过程控制基本概念

合集下载

过程控制知识点(精编)

过程控制知识点(精编)

(一)概述1.过程控制概念:采用数字或模拟控制方式对生产过程的某一或某些物理参数进行的自动控制。

2.学科定位:过程控制是控制理论、工艺知识、计算机技术和仪器仪表知识相结合而构成的一门应用学科。

3.过程控制的目标:安全性,稳定性,经济性。

4.过程控制主要是指连续过程工业的过程控制。

5.过程控制系统基本框图:6.过程控制系统的特点:1)被控过程的多样性2)控制方案的多样性,包括系统硬件组成和控制算法以及软件设计的多样性。

3)被控过程属慢过程且多属参数控制4)定值控制是过程控制的主要形式5)过程控制有多种分类方法。

过程控制系统阶跃应曲线:7.衰减比η:衡量振荡过程衰减程度的指标,等于两个相邻同向波峰值之比。

即:8.衰减率ϕ:指每经过一个周期以后,波动幅度衰减的百分数,即:衰减比常用表示。

9.最大动态偏差y1:被控参数偏离其最终稳态值的最大值。

衡量过程控制系统动态准确性的指标10.超调量:最大动态偏差占稳态值的百分比。

11.余差:衡量控制系统稳态准确性的性能指标。

12.调节时间:从过渡过程开始到结束的时间。

当被控量进入其稳态值的范围内,过渡过程结束。

调节时间是过程控制系统快速性的指标。

13.振荡频率:振荡周期P的倒数,即:当相同,越大则越短;当相同时,则越高,越短。

因此,振荡频率也可衡量过程控制系统快速性。

被控对象的数学模型(动态特性):过程在各输入量(包括控制量与扰动量)作用下,其相应输出量(被控量)变化函数关系的数学表达式。

14. 被控对象的动态特性的特点:1单调不振荡。

2具有延迟性和大的时间常数。

3具有纯时间滞后。

4具有自平衡和非平衡特性。

5非线性。

(二)过程控制系统建模方法机理法建模:根据生产过程中实际发生的变化机理,写出各种有关方程式,从而得到所需的数学模型。

测试法建模:根据工业过程的输入、输出的实测数据进行某种数学处理后得到的模型。

经典辨识法:测定动态特性的时域方法,测定动态特性的频域方法,测定动态特性的统计相关法。

过程控制技术-第一章过程控制系统的基本概念

过程控制技术-第一章过程控制系统的基本概念

1 过程控制系统的基本概念
过程控制系统有多种分类方法,每一种 分类方法都是反映了控制系统某一方面的 特点。为了便于分析反馈控制系统的特性, 我们将按设定值的形式不同,分为三种类 型。
定值控制系统 随动控制系统 程序控制系统
1 过程控制系统的基本概念
过程控制系统的方块图及其号联系,常用方块 图来表示,如图1-2所示。
1 过程控制系统的基本概念
若系统的输出信号对控制作用没有影响,则称 作开环控制系统,即系统的输出信号不反馈到 输入端,不形成信号传递的闭合环路,如图13所示。
1 过程控制系统的基本概念
由于闭环控制系统采用了负反馈,因而使 系统的输出信号受外来扰动和内部参数变化小, 具有一定的抑制扰动提高控制精度的特点。开 环控制系统结构简单容易构成,稳定性不是重 要问题,而对闭环控制系统稳定性始终是一个 重要问题。
1 过程控制系统的基本概念
当锅炉汽包水位控制系统处于平衡状态即 静态时,扰动作用为零,设定值不变,系统中 控制器的输出和控制阀的输出都暂不改变,这 时被控变量汽包水位也就不变。一旦设定值有 了改变或扰动作用于系统,系统平衡被破坏, 被控变量开始偏离设定值,此时控制器、控制 阀将相应动作,改变操纵变量给水量的大小, 使被控变量汽包水位回到设定值,恢复平衡状 态。
过程控制系统的组成及其分类 自动控制是在人工控制的基础上发展起来
的。下面先通过一个示例, 将人工控制与过程 控制进行对比分析,看过程控制系统是由哪些 部分组成的。
1 过程控制系统的基本概念
➢ 通过上述示例的对比 分析知道,一般过程 控制系统是由被控对 象和自动控制装置两 大部分或由被控对象、 测量变送器、控制器、 控制阀四个基本环节 所组成。
这里“过程”是指在生产装置或设备 中进行的物质和能量的相互作用和转换过 程。

过程控制与仪表课程设计

过程控制与仪表课程设计

过程控制与仪表课程设计一、课程目标知识目标:1. 让学生理解过程控制的基本概念,掌握仪表的种类、工作原理及其在工业中的应用。

2. 使学生掌握过程控制系统的数学模型,了解被控对象、控制器、执行器等组成部分的特性。

3. 让学生了解过程参数的检测与变送原理,掌握各类传感器的使用方法和调试技巧。

技能目标:1. 培养学生运用所学知识分析、解决实际过程控制问题的能力,能设计简单的过程控制系统。

2. 培养学生动手操作仪表,进行系统调试、故障排除的能力。

3. 提高学生的团队协作能力和沟通能力,能在小组合作中发挥各自优势,共同完成过程控制系统的设计与优化。

情感态度价值观目标:1. 培养学生对过程控制与仪表领域的兴趣,激发学生主动学习的积极性。

2. 培养学生严谨的科学态度,注重实践与理论相结合,提高学生的工程素养。

3. 引导学生关注过程控制技术在实际生产中的应用,认识到学习本课程的实际意义,增强学生的社会责任感。

课程性质:本课程为专业技术课程,旨在使学生掌握过程控制与仪表的基本理论、方法和技术,培养学生的实际操作能力和工程素养。

学生特点:高二年级学生,已具备一定的物理、数学基础,对工程技术有一定了解,具备初步的分析问题和动手能力。

教学要求:结合学生特点和课程性质,注重理论与实践相结合,强化学生的实际操作能力,提高学生解决实际问题的能力。

将课程目标分解为具体的学习成果,以便于教学设计和评估。

二、教学内容1. 过程控制基本概念:控制系统的分类、性能指标、稳定性与可控性。

2. 仪表及传感器:仪表的分类及工作原理,常见传感器(如温度、压力、流量传感器)的原理与应用。

3. 过程控制系统的数学模型:被控对象、控制器、执行器的数学描述,传递函数与方框图。

4. 控制器设计:PID控制算法,参数整定方法,串、并联控制系统的设计与分析。

5. 过程参数检测与变送:检测原理,变送器的种类及特性,信号处理与传输。

6. 过程控制系统的实现:控制系统硬件、软件组成,系统调试与优化。

第一章过程控制基本概念.

