式 (分析:“找”公因式,是 )针对性练习:1、找下列各式的公因式(1)n m 2与3mn 公因式是 (2)102x 与x 15的公因式是(3) 23x 与212xy 的公因式是 (4)bc a ab c ab 223201612+-的公因式是2、把下列各式分解因式(1)abc a -2 (2)a a +2 (3)a a 2552+-(4)mn n m 282+ (5)10+2x x 15 (6)2293xy x -(7)22912y x xyz - (8)bc a ab c ab 223201612+-(9)()()c b c b a +-+32 (10)()()2222b a q b a p +-+(11)()()712742+-+x x a(12)()()q p q q p p +-+46 (13)(x -2)2-x +2二、利用“平方差公式”进行因式分解整式乘法的平方差公式:=-+))((b a b a , ,这个变形过程是 因式分解 。
公式法分解因式经典练习题分类汇编
【基础知识】公式法分解因式(1)平方差公式: a 2-b 2= .(2)完全平方公式:a 2+2ab +b 2= . a 2-2ab +b 2= .(3)立方和公式:3322()()a b a b a ab b +=+-+.(4)立方差公式:3322()()a b a b a ab b -=-++.【题型1】利用平方差公式分解因式分解因式:(1)4x 2-y 2; (2)-16+a 2b 2; (3)x 2100-25y 2; (4)(x +2y)2-(x -y)2.【变式训练】 1.分解因式(1)4a 2-y 2; (2)x 2y 4-49; (3)4a 2-(3b -c)2; (4)(x +y)2-4x 2; (5)x 4-16;(6)(4x -3y)2-25y 2 (7)25(a +b)2-4(a -b)2; (8)9x 2-(2x -y)2;(9)(a +b)4-(a -b)4;(10)(2x +y)2-(x -2y)2; (11)9(a +b)2-16(a -b)2; (12)9(3a +2b)2-25(a -2b)2.2.分解因式(1)a 3-9a ; (2)3x 2-12; (3)8m 3-2m ; (4)12 m 2n 2-8; (5)31a 2b 2-3.(6)3m(2x -y)2-3mn 2; (7)(a -b)b 2-4(a -b); (8)x ²-y ²-3x-3y ; (9)a 2(a-b )+b 2(b-a ).【题型2】完全平方式已知x 2+kxy +16y 2是一个完全平方式,则k 的值是 .【变式训练】1.下列式子为完全平方式的是( )A.a 2+ab +b 2B.a 2+2a +2C.a 2-2b +b 2D.a 2+2a +12.若9a 2+6(k -3)a +1是完全平方式,则 k 的值是( )A.±4B.±2C.3D.4或23.已知a 2x 2±2x+b 2是完全平方式,且a ,b 都不为零,则a 与b 的关系为( )A.互为倒数或互为负倒数B.互为相反数C.相等的数D.任意有理数4.下列各式能组成完全平方式的个数是 .①x 6-31128x ②x 8+4x 4+4 ③3m 2+2m+3 ④m 2-2m+4 5.若x 2+8x +k 是完全平方式,则k = .6.若x 2+mx +9是完全平方式,则m 的值是 .【题型3】利用完全平方公式分解因式分解因式: (1)a 2+4a +4; (2)x 2+4y 2-4xy ; (3)9+12a +4a 2; (4)a 2-2a +1.【变式训练】1.因式分解:(1)4x 2+y 2-4xy ; (2)9-12a +4a 2; (3)(m +n)2-6(m +n)+9.2.分解因式:(1)ab2-4ab+4a;(2)-3x+12x-12;(3)4x2-8x+4;(4)2a3-8a2+8a; (5)-2x2y+12xy-18y; (6)3x2-6x+3; (7)-4a2+24a-36.(8)2a3b-8a2b+8ab; (9)4x3y-24x2y+39xy; (10)-3x2y+6xy-3y; (11)4a2b2+24ab+36.3.分解因式(1)x(x-1)-3x+4; (2)(x-2y)2+8xy;(3)(2a+b)2-4ab;(4)(x-y)2-z2+4xy;(5)ab(ab+2)+2ab+4; (6)(x+2y)2-8xy;(7)(x-y)2+4xy;(8)(2a-b)2-c2+8ab.。
因式分解的14种方式
因式分解的14 种方式因式分解没有普遍的方式,初中数学教材中主要介绍了提公因式法、公式法。
而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则:1 分解要完全2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:3 .3 1. 2 . x . x . .x x . )分解因式技能:1.分解因式与整式乘法是互为逆变形。
2.分解因式技能掌握:①等式左侧必需是多项式;②分解因式的结果必需是以乘积的形式表示;③每一个因式必需是整式,且每一个因式的次数都必需低于原来多项式的次数;④分解因式必需分解到每一个多项式因式都不能再分解为止。
注:分解因式前先要找到公因式,在肯定公因式前,应从系数和因式两个方面考虑。
大体方式:⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。
若是一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方式叫做提公因式法。
具体方式:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。
若是多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。
提出“-”号时,多项式的各项都要变号。
提公因式法大体步骤:(1)找出公因式;(2)提公因式并肯定另一个因式:①第一步找公因式可依照肯定公因式的方式先肯定系数在肯定字母;②第二步提公因式并肯定另一个因式,注意要肯定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式别离除去原多项式的每一项,求的剩下的另一个因式;③提完公因式后,另一因式的项数与原多项式的项数相同。
口诀:找准公因式,一次要提净;全家都搬走,留1 把家守;提负要变号,变形看奇偶。
人教版初中数学因式分解全集汇编
人教版初中数学因式分解全集汇编一、选择题1.下列各式分解因式正确的是( )A .22()()()(1)a b a b a b a b +-+=++-B .236(36)x xy x x x y --=-C .223311(4)44a b ab ab a b -=- D .256(1)(6)x x x x --=+- 【答案】D【解析】【分析】 利用提公因式法、十字相乘法法分别进行分解即可.【详解】A. 22()()()(1)+-+≠++-a b a b a b a b ,故此选项因式分解错误,不符合题意;B. 23-6-(3-6-1)=x xy x x x y ,故此选项因式分解错误,不符合题意;C. 223211(4)44-=-a b ab ab a b ,故此选项因式分解错误,不符合题意; D. 256(1)(6)x x x x --=+-,故此选项因式分解正确,符合题意.故选:D【点睛】本题考查了提公因式法与十字相乘法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用其他方法进行分解.2.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.3.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ yB .x ≥ yC .x < yD .x > y【答案】D【解析】【分析】判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系.【详解】解:22222202()x y a b ab a a b a -=++-+=-++20, 2()0a b -≥Q ,20a ≥,200>,0x y ∴->,x y ∴>,故选:D .【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.4.将多项式4x 2+1再加上一项,使它能分解因式成(a+b )2的形式,以下是四位学生所加的项,其中错误的是( )A .2xB .﹣4xC .4x 4D .4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4x 2+1结合,然后判断是否为完全平方式即可得答案.【详解】A 、4x 2+1+2x ,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4x 2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;C 、4x 2+1+4x 4=(2x 2+1)2,能利用完全平方公式进行因式分解,故不符合题意;D 、4x 2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.5.