第五章 线性系统的频率分析法(一)PPT课件

合集下载

线性系统的频域分析

线性系统的频域分析

第五章 线性系统的频域分析频域分析法是应用频率特性研究线性系统的一种经典方法。

它以控制系统的频率特性作为数学模型,以伯德图或其他图表作为分析工具,来研究、分析控制系统的动态性能与稳态性能。

频域分析法由于使用方便,对问题的分析明确,便于掌握,因此和时域分析法一样,在自动控制系统的分析与综合中,获得了广泛的应用。

本章研究频率特性的基本概念、典型环节和控制系统的频率特性曲线、奈奎斯特稳定判据以及开环频域性能分析等内容。

§5-1 频率特性的基本概念一、频率特性的基本概念频率特性又称频率响应,它是系统(或元件)对不同频率正弦输入信号的响应特性,对于线性系统,若其输入信号为正弦量,则其稳态输出信号也将是同频率的正弦量,但其幅值和相位都不同与输入量。

下面以RC 电路为例,说明频率特性的基本概念。

图5-1所示的RC 电路,)(t u i 和)(0t u 分别为电路的输入电压和输出电压,电路的微分方程为:)()()(00t u t u dtt du Ti =+ 式中T=RC 为电路的时间常数。

RC 电路的传递函数为11)()(0+=Ts s U s U i (5-1) Rui )t图 5-1 RC 电路当输入电压为正弦函数t U t u i i ωsin )(=,则由式(5-1)可得22011)(11)(ωω+⋅+=+=s U Ts s U Ts s U i i 经拉氏反变换得电容两端的输出电压)sin(11)(122/220T tg t T U e T T U t u iT t i ωωωωω---+++=式中,第一项为输出电压的暂态分量,第二项为稳态分量,当∞→t 时,第一项趋于零,于是)sin(1|)(1220T tg t T U t u i t ωωω-∞→-+=)](sin[)(ωϕωω+=t A U i (5-2)式中:2211)(TA ωω+=,T tgωωϕ1)(--=,分别反映RC 网络在正弦信号作用下,输出稳态分量的幅值和相位的变化,二者皆是输入正弦信号频率ω的函数。

第五章 频率特性分析法

第五章 频率特性分析法

由于 G( j ) G(s) s j 是一个复数,可写为
G( j ) G( j ) e
jG ( j )
A( )e
j ( )
G( j ) 和 G( j )是共轭的,故 G( j ) 可写成
G( j ) A( )e
j ( )
R Kc A( )e j ( ) 2j R K c A( )e j ( ) 2j
Kc e
jt
K c e
jt
若系统稳定, G ( s ) 的极点均为负实根。当 t 时得 c(t ) 的稳态分量为 css (t ) lim c(t ) K c e jt K c e jt
t
R G ( j ) R 其中 K c G( s) ( s j ) s j ( s j )(s j ) 2j R G ( j ) R K c G ( s) ( s j ) s j ( s j )(s j ) 2j
为方便讨论,设所有极点为互不相同的实数。
若输入信号为正弦函数,即
r (t ) R sin t
其拉氏变换为
R R R( s ) 2 2 s ( s j )(s j )
N ( s) X 则 C ( s) ( s p1 )(s p2 ) (s pn ) ( s j )(s j )
第5章 线性系统的频域分析法
频率特性是研究控制系统的一种工程方法, 应用频率特性可间接地分析系统的动态性能和稳 态性能。频域分析法的突出优点是可以通过实验 直接求得频率特性来分析系统的品质,应用频率 特性分析系统可以得出定性和定量的结论,并具 图表及经验公式。
有明显的物理含义,频域法分析系统可利用曲线、

频率分析法

频率分析法

log
更详细的刻度如下图所示
1
2
3 4 5 6 7 8 910
20
一倍频程 一倍频程 一倍频程
一倍频程
30 40 50 60 80 100 一倍频程
十倍频程 十倍频程
十倍频程
一倍频程 十倍频程
lg
0
1
2
ω 1 2 3 4 5 6 7 8 9 10 lgω 0.000 0.301 0.477 0.602 0.699 0.778 0.845 0.903 0.954 1.000
纵坐标分度:幅频特性曲线的纵坐标是以
贝尔(Bl)和分贝(dB)。直接将