第一章过程控制基本概念.

课程要求及参考书目
教学目标
• • • • • 什么是过程控制系统 过程控制系统的基本设计方法和原则 过程控制系统的建模与辨识 过程控制系统的控制器设计与稳定性分析 了解过程控制系统的性能评估方法
教材及主要参考书目
• 《工业系统辨识与控制》,李少远等,化学工业出版社,2010年 • 《自动控制原理》,胡寿松,科学出版社,2001年及以后新版本 • 《现代控制工程》(第二版),绪方胜彦著,卢伯英等译,科学出版社, 1984
测量变送 Gm (s)
图1.4 简单过程控制的系统框图
1.1 工业过程控制系统
常用术语
• 被控对象(Process/Object):被控制的设备或装置
• 被控变量(Controlled Variable):需要对其进行控制的工艺变量
• 扰动(Disturbance):影响被控变量的各种扰动作用 • 操纵变量(Manipulated Variable):受执行机构操纵用于克服扰动 影响的变量 • 测量值(Measurement ):被控变量经检测变送后即是测量值 • 给定值(Set Point):即被控变量的设定值 • 偏差值(Error):被控量的给定值与测量值之差
过程控制系统 控制目标 被控对象,被控变量,操纵变量,…
控制器方案设计
1.2 控制规律的选择
PID控制器(包括:单回路PID、串级、前馈、均 匀、比值、分程、选择或超驰控制等) 特点:主要适用于SISO系统、基本上不需要对象 的动态模型、结构简单、在线调整方便。 APC控制器(先进控制方法,包括:解耦控制、 内模控制、预测控制、自适应控制等),

Steam
Transmitter Process fluid Ti(t) T Condensate return

质量控制中的过程控制

质量控制中的过程控制

质量控制中的过程控制在质量控制中,过程控制是一个至关重要的环节。

过程控制是指对生产过程中的各个环节进行监控和调节,以确保产品质量符合要求的一种管理方法。

通过过程控制,可以及时发现生产过程中的问题,做出调整,避免不良品的产生,提高产品的合格率和生产效率。

一、过程控制的概念及作用过程控制是指在生产制造过程中,通过对各个环节进行有效监控和调节,以确保生产过程稳定、可控,从而达到产品质量的要求。

过程控制的核心是对生产过程中的各项参数进行监控,一旦发现有异常情况,及时做出反应和调整,以防止问题进一步扩大。

过程控制的作用是多方面的。

首先,可以帮助企业减少产品不良率,提高合格品的产量。

其次,可以提高生产效率,减少资源的浪费。

再者,可以帮助企业及时发现和排除生产过程中的问题,避免不良品流入市场,保护企业品牌形象。

总的来说,过程控制对企业的可持续发展至关重要。

二、过程控制的方法过程控制有多种方法,常见的方法包括:1. 统计质量控制(SQC):通过对生产数据进行统计分析,监控生产过程中的变化,及时采取措施,确保产品质量符合要求。

2. 过程监控图(SPC):通过绘制控制图,监控生产过程中的变化,及时调整生产参数,保持生产过程稳定。

3. 六西格玛(Six Sigma):通过六西格玫的方法,对生产过程进行深入分析,找出问题根源,并采取相应措施,改进生产过程,提高产品质量。

4. 故障模式和效果分析(FMEA):通过对潜在故障模式和效果的分析,找出可能影响产品质量的因素,并提前采取防范措施,避免问题发生。

5. 设备管理效益(OEE):通过对设备的运转效率、生产能力和质量损失等指标进行监控,发现设备运行中的问题,及时做出调整,提高生产效率。

以上方法并不是孤立的,可以根据企业的实际情况结合运用,以达到最佳的过程控制效果。

三、过程控制中的关键要点在进行过程控制时,要注意以下几个关键要点:1. 确定关键过程:首先要确定生产过程中的关键节点,以确保对关键节点进行有效监控和控制。

过程控制

过程控制

各种复杂的常规控制系统和计算 机控制系统。 机控制系统。 直接数字控制( 直接数字控制(Direct digital Control DDC) ) 集散控制系统( 集散控制系统(DCS) ) 现场总线系统( 现场总线系统(FCS) )
70年代中 先进控制 卡边操作,节 年代中 卡边操作, 期→ 能降耗 至今
控制目标:设备保护 控制目标:设备保护
T6 P1 汽相 产品
T1 进料: 甲烷 乙烷 (LK) F1 丙烷 丁烷 戊烷
T2
T5
没有流体将会 损坏泵
T4
T3
L1
LC
F2 过程 流体
F3 蒸汽 L. Key A1 液相 产品
控制目标:稳定性 控制目标:稳定性
使物料的流速 保持平稳
T6 P1 汽相 产品
(2)按给定信号的特点来分: 1定值控制系统 系统被控量的给定值是固定不变的,应用 最多。 2随动控制系统 系统被控量的给定值是随时间任意变化的 控制系统。 3顺序控制系统 系统被控量的给定值是按预定的时间程序 来变化的。
举例:闪蒸分离过程
控制目标:安全性 控制目标:安全性
分离器中过高 的压力非常危 险
干扰 D 给定值 Sv + 偏差 Dv Pv 测量值 测量变送器 控制器 操纵值 Mv 操纵变量 调节阀 q 被控对象 y 被控变量
图 13-3 自 动 控 制 系 统 的 方 块 图
TT—温度变送器 温度变送器 FT—流量变送器 流量变送器 PT—压力变送器 压力变送器 LTห้องสมุดไป่ตู้液位变送器 液位变送器
TC—温度控制器 温度控制器 FC—流量控制器 流量控制器 PC—压力控制器 压力控制器 LC—液位控制器 液位控制器

