五年级奥数长方体与正方体涂色与三视图A级学生版

合集下载

2018五年级奥数.几何.长方体与正方体表面涂色与三视图(B级).学生版

2018五年级奥数.几何.长方体与正方体表面涂色与三视图(B级).学生版

重难点重点:观.难点:活.例题精讲【例1】右图是333⨯⨯正方体,如果将其表面涂成红色后拆开,那么27个小正方体中有多少种不同的涂色情况?各有多少块?【巩固】右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中零面、一面、二面、三面被涂成红色的小正方体各有多少块?表面涂色与三视图【例2】将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的小正方形只有3个,求原来长方体的表面积是多少平方厘米?【巩固】一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切_______次后,要使各面上均没有红色的小方块为24块.欢迎关注:奥数轻松学余老师薇芯:69039270【例3】将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为1的小正方体。

则三个面涂漆的小正方体有________块。

【巩固】将8个相同的小正方体拼成一个体积为8立方厘米的长方体,表面涂上漆,然后分开,则3个面涂漆的小正方体最多有_________个,最少有________个。

【例4】将16个相同的小正方体拼成一个体积为16平方厘米的长方体,将表面涂漆,然后分开,结果,其中2面涂漆的小正方体有8个,那么3面涂漆的小正方体有__________个,4面涂漆的小正方体有__________个。

【巩固】把一个大长方体木块表面上涂满红色后,分割成若干个同样大小的小正方体,其中恰好有两个面涂上红色的小正方体恰好是100块,那么至少要把这个大长方体分割成多少个小正方体?欢迎关注:奥数轻松学余老师薇芯:69039270【例5】有一个3×4×5的长方体,先把其中相邻的两个面染红,再把它切成60个1×1×1的小正方体,请问:这些小正方体中最多有多少个是恰有一个面被染红的?【巩固】有6个相同的棱长分别是3厘米、4厘米、5厘米的长方体,把它们的某些面染上红色,使得有的长方体只有1个面是红色的,有的长方体恰有2个面是红色的,有的长方体恰有3个面是红色的,有的长方体恰有4个面是红色的,有的长方体恰有5个面是红色的,还有一个长方体6个面都是红色的,染色后把所有长方体分割成棱长为1厘米的小正方体.分割完毕后,恰有一面是红色的小正方体最多有多少个?【例6】有64个边长为1厘米的同样大小的小正方体,其中34个为白色的,30个为黑色的.现将它们拼成一个444⨯⨯的大正方体,在大正方体的表面上白色部分最多可以是多少平方厘米?欢迎关注:奥数轻松学余老师薇芯:69039270【巩固】有l25个同样大小的正方体木块,木块的每个面的面积均为1平方厘米,其中63个表面涂上白色,还有62个表面涂上蓝色。