或 log表A示(。)其2单0位lo分g别A为() 值标注在纵坐标上。log A()
20log A()
相频特性曲线的纵坐标以度或弧度为单位进行线性分度。
一般将幅频特性和相频特性画在一张图上,使用同一个横坐标(频率轴)。
当幅制特性值用分贝值表示时,通常将它称为增益。幅值和增益的关系为:
增益 20 log(幅值) 20 lg A()
幅值 1
A( )
增益 0
1.26 1.56 2.00 2.51 3.16 5.62 10.0
2
4
6
8
10
15
20
幅值A() 1.00 1.26 1.56 2.00 2.51 3.16 5.62 10.0 100 1000 10000
对数幅值
0 2 4 6 8 10 15 20 40 60
80
20lgA()
幅值A() 1.00 0.79 0.63 0.50 0.39 0.32 0.18 0.10 0.01 0.001 0.0001
对数幅值 20lgA()

自动控制原理第5章_线性控制系统的频率特性分析法

自动控制原理第5章_线性控制系统的频率特性分析法

5. 2控制系统开环传递函数的对数频率特性
5.2.2 系统伯德图的绘制
开环对数幅频渐近特性曲线的绘制步骤: (1)把系统开环传递函数化为标准形式,即化为典型环节的传递函
数乘积,分析它的组成环节; (2)确定一阶环节、二阶环节的转折频率,由小到大将各转折频率
标注在半对数坐标图的频率轴上; (3)绘制低频段渐近特性线; (4)以低频段为起始段,从它开始每到一个转折频率,折线发生转
开环极点的个数。
5. 4 频域稳定判据与系统稳定性
5.4.4 控制系统的相对稳定性
开环频率特性 G( j)H( j)在剪切频率 c处所对应的相角与 180 之差称为相角裕度,记为 ,按下式计算
(c ) (180 ) 180 (c )
开环频率特性 G( j)H的( 相j)角等于 时所1对80应的角频率称为相
闭环系统稳定的充要条件是,当 由 0 时0,开 环奈奎斯 特曲线逆时针方向包围( )点 周1, j。0 是具P有2 正实部P 的开 环极点的个数。 需注意,若开环传递函数含有 v 个积分环节,所谓 由 0 0 ,指的 是由 0 0 0 ,此时奈 奎斯特曲线需顺时针增补 v 角度的无穷大半径的圆弧。
5. 4 频域稳定判据与系统稳定性
5.4.1 奈奎斯特稳定判据
若闭环系统在[ s]右半平面上有 个P开环极点,当 从 变化到
时,奈奎斯特曲线 G( j对)H点( j) 的包围1周, j数0 为 ( 为逆时N针,
为顺N 时 0针),则系统N<在0[ ]右半平面上的闭环极点s的个数为 。
折,斜率变化规律取决于该转折频率对应的典型环节的种类; (5)如有必要,可对上述折线渐近线加以修正,一般在转折频率处

自动控制原理(胡寿松) 第五章ppt

自动控制原理(胡寿松) 第五章ppt
第五章
线性系统的频率特性
1
控制系统的时域分析法是研究系统在典型输入信号作用的 性能,对于一阶、二阶系统可以快速、直接地求出输出的时域 表达式、绘制出响应曲线,从而利用时域指标直接评价系统的 性能。因此,时域法具有直观、准确的优点。然而,工程实际 中有大量的高阶系统,要通过时域法求解高阶系统在外输入信 号作用下的输出表达式是相当困难的,需要大量计算,只有在 计算机的帮助下才能完成分析。此外,在需要改善系统性能时, 采用时域法难于确定该如何调整系统的结构或参数。
2
在工程实践中 , 往往并不需要准确地计算系统响应的全部过
程,而是希望避开繁复的计算,简单、直观地分析出系统结构、
参数对系统性能的影响。因此,主要采用两种简便的工程分析 方法来分析系统性能,这就是根轨迹法与频率特性法,本章将 详细介绍控制系统的频率特性法。 控制系统的频率特性分析法是利用系统的频率特性(元件或 系统对不同频率正弦输入信号的响应特性)来分析系统性能的 方法,研究的问题仍然是控制系统的稳定性、快速性及准确性 等,是工程实践中广泛采用的分析方法,也是经典控制理论的
20
1.低频段
在T<<1(或<<1/T)的区段,可以近似地认为T0,从而有
L( ) 20 lg (T ) 2 1 20 lg1 0
故在频率很低时,对数幅频特性可以近似用零分贝线表示,这称 为低频渐近线。
21
2.高频段
在T>>1(或>>1/T)的区段,可以近似地认为
14
5.2 典型环节的频率特性
5.2.1 比例环节
传递函数:G(s)=K 频率特性:G(jω)=K 幅频特性:A(ω)=K 相频特性:φ(ω)=0 对数幅频和相频特性: L(ω)=20lgA(ω)=20lgK