过程控制的基本概念

过程控制的基本概念

过程控制的基本概念
①自动控制。

在没有人的直接参与下,利用控制装置操纵生产机器、设备或纪过程,使表征其工作状态的物理参数(状态变量)尽可能接近人们的期望值(即设定值)的过程,称为自动控制。

②过程控制。

对生产过程所进行的自动控制,称为过程控制。

或者说凡是采用模拟或数字控制方式对生产过程的某一或某些物理参数进行的自动控制统称为过程控制。

③过程控制系统。

为了实现过程控制,以控制理论和生产要求为依据,采用模拟仪表、数字仪表计算机等构成的控制总体,称为过程控制系统。

第10章 过程控制系统基本概念解读

第10章 过程控制系统基本概念解读

刘玉长
第二节过程控制系统过渡过程和品质指标 一、静态与动态
在自动控制中,把被控量不随时间而变化 的平衡状态称为系统的静态,而把被控量随时间 而变化的不平衡状态称为系统的动态。 在生产过程中,扰动是客观存在,且是不 可避免的,因此了解系统的静态是必要的,但是 了解系统的动态更为重要。
刘玉长
二、自动控制系统的过渡过程
刘玉长
几个基本概念
单容过程:只有一个容积,一个容量系数
和一个时间常数。
自衡特性:对象在扰动作用,其平衡受到
破坏,在没有操作人员或控制器的干预下, 自动恢复平衡的特性。
无平衡特性:平衡状态下,一旦受到破坏,
无法自行重建平衡。
自衡率 :表示自衡能力。一般希望它大一
些,即在很大干扰下,被控变量变化很少。
刘玉长
三、控制系统的工程表示
自动控制系统有两种表示方法,即方框图 与工艺控制流程图(或称管道仪表流程图)【需遵 循 “GB/T 2625-1981 过程检测和控制流程图用 图形符号和文字代号” 或其它行业标准】。
蒸汽
LT
PV
LC
MV
SV 期望值 控制器 SV LC
控制阀 V 检测变送 LT
锅炉
实际值
要求:



三、控制系统的品质指标
控制系统性能指标是根据系统在零初使条 件(输出量和输入量的各阶导数为0)下的单位阶 跃响应曲线计算得到的。 实际控制系统的瞬态响应曲线不同,其性 能指标定义也不一样。因为衰减振荡是一种比较 好的响应曲线,故以下针对衰减振荡过程进行介 绍【注意,有的过程不允许出现振荡】。
刘玉长
(四)稳定时间ts
从阶跃扰动开始作用起至被控量又建立新 的平衡状态止,这一段时间叫做稳定时间 ( 或称 过渡时间)。 工程上规定当被控量达到稳定值的±5%(或 ±2%)的范围内时,就认为被控量已经达到了稳 定值。按这个规定,稳定时间就是从扰动开始作 用之时起,直至被控量进入稳定值的±5%( 或 ±2%)的范围内所经历的时间。 稳定时间短,表示过渡过程进行得比较迅 速,这时即使扰动频繁出现,系统也能适应,系 统质量较高。 刘玉长