(完整版)五年级立体几何拓展----三视图专属奥数讲义

(完整版)五年级立体几何拓展----三视图专属奥数讲义

学科教师辅导讲义班级:年 级: 五年级 辅导科目:小学思维学科教师:上课时间授课主题 立体几何拓展----三视图一.三视图在观察物体的时候,我们往往可以从不同的角度进行观察.角度不同,看到的风景就会不同.比如:我们可以从正面看,上面看,左面看,看到的图形分别称为正视图,俯视图和左视图.并且容易发现:正面看和后面看,上面看和下面看,左面看和右面看得到的图形是知识图谱错题回顾三视图知识精讲相同的.对于较复杂的立体图形,通过三视图法往往可以很方便地计算出表面积. 二.正方体的展开图我们采用不同的剪开方法,共可以得到下面11种展开图.三.长方体的展开图观察上图可以发现,长方体的展开图由6个长方形组成,相对面的面积相等,即上面=下面=长×宽,左面=右面=宽×高,前面=后面=长×高. 四.判断图形折叠后能否围成长方体或正方体的方法.判断一个图形折叠后能否围成正方体或长方体,首先,要依据它们各自展开图的特点判断;其次,可以运用空间想象或实际操作进一步判断.重难点:展开图、三视图及三视图求个数和表面积.上 后 前右左下 展开后由上、下、左、右、前、后六个正方形面组成,这六个正方形面的面积都相等.高宽长右面左面 后面下面 前面 上面三点剖析题模精选题模一:展开图与对立面例1.1.1 一个正方体的六个面上分别写着A ,B ,C ,D ,E ,F 六个字母.请你根据图中的三种摆放情况,判断每个字母的对面是______________,______________,______________【答案】 B 与D 相对,E 与A 相对,C 与F 相对 【解析】 由于正方体的6个面上写了6个不同的字母,那么每个字母在正方体的面上只能出现1次,如果2个字母在相邻的面上出现,那么它们一定不能相对.第一步,先看前2种摆放情况:在这2种摆放情况中,只有字母B 出现了2次,那么由第一种摆放可知,B 不与A 相对,也不与F 相对;由第二种摆放可知,B 不与C 相对,也不与E 相对.那么在所有的字母中,B 只能与D 相对.第二步,再看后2种摆放情况:在这2种摆放情况中,只有字母E 出现了2次,那么由第二种摆放可知,E 不与B 相对,也不与C 相对;由第三种摆放可知,E 不与D 相对,也不与F 相对.那么在所有的字母中,E 只能与A 相对.正方体有三个对面,因B 与D 相对,E 与A 相对,那么第三组对面上一定是C 与F 相对.例1.1.2 图中的四个正方体标字母的方式是完全相同的,请你利用图中已知的信息,判断A 、B 、C 的对面分别标的是哪个字母?【答案】 A 的对面标有D ,B 的对面标有F ,C 的对面标有E【解析】 由已知条件,标有C ,D 的两个面不能相对,那么或A 的对面标有D ,或B 的对面标有D .如果标有D ,A 的两个面相对,那么“标有C ,D 的两个面不能相对”,“标有E ,A 的两个面也不能相对”这两个条件都可以满足.注意到当D 在朝右的面,E 在朝上的面时,F 在朝前的面上,那么只能是标有E ,C 的两个面相对,而标有F ,B 的两个面相对.经检验,这种情况满足题目要求.如果标有D ,B 的两个面相对,那么由于标有E ,A 的两个面也不能相对,于是标有A 的对面就是标有F 的面,而标有C 的对面就是标有E 的面.此时D 在朝后的面上,E 在朝左的面上,F 在朝下的面上.我们把六面体旋转,把D 转到朝右的面,并把E 转到朝上的面,BFA EBC FED A BCD CCEAEF D此时朝前的面上标的是A ,而朝后的面上标的是F ,与题意不符.综上所述,满足题意的答案只有一个:A 的对面标有D ,B 的对面标有F ,C 的对面标有E .例1.1.3 如图,第1个方格内放着一个正方体木块,木块六个面上分别写着ABCDEF 六个字母.其中A 与D 相对,B 与E 相对,C 与F 相对.现在将木块标有字母A 的那个面朝上,标有字母D 的那个面朝下放在第1个方格内,然后让木块按照箭头指向,沿着图中方格滚动,当木块滚到21格时,木块向上的面上写的是哪个字母?【答案】 字母A【解析】 发现木块向左滚4格后,各个面上标的字母与初始时的情况完全一致.那么木块朝其它方向滚时也有类似的情况,即木块向任意方向连滚4格,它的各个面上标的字母不变. 所以木块向左滚4格到第5格时,各个面上标的字母与在第1格时的情况完全一致.再向下滚4格到第9格,再向右滚4格到第13格,再向下滚4格到第17格,最后向左滚4格到第21格,每次都是朝同一方向滚4格,因此在第5格,第9格,第13格,第17格,第21格木块向上的面上总是写的字母A .例1.1.4 如图,在一个正方体的表面上写着1~6这6个自然数,并且1对着4,2对着5,3对着6.现在将正方体的一些棱剪开,使它的表面展开图如图所示.如果只知道1和2所在的面,那么6应该在哪个面上(写出字母代号)?【答案】 A【解析】 对于立方体展开图,我们可以把任一个面当作底面,把它还原成立方体的表面.如图1,观察虚线圈住的部分,可以发现写有1,A ,B 的三个面两两相邻;再观察图2的虚线圈住的部分,发现写有A ,B ,C 的三个面也两两相邻.此时,写有1的面与A 面,B 面都相邻,C 面也与A 面,B 面都相邻,因此写有1的面与C 面相对,即C 面上写的是4.1 AB C 2D 3 121A B C 2D1A B C 2D1与C 相对,C 面上写的是421 5920 19观察图3中的虚线圈住的部分,容易看出写有2的面与B 面相对,因此B 面上写的是5.则立方体展开图就如图4所示.还剩下A 面与D 面上的数字没有确定,这两个面上分别写有3和6.由于写有1的面,写有5的面与A 面两两相邻,把这三个面还原到立方体中.在图2所示的立方体中,5与2相对,在立方体朝左的侧面上;1在朝前的侧面上.在展开图中以写有1的面为朝前的侧面,A 面为下底面,则写有5的面恰好在朝左的侧面上.此时写有1的面,写有5的面都对齐了,而原立方体中下底面写有数字6,因此A 面上就是6.例1.1.5 下图是正方体,四边形APQC 是表示用平面截正方体的截面,截面的线表现在展开图的哪里呢?把大致的图形在右面展开图里画出来.【答案】 见解析【解析】 截线在展开图中如图所示:例1.1.6 右图是一个立体图形的平面展开图,图中的每个小方格都是边长为1的正方形.现在将其沿实线...折叠,还原成原来的立体图形,那么立体图形的体积等于_________. 图3 1A B 4 2D2与B 相对, B 面上写的是5图41 A 54 2DBPEAD CB GHQFAEDCB HGFA . 3B . 4C . 5D . 6 【答案】B【解析】 根据实线还原,体积为4. 题模二:三视图求表面积例1.2.1 下图是由5个相同的正方体木块搭成的,从上面看到的图形是( ).A . A 图B . B 图C . C 图D . D 图【答案】C【解析】 5个在原图均已看到,易知C 符合要求.例1.2.2 右图是由18个棱长为1cm 的小正方形拼成的立体图形,它的表面积是( )平方厘米.A . 44B . 46C . 48D . 50【答案】C【解析】 从正面、左面、上面分别可看见8、7、9块,故表面积为()21879248cm ⨯++⨯=.例1.2.3 右图中的一些积木是由16块棱长为2cm 的正方体堆成的,它的表面积是________2cm .【答案】 200D .B .C .A .【解析】 从前到后的3面依次有2块、5块、7块,因此还剩162572---=块,为可看见的1块与其下方的1块.由此易知正视图、俯视图、左视图分别能看到7块、9块、8块,此外离我们最近的2块有两个面从6个方向均无法看到,综上共可看到()7982250++⨯+=个面,表面积为22250200cm ⨯=.例 1.2.4 图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少【答案】 37;三视图如下图所示;102【解析】 将此图分为从左到右的5层,分别有16、9、5、6、1块,故共有16956137++++=块.三视图见答案,分别可看见17、15、16块,其中左视图有3块“被遮挡”,因此表面积为()17151632102+++⨯=⎡⎤⎣⎦.例1.2.5 图中的立体图形由11个棱长为1的立方块搭成,这个立体图形的表面积为_______.【答案】34【解析】 按一定的顺序,从不同的角度来看这个立体图形的表面的面积. 题模三:已知三视图反推个数例1.3.1 这个图形最少是由( )个正方体整齐堆放而成的.正视图 俯视图 左视图A.12B.13C.14D.15【答案】B【解析】从上面看下去,最少需要:122412113++++++=.例1.3.2此图是某几何体从正面和左面看到的图形.