二次函数的综合运用
第六篇 二次函数综合应用
∵直线 交 轴于A点,交 轴于B点,
∴A点坐标为(-1,0)、B点坐标为(0,3).
又∵抛物线经过A、B、C三点,
∴ ,解得: ,
∴抛物线的关系式为:y=-x2+2x+3.
(2)∵y=-x2+2x+3= ,∴该 抛物线的对称轴为x=1.
设Q点坐标为(1,m),则 ,又 .
当x> 时,y随x的增大而增大.
<0
⑴开口向下,并且向下无限伸展;
⑵当x= 时,函数有最大值 ;
当x< 时,y随x的增大而增大;
当x> 时,y随x的增大而减小.
3.二次函数图象的平移规律
抛物线 可由抛物线 平移得到.由于平移时,抛物线上所有的点的移动规律都相同,所以只需研究其顶点移动的情况.因此有关抛物线的平移问题,需要利用二次函数的顶点式 来讨论.简单地说:“左正右负 上正下负”
因为当x=47时,利润y有最大值,而超过47时,利润y反而减少。
要想卖的越多赚的越多,即 随 的增大而增大,
由二次函数性质可知,x≤47,
所以当x=47时,最低售价应定为60-0.1(47-10)=56.3元.
题型四、面积和周长问题最值
例题1、已知二次函数y=mx2-5mx+1(m为常数,图像的对称轴对称.
c>0,与y轴的交点在y轴的正半轴上;
c=0,抛物线经过原点;
c<0,与y轴的交点在y轴的负半轴上.
⑷b2-4ac→决定抛物线与x轴交点的个数:
①当b2-4ac>0时,抛物线与x轴有两个交点;
②当b2-4ac=0时,抛物线与x轴有一个交点;
③当b2-4ac<0时,抛物线与x轴没有交点.
二次函数综合应用
二次函数综合应用二次函数是初中数学中的重要内容之一,是历年中考的一个必考知识点,并且也是综合代数与几何的一个重要载体,它往往以中考压轴题的形势出现。
此类问题考查知识点多,综合性强,难度较大,能较好地考查学生综合应用能力与灵活应变能力,在解题思路上注意渗透数形结合、函数与方程、分类讨论和转化与化归等数学思想的运用。
本文就综合问题的分类归纳解析,以供读者参考。
一、用待定系数法求函数解析式要确定函数解析式,就是要确定解析式中的待定系数(常数)。
由于二次函数的解析式有三种形式,即一般式:()20y ax bx c a =++≠,顶点式:()()20y a x h k a =-+≠,交点式:()()()120y a x x x x a =--≠,所以求二次函数解析式时,要根据已知条件的特点,选择适当形式,建立方程或方程组,简化计算过程。
例1.(北京市中考题)已知抛物线()20y ax bx c a =++≠与y 轴交于点A(0,3),与x 轴分别交于B(1,0)、C(5,0)两点,(1) 求抛物线的解析式;(2) 若点D 为线段OA 的一个三等分点,求直线DC 的解析式。
解:(1) 因为抛物线过A(0,3)、B(1,0)、C(5,0)三点,所以有 302550c a b c a b c =++=++= 解得 318,,355a b c ==-=.∴抛物线的解析式是2318355y x x =-+. (2) 依题知,OA 的三等分点分别为(0,1)、(0,2). 设直线DC 的解析式为y kx b =+当点D 的坐标为(0,1)时,有150b k b =+= 解得 1b =,15k =-∴直线DC 的解析式为115y x =-+ 当点D 的坐标为(0,2)时,有250b k b =+= 解得 2b =,25k =-∴直线DC 的解析式为225y x =-+二、从几何图形中建立函数关系从几何图形中确定或建立函数关系式是数形结合的新题型,已构成中考命题的热点,主要是运用相似的性质、勾股定理、面积关系(或公式)等建立量与量的函数关系,几何图形中要建立两个量之间的关系,一般的方法和步骤是:1、将题目中的几何量用含字母x 和y 的代数式表示,并将有关几何量通过添加辅助线等方法转化为我们熟悉的特殊图形中的量。
二次函数的综合运用
二次函数的综合运用二次函数是一种形式为 y = ax² + bx + c 的函数,其中 a、b、c 是常数且a ≠ 0。
二次函数在数学中有广泛的应用,涉及到诸如物理学、经济学和工程学等多个领域。
本文将探讨二次函数在各个领域中的综合运用,包括最值问题、图像分析、实际问题的建模等。
一、最值问题对于二次函数 y = ax² + bx + c,其中a ≠ 0,我们可以通过一些方法求得其最值。