线性系统的频域分析法

线性系统的频域分析法

第五章线性系统的频域分析法5-1 什么是系统的频率响应?什么是幅频特性?什么是相频特性?什么是频率特性?答对于稳定的线性系统,当输入信号为正弦信号时,系统的稳态输出仍为同频率的正弦信号,只是幅值和相位发生了改变,如图5-1所示,称这种过程为系统的频率响应。

图5-1 问5-1图称为系统的幅频特性,它是频率的函数;称为系统的相频特性,它是频率的函数:称为系统的频率特性。

稳定系统的频率特性可通过实验的方法确定。

5-2 频率特性与传递函数的关系是什么?试证明之。

证若系统的传递函数为,则相应系统的频率特性为,即将传递函数中的s用代替。

证明如下。

假设系统传递函数为:输入时,经拉氏反变换,有:稳态后,则有:其中:将与写成指数形式:则:与输入比较得:幅频特性相频特性所以是频率特性函数。

5-3 频率特性的几何表示有几种方法?简述每种表示方法的基本含义。

答频率特性的几何表示一般有3种方法。

⑴幅相频率特性曲线(奈奎斯特曲线或极坐标图)。

它以频率为参变量,以复平面上的矢量来表示的一种方法。

由于与对称于实轴,所以一般仅画出的频率特性即可。

⑵对数频率特性曲线(伯德图)。

此方法以幅频特性和相频特性两条曲线来表示系统的频率特性。

横坐标为,但常用对数分度。

对数幅频特性的纵坐标为,单位为dB。

对数相频特性的纵坐标为,单位为“。

”(度)。

和都是线性分度。

横坐标按分度可以扩大频率的表示范围,幅频特性采用可给作图带来很大方便。

⑶对数幅相频率特性曲线(尼柯尔斯曲线)。

这种方法以为参变量,为横坐标,为纵坐标。

5-4 什么是典型环节?答将系统的开环传递函数基于根的形式进行因式分解,可划分为以下几种类型,称为典型环节。

①比例环节k(k>0) ;②积分环节;③微分环节s;④惯性环节;⑤一阶微分环节;⑥延迟环节;⑦振荡环节;⑧二阶微分环节 ;⑨不稳定环节。

典型环节频率特性曲线的绘制是系统开环频率特性绘制的基础,为了使作图简单并考虑到工程分析设计的需要,典型环节对数幅频特性曲线常用渐近线法近似求取。

自动控制理论第五章频率分析法1.详解

自动控制理论第五章频率分析法1.详解

5.从低频段第一个转折频率开始做斜直线,该直线
的斜率等于过A点直线的斜率加这个环节的斜率(惯
性环节加-20,振荡环节加-40,一阶微分环节加+20 的斜率),这样过每一个转折频率都要进行斜率的 加减。 6.高频段最后的斜线的斜率应等于-20(n-m) dB/ 十倍频程。 7.若系统中有振荡环节,当<0.4时,需对L()进 行修正。

G(j)曲线与负实轴交点坐标,是一个关键点,
高频段,即ωT>>1时
L( ) 20lg( 2T 2 ) 40lg(T )
当ω增加10倍
L( ) 40lg10Tω 40 40lgTω
即高频渐近线是一条斜率为-40dB/dec的直线。当 1 ω ωn T
L( ) 40lg T 40lg1 0(dB)
1 2
振荡环节再分析
L(ω)dB
20lg
1 2 1 2
2 k n G (s ) 2 S 2 S 2 n n (0< <0.707) 0< <0.5
20 lg 1 2
= 0.5
0.5< <1 ω
20lgk
0dB
ωr ωn
[-40]
2 1 2 ωr= n
1. 将开环传递函数化为各典型环节传递函数相乘的形 式,并将分子分母中各因式常数项系数化为1。转化为 开环对数幅频特性;
2.确定出系统开环增益K,并计算 20lg K 。
3.确定各有关环节的转折频率,并把有关的转折频率 标注在半对数坐标的横轴上。 4.在半对数坐标上确定=1(1/s)且纵坐标等于20lgK dB的 点A。过A点做一直线,使其斜率等于-20νdB/dec。当ν=0, ν=1, ν=2时,斜率分别是(0,-20,-40)dB/dec。