若该几何体是由若干个棱长为1的正方体垒成的,则这个几何体的体积最小是________.【答案】6【解析】根据正视图,理论上最少需要6块.而6块可以构造出来,例如,其俯视图如下图所示.因此,体积最小为3166⨯=.例 1.3.3一个立体图形,从前面,上面,右边三个方向看到的图形都如图所示,是一个样的,那么该立体图形最多由__________块小立方体组成.【答案】23【解析】按由上到下逐层分析,各层的小立方体数目分别不超过1个、4个、8个、10个,所以该立体图形最多由23个小立方体组成.例 1.3.4有一些大小相同的正方形木块堆成一堆,从上往下看是图3-1,从前往后看是图3-2,从左往右看是图3-3,那么这堆木块最多有多少块?最少有多少块?1412212从正面看从左面看【答案】16,13【解析】43416+⨯=块,424113+⨯+=块.这堆木块最多有16块,最少有13块.例1.3.5地上有一堆小立方体,从上面看时如图1所示,从前面看时如图2所示,从左边看时如图3所示.这一堆立方体一共有几个?如果每个小立方体的棱长为1厘米,那么这堆立方体所堆成的立体图形表面积为多少平方厘米?【答案】10个;42平方厘米【解析】采用在俯视图上标数的方法来求解,只要知道俯视图上的每格有几块小立方体,就可以很轻松的得到这堆立方体所形成的立体图形的样子.首先从俯视图很容易看出,有3个格子里是没有小立方体的,而其他6个格子里至少有一个小立方体.如下图,将所得信息填入俯视图中.结合俯视图和主视图,不难看出,有两格只有1块小立方体.将所得信息填入俯视图中.同样的,结合俯视图和左视图,又可以知道有一格只有1块小立方体.将所得信息填入俯视图中.图1 图2 图3从前面看1001我们来继续考虑,左视图中最左边一排有2块小立方体,所以俯视图左上角处有2块小立方体.将所得信息填入俯视图中.同理,主视图最右边一排有2块小立方体,所以俯视图最右边中间处有2块小立方体.将所得信息填入俯视图中.不难看出,俯视图中最后剩下的那块有3个小立方体,所以俯视图中每格的小立方体数如下:于是这一堆立方体一共有21321110+++++=个. 接着很容易得到这个立体图形的样子,如下图.上下各能看到6个面,前后各能看到6个面,左右各能看到6个面,同时注意到立体图形的中间共有6个会互相遮挡的面,所以表面积是()2666642⨯+++=平方厘米.从左边看1 0 0 012 1 0 0 012 1 0 0 2 0 112 1 03 0 2 011随练1.1将一正方体纸盒沿右图所示的粗实线剪开,展开成平面图,其展开图的形状为().A.A图B.B图C.C图D.D图【答案】B【解析】竖向只剪了1刀,故前、后、左、右四个面应在一条线上,排除A、D.易知上、下两面不在一条线上,排除C,故选B.随练1.2水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如下图,是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面.则“祝”、“你”、“前”分别表示正方体的________________________.【答案】后面、上面、左面【解析】易知你、程相对,前、锦相对,祝、似相对,因此“祝”、“你”、“前”分别表示正方体的后面、上面、左面.随练1.3小明把五颗完全相同的骰子拼摆成一排(如图),那么这五颗骰子底面上的点数之和是__________.【答案】16【解析】根据已知推出(4,5)(1,3)(2,6)互为对立面,所以这五颗骰子底面上的点数之和是6152216++++=.随练1.4右图是由八个相同的小正方体组成而成的几何体,则从正面观察,得到的平面图随堂练习形是__________.序号)【答案】 ②【解析】 从正面看到图②,从上面看到图①,从右面看到图③.所以正确答案是图②.随练1.5 由棱长为1的正方体搭成如图所示的图形,共有__________个正方体,它的表面积是__________.【答案】 10;34【解析】 第一层有8个,第二层有2个,共10个.其三视图分别能看到4、5、8个,故表面积为()11458234⨯⨯++⨯=.随练1.6 如图,有9个边长为1米的正方体,如图所示堆成一个立体图形.该立体图形的表面积等于__________平方米.【答案】 38【解析】 利用三视图.从前面、右面、上面看依次如图所示.所以该立体图形的表面积是()26672138++⨯⨯=平方米.随练1.7 如图6,用若干个棱长为1的小正方体堆成一个大的几何体,这个几何体的表面积(含底面积)是__________.① ② ③ ④【答案】90【解析】根据三视图,大的几何体的表面积等于正视图面积+俯视图面积+右视图面积的2倍,所以是()2++⨯⨯=.1415162190随练 1.8用棱长是1厘米的小立方体拼成如图所示的立体图形,这个图形的表面积是__________平方厘米.【答案】46平方厘米【解析】如图1,从立体图形上方和下方看去,看到的都是9块小正方形.面积是9平方厘米.图1图2从四个侧面看去,看到的是图2形式的7块小正方形,面积是7平方厘米.所以立体图形的表面积为927446⨯+⨯=平方厘米.随练1.9把若干个棱长为1厘米的小正方体木块搭成一个图形,从上面和前面看到的都是如图所示的情形,这个图形最多需要__________个这样的小正方体,最少需要__________个这样的小正方体.【答案】9;7【解析】由从上方看到的结果可知第一层必有5个,且第二层至多5个;由从前面看到的结果可知共有2层,且第二层至少2个.再结合两个视图可知第二层至多4个.综上,最多9个,最少7个.作业1一个数学玩具的包装盒是正方体,其表面展开图如下.现在每方格内都填上相应的数字.已知将这个表面展开图沿虚线折成正方体后,相对面的两数之和为“3”,则填在A、B、C内的三个数字依次是_____________.【答案】3,1,2【解析】正方体的平面展开图中,相对面之间一定隔着一个正方形,所以在此正方体上与“A”相对的面上的数是“0”.与“B”相对的面上的数是“2”.与“C”相对的面上的数是“1”.所以A、B、C内的三个数字依次是3,1,2.作业2把1至6各一个分别写在正方形的六个面上,每个面只写一个数字,且1与4相对,2与5相对,3与6相对,从某个角度看到的三个面上的数字如图(a)所示,从另一个角度看到的三个面如图(b)所示,那么图(b)中的“?”代表的数字是___________.A.2B.3C.4D.5【答案】A【解析】如图,4对面是1,所以在图a中把4翻到底面,顶部变成了1,如图b,而5C 2B 0A 1自我总结课后作业对面是2,所以当6转到正面时,5在左侧,右侧自然是2了,故答案是2..作业3下图由一个正五边形,五个长方形,五个等边三角形组成,它是一个立体图形的平面展开图,那么这个立体图形有__________条棱.【答案】20【解析】此立体图形,示意图如上:共20条棱.作业4用若干个棱长为1cm的小正方体码放成如图所示的立体,则这个立体的表面积(含下底面面积)等于___________2cm.【答案】60【解析】根据三视图,我们可知,此立体图形的前面与后面,左面与右面,上面与下面的表面积分别相等.所以我们只要知道前面有11个正方形,右面有8个正方形,上面有11个面,就可求出它露在外面的面共计()11811260++⨯=个正方形,所以它的表面积是2260160cm⨯=.作业5如图,把19个边长为1厘米正方体重叠起来堆成如图所示的立方体,这个立方体的表面积是______平方厘米.【答案】54【解析】从上下左右前后六个方向看,分别可以看到9、9、8、8、10、10个小正方形面,所以总的表面积为54平方厘米.作业6图中的立体是由大小相同的若干单位正方体积木搭成的.这样的积木一共有多少块?画出它的三视图,表面积是多少?【答案】30;三视图如下图所示;76【解析】将此图分为从左到右的4层,分别有11、7、5、7块,故共有1175730+++=块.三视图见答案,分别可看见13、12、11块,其中左视图有2块“被遮挡”,因此表面积为()1312112276+++⨯=⎡⎤⎣⎦.作业7由若干个相同的正方体木块搭成的立体,从正面和左面看到的图形都是右图,搭这样的立体,最少用()个这样的木块.A.4B.5C.6D.8【答案】A【解析】按如图方式摆放即可.正视图俯视图左视图作业8由若干个棱长为1的正方体堆成的立体图形,其正视图、俯视图和左视图如下所示,请问这个立体图形体积是________.正视图俯视图左视图【答案】5【解析】由正视图和左视图可知共两层,且顶层只有1块,由俯视图可知底层有4块,故共有5块,体积为5.作业9一仓库里堆放着若干个完全相同的正方体货箱,这堆货箱的三视图如图所示,这堆真方体货箱共有______________个.【答案】9【解析】俯视图确定基座,分析每块上的高度.。

