分析全桥ZVS-PWM变换器的分析与设计
移相全桥zvs pwm变换器比较
![移相全桥zvs pwm变换器比较](https://img.taocdn.com/s3/m/09ce75ced5bbfd0a79567313.png)
11
基本移相控制变换器工作过程: 12种工作模式(5)
Q1
Q1 Vin Q3 D1
Q3 Q2 I2
Q1 Q4
A
C1
Q2
D2
B
C2
D3
C3
Q4
D4
C4
ip vAB
Q4 I1
Llk DR 1
Lf RL0Βιβλιοθήκη Cfvin v in
DR 2 TR (e) [t 3 , t 4]
v rect 0 t0 t1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9t 10t11 t 12t 13
14
超前桥臂实现ZVS
超前桥臂容易实现ZVS,输出滤波电感Lf 与谐振电感Lr串联,此时用来实现ZVS的 能量是Lf和Lr中的能量。一般来说,Lf 很大,在超前桥臂开关过程中,其电流 近似不变,等效于一恒流源。为了实现 超前桥臂的零电压开通,必须使Q1和Q3驱 动信号的死区时间满足以下关系:
Vin (C1 C3 ) 4 NCoss Vin Td ( lead ) Ip I zvs
8
基本移相控制变换器工作过程: 12种工作模式(2)
Q1 Vin Q3 D3 D1
A
C1
Q2
D2
B
D4
C2
Q1 Q4 I1
Q3 Q2 I2
Q1 Q4
C 3
Q4
C 4
ip vAB
Llk DR1
Lf
0
Cf RL
vin v in
DR 2 TR (b) [t 0 , t1]
v rect 0 t0 t1 t2 t3 t4 t5 V in/ K t6 t7 t8 t9t 10t11 t 12t 13
第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器
![第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器](https://img.taocdn.com/s3/m/4b362a09915f804d2a16c113.png)
loss
TS / 2
而 t25
Lr [ I 2 I Lf (t5 ) / K ] Vin
那么有:Dloss
2Lr [ I 2 I Lf (t5 ) / K ] Vin TS
Dloss 越大;②负载越大, Dloss越大;③ Vin越低,Dloss 越大。 可知:① Lr 越大, Dloss 的产生使DS 减小,为了得到所要求的输出电压,就必须减小原副边的 匝比。而匝比的减小,带来两个问题: ①原边电流增加,开关管电流峰值也要增加,通态损耗加大; ②副边整流桥的耐压值要增加。
6.
Vin i p (t ) (t t4 ) Lr
到 t5 时刻,原边电流达到折算到原 边的负载电流 I Lf (t5 ) / K值,该开 关模态结束。 持续时间为:
t45
Lr I Lf (t5 ) / K Vin
7. 开关模态6 在这段时间里,电源给负载供电 原边电流为:
10.3. 3 两个桥臂实现ZVS的差异
1.实现ZVS的条件 要实现开关管的零电压开通,必须有足够的能量: ①抽走将要开通的开关管的结电容(或外部附加电容)上的电荷; ②给同一桥臂关断的开关管的结电容(或外部附加电容)充电; 考虑到变压器的原边绕组电容,还要有能量用来: ③抽走变压器原边绕组寄生电容CRT 上的电荷。
ip (t ) I p (t0 ) I1
vC1 (t )
I1 (t t0 ) 2Clead I1 vC 3 (t ) Vin (t t0 ) 2Clead
在
C3 电压降到零,D3 自 t1时刻,
然导通。
3.开关模态2
td (lead ) t01
D3导通后,将Q3 的电压箝在零位 此时开通Q3 ,则Q3是零电压开通。 Q3和Q1驱动信号之间的死区时间 ,即
两种新型移相全桥ZVS-PWM变换器拓扑的比较
![两种新型移相全桥ZVS-PWM变换器拓扑的比较](https://img.taocdn.com/s3/m/3442a396dc3383c4bb4cf7ec4afe04a1b071b008.png)
两种新型移相全桥ZVS-PWM变换器拓扑的比较移相全桥ZVS-PWM变换器是一种高效率、高可靠性的DC-DC变换器,其拓扑结构复杂,但是具有很好的电路性能和电气参数。
在实际应用中,有多种不同的移相全桥ZVS-PWM变换器拓扑可供选择。
本篇文章将比较两种新型移相全桥ZVS-PWM变换器拓扑,分别是基于全桥拓扑的变换器和基于三电平全桥拓扑的变换器。
1. 基于全桥拓扑的变换器基于全桥拓扑的移相全桥ZVS-PWM变换器是最常用的拓扑结构。
该拓扑结构具有轻松实现基本ZVS动作的优点,无需使用任何复杂的电路,而且具有较好的成本和设计灵活性。