为了简化讨论,我们以函数 y = x² + 2x - 3 为例。
1. 定义域和值域首先,我们需要确定该二次函数的定义域和值域。
对于二次函数 y= x² + 2x - 3,由于 x²的值始终大于等于 0,所以该函数的定义域为全体实数。
而二次函数在开口向上的情况下,其最小值即为函数的值域的下界。
根据二次函数的顶点公式,可以求得该函数的顶点为(-1, -4),因此该函数的最小值为 -4。
2. 求解极值点我们可以通过求导数的方法求得二次函数的极值点。
对于函数 y =x² + 2x - 3,将其对 x 求导后可得 y' = 2x + 2。
令 y' = 0,解得 x = -1。
将 x = -1 代入函数 y = x² + 2x - 3 中可得 y = -4,即函数在 x = -1 处取得极小值 -4。
同样,对于开口向下的二次函数,可以通过类似的方法求得其极大值。
二、图像分析二次函数的图像一般为抛物线,通过分析图像可以获得更多关于函数的信息。
下面以函数 y = x² + 2x - 3 为例进行具体分析。
1. 对称轴和顶点二次函数的对称轴是由函数的一阶导数确定的直线,其方程形式为x = -b/(2a)。
对于函数 y = x² + 2x - 3,对称轴的方程为 x = -1。
根据二次函数的顶点公式,可以求得该函数的顶点坐标为 (-1, -4)。
二次函数的综合应用
二次函数的综合应用㈠一、典例精析考点一:二次函数与方程1.已知抛物线与x轴没有交点.(1)求c的取值范围;(2)试确定直线y=cx+l经过的象限,并说明理由.2.已知函数y=mx2-6x+1(m是常数).⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;⑵若该函数的图象与x轴只有一个交点,求m的值.考点二:二次函数与最大问题3、如图,二次函数的图像经过点,且与轴交于点. (1)试求此二次函数的解析式;(2)试证明:(其中是原点);(3)若是线段上的一个动点(不与、重合),过作轴的平行线,分别交此二次函数图像及轴于、两点,试问:是否存在这样的点,使?若存在,请求出点的坐标;若不存在,请说明理由。
5、如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.考点三:二次函数与等腰三角形、直角三角形6.如图,直线交轴于A点,交轴于B点,过A、B两点的抛物线交轴于另一点C (3,0).⑴求抛物线的解析式;⑵在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出符合条件的Q 点坐标;若不存在,请说明理由.7、如图,在平面直角坐标系中,△ABC 是直角三角形,∠ACB=90,AC=BC ,OA=1,OC=4,抛物线y=x 2+bx+c 经过A ,B 两点,抛物线的顶点为D .(1)求b ,c 的值;(2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;(3)在(2)的条件下:①求以点E 、B 、F 、D 为顶点的四边形的面积;②在抛物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,说明理由.8如图,抛物线y=21x 2+bx ﹣2与x 轴交于A ,B 两点,与y 轴交于C 点,且A (﹣1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)判断△ABC 的形状,证明你的结论;(3)点M (m ,0)是x 轴上的一个动点,当MC+MD 的值最小时,求m 的值.9.如图所示,在平面直角坐标系Oxy 中,已知点A (-,0),点C (0,3),点B 是x 轴上一点(位于点A 的右侧),以AB 为直径的圆恰好经过点C .(1)求∠ACB 的度数;(2)已知抛物线y =ax 2+bx +3经过A 、B 两点,求抛物线的解析式;(3)线段BC 上是否存在点D ,使△BOD 为等腰三角形.