自动控制原理 第五章(第一次课)

自动控制原理 第五章(第一次课)

autocumt@
18
中国矿业大学信电学院 常俊林
ω =1
1 12 + 2 2 e
(− tg
−1 1 2
)j
= 0 . 45 e
− 26 .6 o
c ss (t ) = 2 ⋅ 0 .45 sin t + 30 o − 26 .6 o = 0 .9 sin t + 3 .4 o
autocumt@ 13
(
)
(
)
中国矿业大学信电学院 常俊林
c(t ) = b1e
− s1t
+ ... + bn e
− sn t
+c1e
− jωt
+ c2e
jωt
css (t ) = c1e
− jωt
+ c2 e
jωt
其中: 其中
c1 = C ( s)( s + jω ) s = − jω
Aω = G ( s) ⋅ ( s + j ω ) s = − jω ( s + jω )( s − jω )
[ a (ω ) c (ω ) + b (ω ) d (ω )] + j[ b (ω ) c (ω ) − a (ω ) d (ω )] = c 2 (ω ) + d 2 (ω )
autocumt@ 9 中国矿业大学信电学院 常俊林
5-1 频率特性
b(ω )c(ω ) − a(ω )d (ω ) ϕ (ω ) = arctg a(ω )c(ω ) + b(ω )d (ω )
自ห้องสมุดไป่ตู้控制原理
r (t ) = 2 sin(t + 30 )

线性系统的频域分析方法教学课件PPT开环频率曲线的绘制

线性系统的频域分析方法教学课件PPT开环频率曲线的绘制

h
7
二、开环幅相曲线的绘制(1)
绘制方法 (1)起点 0 和终点 ; (2)与实轴的交点 ( x , 0 ) ; 穿越频率: x
(3)变化范围(象限和单调性)。
Im [G (j x)H (j x)] 0 (x ) G ( jx ) H ( jx ) k ;k 0 , 1 , 2 ,
G( jx )H( jx ) K
25.11.2020
h
12
二、开环幅相曲线的绘制(5)
例5.设系统开环传递函数为
试绘制系统开环概G 略(s)幅H (相s)曲s 线(T s 。 1 )(K s2 n 2 1 ); K ,T0
解:
起点: G (j0 )H (j0 ) 9 0 终点: G (j )H (j )0 3 6 0
h
2
10
二、开环幅相曲线的绘制(4)
例3 已知单位反馈系统开环传递函数为
G (s ) K (s 1 ) ; s (T 1 s 1 )(T 2 s 1 )
K ,T 1 ,T 2 , 0
试绘制系统概略开环幅相曲线。
解:起点: Gj090
终点:
Gj0180
25.11.202曲线的绘制(5)
25.11.2020
h
3
一、典型环节及其频率特性(2)
非最小相位系统环节 1)比例环节 K (K0) 2)惯性环节 1/(1 T s) (T0 )
3)一阶微分环节 1Ts (T0)
4)振荡环节 1 /( s 2 /n 2 2 s /n 1 )(n 0 ,0 1 )
5)二阶微分环节 s 2 /n 2 2 s /n 1(n 0 ,0 1 )
第五章 线性系统的频域分析法
5-1 引言 5-2 频率特性 5-3 开环频率特性曲线的绘制 5-4 频域稳定判据 5-5 稳定裕度 5-6 闭环系统的频域性能指标