在实际应用中,基于全桥拓扑的变换器通常需要使用一些辅助电路,以解决谐振现象。
优点:①电路操作简单,易于实现。
②交流侧的损耗较小。
③实现高功率密度。
缺点:①输出电压受交流电源电压的波动影响较大。
②峰值应力程度较高。
2. 基于三电平全桥拓扑的变换器基于三电平全桥拓扑的移相全桥ZVS-PWM变换器是近年来发展较快的一种拓扑结构。
该拓扑结构下,采用更多的功率器件以及更加复杂的电路拓扑,在谐振问题的处理方面具有重要的优势。
目前该拓扑结构在风能、太阳能等领域得到了广泛应用。
优点:①基本消耗无谐振的电路,减小了电路的开关损耗。
②输出电压呈三级结构,可轻松实现多种电压调节方式。
缺点:①开关器件数目增加,造成电路设计和控制难度大。
②在高频控制时可能造成比较强的谐振噪声。
综上所述,两种新型移相全桥ZVS-PWM变换器拓扑各有优缺点,在选择时应根据实际应用需求进行评估。
虽然基于三电平全桥拓扑的移相全桥ZVS-PWM变换器在谐振问题上更加优越,但其电路复杂度和控制难度也更大,适用于高要求的应用场景。
而基于全桥拓扑的移相全桥ZVS-PWM变换器则相对简单易用,更适用于低功率应用。
数据分析是一种通过数学和统计学方法对数据进行分析和解释,以准确判断数据的意义和价值的方法。
在实际工作中,数据分析在市场调研、销售预测、风险管理、财务报表分析等领域都发挥着重要作用。
一种新颖的ZVZCSPWM全桥变换器
![一种新颖的ZVZCSPWM全桥变换器](https://img.taocdn.com/s3/m/a26a24f5770bf78a65295459.png)
一种新颖的ZVZCSPWM全桥变换器张恩利侯振义余侃民(空军工程大学电讯工程学院,陕西西安 710077)摘要:提出了一种新颖的零电流零电压开关(ZCZVS)PWM全桥变换器,通过增加一个辅助电路的方法实现了变换器的软开关。
与以往的ZCZVSPWM全桥变换器相比,所提出的新颖变换器具有电路结构简单、整机效率高以及电流环自适应调整等优点,这使得它特别适合高压大功率的应用场合。
详细分析了该变换器的工作原理及电路设计,并在一台功率为4kW,工作频率为80kHz的通信用开关电源装置上得到了实验验证。
关键词:全桥变换器;零电压开关;零电流开关;软开关;脉宽调制0 引言移相全桥零电压PWM软开关(PS-FB-ZVS)变换器与移相全桥零电压零电流PWM软开关(PS-FB-ZVZCS)变换器是目前国内外电源界研究的热门课题,并已得到了广泛的应用。
在中小功率的场合,功率器件一般选用MOSFET,这是因为MOSFET的开关速度快,可以提高开关频率,采用ZVS方式,就可将开关损耗减小到较为理想的程度[1]。
而在高压大功率的场合,IGBT更为合适。
但IGBT的最大的缺点是具有较大的开关损耗,尤其是由于IGBT的“拖尾电流”特性,使得它即使工作在零电压情况下,关断损耗仍然较大,要想在ZVS方式下减少关断损耗,则必须加大IGBT的并联电容。
然而由于轻载时ZVS很难实现(滞后臂的ZVS 更难实现),因此ZVS方案对于IGBT来说并不理想。
若采用常规的移相全桥软开关变换器,其优点是显而易见的,即功率开关器件电压、电流额定值小,功率变压器利用率高等,但是它们却也存在着各种各样的缺点:有的难以适用于大功率场合;有的要求很小的漏感;有的电路较为复杂且成本很高[2][3][4][5][6]。
本文提出了一种新颖的ZVZCS PWM全桥变换器,它能有效地改进以往所提出的ZVZCS PWM全桥变换器的不足。
这种变换器是在常规零电压PWM全桥变换器的次级增加了一个辅助电路,此辅助电路的优点在于没有有损元件和有源开关,且结构简单。
全桥移相ZVS-PWM电路
![全桥移相ZVS-PWM电路](https://img.taocdn.com/s3/m/ff03958502d276a200292e31.png)
摘要:介绍了一种能在全负载范围内实现零电压开关的改进型全桥移相 ZVS- PWMDC/DC 变换器。在分析其开关过程的基础上,得出了实现全负载范围内零电 压开关的条件,并将其应用于一台 48V/6V 的 DC/DC 变换器。
关键词:全桥 DC/DC 变换器;零电压开关;死区时间
引言 移相控制的全桥 PWM 变换器是在中大功率 DC/DC 变换电路中最常用的电路拓扑形式之一。移相 PWM 控制方式利用开关管的
结电容和高频变压器的漏电感作为谐振元件,使开关管达到零电压开通和关断。从而有效地降低了电路的开关损耗和开关噪声, 减少了器件开关过程中产生的电磁干扰,为变换器提高开关频率、提高效率、降低尺寸及重量提供了良好的条件。同时保持了 电路拓扑结构简洁、控制方式简单、开关频率恒定、元器件的电压和电流应力小等一系列优点。