SPC统计过程控制基本概念

SPC统计过程控制基本概念

SPC统计过程控制根本概念引言SPC〔统计过程控制〕是一种用于监控和控制过程稳定性的方法。

它使用统计工具来分析过程数据,以便及时识别和纠正任何异常或变异。

本文将介绍SPC统计过程控制的根本概念,包括其定义、原理和常用的控制图。

定义SPC是一种基于统计方法的过程管理技术,用于监测和控制生产过程以保持在既定的质量范围内。

它的目标是确保过程在特定参数范围内保持稳定,并及时识别和纠正任何异常。

SPC主要通过收集数据并应用统计方法来实现过程控制。

原理SPC基于以下两个根本原理: 1. 过程稳定性:稳定的过程是指其输出变量在一定的统计范围内波动,并且其变异性为可控制的。

通过检测过程数据的变异性,可以判断过程是否稳定。

2. 标准限制:每个过程都有一组标准限制,表示其输出变量的可接受范围。

通过比拟过程数据与标准限制,可以判断过程是否符合要求。

控制图控制图是SPC中常用的工具,用于检测和监控过程的稳定性。

常见的控制图包括: - 均值控制图:用于监测过程的平均值是否稳定。

常见的均值控制图有X-bar控制图和均值移动范围控制图。

- 范围控制图:用于监测过程的变异性是否稳定。

常见的范围控制图有R控制图和S 控制图。

- 非参数控制图:用于监测不符合正态分布假设的过程。

常见的非参数控制图有中位数控制图和秩和控制图。

控制图的根本原理是将过程数据与控制界限进行比拟,以识别任何异常或变异。

如果过程数据落在控制界限之外,说明过程不稳定并需要采取纠正措施。

SPC方法SPC方法是实施SPC的步骤和技术。

以下是SPC方法中的关键步骤:1. 收集数据:收集过程相关的数据,通常是通过抽样收集。

2. 统计分析:对收集到的数据进行统计分析,包括计算统计指标和绘制控制图。

3. 解读控制图:通过分析控制图,识别任何异常或变异,判断过程是否稳定。

4. 纠正措施:如果控制图显示过程不稳定,应采取纠正措施,如调整操作参数或改良工艺流程。

SPC方法还可以与其他质量管理工具和方法相结合,例如六西格玛和PDCA循环,以进一步提高过程稳定性和质量性能。

《过程控制基本概念》课件

《过程控制基本概念》课件

经典控制方法1Fra bibliotek比例控制
响应快但不稳定。
积分控制
2
消除稳态误差,但过度调节。
3
微分控制
抑制震荡,但增大稳态误差。
现代控制方法
神经网络
自适应、非线性,但难以调试。
模糊控制
适应度强,但表达模糊规则难度 大。
模型预测控制
计算复杂,但能满足多种约束条 件。
控制器基本结构和特性
1
前馈结构
速度快但不稳定。
2
经典控制 vs 现代控 制
现代控制方法比经典方法更加 适用于复杂系统,但难以取得 完美控制效果。
结构选择
根据控制对象属性选择合适的 控制器结构和控制方法。
过程控制基本概念
本PPT介绍过程控制的基本概念,控制系统基础知识,以及开环控制与闭环控 制等内容。
控制系统基础知识
传感器
测量温度、压力等过程量。
可编程控制器
执行控制函数、记录数据等。
执行机构
控制温度、压力等过程量。
开环控制与闭环控制
开环控制
控制器不接收反馈信号,只进行单向控制。
闭环控制
控制器接收反馈信号,进行双向控制,更加准确。
反馈结构
平衡性好但响应慢。
3
混合结构
兼顾速度和平衡性。
应用实例及案例分析
1 石化生产过程控制
控制精度要求高,常采用模型预测控制等方法。
2 航空航天控制技术
控制复杂度高,常采用混合结构和自适应控制。
3 机器人控制技术
模糊控制方法可有效应用于机器人运动控制。
总结
开环控制 vs 闭环控 制
闭环控制更加准确,但开环控 制具有简单、快速的优势。

第2章-过程控制系统基本概念解析

第2章-过程控制系统基本概念解析

2.2 过程控制系统的特点
(3)被控过程的复杂性和多样性 过程控制系统在复杂性和多样性上要明显高 于其他控制系统。但各种过程控制系统的共性是 动态特性多为大惯性、大滞后形式,且具有非线 性、分布参数和时变特性。
智能建筑环境检测与控制技术
2.2 过程控制系统的特点
(4)过程控制方案十分丰富 被控过程对象特性各异,工艺条件及要求不 同,针对这些不同设计的过程控制系统的控制方 案也各异,因此决定了系统的控制方案非常丰富。 为了满足生产过程中越来越高的要求,未来的控 制方案会越来越丰富。
2.4.1 按系统的结构特点分类
(2)前馈控制系统 前馈控制系统是依据扰动量进行工作的,其 理论基础是不变性原理。由于系统中无被控量的 反馈,因此也称其为开环系统。
测量仪表
f (t)
前馈调节器
调节阀
被控对象
y(t)
智能建筑环境检测与控制技术
2.4.1 按系统的结构特点分类
(3)前馈–反馈控制系统 将前馈控制系统和反馈控制系统结合在一起, 就构成了前馈–反馈控制系统,也称复合控制系 统,这种系统可以取得更好的控制效果。
2.4 过程控制系统的分类
过程控制系统有多种分类方法,每一种分类 方法都只是反映了过程控制系统某一方面的特点, 人们可以从不同的角度出发采用不同的分类方法。 但是,在实际生产中经常采用的分类方法主要有 两种,即按系统的结构特点分类和按给定信号的 特点来分类。
智能建筑环境检测与控制技术
2.4.1 按系统的结构特点分类
智能建筑环境检测与控制技术
2.4.2 按给定信号的特点分类
(2)随动控制系统 有一类生产过程,输入信号是随时间变化的, 其规律事先未知,要求输出量能够迅速、准确地 跟随给定量的变化而变化,此类系统为随动系统。 随动系统在火炮控制系统、雷达引导系统、加热 炉燃料与空气的混合比控制等国防和工业生产中 得到了广泛的应用。

公共基础知识过程控制技术基础知识概述

公共基础知识过程控制技术基础知识概述

《过程控制技术基础知识概述》一、引言过程控制技术在现代工业生产中起着至关重要的作用,它能够确保生产过程的稳定、高效运行,提高产品质量,降低生产成本。

随着科技的不断进步,过程控制技术也在不断发展和创新,从传统的模拟控制到现代的数字化、智能化控制,其应用范围越来越广泛。

本文将对过程控制技术的基础知识进行全面的阐述与分析,包括基本概念、核心理论、发展历程、重要实践以及未来趋势。

二、基本概念1. 过程控制的定义过程控制是指对生产过程中的物理量(如温度、压力、流量、液位等)进行自动控制,使其在一定的范围内保持稳定,以满足生产工艺的要求。

2. 控制系统的组成过程控制系统通常由被控对象、传感器、变送器、控制器和执行器等部分组成。

被控对象是指需要进行控制的生产过程或设备;传感器用于检测被控对象的物理量,并将其转换为电信号;变送器将传感器输出的电信号转换为标准信号,以便传输和处理;控制器根据给定值和测量值的偏差,按照一定的控制规律计算出控制信号;执行器根据控制信号对被控对象进行控制,如调节阀门开度、改变电机转速等。