下列多项式不能使用平方差公式的分解因式是( )A .22m n --B .2216x y -+C .22b a -D .22449a n -【答案】A【解析】【分析】原式各项利用平方差公式的结构特征即可做出判断.【详解】下列多项式不能运用平方差公式分解因式的是22m n --.故选A .【点睛】此题考查了因式分解-运用公式法,熟练掌握平方差公式是解本题的关键.6.把32a 4ab -因式分解,结果正确的是( )A .()()a a 4b a 4b ?+-B .()22a a 4b ?-C .()()a a 2b a 2b +-D .()2a a 2b - 【答案】C【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a ,再对余下的多项式继续分解.【详解】a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b ).故选C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.7.下列分解因式正确的是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣1=(x+1)(x ﹣1)C .x 2﹣x+2=x (x ﹣1)+2D .x 2+2x ﹣1=(x ﹣1)2【答案】B【解析】试题分析:根据提公因式法分解因式,公式法分解因式对各选项分析判断利用排除法求解.解:A 、x 3﹣x=x (x 2﹣1)=x (x+1)(x ﹣1),故本选项错误;B 、x 2﹣1=(x+1)(x ﹣1),故本选项正确;C 、x 2﹣x+2=x (x ﹣1)+2右边不是整式积的形式,故本选项错误;D 、应为x 2﹣2x+1=(x ﹣1)2,故本选项错误.故选B .考点:提公因式法与公式法的综合运用.8.把代数式322363x x y xy -+分解因式,结果正确的是( )A .(3)(3)x x y x y +-B .223(2)x x xy y -+C .2(3)x x y -D .23()x x y -【答案】D【解析】 此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有3项,可采用完全平方公式继续分解.解答:解:322363x x y xy -+,=3x (x 2-2xy+y 2),=3x (x-y )2.故选D .9.已知12,23x y xy -==,则43342x y x y -的值为( )A .23B .2C .83D .163【答案】C【解析】【分析】利用因式分解以及积的乘方的逆用将43342x y x y -变形为(xy)3(2x-y),然后代入相关数值进行计算即可.【详解】 ∵12,23x y xy -==,∴43342x y x y -=x 3y 3(2x-y)=(xy)3(2x-y)=23×13=83, 故选C .【点睛】本题考查了因式分解的应用,代数式求值,涉及了提公因式法,积的乘方的逆用,熟练掌握和灵活运用相关知识是解题的关键.10.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+- C .()2x 2x l x x 21++=++ D .()()22x 4y x 4y x 4y -=+-【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x2−4y2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.11.已知a﹣b=2,则a2﹣b2﹣4b的值为()A.2 B.4 C.6 D.8【答案】B【解析】【分析】原式变形后,把已知等式代入计算即可求出值.【详解】∵a﹣b=2,∴原式=(a+b)(a﹣b)﹣4b=2(a+b)﹣4b=2a+2b﹣4b=2(a﹣b)=4.故选:B.【点睛】此题考查因式分解-运用公式法,熟练掌握完全平方公式是解题的关键.12.下列各式从左到右的变形中,属于因式分解的是()A.m(a+b)=ma+mb B.a2+4a﹣21=a(a+4)﹣21C.x2﹣1=(x+1)(x﹣1) D.x2+16﹣y2=(x+y)(x﹣y)+16【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、是整式的乘法,故A不符合题意;B、没把一个多项式转化成几个整式积的形式,故B不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.13.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.14.将2x 2a -6xab +2x 分解因式,下面是四位同学分解的结果:①2x (xa -3ab ), ②2xa (x -3b +1), ③2x (xa -3ab +1), ④2x (-xa +3ab -1). 其中,正确的是( )A .①B .②C .③D .④【答案】C【解析】【分析】直接找出公因式进而提取得出答案.【详解】2x 2a-6xab+2x=2x (xa-3ab+1).故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.15.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】 先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q ,()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.16.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( ) A .1B .-1C .-8D .18- 【答案】A【解析】【分析】多项式3212x mx nx ++-的最高次数是3,两因式乘积的最高次数是2,所以多项式的最后一个因式的最高次数是1,可设为()x a +,再根据两个多项式相等,则对应次数的系数相等列方程组求解即可.【详解】解:多项式3212x mx nx ++-的最高次数是3,2(3)(2)6x x x x -+=--的最高次数是2,∵多项式3212x mx nx ++-含有因式()3x -和()2x +,∴多项式的最后一个因式的最高次数应为1,可设为()x a +,即3212(3)(2)()++-=--+x mx nx x x x a ,整理得:323212(1)(6)6++-=+--+-x mx nx x a x a x a , 比较系数得:1(6)612m a n a a =-⎧⎪=-+⎨⎪=⎩,解得:182m n a =⎧⎪=-⎨⎪=⎩,∴811-==n m ,故选:A .【点睛】此题考查了因式分解的应用,运用待定系数法设出因式进行求解是解题的关键.17.已知x ﹣y =﹣2,xy =3,则x 2y ﹣xy 2的值为( )A .2B .﹣6C .5D .﹣3 【答案】B【解析】【分析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.18.下列各式中,由等式的左边到右边的变形是因式分解的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab(a +b)D .x 2+1=x 1()x x+ 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没有把一个多项式转化成几个整式积的形式,故B 错误;C 、把一个多项式转化成了几个整式积的形式,故C 正确;D 、没有把一个多项式转化成几个整式积的形式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.19.下列各式从左到右的变形中,是因式分解的为( )A .ab+ac+d =a (b+c )+dB .(x+2)(x ﹣2)=x 2﹣4C.6ab=2a⋅3b D.x2﹣8x+16=(x﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C、等式左边是单项式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选D.【点睛】本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.20.下列由左到右边的变形中,是因式分解的是()A.(x+2)(x﹣2)=x2﹣4B.x2﹣1=1 () x xxC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2﹣4=(x+2)(x﹣2)【答案】D【解析】【分析】直接利用因式分解的意义分别判断得出答案.【详解】A、(x+2)(x-2)=x2-4,是多项式乘法,故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、x2-4+3x=(x+4)(x-1),故此选项错误;D、x2-4=(x+2)(x-2),正确.故选D.【点睛】此题主要考查了因式分解的意义,正确把握定义是解题关键.。
2020-2021初中数学分式分类汇编及答案解析(1)