针对上述问题,常见的解决方法是在变压器原边串接一个饱和电感 Ls,扩大变换器的零电压开关范围[2][3]。但是,采
用这一方法后,电路仍不能达到全工作范围的零电压开关。而且,由于饱和电感在实际应用中不可能具有理想的饱和特性,这 将会导致:
1)增加电路环流,从而增加变换器的导通损耗; 2)加重了副边电压占空比丢失,从而增加原边电流及副边二极管电压应力; 3)饱和电感以很高的频率在正负饱和值之间切换,磁芯的损耗会很大,发热严重。 改进型全桥移相 ZVS PWMDC/DC 变换器是针对上述缺点所提出的一种电路拓扑[4][5][6]。它通过在电路中增加辅助支路, 使开关管能在全部负载范围内达到零电压开关,它在小功率(<3kW)电路中具有明显的优越性。由于在移相控制的全桥 PWM 变 换器中,超前臂 ZVS 的实现相对比较简单,所以本文将不分析超前臂的开关过程,而着重分析滞后臂在增加了辅助支路以后的 开关过程及其实现 ZVS 的条件。 1 改进型全桥移相 ZVS-PWMDC/DC 变换器 1.1 电路拓扑 图 1 所示是一种改进型全桥移相 ZVS PWMDC/DC 变换器,与基本的全桥移相 PWM 变换器相比,它只在滞后臂增加了由电 感 Lrx 及电容 Crx 两个元件组成的一个辅助支路。 在由 Lrx 及 Crx 组成的辅助谐振支路中,电容 Crx 足够大,其上电压 VCrx 应满足
移相全桥ZVS PWM DC/DC变换器的仿真分析
![移相全桥ZVS PWM DC/DC变换器的仿真分析](https://img.taocdn.com/s3/m/406b86d3770bf78a6529547d.png)
移相全桥ZVSPWMDC/DC变换器的仿真分析作者:龙泽彪施博文来源:《消费导刊·理论版》2008年第17期[摘要]本文首先在研究硬开关的缺陷上,提出软开关技术。
对移相控制ZVS PWM DC/DC 变换器的工作原理进行分析研究的基础上,使用PSpice9.2计算机仿真软件对变换器的主电路进行仿真和分析,验证该新型DC/DC变换器的拓扑结构设计的正确性和可行性。
[关键词]软开关 DC/DC ZVS 移相控制 PSpice9.2作者简介:龙泽彪(1985-),男,湖北仙桃人,贵州大学电气工程学院在读硕士研究生,研究方向:异步电机控制;施博文(1985-),男,贵州大学电气工程学院在读硕士研究生,研究方向:电力电子与电气传动。
一、引言随着新型电力电子器件以及适用于更高频率的电路拓扑和新型控制技术的不断出现,开关电源朝着小型化、高效化、低成本、低电磁干扰、高可靠性、模块化、智能化的方向发展。
硬开关DC/DC变换器在电流连续工作模式下会遇到严重的问题,这一般都与有源开关器件的体内寄生二极管有关,其关断过程中的反向恢复电流产生的电流尖峰对开关器件有极大的危害。
本文在对DC/DC变换器的基本工作原理进行分析、研究的基础上,对已经出现的软开关DC/DC变换器拓扑结构进行分析研究,提出的一种新型的DC/DC变换器的拓扑结构,并进行深入的研究。
二、移相控制ZVS PWM DC/DC全桥变换器的工作原理移相控制ZVS PWM DC/DC全桥变换器(Phase-Shifted zero-voltage-switching PWMDC/DC Full-Bridge Converter,PS ZVS PWM DC/DC FB Converter),是利用变压器的漏感或原边串联的电感和功率管的寄生电容或外接电容来实现开关管的零电压开关,其主电路拓扑结构及主要波形如图1所示。
其中,D1~D4分别是S1~S4的内部寄生二极管,C1~C4分别是S1~S4的寄生电容或外接电容,Lr是谐振电感,它包含了变压器的漏感。
移相全桥零电压PWM软开关电路的研究
![移相全桥零电压PWM软开关电路的研究](https://img.taocdn.com/s3/m/b11e761555270722192ef71b.png)
略大于开关管自身的寄生电容可减小管子之间的差
异。 实际中,可根据实验波形对其进行调整。 计算得
Llk=7.2 μH,实际取10~20 μH。 由于 要 兼 顾 轻 载 和 重 载,同 时 电 感 在 超 前 臂 谐 振 和 续 流 时 有 能 量 损 失 ,故
实际中取值较计算值略大为宜。
5 整机最大占空比合理性计算
第 43 卷第 1 期 2009 年 1 月
电力电子技术 Power Electronics
移相全桥零电压 PWM 软开关电路的研究
胡红林, 李春华, 邵 波 (黑龙江科技学院, 黑龙江 哈尔滨 150027)
Vol.43 No.1 January,2009
摘要:介绍了移相全桥零电压 PWM 软开关电路的组成及工作原理,从时域上详细分析了软开关的工作过程,阐述了