五年级奥数几何长方体和正方体经典例题详解

五年级奥数几何长方体和正方体经典例题详解

五年级奥数几何长方体和正方体经典例题详解有关五年级奥数几何长方体和正方体经典例题详解五年级奥数几何长方体和正方体经典例题详解1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?【思路导航】(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80+80=160(立方厘米)。

10×4×2+10×(6-2)×2=160(立方厘米)(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。

因此,此零件的表面积就是:(10×6+10×4+4×2×2)×2=232(平方厘米)练习(1)一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图),剩下部分的表面积和体积各是多少?练习(2)把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。

练习(3)有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?2、有一个长方体形状的零件。

中间挖去一个正方体的孔(如下图)。

你能算出它的体积和表面积吗?(单位:厘米)【思路导航】(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去一个孔,所以体积减少2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米)(2)长方体完整的表面积是(8×5+8×6+5×6)×2=236(平方厘米),但由于挖去一个孔,它的表面积减少了一个(2×2)平方厘米的面积,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+(2×2)×4=252(平方厘米).练习(1)有一个形状如下图的零件,求它的体积和表面积。

《小学奥数》小学五年级奥数讲义之精讲精练第15讲 长方体和正方体(三)含答案

《小学奥数》小学五年级奥数讲义之精讲精练第15讲 长方体和正方体(三)含答案

第15讲长方体和正方体(三)一、知识要点解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。

二、精讲精练【例题1】一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少平方厘米?练习1:1.把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2.有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?【例题2】有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?练习2:1.把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2.有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?【例题3】有一个正方体,棱长是3分米。

如果按下图把它切成棱长是1分米的小正方体,这些小正方体的表面积的和是多少?练习3:1.用棱长是1厘米的小正方体摆成一个稍大一些的正方体,至少需要多少个小正方体?如果要摆一个棱长是6厘米的正方体,需要多少个小正方体?2.有一个长方体,长10厘米、宽6厘米、高4厘米,如果把它锯成棱长是1厘米的小正方体,一共能锯多少个?这些小正方体的表面积和是多少?【例题4】一个正方体的表面涂满了红色,然后如下图切开,切开的小正方体中:(1)三个面涂有红色的有几个?(2)二个面涂有红色的有几个?(3)一个面涂有红色的有几个?(4)六个面都没有涂色的有几个?1.把一个棱长是5厘米的正方体的六个面涂满红色,然后切成1立方厘米的小正方体,这些小正方体中,一面涂红色的、二面涂红色的、三面涂红色的以及六个面都没有涂色的各有多少个?2.把若干个体积相同的小正方体堆成一个大的正方体,然后在大正方体的表面涂上颜色,已知两面被涂上红色的小正方体共有24个,那么,这些小正方体一共有多少个?【例题5】一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个体积相等的小长方体,这三个小长方体表面积的和最大是多少平方厘米?1.有三块完全一样的长方体木块,每块长8厘米、宽5厘米、高3厘米。

五年级:美妙数学之“正方体涂色问题”(0807五)

五年级:美妙数学之“正方体涂色问题”(0807五)

五年级:美妙数学之“正方体涂色问题”(0807五)
我们人教版五年级下册学过了探索图形,你还记得吗?
探索图形中的其中一类就是正方体涂色问题,把小正方体拼成大正方体,这样的大正方体的规格可以简单地表示成2×2×2,3×3×3……n×n×n,问,三面涂色,两面涂色,一面涂色的和没有涂色的小正方体各有几个?
大家回忆一下这样的问题我们一般怎样解决呢?
算三面涂色的小正方体的个数方法是这样的:三面涂色的小正方体都是大正方体的顶点所在的小正方体,大正方体一共有8个顶点也就是三面涂色的小正方体有8个;两面涂色的小正方体分布在大正方体的棱处,但要去掉头尾,所以两面涂色小正方体个数为(n-2)×12;一面涂色小正方体分布在大正方体的面上,但是要去掉面上一圈,也就是(n-2)×(n-2)×6;没有涂色的小正方体分布在内心,也就是要剥去大正方体华丽的外表,所以没有涂色的小正方体个数是(n-2)×(n-2)×(n-2)。