2020-2021初中数学分式分类汇编及答案解析(1)一、选择题1.下列计算错误的是( )A .()326327x x -=-B .()()325y y y --=-gC .326-=-D .()03.141π-= 【答案】C【解析】【分析】根据同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂进行计算【详解】A . ()326327x x -=-,不符合题意; B . ()()325y y y --=-g ,不符合题意;C . -312=8,原选项错误,符合题意; D . ()03.141π-=,不符合题意;故选:C【点睛】本题考查了同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂,掌握同底数幂的乘法法则,积的乘方法则、零次幂、负指数幂是解题的关键.2.乐乐所在的四人小组做了下列运算,其中正确的是( )A .2193-⎛⎫-=- ⎪⎝⎭B .()23624a a -=C .623a a a ÷=D .236236a a a ? 【答案】B【解析】【分析】 根据负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则依次判断.【详解】A 、2913-⎛⎫- ⎪⎭=⎝,故错误; B 、()23624a a -=正确;C 、624a a a ÷=,故错误;D 、235236a a a =⋅,故选:B.【点睛】此题考查整式的计算,正确掌握负整数指数幂计算法则,积的乘方计算法则,同底数幂除法法则,单项式乘以单项式计算法则是解题的关键.3.已知24111P Q x x x =+-+-是恒等式,则( ) A . 2, 2P Q ==- B .2, 2P Q =-= C .2P Q == D .2P Q ==- 【答案】B【解析】【分析】 首先利用分式的加减运算法则,求得()()2111Q x x x P Q x Q P P ++-=-++-,可得方程组04P Q Q P +=⎧⎨-=⎩,解此方程组即可求得答案. 【详解】 解:∵()()()()()()22111411111P x Q x P Q x Q P P Q x x x x x x -++++-=+==+-+---, ∴()()4P Q x Q P ++-=,∴04P Q Q P +=⎧⎨-=⎩,解之得:22P Q =-⎧⎨=⎩, 故选:B .【点睛】此题考查了分式的加减运算、二元一次方程的解法以及整式相等的性质,解题的关键是掌握分式的加减运算法则.4.化简2442x x x x ---得结果是( ) A .26x x -+B .2x x +C .2x x -+D .2x x - 【答案】C【解析】【分析】 先通分,再按照分式的减法法则化简出最简结果即可得答案.【详解】2442x x x x ---=4(2)(2)(2)(2)(2)x x x x x x x +-+-+- =242(2)(2)x x x x x --+- =(2)(2)(2)x x x x --+- =2x x -+. 故选:C .【点睛】 本题考查分式的减法,同分母分式相加减,只把分子相加减,分母不变;异分母分式相加减,先通分变为同分母分式,再按同分母分式相加减的法则运算.5.关于分式25x x-,下列说法不正确的是( ) A .当x=0时,分式没有意义B .当x >5时,分式的值为正数C .当x <5时,分式的值为负数D .当x=5时,分式的值为0【答案】C【解析】【分析】 此题可化转化为分别求当分式等于0、大于0、小于0、无意义时的x 的取值范围,分别计算即可求得解.【详解】A .当x=0时,分母为0,分式没有意义;正确,但不符合题意.B .当x>5时,分式的值为正数;正确,但不符合题意C .当0<x <5时,分式的值为负数;当x=0是分式没有意义,当x <0时,分式的值为负数,原说法错误,符合题意.D .当x=5时,分式的值为0;正确,但不符合题意.故选:C .【点睛】本题主要考查分式的性质的运用,注意分式中分母不为0的隐性条件.6.0000025=2.5×10﹣6,故选B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7.计算(a 2)3+a 2·a 3-a 2÷a -3的结果是( )A .2a 5-aB .2a 5-1aC .a 5D .a 6 【答案】D【解析】【分析】先分别进行幂的乘方、同底数幂的乘法、同底数幂的除法运算,然后再进行合并同类项即可.【详解】原式=a 2×3+a 2+3-a 2-(-3)=a 6+a 5-a 5=a 6,故选D.【点睛】本题考查了有关幂的运算,熟练掌握“幂的乘方,底数不变,指数相乘”、“同底数幂的乘法,底数不变,指数相加”、“同底数幂的除法,底数不变,指数相减”是解题的关键.8.某微生物的直径为0.000 005 035m ,用科学记数法表示该数为( )A .5.035×10﹣6B .50.35×10﹣5C .5.035×106D .5.035×10﹣5【答案】A【解析】试题分析:0.000 005 035m ,用科学记数法表示该数为5.035×10﹣6,故选A .考点:科学记数法—表示较小的数.9.一艘轮船往返甲、乙两港之间,第一次往返航行时,水流速度为a 千米时,第二次往返航行时,正遇上发大水,水流速度b 千米时(b a >),已知该船在两次航行中的静水速度相同,则该船这两次往返航行所用时间的关系是( )A .第一次往返航行用的时间少B .第二次往返航行用的时间少C .两种情况所用时间相等D .以上均有可能 【答案】A【解析】【分析】甲乙两港之间的路程一定,可设其为S ,两次航行中的静水速度设为v ,所用时间=顺流时间+逆流时间,注意顺流速度=静水速度+水流速度;逆流速度=静水速度﹣水流速度,把相关数值代入,比较即可.【详解】解:设两次航行的路程都为S ,静水速度设为v , 第一次所用时间为:222S S vS v a v a v a +=+-- 第二次所用时间为:222S S vS v b v b v b +=+--∵b a >,∴22b a >,∴2222v b v a -<-, ∴222222vS vS v b v a >-- ∴第一次的时间要短些.故选:A.【点睛】本题主要考查了列代数式,得到两次所用时间的等量关系是解决本题的关键.10.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为( )A .5×107B .5×10﹣7C .0.5×10﹣6D .5×10﹣6【答案】B【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】11.计算21133x x x ⎛⎫-•⎪+⎝⎭的结果是( ) A .13x x - B .13x x -- C .13x x + D .13x x+- 【答案】A【解析】【分析】先计算括号内的运算,然后根据分式乘法的运算法则进行计算,即可得到答案.【详解】 解:21133x x x ⎛⎫-• ⎪+⎝⎭ =22133x x x x ⎛⎫-• ⎪+⎝⎭=2(1)(1)3(1)x x x x x +-•+ =13x x-; 故选:A .【点睛】本题考查了分式的化简,以及分式的混合运算,解题的关键是熟练掌握运算法则进行计算.12.计算211a a a -+-的正确结果是( ) A .211a a -- B .211a a --- C .11a - D .11a -- 【答案】A【解析】【分析】 先将后两项结合起来,然后再化成同分母分式,按同分母分式加减的法则计算就可以了.【详解】 211a a a -+-, =2(1)1a a a --- =222111a a a a a -+--- =211a a --. 故选:A.【点睛】 本题考查了数学整体思想的运用,分式的通分和约分的运用,解答的过程中注意符号的运用以及完全平方公式的运用.13.213-⎛⎫ ⎪⎝⎭的相反数是( ) A .9B .-9C .19D .19- 【答案】B【解析】【分析】先根据负指数幂的运算法则求出213-⎛⎫ ⎪⎝⎭的值,然后再根据相反数的定义进行求解即可. 【详解】2211113193-⎛⎫== ⎪⎝⎭⎛⎫ ⎪⎝⎭=9, 9的相反数为-9, 故213-⎛⎫ ⎪⎝⎭的相反数是-9, 故选B .【点睛】本题考查了负整数指数幂、求一个数的相反数,熟练掌握负整数指数幂的运算法则是解题的关键.14.有意义时,a 的取值范围是( ) A .a ≥2B .a >2C .a ≠2D .a ≠-2【答案】B【解析】解:根据二次根式的意义,被开方数a ﹣2≥0,解得:a ≥2,根据分式有意义的条件:a ﹣2≠0,解得:a ≠2,∴a >2.故选B .15.化简2x xy y x y x---=( ) A .﹣xB .y ﹣xC .x ﹣yD .﹣x ﹣y【答案】A【解析】【分析】根据分式的运算法则即可求出答案.【详解】 原式=()2x x y x xy x y x y x--==---, 故选A .【点睛】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.16.已知1112a b -=,则ab a b-的值是A .12B .-12C .2D .-2【答案】D【解析】分析:观察已知和所求的关系,容易发现把已知通分后,再求倒数即可. 