在开关电源中具有谐振开关和 PWM 控制特点 的移相全桥零 电 压 PWM 变 换 器 得 到 了 广 泛 应 用 , 该 类 变 换 器 实 现 了 零 电 压 开 关 (ZVS),减 小 了 开 关 损耗,提高了电源系统的稳定性。 同时,电源可在较 高的开关频率下工作,因而大大减小了无源器件的 体积。 但移相全桥 ZVS 电路存在对谐振电感和电容 的合理选择及占空比丢失的问题,这就要求 ZVS 软 开关有一个合理的最大占空比。
实现 VQ1 零电压关断需要有:
uC1=
iCb 2C1
td1=
is 2nC1
td1≥Uin
(6)
式中:td1 为 VQ1,VQ3 死区时间;n 为变比。
要在全范围内实现超前臂的零电压开通, 必须
以 最 小 输 出 电 流 Iomin 和 最 大 输 入 电 压 Uinmax 来 选 取 C1,C3,即 C1=C3≤Iomintd1/(2nUinmax)。 4.2 串联电感的取值及滞后臂并联电容的选取
小电流纹波的ZVZCS全桥PWM变换器研究
![小电流纹波的ZVZCS全桥PWM变换器研究](https://img.taocdn.com/s3/m/e4c23927453610661ed9f4ef.png)
结束 时 , 和 定义为 i ‰。 i 。 , [ ̄5 段 c 放 电 结 束 , 极 管 V 3 通 , t t阶 4 ] 3 二 D 导
p e e t d c n e e s Ma y a v na e n l d n i l i u t h g f ce c l w c s ,o u e t r p e a d t ig r s n e o v r r . n d a tg s i cu i g smp e cr i, i h e ii n y,o o t l w c r n p l n a n t c i k
第4 6巷 第 1期
电 力 电 于 技 木
VO1斗o . .
O. 1
21 0 2年 1月
P we l cr nc o rE e to i s
Jn ay2 1 a u r 0 2
小电流纹波的 Z Z S V C 全桥 P WM 变换器研究
徐 建 军 ,王 建任 ,马 文龙 ,韩 晓 菲
别 为 初 、 级 绕 组 自感 。 若 满 足 n k, 级 漏 感 将 次 = 次 降 为零 。 级 电感 中存 在零 电流 纹 波 , 通 过 改变 初 可 n, 小纹 波 。 献 [] k的变 化 是 连 续 的 , 改 k减 文 2中 而
f ( = ,i t=l i ) c )n - ( ( op )
Co v re t w t u r e tRi p e n e tr wi lLo Ou p tCu r n p l l
X i - n ,WA G Ja — n , n1n2 U Ja j nu N i r MA We . g,HA i - i ne o N Xa f oe
倍流整流方式ZVS_PWM全桥变换器的控制系统设计汇总
![倍流整流方式ZVS_PWM全桥变换器的控制系统设计汇总](https://img.taocdn.com/s3/m/a789e1e2aa00b52acfc7ca69.png)
倍流整流方式ZVS PWM全桥变换器的控制系统设计 [出处/作者]:孙强,郑湘渝,余娟倍流整流方式ZVS PWM全桥变换器的控制系统设计孙强,郑湘渝,余娟(西安理工大学自动化与信息工程学院西安 710048)摘要:采用了一种将峰值电流控制模式与移相软开关技术相结合的移相控制全桥(FBZVS-PWM变换器.阐述了峰值电流控制的各项特点,给出了实际斜坡补偿电路及设计方法.仿真结果验证了该方案的可行性。
关键词:峰值电流控制;斜坡补偿;UCC3895 中图分类号:文献标标码: Control System Design of Current-Doubler-Rectifier ZVS PWM FB Converter SUN Qiang,ZHENG Xiang-yu,YU Juan (College of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048,China)Abstract: phase-shifted soft-switching technology and peak current control technology are combined in the research of full bridge phase-shifted ZVS PWM DC-DC converters, and characteristics of peak current control are expatiated. The practical circuit and design method of slop compensation are also given. Finally, simulation results validate the design. Keywords: Peak current control;Slop compensation; UCC3895 0 引言对应于移相控制全桥(FBZVS-PWM变换器这种主电路拓扑,本文采用Unitrode公司UCC3895芯片实施峰值电流的移相控制.