同学们想起来了吗?那我的问题来了,正方体是这样那长方体呢?敬请期待下一期的分享。

五年级数学长方体与正方体涂色与三视图

五年级数学长方体与正方体涂色与三视图

表面涂色与三视图知识框架一、表面涂色问题:对于棱长大于2的长方体和正方体,表面涂色后切成小正方体:三面涂红色的在顶点处两面涂红色的在棱长处一面涂红的表面中间部分每面都没涂色的只有正方体体内。

重难点重点:熟练掌握表面涂色问题的基本类型.难点:复杂三视图问题.例题精讲【例 1】右图是333⨯⨯正方体,如果将其表面涂成红色,那么其中二面、三面被涂成红色的小正方体各有多少块?【考点】长方体与正方体【难度】☆☆【题型】解答【解析】三面涂红色的只有8个顶点处的8个立方体;两面涂红色的在棱长处,共(32)4(32)4(32)412-⨯+-⨯+-⨯=块;【答案】8,12【巩固】右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中二面、三面被涂成红色的小正方体各有多少块?【考点】长方体与正方体【难度】☆☆【题型】解答【解析】三面涂红色的只有8个顶点处的8个立方体;两面涂红色的在棱长处,共(42)4(52)4(62)436-⨯+-⨯+-⨯=块;【答案】8,36【例 2】右图是333⨯⨯正方体,如果将其表面涂成红色,那么其中一面被涂成红色和未被涂色的小正方体各有多少块?【考点】长方体与正方体【难度】☆☆【题型】解答一面涂红的表面中间部分:(32)(32)2(32)(32)2(32)(32)26-⨯-⨯+-⨯-⨯+-⨯-⨯=块.-⨯-⨯-=块六面都没涂色的只有正方体内的小方块:(32)(32(32)1【答案】6,1【巩固】右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正方体各有多少块?【考点】长方体与正方体【难度】☆☆【题型】解答【解析】一面涂红的表面中间部分:(42)(52)2(42)(62)2(52)(62)252-⨯-⨯+-⨯-⨯+-⨯-⨯=块.-⨯-⨯-=块六面都没涂色的只有正方体内的小方块:(42)(52)(62)1【答案】52【例 3】将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的小正方形只有3个,求原来长方体的表面积是多少平方厘米?【考点】长方体与正方体【难度】☆☆【题型】解答【解析】长:3+1+1=5厘米;宽:1+1+1=3厘米;高:1+1+1=3厘米;所以原长方体的表面积是:(3⨯5+3⨯5+3⨯3)3⨯2=78平方厘米.【答案】78【巩固】一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切_______次后,要使各面上均没有红色的小方块为24块.【考点】长方体与正方体【难度】☆☆【题型】填空【解析】沿着长边等距离切5刀,可切为516+=块;沿着宽边等距离切4刀,可切为415+=块;沿着高边等距离切n刀,可切为1n+块.由题意可知,长方体每一个面的外层是涂有1面(或2面、或3面)的小方块,所以,各面均没有红色的小方块共(62)(52)(12)12(1)-⨯-⨯+-=-个,因各面n n 均没有红色的小方块为24块,所以,12(1)24n=.n-=,解得3【答案】3【例 4】右图是115⨯⨯长方体,如果将其表面涂成红色,再切成5个小正方体,那么各个正方体有几面被涂成红色?【考点】长方体与正方体【难度】☆☆【题型】解答【解析】两端的正方体有5面,中间的正方体有4面;【答案】两端的正方体有5面,中间的正方体有4面;【巩固】右图是225⨯⨯长方体,如果将其表面涂成红色,再切成20个小正方体,共有几种不同的涂色情况?【考点】长方体与正方体【难度】☆☆【题型】解答【解析】共有两种不同的染色情况:顶角上的8个正方体有3面,棱上的12个正方体有2面;【解析】共有两种不同的染色情况:顶角上的8个正方体有3面,棱上的12个正方体有2面【例 5】右图是125⨯⨯长方体,如果将其表面涂成红色,再切成10个小正方体,共有几种不同的涂色情况?【考点】长方体与正方体【难度】☆☆【题型】解答【解析】共有两种不同的染色情况:两端的4个正方体有4面,中间的6个正方体有3面;【解析】共有两种不同的染色情况:两端的4个正方体有4面,中间的6个正方体有3面;【巩固】将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为1的小正方体。

小学奥数 长方体正方体染色问题、三视图 知识点+例题+练习 (分类全面)

小学奥数 长方体正方体染色问题、三视图 知识点+例题+练习 (分类全面)

教学内容长方体正方体染色问题、沉浸问题、三视图教学目标掌握长方体正方体染色问题、沉浸问题、三视图重点染色问题、沉浸问题、三视图难点染色问题、沉浸问题、三视图教学过程一、染色问题一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。

在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面我们结合图示,分别来看看这几个问题。

(1)三个面涂有红色的小正方体在大正方体的顶点处,正方体有8个顶点,所以三个面涂有红色的有8个。

(2)两个面涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,所以两个面涂有红色的有8×12=96个。

(3)一个面涂有红色的小正方体在大正方体的面上,每个面上有8×8=64个,正方体有6个面,所以一个面涂有红色的有8×8×6=384个。

(4)六个面都没有涂色的在大正方体的中间,有两种算法:算法1: 1000-8-96-384=512(个);算法2: 8×8×8=512(个)。

公式:(1)正方体有8个顶点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色,则未被涂色的小立方体有(n-2)3个.一面被涂色的小立方体为(n-2)2*6个.两面被涂色的小立方体有(n-2)*12个.三面被涂色的有8个.(2)长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.则未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个【例 1】下图是333⨯⨯正方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?0面:1; 1面:6;两面:2;三面:8【巩固】下图是456⨯⨯长方体,如果将其表面涂成红色,那么其中一面、两面、三面被涂成红色的小正方体及未被涂色的小正方体各有多少块?0面:24; 1面:52;两面:36;三面:8图1图2【巩固】小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图2所示,从上面看如图3所示,那么这个几何体至少用了块木块.26图2图3课堂作业:1.一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切3刀,沿着高边等距离切_______次后,要使各面上均没有红色的小方块为40块.5.用一些棱长是1的小正方体码放成一个立体,从上、从右看这个立体都如下图,则这个形体最少由________个小正方体构成,6.小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图2所示,从上面看如图3所示,那么这个几何体至少用了块木块.。