解答:解:∵, ∴a ab -=, ∴=, ∴=-2.故选D .17.计算b a a b b a +--的结果是 A .a-bB .b-aC .1D .-1【答案】D【解析】【分析】将第二个式子提出一个负号,即可使分母一样,然后化简即可得出答案.【详解】 b a b --a a b - =b a a b--=-1,所以答案选择D. 【点睛】本题考查了分式的化简,熟悉掌握计算方法是解决本题的关键.18.若把分式2x y xy+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍;B .缩小3倍;C .缩小6倍;D .不变; 【答案】B【解析】【分析】 x ,y 都扩大3倍就是分别变成原来的3倍,变成3x 和3y .用3x 和3y 代替式子中的x 和y ,看得到的式子与原来的式子的关系.【详解】解:用3x 和3y 代替式子中的x 和y 得:()()33233x y x y +=()3x 18y xy +=13×x 2y xy+,则分式的值缩小成原来的13,即缩小3倍. 故选:B .【点睛】 解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.19.下列分式中,最简分式是( )A .22115xy y B .22x y x y -+ C .222x xy y x y -+- D .22x y x y+- 【答案】D【解析】【分析】 根据最简分式的定义即可求出答案.【详解】解:(A )原式=75x y,故A 不是最简分式; (B )原式=()()x y x y x y +-+=x-y ,故B 不是最简分式;(C )原式=2)x y x y--(=x-y ,故C 不是最简分式; (D) 22x y x y+-的分子分母都不能再进行因式分解、也没有公因式. 故选:D .【点睛】本题考查最简分式,解题关键是正确理解最简分式的定义,本题属于基础题型.20.已知m ﹣1m ,则1m +m 的值为( )A .B C . D .11【答案】A【解析】【分析】根据完全平方公式即可得到结果.【详解】 1m-mQ21m-=7m ⎛⎫∴ ⎪⎝⎭, 221m -2+=7m ∴, 221m +=9m ∴, 22211m+=m +2+=11m m ⎛⎫∴ ⎪⎝⎭, 1m+m∴=. 故选A.【点睛】本题主要考查完全平方公式,熟悉掌握公式是关键.。
因式分解练习题分类
因式分解练习题分类一、提取公因式类1. \( 3a^2 + 6a \)2. \( 4x^3y 2x^2y^2 + 8xy^3 \)3. \( 5m^2n 15mn^2 + 10n^3 \)4. \( 2ab^2 4a^2b + 6ab \)5. \( 9x^4y^2 12x^3y^3 + 6x^2y^4 \)二、公式法类1. \( a^2 2ab + b^2 \)2. \( x^2 + 10x + 25 \)3. \( 4y^2 12y + 9 \)4. \( 9m^2 6mn + n^2 \)5. \( 16p^2 24pq + 9q^2 \)三、分组分解法类1. \( x^3 + 2x^2 5x 10 \)2. \( 3a^3 3a^2 + a 1 \)3. \( 4b^3 8b^2 + 3b 6 \)4. \( 5m^3 + 10m^2 15m 30 \)5. \( 6n^3 12n^2 + 9n 18 \)四、十字相乘法类1. \( x^2 + 5x + 6 \)2. \( y^2 7y + 12 \)3. \( z^2 + 4z 5 \)4. \( m^2 9m + 20 \)5. \( n^2 + 8n + 16 \)五、综合运用类1. \( a^3 3a^2b + 3ab^2 b^3 \)2. \( 2x^4 5x^3 + 3x^2 x \)3. \( 4y^5 8y^4 + 6y^3 2y^2 \)4. \( 3m^4 6m^3n + 3m^2n^2 mn^3 \)5. \( 5n^6 10n^5 + 10n^4 5n^3 \)六、特殊因式分解类1. \( (x + y)^2 (x y)^2 \)2. \( (a + b)(a b) + (a + b)^2 \)3. \( (2m 3n)(3m + 2n) \)4. \( (x^2 y^2)(x^2 + y^2) \)5. \( (4p + 5q)(4p 5q) + 16p^2 \)七、多项式乘法逆运算类1. \( (x + 3)^2 9 \)2. \( (2a 4)(2a + 4) \)3. \( (3b + 5)(3b 5) \)4. \( (4c 7)(4c + 7) + 49 \)5. \( (5d + 2)(5d 2) 20d \)八、高次多项式因式分解类1. \( x^4 16 \)2. \( y^6 64 \)3. \( z^3 + 27 \)4. \( m^4 81m^2 + 100 \)5. \( n^5 32n^3 + 32n \)九、含有复杂系数的因式分解类1. \( 2x^2 5x 3 \)2. \( 3y^2 + 7y 2 \)3. \( 4z^2 11z + 6 \)4. \( 5m^2 + 13m 8 \)5. \( 6n^2 17n + 10 \)十、实际应用问题类1. 一个长方形的面积是 \( 24cm^2 \),长比宽多2cm,求长和宽。
因式分解 (全类型)
因式分解(全类型)1.提公因式法公因式的概念:多项式中的每一项都含有的公共的因式,叫做这个多项式的公因式.确定公因式概括为“三定”①定系数:找各项系数的最大公因数②定字母:找各项的相同字母③定指数:找各项相同字母的最低次数————————————————————题型一:公因式为单项式例题:-2x4y3+4x3y2-8xy2①系数:三个单项式的系数分别为-2,+4,-8,最大公因数为-2(当第一项是负数时可以提负号)②字母:三个单项式的相同字母为xy③字母的指数:相同字母的最低次数xy²所以公因式为-2xy²提公因式得:-2xy2(x3y-2x2+4)————————————————————题型二:公因式为多项式例题:2b(a-b)²+3a(b-a)²公因式为(a-b)²提公因式得:(a-b)²(2b+3a)————————————————————2.公式法题型一:直接用公式法例题:(x²+y²)²-4x²y²利用平方差公式进行因式分解解:原式=(x²+y²+2xy)(x²+y²-2xy)=(x+y)²(x-y)²例题:(x²十6x)²+18(x²+6x)十81利用完全平方公式进行因式分解解:原式=(x²十6x+9)²=[(x+3)²]²=(x+3)4————————————————————题型二:先提取,再公式例题:-3x7+24x5-48x3解:原式=-3x3(x4-8x2+16)=-3x3(x2-4)2=-3x3(x+2)2(x-2)2————————————————————题型三:先局部,再整体例题:9x²-16-(x+3)(3x+4)解:原式=(3x+4)(3x-4)-(x+3)(3x+4)=(3x+4)[(3x-4)-(x+3)]=(3x+4)(2x-7)————————————————————题型四:先展开,再分解例题:4x(y-x)-y²解:原式=4xy-4x²-y²=-(4x²-4xy+y²)=-(2x-y)²————————————————————3.分组分解法例题:x²-2xy+y²-9解:原式=(x-y)²-9=(x-y+3)(x-y-3)————————————————————4.拆项,添项法例题:x4+4解原式=x4+4+4x2-4x2=x4+4x2+4-4x2=(x2+2)2-4x2=(x2+2-2x)(x2+2+2x)————————————————————5.整体法题型一例题:a(x+y-z)-b(z-x-y)-c(x-z+y)解:原式=a(x+y-z)+b(x+y-z)-c(x+y-z)=(x+y-z)(a+b-c)————————————————————题型二例题:(x+y)²-4(x+y-1)解:原式=(x+y)²-4(x+y)+4=(x+y-2)²————————————————————题型三ab(c²+d²)+cd(a²+b²)解原式=abc²+abd²+cda²+cdb²=(abc²+cda²)+(abd²+cdb²)=ac(bc+ad)+bd(ad+bc)=(bc十ad)(ac+bd)————————————————————题型四x²-y²-4x+6y-5解:原式=(x²-4x+4)-(y²-6y+9)=(x-2)²-(y-3)²=[(x-2)+(y-3)][(x-2)-(y-3)]=(x+y-5)(x-y+1)————————————————————6.换元法例题:(a²+2a-2)(a²+2a+4)+9解:设a²+2a=m,则原式=(m-2)(m+4)+9=m²+4m-2m-8+9=m²+2m十1=(m+1)²=(a²+2a+1)²————————————————————7.十字相乘法公式:x²十(p十q)x十pq=(x+p)(x十q)例题:x²一5x一14解:原式=(x一7)(x十2)十字相乘法分解因式非常重,在以后有关代数式的运算,解方程等知识中常常用到.————————————————————【总结】因式分解的知识在代数中有着重要的地位,同学们要多加强这方面的练习,为以后的学习奠定扎实的基础。