频率分析法的基本概念

频率分析法的基本概念

?
?
RmG(? 2j
j? )
kc2
? Y (s)(s ?
j? ) |s? j?
?
G(s) Rm? (s ? j? ) (s ? j? )(s ? j? )
s? j?
?
RmG( j? )
2j
而 G( j? ) ? G(s) |s? j? ?| G( j? ) | e j? G( j? ) ? A(? )e j? (? )
e? p1t ? 0,e ? p2t ? 0,? ,e ? pnt ? 0
y s (t ) ? k c1e ? j? t ? k c 2 e j? t
,即稳态时:
式中,kc1, kc2 分别为:
kc1 ? Y (s)(s ?
j?
) |s? ? j?
? G(s) Rm? (s ? j? ) (s ? j? )(s ? j? ) s?? j?
若: r(t) ?
Rm sin ? t,则R(s) ?
Rm? s2 ? ?
2
?
(s ?
Rm? j? )(s ?
j?
)
则:Y (s) ?
N (s)R(s)
?
N (s)
?
Rm?
(s ? p1)(s ? p2 )...(s ? pn ) (s ? p1)(s ? p2 )...(s ? pn ) (s ? j? )(s ? j? )
频率响应法的优点
频率响应法的优点之一在于它可以通过实验量测来获得, 而不必推导系统的传递函数。
事实上,当传递函数的解析式难以用推导方法求得时,常 用的方法是利用对该系统频率特性测试曲线的拟合来得出传递 函数模型。
此外,在验证推导出的传递函数的正确性时,也往往用它 所对应的频率特性同测试结果相比较来判断。

自动控制原理第五章-1

自动控制原理第五章-1

积分环节:G(s)=1/s
微分环节:G(s)=s 惯性环节:G(s)=1/(Ts+1) 一阶微分环节:G(s)=Ts+1 振荡环节 1/(s 2 / n2 2s / n 1)
二阶微分环节 s 2 / 2 2s / 1 n n
比例环节:G(s)=K (K<0)
惯性环节:G(s)=1/(1-Ts)
系统开环传函由多个典型环节相串联 :
G(s) H (s) G1 (s)G2 (s)Gr (s)
那么,系统幅相特性为:
G ( jw) H ( jw) G1 ( jw)G2 ( jw) Gr ( jw) A1 ( w)e
j1 ( w )
A2 ( w)e k ( w )
k 1 r
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) ( s j )(s j ) 2j s2 2
a G( s)
A A A ( s j ) s j G( j ) ( s j ) s j G( j ) s2 2 ( s j )(s j ) 2j
幅频特性 相频特性
线性系统的稳态输出是和输入具有相同频率的正弦信号, 其输出与输入的幅值比为 输出与输入的相位差
A() G( j)
( )
G ( j )
(1)、频率响应 在正弦输入信号作用下,系统输出的稳态值称为系统的 频率响应, 记为css(t)
(2)、频率特性
幅频特性A(): 稳态输出信号的幅值与输入信号的幅值之比: Ac A( ) G ( j ) A 相频特性(): 稳态输出信号的相角与输入信号相角之差: ( ) G ( j ) 幅相频率特性G(j) : G(j) 的幅值和相位均随输入正弦信 号角频率的变化而变化。 G( j ) A(w)e j ( ) 在系统闭环传递函数G(s)中,令s= j,即可得到系统的频率 特性。

第五章线性系统的频率分析法

第五章线性系统的频率分析法
5.1 频率特性
一、频率特性的定义: 指线性系统或环节在正弦信号作用下,系统输入
量的频率由0变化到 时,稳态输出量与输入量的振 幅之比和相位差的变化规律,用G(jω) 表示。
xr (t) xrm sin(t)
xc(t) xcm sin(t ( ))
稳态输出量与输入量的频率相同,仅振幅和相位不同。
3)在ω轴上,十倍频程的长度相等;
4)可以将幅值的乘除化为加减L(ω)=20lgA(ω) ;
5)满足直线方程:斜率k
k L(2 ) L(1 ) lg2 lg1
例如:G ( s )
1 Ts
1
的(对数频率特性曲线)伯德图
1)频率特性: G( j ) 1
1
tg1T
jT 1 2T 2 1
微分方程、传递函数、频率特性之间的关系:
s d dt
传递函数
微分方程 系统
d j
dt
频率特性
s j
四、 频率特性的几何表示法
常用频率特性的三种表示法: 1)幅相频率特性曲线(又称:幅相曲线、奈奎斯
特图(Nyquist)、极坐标图) 2)对数频率特性曲线(又称:伯德图 (Bode))
频率对数分度,幅值/相角线性分度
2)对数频率特性:
0
Bode Diagram
Magnitude (dB)
L( ) 201g 1
-10
T 1 2 2
-20
-30
( ) tg1T
-40 0
Phase (deg)
3)画出伯德图:
-45
-90 10-1
100
101
Frequency (rad/sec)
102
五、典型环节的分解