若存在,则求出所有符合条件的点D 的坐标;若不存在,请说明理由.10如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.11在平面直角坐标系中,已知抛物线经过()40A -,,()04B -,,()20C ,三点. (1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,AMB △的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线y x =-上的动点,判断有几个位置能够使得点P Q B O ,,,为顶点的四边形为平行四边形,直接写出相应的点Q 的坐标.12如图,在平面直角坐标系中,直线y=x+2交x 轴于点P ,交y 轴于点A .抛物线y=x 2+bx+c 的图象过点E (﹣1,0),并与直线相交于A 、B 两点.(1)求抛物线的解析式(关系式);(2)过点A 作AC ⊥AB 交x 轴于点C ,求点C 的坐标;(3)除点C 外,在坐标轴上是否存在点M ,使得△MAB 是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.。
二次函数的综合应用
二次函数的综合应用二次函数的综合应用一、典例精析考点一:二次函数与方程1.已知抛物线与x轴没有交点。
1) 求$c$的取值范围;2) 确定直线$y=cx+l$经过的象限,并说明理由。
2.已知函数$y=mx-6x+1$($m$是常数)。
⑴证明:不论$m$为何值,该函数的图象都经过$y$轴上的一个定点;⑵若该函数的图象与$x$轴只有一个交点,求$m$的值。
考点二:二次函数与最大问题3、如图,二次函数$y=ax^2+bx+c$。
1)求此二次函数的解析式;2)证明:3)若是线段$AB$的图像经过点$C$,且与$x$轴交于点$D$(其中$D$是原点);二次函数图像及轴于$AB$两点,试问:是否存在这样的点,使$y$的坐标最大;若存在,请求出点$E$的坐标;若不存在,请说明理由。
5、如图,抛物线$y=ax^2+bx+c$与$x$轴交于$A(1,0)$,$B(-3,0)$两点。
1)求该抛物线的解析式;2)设(1)中的抛物线交$y$轴与$C$点,在该抛物线的对称轴上是否存在点$Q$,使得$\triangle QAC$的周长最小?若存在,求出$Q$点的坐标;若不存在,请说明理由。
3)在(1)中的抛物线上的第二象限上是否存在一点$P$,使$\triangle PBC$的面积最大。
若存在,求出点$P$的坐标及$\triangle PBC$的面积最大值。
若没有,请说明理由。
考点三:二次函数与等腰三角形、直角三角形6.如图,直线$y=x-3$与$x$轴交于$A$点,交$y$轴于$B$点,过$A$、$B$两点的抛物线交$x$轴于另一点$C$。
⑴求抛物线的解析式;⑵在抛物线的对称轴上是否存在点$Q$,使$\triangleABQ$是等腰三角形?若存在,求出符合条件的$Q$点坐标;若不存在,请说明理由。
7、如图,在平面直角坐标系中,$\triangle ABC$是直角三角形,$\angle ACB=90^\circ$,$AC=BC$,$OA=1$,$OC=4$,抛物线$y=x^2+bx+c$经过$A$,$B$两点,抛物线的顶点为$D$。
二次函数及函数的综合运用.docx
课时19二次函数的应用【课前热身】1. 二次函数y = 2x 2—4x + 5的对称轴方程是心—;当x=_时,y 冇最小值是.2. 有一个抛物线形桥拱,其最人高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系屮(如右图),则此 抛物线的解析式为 ________________ .3. 某公司的生产利润原来是a 元,经过连续两年的增长达到了 y 万元,如果每年增氏的百分数都是x,那么y 与x 的函数关系是( )A. y = x 2+aB. y=a (x —1) 2 C. y=a(1 —x )2D. y=a (1 + x ) 24. 把一段长1.6米的铁丝围长方形ABCD,设宽为x,面积为y.则当y 最人时,x 所取的值是( )A. 0.5B. 0.4C. 0.3D. 0.6【考点链接】1. ______________________________________ 二次函数的解析式:(1)一般式: ; (2)顶点式: _____________________________________(3)交点式: ___________ .2. 顶点式的儿种特殊形式.3.二次函数y = tzx 2+bx + c 通过配方可得y = a (x + —)2 + 4aC ~1^,其抛物线关于直线兀=—对「 2a 4。