由于存在占空比D>50%,电源不能稳定工作,限制了峰值电流控制方式的应用,必须加以斜坡补偿改善. 1 主电路拓扑全桥变换器广泛应用于中大功率的直流变换场合,移相控制零电压开关全桥变换器利用变压器的漏感和开关管的结电容实现开关管的ZVS, 倍流整流方式(Current Doubler Rectifier, CDRZVS全桥变换器利用两个输出滤波电感的能量可以在很宽的负载范围内实现开关管的ZVS, 而且使其输出整流管自然换流,从而避免了反向恢复引起的电压振荡和电压尖峰.变换器采用移相控制方式,Q1和Q3组成超前桥臂,Q2和Q4组成滞后桥臂。
分析全桥ZVS-PWM变换器的分析与设计
![分析全桥ZVS-PWM变换器的分析与设计](https://img.taocdn.com/s3/m/6241a509a6c30c2259019e63.png)
上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。
后然经过发展,越来越多在各个领域当中应用。
但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。
本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。
1 电路原理和各工作模态分析1.1 电路原理图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。
Vin为输入直流电压。
Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。
为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。
S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。
Lf和Cf构成倒L型低通滤波电路。
图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:(1)所有功率开关管均为理想,忽视正向压降电压和开关时时间;(2)4个开关管的输出结电容相等,即Ci=Cs,i=1,2,3,4,Cs为常数;(3)忽略变压器绕组及线路中的寄生电阻;(4)滤波电感足够大。
1.2 各工作模态分析(1)原边电流正半周功率输出过程。
在t0之前,Sl和S4已导通,在(t0一t1)内维持S1和S4导通,S2和S3截止。
电容C2和C3被输入电源充电。
变压器原边电压为Vin,功率由变压器原边传送到负载。
在功率输出过程中,软开关移相控制全桥电路的工作状态和普通PWM硬开关电路相同。
(2)(t1一t1′):超前臂在死区时间内的谐振过程。
加到S1上的驱动脉冲变为低电平,S1由导通变为截止。
电容C1和C3迅速分别充放电,与等效电感(Lr+n2Lf)串联谐振,在谐振结束前(t2之前),使前臂中心电压快速降低到一0.7V,使D3立即导通,为S3的零电压导通作好准备。
ZVS移相全桥
![ZVS移相全桥](https://img.taocdn.com/s3/m/cc7702225acfa1c7aa00cc92.png)
原边电流下冲过零后负向增大(t4-t5)(原边电流仍不足以
提供负载电流)
原边电流负半周功率输出过程(t5-t6)
移相控制全桥零电压开关PWM变换器的 主要波形
遇到的问题
不熟悉saber仿真软件
下一步工作
1继续学习saber软件。 2进一步学习全桥变换器的主要元件的选择
和参数设置。(输入滤波电容、高频变压 器、输出滤波电感、输出滤波电容) 3 进一步了解UC3875芯片的内部结构及外 围电路参数设置 4 驱动电路的选择和设置
移相全桥ZVS DC/DC变换器设计变换器的 主要波形
移相控制技术
这种控制方式是要求Q1和Q2轮流导通,各 导通180电角度,Q3和Q4也是这样,但Q1 和Q4不同时导通,若Q1先导通,Q4后导 通,两者导通差()电角,其中Q1和Q2分别 先于Q4和Q3导通,故称Q1和Q2组成的桥 臂为超前桥臂,Q3和Q4组成的桥臂为滞后 桥臂。
移相控制ZVS PWM DC/DC全桥变换器有十二种开关模 态,由于正负半周从原理上大体对称,我们仅说明正半周 的六个模态。
1)原边电流正半周功率输出过程(0-t0)
超前桥臂谐振模式(t0-t1)
原边电流钳位续流过程(t1-t2)
滞后桥臂谐振模式(t2-t3)
电感储能回馈电源模式(t3-t4)
什么是软开关技术?