专题04 因式分解(28题)(解析版)--2024年中考数学真题分类汇编
专题04因式分解(28题)一、单选题1.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .9【答案】D【分析】本题考查因式分解,代数式求值,先将多项式进行因式分解,利用整体代入法,求值即可.【详解】解:∵3a b +=,1ab =,∴()32232222a b a b ab ab a ab b ++=++()2ab a b =+213=⨯9=;故选D .2.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -【答案】A【分析】本题考查了提取公因式和公式法进行因式分解,熟练掌握知识点是解题的关键.将39a a -先提取公因式,再运用平方差公式分解即可.【详解】解:()()()329933a a a a a a a -=-=+-,故选:A .二、填空题3.(2024·甘肃·中考真题)因式分解:228x -=.【答案】()()222x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()2222822x x -=-()()222x x =+-.故答案为:()()222x x +-.4.(2024·黑龙江绥化·中考真题)分解因式:2228mx my -=.【答案】()()222m x y x y +-【分析】本题考查了因式分解,先提公因式2m ,然后根据平方差公式因式分解,即可求解.【详解】解:2228mx my -=()2224m x y -=()()222m x y x y +-故答案为:()()222m x y x y +-.5.(2024·浙江·中考真题)因式分解:27a a -=【答案】()7a a -【分析】本题考查了提公因式法因式分解,先提公因式a 是解题的关键.【详解】解:()277a a a a -=-.故答案为:()7a a -.6.(2024·甘肃临夏·中考真题)因式分解:214x -=.7.(2024·四川眉山·中考真题)分解因式:3312m m -=.【答案】()()322m m m +-【分析】本题考查因式分解,涉及提公因式法因式分解及公式法因式分解,根据多项式的结构特征,先提公因式再利用平方差公式因式分解即可得到答案,综合应用提公因式法因式分解及公式法因式分解是解决问题的关键.【详解】解:3312m m -()234m m =-()()322m m m =+-,故答案为:()()322m m m +-.8.(2024·北京·中考真题)分解因式:325x x -=.【答案】()()55x x x +-【分析】先提取公因式,再套用公式分解即可.本题考查了因式分解,熟练掌握先提取公因式,再套用公式分解是解题的关键.【详解】()()()32225555x x x x x x x -=-=+-.故答案为:()()55x x x +-.9.(2024·山东威海·中考真题)因式分解:()()241x x +++=.【答案】()23x +【分析】本题主要考查了用完全平方公式分解因式,先按照多项式乘以多项式展开,然后利用完全平方公式分解因式即可.【详解】解:()()241x x +++24281x x x =++++269x x =++()23x =+故答案为:()23x +.10.(2024·四川凉山·中考真题)已知2212a b -=,且2a b -=-,则a b +=.【答案】6-【分析】本题考查了因式分解的应用,先把2212a b -=的左边分解因式,再把2a b -=-代入即可求出a b +的值.【详解】解:∵2212a b -=,∴()()12a b a b +-=,∵2a b -=-,∴6a b +=-.故答案为:6-.11.(2024·山东·中考真题)因式分解:22x y xy +=.【答案】()2xy x +【分析】本题考查了因式分解,直接提取公因式xy 即可.【详解】解:原式()2xy x =+,故答案为:()2xy x +.12.(2024·四川遂宁·中考真题)分解因式:4ab a +=.【答案】()4a b +【分析】本题主要考查了提公因式分解因式,提公因式a 即可解答.【详解】解:()44ab a a b +=+故答案为:()4a b +13.(2024·四川广安·中考真题)分解因式:39a a -=.【答案】()()33a a a +-【分析】本题主要考查了分解因式,先提取公因式a 再利用公式法即可得到答案.【详解】解:()()3933a a a a a -=+-,故答案为:()()33a a a +-.14.(2024·四川自贡·中考真题)分解因式:23x x -=.【答案】()3x x -【分析】根据提取公因式法因式分解进行计算即可.【详解】解:()233x x x x -=-,故答案为:()3x x -.【点睛】此题考查了提公因式法因式分解,熟练掌握提取公因式的方法是解本题的关键.15.(2024·四川内江·中考真题)分解因式:25m m -=.【答案】()5m m -【分析】原式提取公因式即可得到结果.【详解】原式=()5m m -.故答案为:()5m m -.【点睛】本题考查了提公因式法.16.(2024·内蒙古赤峰·中考真题)因式分解:233am a -=.【答案】()()311a m m +-【分析】先提取公因式3a ,再利用平方差公式分解因式.【详解】解:()()()223331311am a a m a m m -=-=+-,故答案为:()()311a m m +-.【点睛】此题考查了综合利用提公因式法和公式法分解因式,正确掌握因式分解的方法:提公因式法和公式法(平方差公式和完全平方公式)是解题的关键.17.(2024·四川广元·中考真题)分解因式:2(1)4a a +-=.【答案】()21a -/()21a -+【分析】首先利用完全平方式展开2(1)a +,然后合并同类项,再利用完全平方公式进行分解即可.【详解】2222(1)412421(1)a a a a a a a a +-=++-=-+=-.故答案为:2(1)a -.【点睛】此题主要考查了公式法分解因式,关键是掌握完全平方公式:222)2(a ab b a b ±+=±.18.(2024·陕西省·中考真题)分解因式:2a ab -=.【答案】a (a ﹣b ).【详解】解:2a ab -=a (a ﹣b ).故答案为a (a ﹣b ).【点睛】本题考查因式分解-提公因式法.19.(2024·吉林省中考真题)因式分解:a 2﹣3a=.【答案】a (a ﹣3)【分析】直接把公因式a 提出来即可.【详解】解:a 2﹣3a=a (a ﹣3).故答案为a (a ﹣3).20.(2024·四川宜宾·中考真题)分解因式:222m -=.【答案】2(1)(1)m m +-【详解】解:222m -=22(1)m -=2(1)(1)m m +-.故答案为2(1)(1)m m +-.21.(2024·四川达州·中考真题)分解因式:3x 2﹣18x+27=.【答案】3(x ﹣3)2【分析】先提取公因式3,再根据完全平方公式进行二次分解.【详解】3x 2-18x+27,=3(x 2-6x+9),=3(x-3)2.故答案为:3(x-3)2.22.(2024·江苏扬州·中考真题)分解因式:2242a a -+=.【答案】()221a -【详解】解:先提取公因式2后继续应用完全平方公式分解即可:原式()()2222121a a a =-+=-,故答案为:()221a -.23.(2024·福建省·中考真题)因式分解:x 2+x =.【答案】()1x x +【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,直接提取公因式x 即可.【详解】解:()21x x x x +=+24.(2024·江苏盐城·中考真题)分解因式:x 2+2x +1=【答案】()21x +/()21x +【分析】本题中没有公因式,总共三项,其中有两项能化为两个数的平方和,第三项正好为这两个数的积的2倍,直接运用完全平方和公式进行因式分解.【详解】解:x 2+2x +1=(x +1)2,故答案为:(x +1)2.【点睛】本题考查了公式法分解因式,熟记完全平方公式的结构是解题的关键.(1)三项式;(2)其中两项能化为两个数(整式)平方和的形式;(3)另一项为这两个数(整式)的积的2倍(或积的2倍的相反数).25.(2024·江西省·中考真题)因式分解:22a a +=.【答案】(2)a a +【详解】根据分解因式提取公因式法,将方程a 2+2a 提取公因式为a (a+2).故a 2+2a=a (a+2).故答案是a (a+2).三、解答题26.(2024·黑龙江齐齐哈尔·中考真题)(1)()2144cos 60π52-⎛⎫-︒--+ ⎪⎝⎭(2)分解因式:3228a ab -【答案】(1)7;(2)()()222a a b a b +-【分析】本题考查了实数的混合运算,因式分解;(1)根据算术平方根,特殊角的三角函数值,零指数幂,负整数指数幂,进行计算即可求解;(2)先提公因式2a ,进而根据平方差公式因式分解,即可求解.【详解】(1)解:原式124142=+⨯-+2214=+-+7=;(2)解:原式()2224a a b =-()()222a a b a b =+-27.