称,顶点坐标为( _______ , ________ ).(1) _________________________ 当。
>0时,抛物线开口向 ,冇最 (填“高"或“低”)点,当x= _______ 时,y 有戢 ____ ("大”或“小”)值是 _________ ;(2) _________________________ 当GV0时,抛物线开口向 ,有最 (填“高”或“低”)点,当x= _______ 时,y 有最 ____ (“人”或“小”)值是 ________ .⑴ ____________【典例精析】例1用铝合金型材做一个形状如图1所示的矩形窗框,设窗框的一边为xm,窗户的透光而积为y nA y与x的两数图象如图2所示.(1)观察图象,当x为何值时,窗户透光血积最大?⑵当窗户透光面积最人时,窗框的另一边长是多少?图2例2橘了洲头要建造一个圆形的喷水池,并在水池屮央垂肯安装一个柱了0P,柱了顶端P处装上喷头, 由p处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落卜-(如图所示).若□知0P =3米,喷出的水流的最高点A距水平面的高度是4米,离柱子0P的距离为1米.(1)求这条抛物线的解析式:(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【中考演练】1.(06浙江)二次函数y=分+0 — 5的最小值为_____________ .2.某飞机着陆生滑行的路程S米与时间t秒的关系式为:5 = 60r-1.5r2,试问飞机着陆后滑行米才能停止.3.矩形周长为16cm,它的一边长为xcm,面积为ycm ,则y与x之间函数关系为________ .1 °4.苹果熟了,从树上落下所经过的路程s与下落的时间t满足s = -^gt2(g是不为0的常数)则s与t5.(08恩施)将一张边长为30 cm的正方形纸片的四角分别剪去一个边长为x cm的小止方形,然后折叠成一个无盖的长方体•当x収下面哪个数值时,长方体的体积最大() A. 7 B. 6 C. 5 D. 46•下列甫数关系中,是二次函数的是()A.在弹性限度内,弹簧的长度y与所挂物体质量x Z间的关系B.当距离一定时,火车行驶的时间t与速度v之间的关系C.等边三角形的周长C与边长a Z间的关系D.圆心角为120。
二次函数实际问题中的综合运用
类型一:二次函数在实际问题中的综合应用在生活实际问题中,常常要解决最大、最小、最省、最合适等最值问题,如果这些问题与二次函数有关,那么一般解题步骤如下:①选择恰当的自变量,列出二次函数的解析式;②把这些实际问题转化为二次函数的最值问题;③对于给定区间上(即x有范围限制)的二次函数,不一定在时取得最值,针对不同的区间给予讨论,讨论的依据还是借助二次函数的图象,根据图像上函数值的大小直观得出最值,或通过配方直接得出。
【典型例题】1、某商场购进一种每件价格为100元的新商品,在商场试销发现:销售单价x(元/件)与每天销售量y(件)之间满足如图所示的关系:(1)求出y与x之间的函数关系式;(2)写出每天的利润W与销售单价x之间的函数关系式;若你是商场负责人,会将售价定为多少,来保证每天获得的利润最大,最大利润是多少?2、某公司生产的一种健身产品在市场上受到普遍欢迎,每年可在国内、国外市场上全部售完.该公司的年产量为6千件,若在国内市场销售,平均每件产品的利润y1(元)与国内销售量x(千件)的关系为:若在国外销售,平均每件产品的利润y2(元)与国外的销售数量t(千件)的关系为(1)用x的代数式表示t为:t=________;当0<x≤4时,y2与x的函数关系为:y2=________;当________<x<________时,y2=100;(2)求每年该公司销售这种健身产品的总利润w(千元)与国内销售数量x(千件)的函数关系式,并指出x的取值范围;(3)该公司每年国内、国外的销售量各为多少时,可使公司每年的总利润最大?最大值为多少?【变式训练】1、科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.2、某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量yx应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?3、某大学生利用暑假40天社会实践参与了一家网店经营,了解到一种成本为20元/件的新销售量p(件) P=50-x当1≤x≤20时,;当销售单价q(元/件)21≤x≤40时,(2)求该网店第x天获得的利润y关于x的函数关系式.