在开关管开通前,使其电压下降到零,这就是零 电压开通。在开关管关断时,限制电压的上升速 率,从而减少电流和电压的重叠区,这就是所谓 的零电压关断。
PWM DC/DC全桥变换器的基本工作原理
T1~T4是四支主功率管,D1~D4是主功率 管的反并联二极管,TR是输出变压器,其 原副边绕组匝数比K=N1/N2,VD1和VD2 是输出整流二极管,Lf和Cf是输出滤波电感 和电容,RL是负载,输入电源电压为Vin, 输出直流电压为Vo。
移相ZVS-PWM全桥变换器综述
![移相ZVS-PWM全桥变换器综述](https://img.taocdn.com/s3/m/8cc5f56c561252d380eb6e37.png)
移相ZVS-PWM全桥变换器概述摘要:移相ZVS-PWM DC/DC全桥变换器巧妙利用变压器漏感和开关管的结电容来完成谐振过程,使开关管实现零电压开关(ZVS),从而减少了开关损耗。
重点简述了该类变换器的基本原理,介绍了几种常见的拓扑,并简要地分析了它们的优缺点,最后指出了其发展方向。
关键词:移相全桥变换器零电压开关(ZVS)Overview of Phase Shift ZVS-PWM Full Bridge ConverterAbstract:Phase shift PWM DC/DC full bridge converter completing resonance procedure through leakage inductance of the transformer and junction capacitor of switch. It can make the switch achieve ZVS, decreasing the switching loss and interference .This paper describes the basi c principle of the converter, introduce several common topology, some common topologies as well as their advantages and drawbacks are discussed and analyzed. Finally it points out the development direction of the Converter.Key words:phrase shift,full bridge converter,ZVS引言全桥变换器广泛应用于中大功率的直流变换场合,近些年来,其软开关技术吸引了国内外学者的广泛关注,出现了很多控制策略和电路拓扑,其中移相控制是目前研究较多的控制方式,而以移相全桥零电压开关变换器(FB-ZVS-PWM)应用更为广泛。
ZVS-PWM开关电源补偿网络最优设计
![ZVS-PWM开关电源补偿网络最优设计](https://img.taocdn.com/s3/m/dcd43466312b3169a451a43e.png)
DC—DC全桥移相式ZVS—PWM开关电源补偿网络的最优设计一、主电路及电压、电流波形DC-DC全桥移相式ZVS—PWM变换器(以下简称FB ZVS—PWM开关变换器)的主电路原理图如图1。
图1 FB ZVS—PWM开关变换器电路图其中变压器原边电压和电流分别用Vp及ip表示,副边电压用Vs表示.变压器原副边绕组匝数比为Np/Ns=1/n。
Vs为输入电压,V o为输出电压,L1k为变压器原边绕组漏电感,图中未画出四个开关晶体管Sl、S2、S3及S4的输出电容。
L f及C f分别为输出滤波器电感及电容。
A及B两点为逆变桥的输出端。
图2给出该电路一周期内电压及电流波形团。
原边电流变化如表1。
表1半周期内原边电流变化图2 FB ZVS—PWM开关变换器理论分析波形图△I=I p—I1当能量由原边传送到副边时,副边电压V s’=n V s。
由于变压器有漏感,使原边电流上升或下降一定斜率,例如t2—t4,斜率为V s/ L1k; t4—t5,斜率为(V s—V o’/ L f’, L f’及V o’分别为折合到原边的L f及V o值。
原边占空比D=2 (t5—t2)/T,副边占空比或称有效占空比D eff=2(t5—t4)/T,T=2(t5—t1)。
可见由于变压器有漏感,使有效占空比D eff小于原边占空比D。
二、FB ZVS—PWM变换器小信号模型为了建立全桥FB ZVS—PWM变换器的最优控制模型,即补偿网络最优设计模型,首先应建立这类变换器的小信号等效电路模型,并推导主电路的传递函数。
已知buck型PWM变换器的连续导通模式(CCM)下小信号等效电路模型如图3。
图中忽略了电感及电容的寄生电阻。
图3 buck型PWM变换器的小信号等效电路模型FB ZVS—PWM型开关电源是由buck型PWM开关电源衍生而来的。
从工作原理分析可知,由于L1k较大,从Sl,S2(或S3,S4)导通到副边电压升到Vs需要一段时间(如图2)因此有效占空比D eff的出现是该电路的一个特殊现象。
基于数字控制的移相全桥ZVS-PWM变换器的设计
![基于数字控制的移相全桥ZVS-PWM变换器的设计](https://img.taocdn.com/s3/m/d7a92490dd88d0d233d46a43.png)
基于数字控制的移相全桥ZVS-PWM变换器的设计 [ 2008-04-26 00:42:26]字体大小:摘要:介绍了一种采用辅助谐振网络的移相全桥ZVS-PWM 变换器,简述其工作原理。
使用TMS320LF24 07A 作为主控芯片,实现了数字移相控制及全桥变换零电压软开关。
试制了一台8kW/20kHz的样机,给出了实验波形及结论。