3. 控制方式过程控制的方式主要有开环控制和闭环控制两种。

开环控制是指控制信号只根据给定值进行计算,不考虑被控对象的实际输出;闭环控制则是将被控对象的实际输出反馈到输入端,与给定值进行比较,根据偏差进行控制。

闭环控制具有较高的控制精度和稳定性,但系统结构相对复杂。

三、核心理论1. 反馈控制理论反馈控制是过程控制的核心理论之一,它基于被控对象的输出反馈,通过调整控制信号来减小给定值与实际输出之间的偏差。

反馈控制可以分为比例控制、积分控制和微分控制三种基本控制方式,分别对应着对偏差的比例、积分和微分响应。

通过合理组合这三种控制方式,可以实现不同的控制性能要求。

2. 现代控制理论现代控制理论是在经典控制理论的基础上发展起来的,它采用状态空间法对控制系统进行描述和分析。

现代控制理论可以处理多输入多输出系统、非线性系统和时变系统等复杂控制问题,具有更高的控制精度和鲁棒性。

过程控制

过程控制

第一章1、过程控制(Process control )是指连续生产过程的自动控制。

石油、化工、水利、电力、冶金、轻工、纺织、制药、建材、核能、环境工程等许多领域的自动控制系统,都属于过程控制系统。

连续生产过程的特征是:生产过程中的各种流体,在连续(或间歇)的流动过程中进行着物理化学反应、物质能量的转换或传递。

2、过程控制系统的定义:为实现对某个工艺参数的自动控制,由相互联系、制约的一些仪表、装置及工艺对象、设备构成的 一个整体。

3、1.3.1过程控制系统的分类过程控制系统有多种分类方法。

常用的分类方法有两种:﹡按设定值的形式 ﹡按系统的结构1. 按设定值的形式分类1)定值控制系统—— 设定值恒定不变。

2)随动控制系统——设定值随时可能变化。

3)程序控制系统——设定值按预定的时间程序变化。

2. 按系统的结构特点分类1)反馈控制系统(闭环控制系统)将被控变量输入到控制器,形成闭环,具有被控变量负反馈的控制系统。

2)前馈控制系统(开环控制系统)控制系统没有被控变量负反馈,不将被控变量引入到控制器输入端。

3)复合控制系统前馈与反馈相结合,优势互补。

4、1.3.2过程控制系统的性能指标当被控对象受到干扰、被控变量发生变化时,控制系统抵制干扰、纠正被控变量的过程,反映了控制系统的优劣。

为此,要有评价控制系统的性能指标。

控制系统的性能指标是根据工艺对控制的要求来制定的,概括为稳定性、准确性和快速性。

控制性能指标有单项指标和综合指标两类单项性能指标以控制系统被控参数过渡过程的单项特征量作为性能指标,而偏差积分性能指标则是一种综合性指标。

1. 系统阶跃响应的单项性能指标单项性能指标包含了对控制系统的稳定性、准确性和快速性三方面的评价。

1)衰减比n 和衰减率ψ衰减比 n 和衰减率ψ 是表示系统稳定程度的指标。

n 大于1,则系统是稳定的。

随着n 的增大,过渡过程逐渐由衰减振荡趋向于单调过程。

试验证明:衰减比在 4: 1到10:1之间时,过渡过程的衰减程度合适,过渡过程较短。

统计过程控制和基本概念

统计过程控制和基本概念

范围
时间
过程控制和过程能力
过程控制
受控 (消除了偶然因素)
范围
不受控 (存在偶然因素)
时间
过程控制和过程能力
过程能力
时 间 受控但没有能力符合规范 (系统因素造成变差太大)
规范上 受控且有限能力符合规范
(系统因素造成的变差)
过程控制和过程能力
每个过程可以分类如下: 受控或不受控 是否有满足客户要求
位置
分布宽度置
形状
范围
范围
范围
或这些因数的组合
过程变差
如果只存在变差的系统因素, 随著时间的推移,过程的输出 形成一个稳定的分布并可预测
目标直线 预测
范围
时间
过程变差
如果存在变差的偶然因素, 随著时间的推移, 过程的输出不稳定
目标直线
???????




??
??
预测
统计过程控制和基本概 念
什么是SPC
SPC(Statistical Process Control)统计过程控制,简称SPC,是美国休哈特 博士在二十世纪二十年代所创造的理论。是一种借助数理统计方法的过程控制 工具。在企业的质量控制中,可应用SPC对质量数据进行统计、分析,从而区分 出生产过程中产品质量的正常波动与异常波动,以便对过程的异常及时提出预 警,提醒管理人员采取措施消除异常,恢复过程的稳定性,从而提高产品的质 量。而传统的质量控制有赖于检验最终产品并筛选出不符合规范的产品,这种 检验策略通常是浪费和不经济的,因为它是当不合格品产生以后的事后检验。 SPC技术的出现,让质量管理从这种被动的事后把关发展到过程中积极的事前预 防为主,从而大大降低了企业的生产成本,同时也提高了企业的竞争能力。

过程控制系统复习总结

过程控制系统复习总结

过程控制系统知识点总结)一、概论1、过程控制概念:五大参数。

温度、压力、流量、液位和成分等工艺参数作为被控变过程控制的定义:工业中的过程控制是指以量的自动控制。

2、简单控制系统框图。

控制仪表的定义:接收检测仪表的测量信号,控制生产过程正常进行的仪表。

主要包括:控制器、变送器、运算器、执行器等,以及新型控制仪表及装置。

控制仪表的作用:对检测仪表的信号进行运算、处理,发出控制信号,对生产过程进行控制。

给定值操纵量被控量被控对象控制器执行器-变送器3、能将控制流程图(工程图、工程设计图册)转化成控制系统框图。

第一个字母:参数类型T——温度(Temperature)加热炉)——P压力(Pressure )L——物位(Level——流量(Flow)F温度)W——重量(Weight变送器控制器第二个字母:功能符号TT TC)T——变送器(transmitter原料)——C控制器(Controller 指示器(Indicator)I——执行器R——记录仪(Recorder)燃料)AlarmA——报警器(4、DDZ-Ⅲ型仪表的电压信号制,电流信号制。

QDZ-Ⅲ型仪表的信号制。

它们之间联用要采用电气转换器。

5、电信号的传输方式,各自特点。

电压传输特点:1). 某台仪表故障时基本不影响其它仪表;2). 有公共接地点;3). 传输过程有电压损耗,故电压信号不适宜远传。

电流信号的特点:1).某台仪表出故障时,影响其他仪表;2).无公共地点。

若要实现仪表各自的接地点,则应在仪表输入、输出端采取直流隔离措施。

6、变送器有四线制和二线制之分。

区别。

1、四线制:电源与信号分别传送,对电流信号的零点及元件的功耗无严格要求。

2、两线制:节省电缆及安装费用,有利于防爆。

活零点,两条线既是信号线又是电源线。

7、本安防爆系统的2个条件。

1、在危险场所使用本质安全型防爆仪表。

2、在控制室仪表与危险场所仪表之间设置安全栅,以限制流入危险场所的能量。

过程控制系统基本概念(讲座20)

过程控制系统基本概念(讲座20)