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--;(2)()224k m k m-+-【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【详解】(1)(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;(2)解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.28.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b cm n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.【答案】(1)证明见解析;(2),m n 不可能都为整数,理由见解析.【分析】本小题考查整式的运算、因式分解、等式的性质等基础知识:考查运算能力、推理能力、创新意识等,以及综合应用所学知识分析、解决问题的能力.(1)根据题意得出()3,b a m n c amn =+=,进而计算212b ac -,根据非负数的性质,即可求解;(2)分情况讨论,①,m n 都为奇数;②,m n 为整数,且其中至少有一个为偶数,根据奇偶数的性质结合已知条件分析即可.【详解】(1)解:因为3,b c m n mn a a+==,所以()3,b a m n c amn =+=.则()22212[3]12b ac a m n a mn-=+-。
整式运算及因式分解(3大考点)(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)
专题02整式运算及因式分解(原卷版)三年(2022-2024)中考数学真题分类汇编(全国通用)【考点归纳】一、考点01代数式及其应用--------------------------------------------------------------------------------------------------------------1二、考点02整式及其运算-----------------------------------------------------------------------------------------------------------------2三、考点03因式分解-----------------------------------------------------------------------------------------------------------------------5考点01代数式及其应用一、考点01代数式及其应用1.(2024·四川广安·中考真题)代数式3x -的意义可以是()A .3-与x 的和B .3-与x 的差C .3-与x 的积D .3-与x 的商2.(2023·湖南常德·中考真题)若2340a a +-=,则2263a a +-=()A .5B .1C .1-D .03.(2023·山东·中考真题)已知一列均不为1的数123n a a a a ,,,,满足如下关系:1223121111a a a a a a ++==--,34131111nn na a a a a a +++==-- ,,,若12a =,则2023a 的值是()A .12-B .13C .3-D .24.(2023·甘肃兰州·中考真题)关于x 的一元二次方程20x bx c ++=有两个相等的实数根,则()2212b c -+=()A .-2B .2C .-4D .45.(2023·江苏·中考真题)若圆柱的底面半径和高均为a ,则它的体积是(用含a 的代数式表示).6.(2023·江苏·中考真题)若210a b +-=,则36a b +的值是.7.(2024·山东济宁·中考真题)已知2210a b -+=,则241ba +的值是.8.(2023·江苏宿迁·中考真题)若实数m 满足()()22202320242025m m -+-=,则()()20232024m m --=.9.(2024·江苏苏州·中考真题)若2a b =+,则()2b a -=.10.(2024·四川成都·中考真题)若m,n 为实数,且()240m +=,则()2m n +的值为.11.(2024·广东广州·中考真题)若2250a a --=,则2241a a -+=.12.(2024·四川广安·中考真题)若2230x x --=,则2241x x -+=.13.(2023·西藏·中考真题)按一定规律排列的单项式:5a ,28a ,311a ,414a ,⋯.则按此规律排列的第n 个单项式为.(用含有n 的代数式表示)14.(2024·四川成都·中考真题)在综合实践活动中,数学兴趣小组对1n 这n 个自然数中,任取两数之和大于n 的取法种数k 进行了探究.发现:当2n =时,只有{}1,2一种取法,即1k =;当3n =时,有{}1,3和{}2,3两种取法,即2k =;当4n =时,可得4k =;…….若6n =,则k 的值为;若24n =,则k 的值为.15.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x -+=的两个实数根,则()22m n +-的值为.考点02整式及其运算二、考点02整式及其运算16.(2024·甘肃兰州·中考真题)计算:22(1)2a a a --=()A .aB .a-C .2aD .2a-17.(2024·贵州·中考真题)计算23a a +的结果正确的是()A .5aB .6aC .25a D .26a 18.(2024·四川内江·中考真题)下列单项式中,3ab 的同类项是()A .33ab B .232a b C .22a b -D .3a b19.(2024·四川广元·中考真题)如果单项式23m x y -与单项式422n x y -的和仍是一个单项式,则在平面直角坐标系中点(),m n 在()A .第一象限B .第二象限C .第三象限D .第四象限20.(2024·河北·中考真题)“铺地锦”是我国古代一种乘法运算方法,可将多位数乘法运算转化为一位数乘法和简单的加法运算.淇淇受其启发,设计了如图1所示的“表格算法”,图1表示13223⨯,运算结果为3036.图2表示一个三位数与一个两位数相乘,表格中部分数据被墨迹覆盖,根据图2中现有数据进行推断,正确的是()A .“20”左边的数是16B .“20”右边的“□”表示5C .运算结果小于6000D .运算结果可以表示为41001025a +21.(2024·云南·中考真题)下列计算正确的是()A .33456x x x +=B .635x x x ÷=C .()327a a =D .()333ab a b =22.(2024·河北·中考真题)下列运算正确的是()A .734a a a -=B .222326a a a ⋅=C .33(2)8a a -=-D .44a a a÷=23.(2024·广东·中考真题)下列计算正确的是()A .2510a a a ⋅=B .824a a a ÷=C .257a a a-+=D .()5210a a =24.(2024·辽宁·中考真题)下列计算正确的是()A .2352a a a +=B .236a a a ⋅=C .()325a a =D .2(1)a a a a+=+25.(2024·青海·中考真题)计算1220x x -的结果是()A .8xB .8x-C .8-D .2x 26.(2024·山东烟台·中考真题)下列运算结果为6a 的是()A .23a a ⋅B .122a a ÷C .33a a +D .()32a 27.(2022·山东德州·中考真题)已知2M a a =-,2N a =-(a 为任意实数),则M N -的值()A .小于0B .等于0C .大于0D .无法确定28.(2024·广东广州·中考真题)若0a ≠,则下列运算正确的是()A .235a a a+=B .325a a a ⋅=C .235a a a⋅=D .321a a ÷=29.(2024·河北·中考真题)若a ,b 是正整数,且满足8282222222a ba a ab b b ++⋅⋅⋅+=⨯⨯⋅⋅⋅⨯ 个相加个相乘,则a 与b 的关系正确的是()A .38a b +=B .38a b =C .83a b +=D .38a b=+30.(2024·湖南长沙·中考真题)下列计算正确的是()A .642x x x ÷=B =C .325()x x =D .222()x y x y +=+31.(2024·四川德阳·中考真题)若一个多项式加上234y xy +-,结果是2325xy y +-,则这个多项式为.32.(2024·河南·中考真题)请写出2m 的一个同类项:.33.(2024·重庆·中考真题)一个各数位均不为0的四位自然数M abcd =,若满足9a d b c +=+=,则称这个四位数为“友谊数”.例如:四位数1278,∵18279+=+=,∴1278是“友谊数”.若abcd 是一个“友谊数”,且1b a c b -=-=,则这个数为;若M abcd =是一个“友谊数”,设()9M F M =,且()13F M ab cd++是整数,则满足条件的M 的最大值是.34.(2023·江苏泰州·中考真题)若230a b -+=,则2(2)4a b b +-的值为.35.(2024·天津·中考真题)计算86x x ÷的结果为.36.