关键词:数字控制;辅助谐振网络;移相;零电压开关Abstract:The operating principle of a PS FB (phase-shifted full-bridge) ZVS-PWM converter with au xiliary resonant network are introduced. A digital control system using TMS320LF2407A as the mai n control chip was designed to achieve digital PS control algorithm, as well as ZVS for IGBT. An 8kW/20kHz prototype was designed. The experimental waveforms and conclusions are provided.0 引言在DC/DC 变换器中,针对移相全桥软开关PWM变换器的研究十分活跃,它是直流电源实现高频化的理想拓扑之一,尤其是在中、大功率的应用场合[1]。
实现全桥变换器的移相PWM控制的方法很多,传统的控制方法是通过专用的集成控制芯片(UC3879、UC3895)来调节其两桥臂间导通的相位差,以实现其PWM 模拟控制。
但是,近年来随着数字信号处理技术日趋完善成熟,各种微控制器性能价格比的不断提高,采用DSP 或CPLD数字控制已经成为大中功率开关电源的发展趋势[2]。
相对于模拟控制,数字控制可以完成复杂的控制算法,不存在温漂,避免模拟信号的畸变失真,减小杂散信号的干扰,实现通讯和网络控制的功能,使控制系统具有更高的稳定性和更强的灵活性。
移相ZVS-PWM全桥变换器综述
![移相ZVS-PWM全桥变换器综述](https://img.taocdn.com/s3/m/29e2d96ef342336c1eb91a37f111f18583d00cb6.png)
移相ZVS-PWM全桥变换器综述移相ZVS-PWM全桥变换器概述摘要:移相ZVS-PWM DC/DC全桥变换器巧妙利用变压器漏感和开关管的结电容来完成谐振过程,使开关管实现零电压开关(ZVS),从而减少了开关损耗。
重点简述了该类变换器的基本原理,介绍了几种常见的拓扑,并简要地分析了它们的优缺点,最后指出了其发展方向。
关键词:移相全桥变换器零电压开关(ZVS)Overview of Phase Shift ZVS-PWM Full Bridge ConverterAbstract:Phase shift PWM DC/DC full bridge converter completing resonance procedure through leakage inductance of the transformer and junction capacitor of switch. It can make the switch achieve ZVS, decreasing the switching loss and interference .This paper describes the basi c principle of the converter, introduce several common topology, some common topologies as well as their advantages and drawbacks are discussed and analyzed. Finally it points out the development direction of the Converter.Key words:phrase shift,full bridge converter,ZVS引言全桥变换器广泛应用于中大功率的直流变换场合,近些年来,其软开关技术吸引了国内外学者的广泛关注,出现了很多控制策略和电路拓扑,其中移相控制是目前研究较多的控制方式,而以移相全桥零电压开关变换器(FB-ZVS-PWM)应用更为广泛。
新型移相全桥ZVS-PWM变换器设计
![新型移相全桥ZVS-PWM变换器设计](https://img.taocdn.com/s3/m/0cb21d1f91c69ec3d5bbfd0a79563c1ec5dad77b.png)
新型移相全桥ZVS-PWM变换器设计
梁颖;游磊;饶蜀华
【期刊名称】《成都航空职业技术学院学报》
【年(卷),期】2005(021)002
【摘要】本文介绍了一种新型的高频DC/DC开关功率变换器的主电路拓扑结构及其相关元件参数的计算,并给出了主要仿真波形.该变换器增添了辅助谐振网络,在较大的负载范围内实现了开关器件的零电压软开关(ZVS).
【总页数】4页(P57-60)
【作者】梁颖;游磊;饶蜀华
【作者单位】成都航空职业技术学院,四川,成都,610021;四川大学计算机学院,四川,成都,610051;成都航空职业技术学院,四川,成都,610021
【正文语种】中文
【中图分类】TM938.47
【相关文献】
1.一种基于全桥移相ZVS-PWM直流变换器的设计 [J], 陆超;刘美侠
2.新型无源辅助电路ZVS-PWM移相全桥变换器研究 [J], 周成军;谢少军
3.一种基于全桥移相ZVS-PWM直流变换器的设计 [J], 陆超;刘美侠
4.基于数字控制的移相全桥ZVS-PWM变换器的设计 [J], 余恒;林文立;武霆;孙大南
5.新型移相全桥ZVS-PWM DC/DC变换器的仿真 [J], 李春华;李昕玉;张生
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。
后然经过发展,越来越多在各个领域当中应用。
但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。
本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。
1 电路原理和各工作模态分析
1.1 电路原理
图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。
Vin为输入直流电压。
Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。