4
图 4 温度控制系统过渡过程曲线 解:最大偏差 A=230-200=30℃ 余差 C=205-200=5℃
由图上可以看出,第一个波峰值 B=230-205=25℃, 第二个波峰值 B′=210-205=5℃, 故衰减比应为 B:B′=25:5=5:1。 振荡周期为同向两波峰之间的时间间隔,故周期 T=20-5=15(min) 分析:过渡时间与规定的被控变量限制范围大小有关,假定被控变量进入额 定值的±2%,就可以认为过渡过程已经结束,那么限制范围为 200×(±2%) =±4℃,这时,可在新稳态值(205℃)两侧以宽度为±4℃画一区域,上图中 以画有阴影线的区域表示,只要被控变量进入这一区域且不再越出,过滤过程就 可以认为已经结束。因此,从图 4 可以看出,过渡时间为 22min。 4、影响控制系统过渡过程品质的主要因素 一个自动控制系统可以概括成两大部分,即工艺过程部分(被控对象)和自 动化装置部分。前者指与该自动控制系统有关的部分。后者指为实现自动控制所 必需的自动化仪表设备,通常包括测量与变送装置、控制器和执行器等三部分。 对于一个自动控制系统,过渡过程品质的好坏,在很大程度上决定于对象的 性质。例如在前所述的温度控制系统中,属于对象性质的主要因素有:换热器的 负荷大小,换热器的结构、尺寸、材质等,换热器内的换热情况、散热情况及结 垢程度等。不同自动化系统要具体分析。 5、工艺管道及控制流程图 工艺流程和控制方案的确定后,根据工艺设计给出的流程图,按其流程顺序 标注出相应的测量点、控制点、控制系统及自动信号与联锁保护系统等,便成了 工艺管道及控制流程图(PID 图) 。 6、自动控制系统的基本组成及方块图 液位自动控制的方块图为例
副变量类型 温度 压力 流量 液位
副控制器比例度 δ2/% 20 ~60 30 ~70 40 ~80 20 ~80

过程控制的名词解释

过程控制的名词解释

过程控制的名词解释过程控制是指控制和管理实体上下文内系统连接,以实现自动化,精确和可靠的控制系统,用于监测和操纵机械设备、工业过程和其他物理系统。

过程控制允许系统和装置根据指示自动运行,或者由操作员或外部触发控制,具有很高的应用实用性,广泛应用于工厂自动化系统,从而提高产品的质量和生产效率。

过程控制的软件技术,基本上可以分为控制算法和控制命令两部分。

控制算法的目的是通过对系统进行模型化以便于建立系统的模型和进行仿真,控制算法可以通过分析系统的运行条件来调整控制参数,以便于有效控制系统,比如现代自动控制系统,通常采用现代控制理论,比如数字控制、模糊控制、神经网络控制等,用以提高控制的精度和稳定性。

控制命令是由控制算法生成的,它们被用于控制系统的输入或输出参数,以实现规定的控制目标。

控制命令可以用简单的形式表示,比如用一个数字表示,也可以用复杂的形式表示,比如用一组符号表示,以及用时间控制、分程序控制、层次控制等方式表示。

过程控制系统中最常用的设备是PLC和DCS,它们都是实现过程控制的设备,其中PLC是可编程控制器,可以直接控制输入和输出的设备,以实现相应的控制功能,而DCS则是一种分布式控制方案,它将各个控制循环分到不同的控制器上,控制系统由多个PLC组成,以传输控制信号和控制参数,从而实现系统的控制。

过程控制的应用涉及到工业机械的多种系统,广泛应用于各种工业领域。

例如,过程控制可以用于油田生产技术、炼油化工工艺、液体流量控制、精确温度控制、精密阀门控制、精密钻井控制、精密检测控制、数控加工、液体混合控制、风力发电控制、自动化质量检测、污染物识别控制等。

过程控制技术越来越先进,在工业自动化领域中发挥着重要作用,有助于提高工厂的生产效率,改善产品质量,降低生产成本以及提高设备的稳定性。

进一步发展过程控制系统,将有助于解决自动化工厂中的未来问题,实现全自动化,增加操作效率,提高工作效率,减少人为误差,拓展控制领域,推动智能制造的发展。

过程控制基本概念

过程控制基本概念

第一章过程控制基本概念教学要求:了解过程控制的发展概况及特点;掌握过程控制系统各部分作用,系统的组成;掌握管道及仪表流程图绘制方法,认识常见图形符号、文字代号;学会绘制简单系统的管道及仪表流程图;掌握控制系统的基本控制要求(稳定、快速、准确);掌握静态、动态及过渡过程概念;掌握品质指标的定义,学会计算品质指标。

重点:自动控制系统的组成及各部分的功能;负反馈概念;控制系统的基本控制要求及质量指标。

难点:常用术语物理意义(操纵变量与扰动量区别);根据控制系统要求绘制方框图;静态,过渡过程概念。

自动控制技术在工业、农业、国防和科学技术现代化中起着十分重要的作用,自动控制水平的高低也是衡量一个国家科学技术先进与否的重要标志之一。

随着国民经济和国防建设的发展,自动控制技术的应用日益广泛,其重要作用也越来越显著。

生产过程自动控制(简称过程控制)-------自动控制技术在石油、化工、电力、冶金、机械、轻工、纺织等生产过程的具体应用,是自动化技术的重要组成部分。

§1.1 过程控制的发展概况及特点一、过程控制的发展概况在过程控制发展的历程中,生产过程的需求、控制理论的开拓和控制技术工具和手段的进展三者相互影响、相互促进,推动了过程控制不断的向前发展。

纵观过程控制的发展历史,大致经历了以下几个阶段:20世纪40年代:手工操作状态,只有少量的检测仪表用于生产过程,操作人员主要根据观测到的反映生产过程的关键参数,用人工来改变操作条件,凭经验去控制生产过程。

20世纪40年代末~50年代:过程控制系统:多为单输入、单输出简单控制系统过程检测:采用的是基地式仪表和部分单元组合仪表(气动Ⅰ型和电动Ⅰ型);部分生产过程实现了仪表化和局部自动化控制理论:以反馈为中心的经典控制理论20世纪60年代:过程控制系统:串级、比值、均匀、前馈和选择性等多种复杂控制系统。