(3)这40天中该网店第几天获得的利润最大?最大利润是多少?类型二:二次函数与几何综合的存在问题二次函数与几何综合的形式之一,就是以抛物线为载体,探讨是否存在一些点,使其构成特殊图形(特殊三角形、特殊平行四边形等),这类问题具有较强的综合性,需要综合运用各种相关知识及数形结合、分类讨论、转化化归思想等加以解决,解决此类问题的一般思路是:先假设结论存在,然后再特定的已知条件下,探索某种图形或数学关系是否存在。
二次函数与二次方程的综合应用
二次函数与二次方程的综合应用二次函数和二次方程都是数学中重要的概念,它们在现实生活中有着广泛的应用。
本文将通过几个实际问题的例子,来展示二次函数和二次方程的综合应用。
一、二次函数的应用二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数,且a≠0。
它的图像是一个抛物线,有许多实际问题可以用二次函数来解决。
例1:抛物线的焦点和弦长已知抛物线y = ax^2 + bx + c的焦点为F(h, k),任意一点P(x, y)在该抛物线上。
求抛物线上的弦长FP的最小值。
解析:首先,我们知道抛物线的对称轴与焦点的横坐标相同,即x = h。
所以,P点的坐标可以表示为(x, ax^2 + bx + c)。
根据两点间距离公式,我们可以求出FP的长度:FP = √[(x - h)^2 + (ax^2 + bx + c - k)^2]为了求最小值,我们可以对FP进行微分,并令其导数为0:d(FP)/dx = 0通过求导并化简,得到一个关于x的二次方程,解这个方程可以得到最小值点的横坐标x。
再将x的值带入FP的表达式中,即可求出FP 的最小值。
例2:抛物线的最值问题一辆车以匀加速度行驶,已知车从静止开始行驶10秒后的速度为20m/s,行驶过程中的位移与时间的关系可以用抛物线y = ax^2 + bx + c 来描述。
求车的最大位移和此时的时间。
解析:首先,我们知道速度是位移对时间的导数,即v(x) = dy/dx = 2ax + b。
根据已知条件,当x = 10时,v(x) = 20。
这给出了两个方程:2a(10) + b = 20和a(10^2) + b(10) + c = 0。
解这个二元一次方程组,可以得到a、b的值,进而求得抛物线的函数表达式。
最大位移对应于抛物线的顶点,可以通过求导来解析求得。
最大位移发生的时间是x值,在已知函数表达式中求解即可。
二、二次方程的应用二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为常数,且a≠0。
九年级数学上册专题:二次函数的综合应用
九年级数学上册专题:二次函数的综合应用【知识概述】二次函数的综合运用是为考察学生综合运用知识的能力而设计的题目,常以中考压轴题出现,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活,因此成为拉开分值而具有选拔功能。
有的学生对二次函数的综合题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高函数的综合题(压轴题)的得分率,解好函数的综合题(压轴题),本讲将以具体实例介绍几种常用的解题策略,从心理上打消望而生畏的忧虑,获得数学高分的制胜法宝。
【解题策略】1、以坐标系为桥梁,运用数形结合思想;2、以直线或抛物线知识为载体,运用函数与方程思想;3、利用条件或结论的多变性,运用分类讨论的思想;4、综合多个知识点,运用等价转换思想;5、分题分段得分:对题要理解多少做多少,最大限度地发挥自己的水平,做到得一分算一分。
【典例精析】专题一 知识回顾【例1】1、已知二次函数c bx ax y ++=2的图象的对称轴是直线 2=x ,且有最大值2,其图象在x 轴上截得的线段长为2,求这个二次函数的解析式。
2、已知二次函数y=ax 2+bx +c 满足a -b +c =0,其图像过点A(2, -3),并且以x =1为对称轴,求此二次函数的解析式。