为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。
S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。
Lf和Cf构成倒L型低通滤波电路。
图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:
(1)所有功率开关管均为理想,忽视正向压降电压和开关时时间;
(2)4个开关管的输出结电容相等,即Ci=Cs,i=1,2,3,4,Cs为常数;
(3)忽略变压器绕组及线路中的寄生电阻;
(4)滤波电感足够大。
1.2 各工作模态分析
(1)原边电流正半周功率输出过程。
在t0之前,Sl和S4已导通,在(t0一t1)内维持S1和S4导通,S2和S3截止。
电容C2和C3被输入电源充电。
变压器原边电压为Vin,功率由变压器原边传送到负载。
在功率输出过程中,软开关移相控制全桥电路的工作状态和普通PWM硬开关电路相同。
(2)(t1一t1′):超前臂在死区时间内的谐振过程。
加到S1上的驱动脉冲变为低电平,S1由导通变为截止。
电容C1和C3迅速分别充放电,与等效电感(Lr+n2Lf)串联谐振,在谐振结束前(t2之前),使前臂中心电压快速降低到一0.7V,使D3立即导通,为S3的零电压导通作好准备。
(3)(t1′一t3):原边电流止半周箝位续流过程。
S3在驱动脉冲变为高电平后实现了零电压导通,由于D3已提前提供了原边电流的左臂续流回路,虽然两臂中点电压为零,但原边电流仍按原方向继续流动,逐步衰减。
(4)(t3-t4):S4关断后滞后臂谐振过程,t3时加到S4的驱动脉冲电压变为低电平,S4由导通变为截止,原边电流失去主要通道。
原边电流以最大变化率从正峰值急速下降。
(5)(t4一t5):电感储能回送电网期。
t4时刻D2已导通续流,下冲的电流经D2返回到电源EC,补偿了电网在全桥电路上的功耗。
滞后臂死区时间应该在该时间段内结束。
原边电流下冲到零点。
(6)(t5一t6):原边电流下冲过零后开始负向增大。
S2和S3都已导通,形成新的电流回路,开始新的功率输出过程。
副边电压被箝位在低电平,出现占空比丢失过程。
因此滞后臂死区时间设计是关键。
2 关键参数设计
2.1 死区时间设计
变换器(Matrix Converter)作为一种新型的交—交变频电源,其电路拓扑形式被提出,但直到1979年意大利学者M.Venturini和A.Alesina提出了矩阵式变换器存在理论及控制策略后,其特点才为人们所关注和研究。
普遍使用的是半控功率器件晶闸管。
采用这种器件组成矩阵式变换器,控制难度是很高的。
矩阵式变换器的硬件特点是要求。
该变换器一个周期内有两个关键的死区时间,这两个死区时间的设计会影响到主开关管的电压应力限制和ZVS的实现。
大容量、高开关频率、具有双向阻断能力和自关断能力的功率器件,同时由于控制方案的复杂性,要求具有快速处理能力的微处理器作为控制单元,而这些是早期的半导体工艺和技术水平所难以达到的。
所以这一期间矩阵式变换器的研究主要针对主回路的拓扑结构及双向开关的实现,大多都处于理论研究阶段,很少有面向工业实际的研究。
高工作频率、低控制功率的全控型功率器件如BJT , IGBT 等不断涌现,推动了矩阵式变换器控制策略的研究。
但实际上4个开关管的输出结电容不可能完全一致,同时为了保证可靠,此区时间的设置应该满足如下的条件:S1上的电压到达Vin/2,也就是D1已经导通;同样,S4上的电压到达Vin/2,也就是D4已经导通,虽然4个开关管的输出结电容会有差异,但是在用上述方法设计时,可以把COSS1~COSS4看作是器件手册里给定的参数。
假定都是COSS,要满足上述条件,死区时间的设计应满足如下不等式。
S2和S4的零电压是由激磁电感上的激磁电流在tdead2时间段对S3的结电容充电,同时埘S2和S4的结电容放电来实现的。
实际上,死区时间不可能设计得很大。
若tdead2太长,原边电流过零反向流动之后,将难以实现零电压开通。
因此滞后臂的ZVS条件可表示为
由此可见,根据上面的设计方法,两个死区时间的设计表达式是相同的。
由于式中:n为变压器的变比;Lm为变压器初级电感量;fs为开关频率。
将式(3)代入式(1)和式(2),可以得到两个死区时间的统一设计式
2.2 谐振参数的设计
谐振参数的设计是谐振变换器设计中非常重要的一环,该谐振参数的设汁可以按下面推荐的方法来设计。
首先根据变换器输入输出电压来计算出变压器的变比n,其计算公式如下。
式中:VOmin为输出直流电压:VD为输出整流二极管的通态压降;VIf为输出滤波电感上的直流压降;Dsecmax为副边占空比。
根据期望的谐振电容的最大应力VCmax,来设计谐振电容的大小,其计算公式如下。
式中:Tmax为最大开关周期。
再根据LC振荡频率fs来设计谐振电感Ls的大小,其计算公式如下。
Ls的选择也涉及到很多问题,降低开关损耗;提高电源效率,但过小,虽然占空比丢失最小,但增大开关损耗,加剧了开关管的温升,降低了电源的可靠性。
3 实验结果
根据以上方法设计和制作了200W移相全桥谐振ZVS变换器实验样机,其主要参数如下:
输入直流电压Vin为280~550V;
输出电流Io为O"8.33A;
开关频率fs为200kHz;
4个主开关管为IRFPG40;
驱动控制芯片为UC3875;
MOSFET驱动芯片采用了MIC4420;
输出整流二极管为MUR3020;
输出滤波电感Lf为19.8μH;
输出滤波电容Cf为1800μF;
谐振电感Lr为28μH。
图4示出了电路的脉冲驱动波形和主开管两端所测脉冲波形。
4 结语
本文在移相全桥ZVS电路拓扑基础之上,根据等效电路模捌,分析了谐振电路在各时序工作模态下的电路原理。
发展谐振技术可以提高开关频率、降低开关损耗、减少开关装置的体积和重量。
因此更通用的谐振变换拓扑结构、谐振元件的集成化、谐振拄制技术将是今后发展的主要方向。