自动化仪表:单元组合仪表(气动Ⅱ型和电动Ⅱ型)成为主流产品60年代后期,出现了专门用于过程控制的小型计算机,直接数字控制系统和监督计算机控制系统开始应用于过程控制领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过程控制基本概念自动控制技术在工业、农业、国防和科学技术现代化中起着十分重要的作用,自动控制水平的高低也是衡量一个国家科学技术先进与否的重要标志之一。

随着国民经济和国防建设的发展,自动控制技术的应用日益广泛,其重要作用也越来越显著。

生产过程自动控制(简称过程控制)-------自动控制技术在石油、化工、电力、冶金、机械、轻工、纺织等生产过程的具体应用,是自动化技术的重要组成部分。

§1.1 过程控制的发展概况及特点一、过程控制的发展概况在过程控制发展的历程中,生产过程的需求、控制理论的开拓和控制技术工具和手段的进展三者相互影响、相互促进,推动了过程控制不断的向前发展。

纵观过程控制的发展历史,大致经历了以下几个阶段:20世纪40年代:手工操作状态,只有少量的检测仪表用于生产过程,操作人员主要根据观测到的反映生产过程的关键参数,用人工来改变操作条件,凭经验去控制生产过程。

20世纪40年代末~50年代:过程控制系统:多为单输入、单输出简单控制系统过程检测:采用的是基地式仪表和部分单元组合仪表(气动Ⅰ型和电动Ⅰ型);部分生产过程实现了仪表化和局部自动化控制理论:以反馈为中心的经典控制理论20世纪60年代:过程控制系统:串级、比值、均匀、前馈和选择性等多种复杂控制系统。

自动化仪表:单元组合仪表(气动Ⅱ型和电动Ⅱ型)成为主流产品60年代后期,出现了专门用于过程控制的小型计算机,直接数字控制系统和监督计算机控制系统开始应用于过程控制领域。

控制理论:出现了以状态空间方法为基础,以极小值原理和动态规划等最优控制理论为基本特征的现代控制理论,传统的单输入单输出系统发展到多输入多输出系统领域,、型、型20世纪70~80年代:微电子技术的发展,大规模集成电路制造成功且集成度越来越高(80年代初一片硅片可集成十几万个晶体管,于是32位微处理器问世),微型计算机的出现及应用都促使控制系统发展。

过程控制系统:最优控制、非线性分布式参数控制、解耦控制、模糊控制自动化仪表:气动Ⅲ型和电动Ⅲ型,以微处理器为主要构成单元的智能控制装置。

集散控制系统(DCS)、可编程逻辑控制器(PLC) 、工业PC机、和数字控制器等,已成为控制装置的主流。

集散控制系统实现了控制分散、危险分散,操作监测和管理集中。

控制理论:形成了大系统理论和智能控制理论。

模糊控制、专家系统控制、模式识别技术20世纪90年代至今:信息技术飞速发展过程控制系统:管控一体化现场,综合自动化是当今生产过程控制的发展方向。

自动化仪表:总线控制系统的出现,引起过程控制系统体系结构和功能结构上的重大变革。

现场仪表的数字化和智能化,形成了真正意义上的全数字过程控制系统。

各种智能仪表、变送器、无纸纪录仪人工智能、神经网络控制二、自动化技术的应用范畴1.宇航方面:(现代控制理论)同步卫星与地面接收站直接对应,偏差影响收看效果(随动控制系统)卫星的发射与回收(神州3号卫星,哥伦比亚号航天飞机)自动关机、点火系统2.军事方面:火炮自动点火、巡航导弹3.其他方面:农业(病虫害防治、专家系统)社会科学(计划生育,人口增长模型)4.现代管理:办公自动化(以计算机技术和现代通信技术为主体的综合处理与办公活动相关的语言、数据、图像、文字等人及信息系统。

5.工业生产:自动车床、加热炉、发酵罐三、过程控制系统的特点过程控制系统与其他自动控制系统相比,有如下几个特点:1.生产过程的连续性在过程控制系统中,大多数被控过程都是以长期的或间歇形式运行,在密闭的设备中被控变量不断的受到各种扰动的影响。

2.被控过程的复杂性过程控制涉及范围广:石化过程的精馏塔、反应器;热工过程的换热器、锅炉等。

被控对象较复杂:动态特性多为大惯性,大滞后形式,且具有非线性、分布参数和时变特性。

3.控制方案的多样性被控过程对象特性各异,工艺条件及要求不同,过程控制系统的控制方案非常丰富。

包括:常规PID控制、改进PID控制、串级控制、前馈-反馈控制、解耦控制;为满足特定要求而开发的比值控制、均匀控制、选择性控制、推断控制;新型控制系统,如模糊控制、预测控制、最优控制等。

四、过程控制的主要内容1.自动检测系统———利用各种检测仪表对工艺参数进行测量、指示或记录如:加热炉温度、压力检测2.自动信号和联锁保护系统自动信号系统:当工艺参数超出要求范围,自动发出声光信号联锁保护系统:达到危险状态,打开安全阀或切断某些通路,必要时紧急停车如:反应器温度、压力进入危险限时,加大冷却剂量或关闭进料阀3.自动操纵及自动开停车系统自动操纵系统:根据预先规定的步骤自动地对生产设备进行某种周期性操作如:合成氨造气车间煤气发生炉,按吹风、上吹、下吹、吹净等步骤周期性地接通空气和水蒸汽自动开停车系统:按预先规定好的步骤将生产过程自动的投入运行或自动停车4.自动控制系统:利用自动控制装置对生产中某些关键性参数进行自动控制,使他们在受到外界扰动的影响而偏离正常状态时,能自动的回到规定范围。

(本书介绍的重点内容)§1.2 过程控制系统的组成利用自动控制装置构成的过程控制系统,可以在没有人直接参与的条件下,使这些工艺参数能自动按照预定的规律变化。

一、 过程控制系统实例1. 锅炉汽包水位控制。

在锅炉正常运行中,汽包水位是一个重要的参数,它的高低直接影响着蒸汽的品质及锅炉的安全。

水位过低,当负荷很大时,汽化速度很快,汽包内的液体将全部汽化,导致锅炉烧干甚至会引起爆炸;水位过高会影响汽包的汽水分离,产生蒸汽带液现象,降低了蒸汽的质量和产量,严重时会损坏后续设备。