自动控制原理第五章PPT课件

自动控制原理第五章PPT课件

s (1 0 .1 s)
s1 0 .1 s
比例环节
一阶微分环节
积分环节
惯性环节
.
23
非最小相位环节 :开环零点、极点位于S平面右 半部分
➢ 比例环节:-K
➢ 惯性环节:1/(-Ts+1),式中. T>0
24
最小相位系统与非最小相位系统
除比例环节外,非最小相位环节和与之对应的最小相位环节的区别在于开环零极点的 位置,非最小相位环节对应于s右半平面开环零点或极点,而最小相位环节对应于s左半 平面开环零点或极点。
• 对于不稳定系统则不可以通过试验方法来确定,因 为输出响应稳态分量中含有由系统传递函数的不稳
定极点产生的发散或震荡分量。
.
8
线性定常系统的传递函数为零初始条件下,输出与输入的拉氏变换之比
其反变换为
G(s)= C(s) R(s)
g(t) 1 jG(s)estds
2 j j 式中位于G(s)的收敛域。若系统稳定,则可取零,如果r(t)的傅氏变换 存在,可令s=j,则有
d () 是 关 于 的 奇 函 数 。
.
5
.
6
因而
1
G (j) c b 2 2 ( () ) d a 2 2 ( () ) 2 ,
G (j) a r c ta n b ()c () a ()d () a ()c () d ()b ()
G ( j )c a (( )) jjd b ( ( ) )G (j )ej G (j)
Tddut0u0ui
TRC
uo t
取拉氏变换并带入初始条件uo0
1
1 A
U o ( s ) T s 1 [ U i( s ) T u o 0 ] T s 1 [ s 2 2 T u o 0 ]

自动控制原理 第5章

自动控制原理 第5章
2 2

X 2 − X +Y 2 = 0
(下半圆) 下半圆)
Y = −ω T X
§5.2 典型环节与开环系统的频率特性
1 G( s) = 不稳定惯性环节 Ts − 1 1 G ( jω ) = − 1 + jω T 1 G = 1 + ω 2T 2 ωT ∠ G = − arctan = − ( 180° − arctan ω T ) = −180° + arctan ω T -1
ω ω ⑹ G ( jω ) = 1 1 − 2 + j 2ξ ωn 2 ωn ω ω ⑺ G ( jω ) = 1 − 2 + j 2ξ ωn ωn ω2 ω 1 − 2 − j 2ξ ωn ωn ⑻ G ( jω ) = e − jτ ω
2

ω ω2 1 − 2 + j 2ξ ωn ωn
建 模
§5.1
频率特性
cs (t ) = A
2
r ( t ) = A sin ω t
1+ω T
2
§5.1.2 频率特性 G(jω) 的定义 ω 定义一: 定义一: G ( jω ) = G ( jω ) ∠G ( jω )
G ( jω ) = cs (t ) 1 = r (t ) 1 + ω 2T 2
∠ c s (t ) = − 63.4° + 30° = − 33.4°
ω =2
cs (t ) =
3 sin( 2t − 33.4° ) 5
s Φ e ( s) = s+1
ω =2 2 es (t ) ω jω Φ e ( jω ) = = = = 2 1 + jω 3 5 1+ω

第五章 线性系统的频域分析法

第五章 线性系统的频域分析法
2.频率特性的物理意义明确。频域性能指标和时域性能指标 之间有相应的对应关系。 3.控制系统的频域设计可以兼顾动态响应和噪声抑制两方面 的要求。
4.还可以推广到研究某些非线性系统。
时域分析法与频域分析法比较:
时域分析法是分析控制系统的直接方法,比较直观、 精确。当往往需要求解复杂的微分方程。 频域分析法是一种图解分析法。它依据系统的又一种 数学模型——频率特性,利用频域指标和时域指标之间的 对应关系,间接地揭示系统的暂态特性和稳态特性,简单 迅速地判断某些环节或者参数对系统的暂态特性和稳态特 性的影响,并能指明改进系统的方向。也是一种工程上常 用的方法。
2 0.707 2
时,谐振峰值 M r 1 。
2 , (0, r ), 0 2 0 2 , ( , ), r 2
4.无谐振时
2 1, (0, ), 2
A( )