长方体与正方体三视图、浸没、染色问题

长方体与正方体三视图、浸没、染色问题

8、在长、宽、高分别是10cm、10cm、6cm的 长方体的容器中盛有深4cm的水,在向容器中 放入棱长5cm的正方体铁块,则水深变为多少 厘米?(5.25厘米)
9、一个长方体容器,里面长12分米、宽10 分米、水深10.5分米,容器中浸没着一个小 铁块,当铁块从水中取出后,水面下降了 0.4分米,这个小铁块的体积是__48____立 方分米.
3、18个边长为2厘米的小正方体堆成如图的形 状,求它的表面积。(208平方厘米)
4、右图是由16个棱长2厘米的小正方体重叠而 成的,求这个立体图形的表面积。(184平方 厘米)
例3、下图是一个棱长为3厘米的正方体,一只 蚂蚁从A点沿表面爬向B点。请画出蚂蚁爬行 的最短路线。这样的路线共有几条?
10、一个长方体容器的底面是底面积是一个边 长60厘米的正方形,容器里直立着一个高1米、 底面边长15厘米的长方形铁块。这时容器里 的 水深0.5米。如果把铁块取出,容器里的水 深多少厘米?(46.875厘米) 11、在一个底面是边长为60厘米的正方形的长 方体容器中,直立着一个厂1米,底面边长为15 厘米的正方形的长方体铁棍。这时容器里水深 50厘米,现在把铁棍轻轻向上提起24厘米,求 露出水面的长方体铁棍浸湿部分长多少厘米? (25.6厘米)
分析:根据切的表面积变化特点: 每切一次,增加两个切开面的面 积。题中一共切了9次,总共增 加18个面的面积。
(2+3+4)×2×1×1+60×1×1=78(平方 米)
1、把27块棱长是1厘米的小正方体堆成一个大 正方体,这个正方体的表面积比原来所有的小 正方体的面积之和少多少平方厘米?(108平 方米厘米) 2、把24个棱长是1厘米的小正方体摆成一个 长方体,这个长方体的表面积至少是多少平 方厘米?(52平方厘米)

长方体和正方体的三视图

长方体和正方体的三视图
并画出平面图形感谢下载从上面看感谢下载长方体从正面看从左面看从上面看感谢下载长方体从正面看从左边看从上面看感谢下载从前面看从左面看从上面看感谢下载10从上面看从左面看从前面看从前面看从左面看从上面看感谢下载11从前面看从上面看画出下面几何体感谢下载12画出下面几何体的主视图左视图与俯视图从前面看从右面看从上面看感谢下载13探究拓广1请你小立方体拼成课件中的简单组合体小组合作画出三视图草图感谢下载14给出组合体的三视图对应的是哪个视图请连线感谢下载15前面看上面看左面看感谢下载16左面看上面看前面看1画出下列几何组合体的视图
画出下面几何体
从前面看
从左(右)面看
从上面看
画出下面几何体的主视图、左视图与俯视图
从前面看
从右面看
从上面看
探究拓广 (1)请你小立方体拼成课件中的简单组合体, 小组合作,画出三视图(草图 )
前面看
左面看
上面看
(2) 给出组合体的三视图,对应的是哪个视图, 请连线
前面看
上面看
左面看
填一填:
4.填出下列组合体的个数和三视图
正方体的三视图
常见的立体图形
长方体
圆柱
正方体
“横看成岭侧成峰,远近高低各不 同.不识庐山真面目,只缘身在此山 中.”这是宋代诗人苏轼的著名诗句 <<题西林壁>>,你能说出“横看成岭 侧成峰”中蕴含的数学道理吗?
从不同方位看立体图形得到的图形是不同的.
探究一:从正面、 左或右面、上面 观察正方体各得 到什么平面图形? 并画出平面图形
从 上 面 看
从正面看
从左(右)面看
注意:三个平面图形 都是正方形
从上面看
例1、说出从正面,左面,上看一 个长方体得到的是什么平面图形

五年级下册数学扩展专题练习长方体与正方体涂色与三视图(a级).学生版全国通用(无答案)

五年级下册数学扩展专题练习长方体与正方体涂色与三视图(a级).学生版全国通用(无答案)

一、表面涂色问题:对于棱长大于的长方体和正方体,表面涂色后切成小正方体:三面涂红色的在顶点处 两面涂红色的在棱长处 一面涂红的表面中间部分 每面都没涂色的只有正方体体内。

重点:熟练掌握表面涂色问题的基本类型. 难点:复杂三视图问题.【例 1】右图是333⨯⨯正方体,如果将其表面涂成红色,那么其中二面、三面被涂成红色的小正方体各有多少块?例题精讲知识框架重难点表面涂色与三视图【巩固】右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中二面、三面被涂成红色的小正方体各有多少块?【例2】右图是333⨯⨯正方体,如果将其表面涂成红色,那么其中一面被涂成红色和未被涂色的小正方体各有多少块?【巩固】右图是456⨯⨯正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正方体各有多少块?【例3】将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的小正方形只有个,求原来长方体的表面积是多少平方厘米?【巩固】一个长方体,六个面均涂有红色,沿着长边等距离切刀,沿着宽边等距离切刀,沿着高边等距离切次后,要使各面上均没有红色的小方块为块.【例4】右图是115⨯⨯长方体,如果将其表面涂成红色,再切成个小正方体,那么各个正方体有几面被涂成红色?【巩固】右图是225⨯⨯长方体,如果将其表面涂成红色,再切成个小正方体,共有几种不同的涂色情况?【例5】右图是125⨯⨯长方体,如果将其表面涂成红色,再切成个小正方体,共有几种不同的涂色情况?【巩固】将长为,宽为,高为的长方体木块的表面涂上漆,再切成块棱长为的小正方体。