(a ) (b)图1.1 锅炉汽包水位控制示意图眼 检测元件(变送器)要想实现对汽包水位的控制,首先应随时掌握水位的变化情况脑 控制器控制器将接收到的测量信号与预先规定的水位高度进行比较。

如果两个信号不相等,表明实际水位与规定水位有偏差,此时控制器将根据偏差的大小向执行器输出一个控制信号,手 执行器执行器即可根据控制信号来改变阀门的开度,从而使进入锅炉的水量发生变化,达到控制锅炉汽包水位的目的。

2. 发酵罐温度控制(参见教材P 4)发酵罐是间歇发酵过程中的重要设备,广泛应用于微生物制药、食品等行业。

发酵罐的温度是影响发酵过程的一个重要参数。

因为微生物菌体本身对温度非常敏感,只有在适宜的温度下才能正常生长代谢,而且涉及菌体生长和产物合成的酶也必须在一定的温度下才能具有高的活性。

温度还会影响发酵产物的组成。

因此,按一定的规律控制发酵罐的温度就显得非常重要。

汽包 给水 蒸汽 加热室汽包 给水 蒸汽 加热室 液位变送控制器 执行器(a) (b)图1.2 发酵罐温度控制系统示意图影响发酵过程温度的主要因素有微生物发酵热、电机搅拌热、冷却水的流量及本身的温度变化以及周围环境温度的改变等。

一般采用通冷却水带走反应热的方式使罐内温度保持工艺要求的数值。

对于小型发酵罐,通常采用夹套式冷却形式。

如图1.2(a )所示。

实现对发酵罐温度的控制,可使用温度检测仪表(如热电偶、热电阻等)测量罐中的实际温度,将测得的数值送入控制器,然后与工艺要求保持的温度数值进行比较。

如果两个信号不相等,则由控制器的输出控制冷却水阀门的开度,改变冷却水的流量,从而达到控制发酵罐温度的目的。

二、 过程控制系统的组成一个过程控制系统一般由两部分组成。

需要控制的工艺设备或机器(被控过程) + 自动控制装置(反应器、精馏塔、换热器、压力罐 (控制器、执行器、测量元件及变送器) 储槽、加热炉、压缩机、泵、冷却塔)几个常用术语:被控过程(对象)工艺参数需要控制的生产过程设备或机器等。

如锅炉汽包,发酵罐。

被控变量 被控对象中要求保持设定值的工艺参数。

如汽包水位、发酵温度。

操纵变量 受控制器操纵,用以克服扰动的影响使被控变量保持设定值的物料量或能量。

如锅炉给水量和发酵罐冷却水量。

扰动量 除操纵变量外,作用于被控对象并引起被控变量变化的因素。

如蒸汽负荷的变化、冷却水温度的变化等。

设定值 被控变量的预定值。

偏 差(e) 被控变量的设定值与实际值之差。

在实际控制系统中,能够直接获取的信息是被控变量的测量值而不是实际值,因此,通常把设定值与测量值之差作为偏差。

§1.3 过程控制系统的两种表示形式一、 方 框 图方框图是控制系统或系统中每个环节的功能和信号流向的图解表示,是控制系统进行理论分析、设计中常用到的一种形式。

1. 方框图组成方框----每一个方框表示系统中的一个组成部分(也称为环节),方框内添入表示其自身特性的数学表达式或文字说明;信号线---信号线是带有箭头的直线段,用来表示环节间的相互关系和信号的流向;冷却水 冷却水温度变送 控制器 执行器作用于方框上的信号为该环节的输入信号,由方框送出的信号称为该环节的输出信号。

比较点----比较点表示对两个或两个以上信号进行加减运算,“+”号表示相加,“-”号表示相减;引出点----表示信号引出,从同一位置引出的信号在数值和性质方面完全相同。

带有输入输出信号的方框比较点分支点图1.3方框的组成单元示意图系统中的每一个环节用一个方框来表示,四个方框分别表示:被控对象(锅炉汽包)、测量变送装置、控制器和执行器。

每个方框都分别标出各自的输入、输出变量。

如被控对象环节,给水流量变化会引起汽包水位的变化,因此给水流量(操纵变量)作为输入信号作用于被控对象,而汽包水位(被控变量)则作为被控对象的输出信号;引起被控变量(汽包水位)偏离设定值的因素还包括蒸汽负荷的变化和给水管压力的变化等扰动量,它们也作为输入信号作用于被控对象。

图1.4 锅炉汽包水位控制系统方框图2.负反馈概念:反馈——通过测量变送装置将被控变量的测量值送回到系统的输入端,这种把系统的输出信号直接或经过一些环节引回到输入端的做法叫做反馈。

分为和反馈-----负反馈(引回到输入端的信号是减弱输入端作用的称为负反馈)用“-”号表示正反馈(引回到输入端的信号是增强输入端作用的称为正反馈)用“+”号表示。

在绘制方框图时应注意1. 方框图中每一个方框表示一个具体的实物。

2. 方框之间带箭头的线段表示它们之间的信号联系,与工艺设备间物料的流向无关。

方框图中信号线上的箭头除表示信号流向外,还包含另一种方向性的含义,即所谓单向性。

对于每一个方框或系统,输入对输出的因果关系是单方向的,只有输入改变了才会引起输出的改变,输出的改变不会返回去影响输入。

例如冷水流量会使汽包水位改变,但反过来,汽包水位的变化不会直接使冷水流量跟着改变。

3. 比较点不是一个独立的元件,而是控制器的一部分。

为了清楚的表示控制器比较机构的作用,故将比较点单独画出。

二、管道及仪表流程图管道及仪表流程图是自控设计的文字代号、图形符号在工艺流程图上描述生产过程控制的原理图,是控制系统设计、施工中采用的一种图示形式。

相关文档
最新文档