1
2 2 2 1 2 4 2 n n 2
参见《信号与系统》
频域分析法的基本介绍 •控制系统的频率特性反映正弦信号作用下系统响应的性能, 是系统的一种数学模型。 •应用频率特性来研究线性系统的经典方法称为频域分析法。 频域分析法具有以下特点:
1.控制系统及其元部件的频率特性可以运用分析法或者实验 法获得,并可用多种形式的曲线来表示,因而系统分析和控 制器设计可以应用图解法进行。
4.系统的开环幅相曲线(Nyquist图)
5.系统的开环对数频率特性曲线(bode图) 6.传递函数的频域实验确定
7.延迟环节和延迟系统
重点掌握最小相位情况的各个知识点,非最小相位情况的考试不考,考研可能考。
1.典型环节
2.最小相位环节的频率特性

第5章线性系统的频域分析方法

第5章线性系统的频域分析方法

最小相位环节:
特点:某个参数的符号相反
除积分微分外,最小相位环 节有对应的非最小相位环节
非最小相位环节:
非最小相位环节和与之相对 应的最小相位环节的区别在 于其零极点在s平面的位置。
不稳定环节
设有两个系统
1 Ts G1 ( s ) 1 10Ts

1 Ts G2 ( s) 1 10Ts
1 典型环节 根据零极点,将开环传递函数的分子和分母多项式分解 成因式,再将因式分类,得到典型环节。 开环系统可表示为若干典型环节的串联形式
设典型环节的频率特性为
幅值相乘, 相角相加
则系统开环频率特性
系统的开环幅频特性和相频特性
系统开环频率特性为组成系统的各典型环节频率特性的合成 系统开环对数幅频特性
A 1 U o (s) [U i ( s ) Tuo 0 ] 代入 U i ( s ) L[ A sin t ] 2 s 2 Ts 1
U o ( s) Tu 1 A A [ 2 Tuo 0 ] o 0 再由拉氏逆变换 Ts 1 s 2 (Ts 1)(s 2 2 ) Ts 1
(1) 幅相频率特性曲线 (Nyquist图,极坐标图)
将频率特性表示为复平面上的向量,其长度为A(ω) , 向量与正实轴夹角为 (ω),则ω变化时,相应向量的矢端 曲线即为幅相曲线。
G( jω)=A(ω)e j(ω) ,G(-jω)=A(ω)e -j(ω)
A(ω)偶, (ω)奇
ω:0→+∞和ω:0→ -∞的幅相曲线关于实轴对称 只绘制ω从零变化至+∞的幅相曲线。 用箭头表示ω增大时幅相曲线变化方向 对于RC网络 G ( j )
j
cos j sin
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0dB/dec 0
-20
-40
-3dB -20dB/dec
-60
1
0.01
0.1 T 1
45
10
100
0
-90 (
)
-45
-90
-135 ( )
波德图优点:
(1)波德图展宽频带:可视频带(粗), 表示频带(精)
(2)基本环节都可以由渐近线画出
重庆邮电大学自动化学院
6
写成幅值与幅角表达式