(2024·上海·中考真题)计算:()324x =.37.(2024·江苏苏州·中考真题)计算:32x x ⋅=.38.(2023·江苏·中考真题)先化简,再求值:2(1)2(1)x x +-+,其中x =.39.(2023·湖南·中考真题)先化简,再求值:()()233(3)a b a b a b -++-,其中13,3a b =-=.40.(2024·北京·中考真题)已知10a b --=,求代数式()223232a b ba ab b -+-+的值.41.(2024·陕西·中考真题)先化简,再求值:()()22x y x x y ++-,其中1x =,=2y -.42.(2024·湖南长沙·中考真题)先化简,再求值:()()()2233m m m m m --++-,其中52m =.43.(2023·湖南·中考真题)先化简,再求值:()()()222233a a a a a -+-++,其中13a =-.44.(2023·吉林长春·中考真题)先化简.再求值:2(1)(1)a a a ++-,其中a =45.(2022·吉林·中考真题)下面是一道例题及其解答过程的一部分,其中A 是关于m 的多项式.请写出多项式A ,并将该例题的解答过程补充完整.例先去括号,再合并同类项:m (A )6(1)m -+.解:m (A )6(1)m -+2666m m m =+--=.46.(2024·山东济宁·中考真题)先化简,再求值:(4)(2)(2)x y x x y x y -++-,其中12x =,2y =.47.(2024·甘肃·中考真题)先化简,再求值:()()()22222a b a b a b b ⎡⎤+-+-÷⎣⎦,其中2a =,1b =-.考点03因式分解三、考点03因式分解48.(2024·云南·中考真题)分解因式:39a a -=()A .()()33a a a -+B .()29a a +C .()()33a a -+D .()29a a -49.(2024·广西·中考真题)如果3a b +=,1ab =,那么32232a b a b ab ++的值为()A .0B .1C .4D .950.(2023·山东·中考真题)下列各式从左到右的变形,因式分解正确的是()A .22(3)69+=++a a a B .()24444a a a a -+=-+C .()()22555ax ay a x y x y -=+-D .()()22824a a a a --=-+51.(2023·河北·中考真题)若k 为任意整数,则22(23)4k k +-的值总能()A .被2整除B .被3整除C .被5整除D .被7整除52.(2024·山东·中考真题)因式分解:22x y xy +=.53.(2024·四川遂宁·中考真题)分解因式:4ab a +=.54.(2024·山东威海·中考真题)因式分解:()()241x x +++=.55.(2024·浙江·中考真题)因式分解:27a a -=56.(2024·北京·中考真题)分解因式:325x x -=.57.(2024·甘肃临夏·中考真题)因式分解:214x -=.58.(2023·广东深圳·中考真题)已知实数a ,b ,满足6a b +=,7ab =,则22a b ab +的值为.59.(2024·福建·中考真题)已知实数,,,,a b c m n 满足3,b cm n mn a a+==.(1)求证:212b ac -为非负数;(2)若,,a b c 均为奇数,,m n 是否可以都为整数?说明你的理由.60.(2024·安徽·中考真题)数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N奇数4的倍数表示结果22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-LL一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=()2-()2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.。
人教版数学八年级上册 因式分解常见题型汇总 (2)
因式分解题型汇总把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:一、提公因式法.如多项式),(c b a m cm bm am ++=++其中m 叫做这个多项式各项的公因式, m 既可以是一个单项式,也可以是一个多项式.二、运用公式法.运用公式法,即用,)(2),)((22222b a b ab a b a b a b a ±=+±-+=-三、分组分解法. 分组分解法指通过分组分解的方式来分解提公因式法和公式分解法无法直接分解的因式,分解方式一般分为“1+3”式和“2+2”式。
四、十字相乘法. 十字相乘法是因式分解中十四种方法之一,主要用于对多项式的因式分解。
十字分解法的方法简单来讲就是:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数,其实就是运用乘法公式(x+a)(x+b)=x²+(a+b)x+ab 的逆运算来进行因式分解。
题型一:直接提公因式1. 因式分解:xy -y =2. 分解因式:2x x += .3. 分解因式:24_________.x x -=4. 分解因式:2a 2-4a= .5. 因式分解:2x 3-x 2=______________.6. 分解因式:ax+ay= .7. 分解因式:23x x += .题型二:直接用公式平方差公式:))((22b a b a b a -+=-完全平方公式:222)(b ab a b a ++=+ 222)(b ab a b a +-=-1. 分解因式:225x -= .2. 分解因式:24x -=______.3. 因式分解:21a -= ,4. 分解因式:x 2-9=______.5. 因式分解:229x y -=_______________.6. 分解因式:=-142x ____________________.7. 分解因式:41242++x x = . 题型三:先提公因式,再套平方差或者完全平方公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初中数学因式分解分类汇编一、选择题1.若a 2-b 2=14,a-b=12,则a+b 的值为( ) A .-12 B .1 C .12 D .2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a 2-b 2=(a+b )(a-b)=12(a+b)=14∴a+b=12故选C. 点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.2.若()()21553x kx x x --=-+,则k 的值为( )A .-2B .2C .8D .-8【答案】B【解析】【分析】 利用十字相乘法化简()()253215x x x x -+=--,即可求出k 的值.【详解】∵()()253215x x x x -+=--∴2k -=-解得2k =故答案为:B .【点睛】本题考查了因式分解的问题,掌握十字相乘法是解题的关键.3.已知实数a 、b 满足等式x=a 2+b 2+20,y =a(2b -a ),则x 、y 的大小关系是( ). A .x ≤ yB .x ≥ yC .x < yD .x > y【答案】D【解析】【分析】判断x 、y 的大小关系,把x y -进行整理,判断结果的符号可得x 、y 的大小关系.【详解】解:22222202()x y a b ab a a b a -=++-+=-++20,2()0a b -≥Q ,20a ≥,200>,0x y ∴->,x y ∴>,故选:D .【点睛】本题考查了作差法比较大小、配方法的应用;进行计算比较式子的大小;通常是让两个式子相减,若为正数,则被减数大;反之减数大.4.下列各式从左到右的变形中,是因式分解的为( ).A .()x a b ax bx -=-B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A 、是整式的乘法运算,故选项错误;B 、右边不是积的形式,故选项错误;C 、x 2-1=(x+1)(x-1),正确;D 、等式不成立,故选项错误.故选:C .【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.5.将多项式4x 2+1再加上一项,使它能分解因式成(a+b )2的形式,以下是四位学生所加的项,其中错误的是( )A .2xB .﹣4xC .4x 4D .4x【答案】A【解析】【分析】分别将四个选项中的式子与多项式4x 2+1结合,然后判断是否为完全平方式即可得答案.【详解】A 、4x 2+1+2x ,不是完全平方式,不能利用完全平方公式进行因式分解,故符合题意;B 、4x 2+1-4x=(2x-1)2,能利用完全平方公式进行因式分解,故不符合题意;C 、4x 2+1+4x 4=(2x 2+1)2,能利用完全平方公式进行因式分解,故不符合题意;D 、4x 2+1+4x=(2x+1)2,能利用完全平方公式进行因式分解,故不符合题意,故选A.【点睛】本题考查了完全平方式,熟记完全平方式的结构特征是解题的关键.6.