3、已知二次函数24y ax x c =-+的图象与x 轴正、负半轴分别交于A 、B 两点,与y 轴负半轴交于点C ,tan ∠ACO =15,CO =BO , △ABC 的面积为15。
求该二次函数的解析式。
专题二 能力提升题型1:利用一元二次方程根与系数的关系求二次函数的解析式【例2】已知二次函数b ax x y ++-=2与x 轴从左到右交于A 、B 两点,与y 轴正半轴交于C 点,∠ACB =90°,且tan ∠BAC -tan ∠ABC =2,求此二次函数的解析式。
-变式:在直角坐标平面内,点O 为坐标原点,二次函数)4()5(2+--+=k x k x y 的图象交x 轴于点yxO CBAA )0,(1x 、B )0,(2x ,且8)1)(1(21-=++x x 。
二次函数综合运用(第14课时)
二次函数综合运用(第14课时)一、实践与探索 例1 已知:二次函数为y=x 2-x+m ,(1)写出它的图像的开口方向,对称轴及顶点坐标;(2)m 为何值时,顶点在x 轴上方,(3)若抛物线与y 轴交于A ,过A 作AB ∥x 轴交抛物线于另一点B ,当S △AOB =4时,求此二次函数的解析式.例2二次函数625412+-=x x y 的图象与x 轴从左到右两个交点依次为A 、B ,与y 轴交于点C ,(1)求A 、B 、C 三点的坐标;(2)如果P(x ,y)是抛物线AC 之间的动点,O 为坐标原点,试求△POA 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)是否存在这样的点P ,使得PO=P A ,若存在,求出点P 的坐标;若不存在,说明理由。
例3 (选讲)(重庆市)已知:m ,n 是方程x 2-6x+5=0的两个实数根,且m<n ,抛物线y=-x 2+bx+c 的图像经过点A (m ,0),B (0,n ),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C ,D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC •把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.二、练习: 1、如图所示,有一边长为5cm 的正方形ABCD 和等腰三角形PQR ,PQ=PR=5cm ,PR=8cm ,点B 、C 、Q 、R 在同一直线ι上.当CQ 两点重合时,等腰△PQR 以1cm/秒的速度沿直线ι按箭头所示方向开始匀速运动,t 秒后,正方形ABCD 与等腰△PQR 重合部分的面积为Scm 2.解答下列问题:(1)当t=3秒时,求S 的值; (2)当t=5秒时,求S 的值;2、在平面直角坐标系中,AOB的位置如图所示,已知∠AOB =90°,AO=BO,点A的坐标为(-3,1)。
二次函数的综合应用
设自变量 ; 建立函数表达式 ; 决这类问题的一般步骤是: 第一步: _________ 第二步: ________________ 确定自变量取值范围 配方法 求出 顶点坐标公式 或________ 第三步: __________________;第四步:根据_____________
最值(在自变量的取值范围内).
解:(1)从上往下依次填:1000-10x;-10x2+1300x-30000. (2)由题意,得-10x2+1300x-30000=10000, 解得 x1=50,x2=80. 答:玩具销售单价为 50 元或 80 元时,可获得 10000 元销售利润. 1000-10x≥540, (3)根据题意,得 解得 44≤x≤46. x≥44, ∵利润 w=-10x2+1300x-30000=-10(x-65)2+12250, ∴a=-10<0,对称轴为直线 x=65, ∴当 44≤x≤46 时,y 随着 x 增大而增大. ∴当 x=46 时,w 最大,w 最大值=8640 元. 答:商场销售该品牌玩具获得的最大利润为 8640 元.
解:(1)w=xq-p=-2x2+140x-500. (2)当 x=25 时,w=1750(元). (3)w=-2(x-35)2+1950,∴当 x=35 时,利润最大,为 1950 元.
7.某农场拟建两间矩形饲养室,一面靠墙(墙足够长),中间用一道墙隔 开,并在如图所示的三处各留 1 m 宽的门.已知计划中的材料可建墙体(不包 括门)总长为 27 m,则能建成的饲养室总占地面积最大为多少?