U U •o i 1j1 T1j1 Tar1 gj1 [T]1 12 T2[ arc T t]an
幅频特性 相频特性
A() 1 12T2
( )arctanT
两条特性曲线如图。
1
A (
0.707 )
05.08.2020
0 0 1
-45 T
-90
(
付氏变换是拉氏变换在s= j 时的特例。
05.08.2020
重庆邮电大学自动化学院
11
三、频率特性的数学表示及作图
1、极坐标图
极坐标图又称幅相图、奈奎斯特(Nyquist)图
复变函数G(j)表为实部、虚部
G ( j) R G ( je ) I ] [G m ( j) [ P ] () j( Q )
P(ω)、Q(ω)分别为频率ω的函数
幅值、幅角表示
G (j)G ()arG g( [)]A()()
05.08.2020
A(ω)、重φ庆(邮ω电)大分学自别动化为学院 频率ω的函数 5
线性系统的稳态正弦响应
sint
A()sin[t+()]
G(s)
引例5-1 RC电路如图所示
R
ui
C
uo
05.08.2020
aiy(i)(t) bix(j)(t)
i0
j0
类似拉氏变换,方程两边作付氏变换
n
m
[ a i(j)i]Y (j)[ b i(j)j]X (j)
i 0
j 0
输出与输入的付氏变换的比值
m
G(
j)
Y( j) X( j)
bi( j)j
j0
n
ai( j)i
i0
所以频率特性G(j)是在频率域中来表示线性
定常系统的数学模型。
分别作两张图 A()——幅频特性,是频率的函数
()——相频特性,是频率的函数
如一阶RC网络。
徒手描点不方便, 展示不清晰,
1
A (
0.707 )
分别将 A()、()
作对数变换即成为
0
0 1 -45 T
波德(Bode)图。
-90
(
)
05.08.2020
重庆邮电大学自动化学院
13
对数幅频特性 L()
05.08.2020
重庆邮电大学自动化学院
10
(3)付氏变换与拉氏变换的关系
阶跃函数,增加衰减因子e-t,>0,
1(t)
t
0
0
满足狄里赫莱条件,其付氏变换存在
F (j) [f(t)e t]e j td tt 0
0 f(t)e (j)td ts j
f(t)estdtF(s) 0
或表为模、相位角
G (j ) G ( )aG r( g ) ] [ A ( ) ( )
复平面曲线如图所示。
Im
G (j )平 面
曲线实轴对称 不便于徒手作图
( )
Re
0
=0+
A( )
05.08.2020
重庆邮电大学自动化学院
12
2、对数坐标图
又称为波德(Bode)图
由于 G (j ) G ( )aG r( g ) ] [ A ( ) ( )
第五章 频率分析法
•以控制系统的频率特性作为数学模型 •主要以波德图 (Bode)来作为分析工具 •分析控制系统的动态性能与稳态性能
05.08.2020
1
整体概述
概况一
点击此处输入相关文本内容 点击此处输入相关文本内容
概况二
点击此处输入相关文本内容 点击此处输入相关文本内容
概况三
点击此处输入相关文本内容 点击此处输入相关文本内容
重庆邮电大学自动化学院
8
关于频率特性的讨论 (1)付氏变换的存在条件 满足狄里赫莱条件
f (t)dt
即绝对值积分存在,这限制了付氏变换在许 多场合下的应用。
因此,许多常用的时域函数没有付氏变换, 如阶跃函数等。
05.08.2020
重庆邮电大学自动化学院
9
(2)频率特性与微分方程的关系
n
m
微分方程为
05.08.2020
重庆邮电大学自动化学院
4
§5.1 频率特性
一、基本概念 系统传递函数
G (s)bm ss nm ab n m 1 s1 n s m 1 1 a 1 b s1 s a0 b0
令:s=jω,得到另一个复变函数(正弦传递函
数),即频率特性 G(j)G(s)sj
实部、虚部表示 G (j) P () jQ ()
05.08.2020
重庆邮电大学自动化学院
3
频率特性的概念

设系统结构如图,由劳斯判据知系统稳定。
40
给系统输入一个幅值不变频率不断增大的正弦,曲线如下:
结论
给稳定的系统输入一个正弦,其稳态输出是与输入 同频率的正弦,幅值随ω而变,相角也是ω的函数。
Ar=1 ω=0.5 ω=1
ω=2
ω=2.5
ω=4
14
对数相频特性 () 纵轴: () 不取对数
纵轴: lg
()
+180 +90 0 -90 -180 0.1
05.08.2020
0.5 1 2 3 5 10 20 50 100
重庆邮电大学自动化学院
15
一阶RC网络的频率特性与对数频率特性的比较
1 A( 0.707 )
0 0 1 -45 T
dB L( ) 20
)
重庆邮电大学自动化学院
7
二、频率特性的定义
已知线性定常系统,输入信号为r(t),其付
氏变换存在为R(j)。系统的输出信号为c(t),
其付氏变换为C(j) ,
定义线性定常系统的频率特性为输出信号的
付氏变换C(j)与输入信号的付氏变换R(j)之
比,表为
C(j ) G(j ) R(j )
05.08.2020
频率特性法是分析线性系统的工程实用方法。
频率响应—系统对正弦输入信号的稳态响应。
频率特性—系统的频率响应与正弦输入信号之 间的关系。
在频率响应法中,在一定的范围内改变输入信 号的频率,研究其产生的响应
频率响应法和根轨迹法是互为补充的两种方法
频率响应法的优点之一,是可以利用对物理系 统测量得到的数据,而不必推导出系统的数学模 型
将两坐标轴分别取对数作为新的坐标轴如图所示。
纵轴: L ()2 0lgA () 横轴: lg
20lgA() [lgA()]
dB [Bell] 40 2
20 1
-1
0
1
2 [lg]
00
-20 -1
-400.1-2
0.5 1 2 3 5 10 20 50 100
05.08.2020
重庆邮电大学自动化学院
相关文档
最新文档