则三个面涂漆的小正方体有块。

【例6】小华用相同的若干个小正方体摆成一个立体(如图)。

从上体上面看这个立方体,看到的图形是图①~③中的。

(填序号)。

小学高级奥数第10讲-正方体与长方体表面涂色与三视图

小学高级奥数第10讲-正方体与长方体表面涂色与三视图

2所示,从上面看如图3所示,那么这个几何体至少用了
块木块。
右图是 115 的长方体,如果将其表面涂成 红色,再切成5个小正方体,那么各个正方体有 几面被涂成红色?
右图是 2 25 的长方体,如果将其表面涂成 红色,再切成20个小正方体,共有几种不同的 涂色情况?
右图是 125 的长方体,如果将其表面涂成 红色,再切成10个小正方体,共有几种不同的 涂色情况?
小明在桌面上摆了一些大小一样的正方体木块,摆完后从正面看如左下图, 从侧面看如右下图,那么他至少用了________块木块。
小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面
看如图1所示,从上面看如图2,那么这个几何体至少用了
块木块。
图1
图2
小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看
课后作业
<作业6>
用一些棱长是1的小正方体码放成一个立体如下图,请画出从正面、上面和右面 看到的图形。
课后作业
<作业7>
用一些棱长是1的小正方体码放成一个立体,从上、从右看这个立体都如下图, 则这个形体至少由________个小正方体构成,
课后作业
<作业8>
小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图
将长为5,宽为3,高为1的长方体木块的表面涂上漆,再切成15块棱长为 1的小正方体。则三个面涂漆的小正方体有________块。
小华用相同的若干个小正方体摆成一个立体(如下图所示)。从上体上面
看这个立方体,看到的图形是图①~③中的
。(填序号)



小华用相同的若干个小正方体摆成一个立体(如下图所示)。从右侧面看

五年级下学期数学 长方体与正方体的染色问题 完整版 带答案解析

五年级下学期数学 长方体与正方体的染色问题 完整版 带答案解析

长方体与正方体的染色问题【知识点总结】三个面都染色的在8个顶点处,两个面都染色的在12条棱的中间段(去掉每条横两头的各一个),一面有色的在各个面的中央,没有着色的在长方体的里面。

对于一个n×n×n的正方体,其涂色情况如下:三面涂色的:8块二面涂色的:(n-2)×12一面涂色的:(n-2)×(n-2)×6没有颜色的:(n-2)×(n-2)×(n-2)验算的方法:上面的总数=体积数对于一个a×b×c的长方体,其涂色情况如下:三面涂色的:8块二面涂色的:[(a-2)+(b-2)+(c-2)]×4一面涂色的:[(a-2)×(b-2)+(a-2)×(c-2)+(b-2)×(c-2)]×2 没有颜色的:(a-2)×(b-2)×(c-2)验算的方法:上面的总数=体积数【针对性训练】1、下图是一个表面被涂上红色的棱长为10厘米的正方体木块,如果把它洞虚线切成8个正方体,这些小正方体的所有表面的面积和是()平方厘米。

解答:一共切了3刀,共增加6个面,加上原来表面的6个面,一共12个面,总面积为:10×10×12=1200(平方厘米)2、一个正方体形状的木块儿,棱长为1米,若沿着正方体的三个方向分别锯成3份,四份、五份,如下图,得到大大小小的长方体60块,这60块长方体的表面积的和是多少平方米?解答:一共切了2+3+4=9刀,共增加9×2=18个面,加上原来表面的6个面,一共18+6=24个面,总面积为:1×1×24=24(平方米)3、一个表面积为56平方厘米的长方体如图切成27个小长方体,这27个小长方体的表面积的和是()平方厘米。

解答:在长、宽、高的方向上各切1刀,会在每个方向上增加两个面,总共增加的就是一个表面积,现在切成了27个小长方体,说明在长宽高的方向上各切割了2刀,会增加2个表面积,加上原本就有1个表面积,则现在的总表面积为3个原来的表面积,即:56×3=168(平方厘米)。

五年级奥数.长方体与正方体涂色与三视图(A级).学生版

五年级奥数.长方体与正方体涂色与三视图(A级).学生版

五年级奥数.长⽅体与正⽅体涂⾊与三视图(A级).学⽣版
⼀、表⾯涂⾊问题:
对于棱长⼤于2的长⽅体和正⽅体,表⾯涂⾊后切成⼩正⽅体:
三⾯涂红⾊的在顶点处两⾯涂红⾊的在棱长处⼀⾯涂红的表⾯中间部分每⾯都没涂⾊的只有正⽅体体内。

重点:熟练掌握表⾯涂⾊问题的基本类型.难点:复杂三视图问题.
【例 1】右图是333??正⽅体,如果将其表⾯涂成红⾊,那么其中⼆⾯、三⾯被涂成红⾊的⼩正⽅体各有
多少块?
例题精讲
知识框架
重难点
表⾯涂⾊与三视图
【巩固】右图是456
正⽅体,如果将其表⾯涂成红⾊,那么其中⼆⾯、三⾯被涂成红⾊的⼩正⽅体各有多少块?
【例2】右图是333
正⽅体,如果将其表⾯涂成红⾊,那么其中⼀⾯被涂成红⾊和未被涂⾊的⼩正⽅体各有多少块?
【巩固】右图是456
正⽅体,如果将其表⾯涂成红⾊,那么其中⼀⾯、⼆⾯、三⾯被涂成红⾊的⼩正⽅体各有多少块?
【例3】将⼀个表⾯积涂有红⾊的长⽅体分割成若⼲个棱长为1厘⽶的⼩正⽅体,其中⼀⾯都没有红⾊的⼩正⽅形只有3个,求原来长⽅体的表⾯积是多少平⽅厘⽶?
【巩固】⼀个长⽅体,六个⾯均涂有红⾊,沿着长边等距离切5⼑,沿着宽边等距离切4⼑,沿着⾼边等距离切_______次后,要使各⾯上均没有红⾊的⼩⽅块为24块.
【例4】右图是115
长⽅体,如果将其表⾯涂成红⾊,再切成5个⼩正⽅体,那么各个正⽅体有⼏⾯被涂成红⾊?。

长方体和正方体三视图.pptx

长方体和正方体三视图.pptx
“横看成岭侧成峰,远近高低各不 同.不识庐山真面目,只缘身在此 山中.”这是宋代诗人苏轼的著名 诗句<<题西林壁>>,你能说出“横 看成岭侧成峰”中蕴含的数学道理
从不同吗方位看立体图形得到的图形是不同?的.
第2页/共17页
探究一:从正面、

左或右面、上面

观察正方体各得

到什么平面图形?