多项式x 2y (a -b )-xy (b -a )+y (a -b )提公因式后,另一个因式为( )A .21x x -+B .21x x ++C .21x x --D .21x x +-【答案】B【解析】解:x 2y (a -b )-xy (b -a )+y (a -b )= y (a -b )(x 2+x +1).故选B .7.已知:3a b +=则2225a a b b ab -+-+-的值为( )A .1B .1-C .11D .11- 【答案】A【解析】【分析】将2225a a b b ab -+++-变形为(a+b )2-(a+b )-5,再把a+b=3代入求值即可.【详解】∵a+b=3,∴a 2-a+b 2-b+2ab-5=(a 2+2ab+b 2)-(a+b )-5=(a+b )2-(a+b )-5=32-3-5=9-3-5=1,故选:A .【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式解答.8.下列分解因式,正确的是( )A .()()2x 1x 1x 1+-=+B .()()29y 3y y 3-+=+- C .()2x 2x l x x 21++=++ D .()()22x 4y x 4y x 4y -=+- 【答案】B【解析】【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【详解】A. 和因式分解正好相反,故不是分解因式;B. 是分解因式;C. 结果中含有和的形式,故不是分解因式;D. x2−4y2=(x+2y)(x−2y),解答错误.故选B.【点睛】本题考查的知识点是因式分解定义和十字相乘法分解因式,解题关键是注意:(1)因式分解的是多项式,分解的结果是积的形式.(2)因式分解一定要彻底,直到不能再分解为止.9.下列因式分解正确的是()A.x2﹣y2=(x﹣y)2B.a2+a+1=(a+1)2C.xy﹣x=x(y﹣1)D.2x+y=2(x+y)【答案】C【解析】【分析】【详解】解:A、x2﹣y2=(x+y)(x﹣y),故此选项错误;B、a2+a+1无法因式分解,故此选项错误;C、xy﹣x=x(y﹣1),故此选项正确;D、2x+y无法因式分解,故此选项错误.故选C.【点睛】本题考查因式分解.10.若△ABC三边分别是a、b、c,且满足(b﹣c)(a2+b2)=bc2﹣c3,则△ABC是()A.等边三角形B.等腰三角形C.直角三角形D.等腰或直角三角形【答案】D【解析】试题解析:∵(b﹣c)(a2+b2)=bc2﹣c3,∴(b﹣c)(a2+b2)﹣c2(b﹣c)=0,∴(b﹣c)(a2+b2﹣c2)=0,∴b﹣c=0,a2+b2﹣c2=0,∴b=c或a2+b2=c2,∴△ABC是等腰三角形或直角三角形.故选D.11.下列各式中从左到右的变形,是因式分解的是( )A .(a +3)(a -3)=a 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b +ab 2=ab (a +b )D .x 2+1=x (x +1x) 【答案】C【解析】【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 错误;B 、没把一个多项式转化成几个整式积的形式,故B 错误;C 、因式分解是把一个多项式转化成几个整式积的形式,故C 正确;D 、因式中含有分式,故D 错误;故选:C .【点睛】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.12.将下列多项式因式分解,结果中不含有因式1a +的是( )A .21a -B .221a a ++C .2a a +D .22a a +-【答案】D【解析】【分析】先把各个多项式分解因式,即可得出结果.【详解】解:21(1)(1)a a a -=+-Q , ()2221=1a a a +++2(1)a a a a +=+,22(2)(1)a a a a +-=+-, ∴结果中不含有因式1a +的是选项D ;故选:D .【点睛】本题考查了因式分解的意义与方法;熟练掌握因式分解的方法是解决问题的关键.13.下列各式由左到右的变形中,属于分解因式的是( )A .x 2﹣16+6x =(x +4)(x ﹣4)+6xB .10x 2﹣5x =5x (2x ﹣1)C .a 2﹣b 2﹣c 2=(a ﹣b )(a +b )﹣c 2D.a(m+n)=am+an【答案】B【解析】【分析】根据因式分解的定义逐个进行判断即可.【详解】解:A、变形的结果不是几个整式的积,不是因式分解;B、把多项式10x2﹣5x变形为5x与2x﹣1的积,是因式分解;C、变形的结果不是几个整式的积,不是因式分解;D、变形的结果不是几个整式的积,不是因式分解;故选:B.【点睛】本题主要考察了因式分解的定义,理解因式分解的定义是解题的关键.14.已知三个实数a,b,c满足a﹣2b+c<0,a+2b+c=0,则()A.b>0,b2﹣ac≤0B.b<0,b2﹣ac≤0C.b>0,b2﹣ac≥0D.b<0,b2﹣ac≥0【答案】C【解析】【分析】根据a﹣2b+c<0,a+2b+c=0,可以得到b与a、c的关系,从而可以判断b的正负和b2﹣ac的正负情况.【详解】∵a﹣2b+c<0,a+2b+c=0,∴a+c=﹣2b,∴a﹣2b+c=(a+c)﹣2b=﹣4b<0,∴b>0,∴b2﹣ac=222222a c a ac cac+++⎛⎫-=⎪⎝⎭=222242a ac c a c-+-⎛⎫= ⎪⎝⎭…,即b>0,b2﹣ac≥0,故选:C.【点睛】此题考查不等式的性质以及因式分解的应用,解题的关键是明确题意,判断出b和b2-ac 的正负情况.15.已知x﹣y=﹣2,xy=3,则x2y﹣xy2的值为()A.2 B.﹣6 C.5 D.﹣3【答案】B【解析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.16.下列各式中,能用完全平方公式分解因式的是( )A .2161x +B .221x x +-C .2224a ab b +-D .214x x -+ 【答案】D【解析】【分析】根据完全平方公式的结构特点:必须是三项式,其中有两项能写成两个数的平方和的形式,另一项是这两个数的积的2倍,对各选项分析判断后利用排除法求解.【详解】A. 2161x +只有两项,不符合完全平方公式;B. 221x x +-其中2x 、-1不能写成平方和的形式,不符合完全平方公式;C. 2224a ab b +-,其中2a 与24b - 不能写成平方和的形式,不符合完全平方公式;D. 214x x -+符合完全平方公式定义, 故选:D.【点睛】此题考查完全平方公式,正确掌握完全平方式的特点是解题的关键.17.下列各式从左到右的变形中,是因式分解的为( )A .ab+ac+d =a (b+c )+dB .(x+2)(x ﹣2)=x 2﹣4C .6ab =2a ⋅3bD .x 2﹣8x+16=(x ﹣4)2【答案】D【解析】【分析】根据因式分解就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】A 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;B 、等式右边不是整式积的形式,故不是因式分解,故本选项错误;C 、等式左边是单项式,不是因式分解,故本选项错误;D 、符合因式分解的定义,故本选项正确.故选D .本题考查的是因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.18.把x 2-y 2-2y -1分解因式结果正确的是( ).A .(x +y +1)(x -y -1)B .(x +y -1)(x -y -1)C .(x +y -1)(x +y +1)D .(x -y +1)(x +y +1)【答案】A【解析】【分析】由于后三项符合完全平方公式,应考虑三一分组,然后再用平方差公式进行二次分解.【详解】解:原式=x 2-(y 2+2y+1),=x 2-(y+1)2,=(x+y+1)(x-y-1).故选A .19.下列从左到右的变形中,属于因式分解的是( )A .()()2224x x x +-=-B .2222()a ab b a b -+=-C .()11am bm m a b +-=+-D .()21(1)1111x x x x ⎛⎫--=--- ⎪-⎝⎭【答案】B【解析】【分析】 把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,根据因式分解的定义,即可得到本题的答案.【详解】A .属于整式的乘法运算,不合题意;B .符合因式分解的定义,符合题意;C .右边不是乘积的形式,不合题意;D .右边不是几个整式的积的形式,不合题意;故选:B .【点睛】本题考查了因式分解的定义,即将多项式写成几个因式的乘积的形式,掌握定义是解题的关键.20.计算(-2)2015+(-2)2016的结果是 ( )A.-2 B.2 C.22015D.-22015【答案】C【解析】【分析】【详解】(-2) 2015+(-2)2016=(-2) 2015×(-2)+(-2) 2015=(-2) 2015×(1-2)=22015.故选C.点睛:本题属于因式分解的应用,关键是找出各数字之间的关系.。