并画出平面图形
从左面看 从前面看
第8页/共17页
从上面看
从左面看
从前面看
从前面看
从左面看
第9页/共17页
从上面看
画出下面几何体
从前面看
从左(右)面看
第10页/共17页
从上面看
画出下面几何体的主视图、左视图与俯视图
从前面看
从右面看 从上面看
第11页/共17页
探究拓广 (1)请你小立方体拼成课件中的简单组合体, 小组合作,画出三视图(草图 )
前面看 左面看
上面看
第12页/共17页
(2) 给出组合体的三视图,对应的是哪个视图, 请连线
前面看 上面看 左面看
第13页/共17页
填一填:
4.填出下列组合体的个数和三视图
( 6 )个正方体
(前面看) (左面看)
(上面看 )
第14页/共17页
(1)画出下列几何组合体的视图。
前面看
左面看
第15页/共17页
பைடு நூலகம்上面看
分别从正面、左面、上面观察这 个图形,各能得到什么平面图形?
从正面看
从左面看
第16页/共17页
从上面看
感谢您的观看!
第17页/共17页
第3页/共17页
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面涂色与三视图
知识框架
一、表面涂色问题:2的长方体和正方体,表面涂色后切成小正方体:对于棱长大于三面涂红色的在顶点处两面涂红色的在棱长处一面涂红的表面中间部分每面都没涂色的只有正方体体内。

重难点
重点:熟练掌握表面涂色问题的基本类型.难点:复杂三视图问题.
例题精讲
三面被涂成红色的小正方体各有如果将其表面涂成红色,右图是那么其中二面、正方体,【例
1】3?3?3 多少块?
正方体,如果将其表面涂成红色,那么其中二面、三面被涂成红色的小正方体各【巩固】右图是6?5?4.
有多少块?
【例2】右图是正方体,如果将其表面涂成红色,那么其中一面被涂成红色和未被涂色的小正方体3?3?3各有多少块?
【巩固】右图是正方体,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红色的小正
6?4?5方体各有多少块?
【例3】将一个表面积涂有红色的长方体分割成若干个棱长为1厘米的小正方体,其中一面都没有红色的个,求原来长方体的表面积是多少平方厘米?3小正方形只有.
【巩固】一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切4刀,沿着高边等距离切_______次后,要使各面上均没有红色的小方块为24块.
【例4】右图是长方体,如果将其表面涂成红色,再切成5个小正方体,那么各个正方体有几面被51?1?涂成红色?
【巩固】右图是长方体,如果将其表面涂成红色,再切成20个小正方体,共有几种不同的涂色情522??况?
【例5】右图是长方体,如果将其表面涂成红色,再切成10个小正方体,共有几种不同的涂色情5?1?2况?
的小正方体。

则三1的长方体木块的表面涂上漆,再切成15块棱长为,宽为【巩固】将长为53,高为1 块。

个面涂漆的小正方体有________
看到的图形是从上体上面看这个立方体,。

小华用相同的若干个小正方体摆成一个立体】(如图2)6【例
(填序)图①~③中的。

③①②
【巩固】小华用相同的若干个小正方体摆成一个立体(如图2)。

从右侧面看这个立方体,看到的图形是图。

A
B
C
D
的小正方体码放成一个立体如下图,请画出从正面、上面和右面看到的图形1用一些棱长是】7 【例
【巩固】用一些棱长是1的小正方体码放成一个立体如下图,请画出从上面和正面看到的图形
【例8】用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如下图a,从正面看这个立体,如下图b,则这个形体最多由_______个小正方体构成。

图b(从正面看)(从上向下看)a图
【巩固】用一些棱长是1的小正方体码放成一个立体,从上向下看这个立体,如下图a,从正面看这个立个小正方体构成。

________,则这个形体最少由b体,如下图
图b(从正面看)(从上向下看)图a
【例9】小明在桌面上摆了一些大小一样的正方体木块,摆完后从正面看如左下图,从侧面看如右下图,那么他最多用了________块木块.
【巩固】小明在桌面上摆了一些大小一样的正方体木块,摆完后从正面看如左下图,从侧面看如
右下图,那么他最少用了____ __块木块。

【例10】小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图1所示,从上面看如图2,那么这个几何体至少用了块木块.
1图图2
【巩固】小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图2所示,从上面看如图3所示,那么这个几何体至少用了块木块.
图2图3
课堂检测
1.一个长方体,六个面均涂有红色,沿着长边等距离切5刀,沿着宽边等距离切3刀,沿着高边等距离块.40次后,要使各面上均没有红色的小方块为_______切.
个面涂漆立方厘米的长方体,表面涂上漆,然后分开,则38个相同的小正方体拼成一个体积为8将2.
个。

_________的小正方体最多有个,最少有________
的小正方体码放成一个立体如下图,请画出从正面、上面和右面看到的图形。

用一些棱长是13.
,则这个形体最多由的小正方体码放成一个立体,从上、从右看这个立体都如下图用一些棱长是14. 个小正方体构成。

________
家庭作业
块小长方体堆叠而成,如果将其表面涂成红色,那么其中一面、二面、三面被涂成红右图是1.12106 色的小长方体各有多少块?
2.一个长方体的长是12厘米,宽8厘米,高也是整厘米数,在它的表面涂满颜色后,截成棱长是1厘米的小正方体,其中一面有色的小正方体有280个.求原来长方体的体积。

3.将长为6,宽为5,高为1的长方体木块的表面涂上漆,再切成15块棱长为1的小正方体。

则三个面涂漆的小正方体有________块。

的小正方体码放成一个立体如下图,请画出从正面、上面和右面看到的图形1用一些棱长是4.
,则这个形体最少由5.用一些棱长是1的小正方体码放成一个立体,从上、从右看这个立体都如下图个小正方体构成,________
所示,从上面看如小明用若干个大小相同的正方体木块堆成一个几何体,这个几何体从正面看如图26. 块木块.3图所示,那么这个几何体至少用了
教学反馈。

相关文档
最新文档