易错警示 易错易混点:确定实际问题中的最值与自变量的取值范围 【例题】 某商品的进价为 40 元, 售价为每件 50 元, 每个月可卖出 210 件;如果每件商品的售价涨 1 元,那么每个月少卖 10 件(每件售价不能高于 65 元).设每件商品的售价上涨 x 元(x 为正整数),每个月的销售利润为 y 元. (1)求 y 与 x 之间的函数表达式,并直接写出自变量的取值范围. (2)每件商品的售价定为多少元时,每个月获得利润最大?最大的月利润 是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为 2200 元?根据以 上结论请你直接写出售价在什么范围时,每个月的利润不低于 2200 元?
二次函数综合运用
教学设计鹤庆县黄坪初级中学:韩家毕一、内容和内容解析(一)内容二次函数的概念,二次函数的一般形式.(二)内容解析二次函数在一次函数基础上“次”的推广,同时它是解决诸多实际问题的需要.针对一系列实际问题,建立函数,引导学生观察这些函数的共同特点,类比一次函数的定义从而归纳出二次函数的概念及一般形式.在这个过程中,通过归纳具体函数的共同特点,得出二次函数的概念,体现了研究代数学问题的一般方法;一般形式也是对具体函数从自变量的“次数”和“项数”等角度进行归纳的结果;a≠0的条件是确保满足“二次”的要求.二、目标和目标解析(一)教学目标1.能够表示简单变量间的二次函数关系,体会二次函数是刻画实际问题的重要数学模型,理解二次函数的概念和二次函数的一般形式;2.经历、探索二次函数概念的过程,培养学生观察、思考、归纳的良好思维习惯.(二)目标解析1.通过建立二次函数解决相关的实际问题,让学生体会到自变量相乘导致自变量的次数升高,继而产生二次函数,感受二次函数是重要的数学模型,体会学习的必要性;2.将不同形式的二次函数统一为一般形式,学生从数学符号的角度,体会概括出数学模型的简洁和必要,针对“二次”规定a≠0的条件,完善二次函数的概念.学生能够判断二次函数,准确的说出二次函数的各项系数,并能确定简单的字母系数方程为二次函数的条件.三、教学问题诊断分析实际问题中等量关系的建立,学生会遇到一些问题,需要教师借助列表、图象等辅助工具直观地帮助分析问题,或者搭建问题串帮助学生理解题意.培养建模思想,进一步提升数学符号语言的应用能力,让学生自己概括出二次函数的概念,得出一般形式.本课的教学重点应该放在形成二次函数概念的过程上,不能草草给出二次函数的概念就反复辨析练习,在概念的理解上要下功夫.本课的教学难点是二次函数的概念.四、教学过程设计(一)创设情境引入新知观察下列函数:(1)y = 2x+1;(2);(3).其中一次函数有.一次函数的定义:.一次函数的图象是:.请说出上面一次函数的图象所经过的象限和增减性.师生活动:回忆函数的定义,图象和性质,并回顾一次函数的研究程序:定义图象和性质应用.【设计意图】回忆一次函数的定义,图象特征,它们为解决实际问题起了很大的作用.同时引出新知,一次函数可以表示某些问题中变量之间的关系,但是实际问题的变量之间关系都能用一次函数表示吗?观察篮球运动的路线,本章教科书章前图喷泉水的流动弧线,探究这些优美的弧线与什么函数有关呢?阅读引言内容,探究正方体的表面积y和棱长x之间的数量关系,得到.问题1它是函数吗?如果是,你会给它命名吗?师生活动:回忆函数的定义,观察新函数,分析此函数自变量的次数,尝试为新函数命名.【设计意图】认识到二次函数是刻画某些实际问题的模型,体会学习的必要性,在已有的知识的体系中合理地构建二次函数这一新知识.问题2这样的函数在其他实际问题中是否还存在呢?师生活动:学生思考二次项产生的原因,激发学习新知的欲望.【设计意图】数学来自于生活,实际问题的需要从而扩充新的知识,从一次函数顺利过渡到二次函数.(二)合作交流探究概念给出课本问题1、问题2的两个实际问题,建立函数.问题1 n 个球队参加比赛,每两队之间进行一场比赛,比赛的场次数m与球队数n有什么关系?教师引导学生思考以下问题:1.每个队要与其他____个队各赛一场,全部比赛共有___ 场,化简得__________,m与n的数量关系是_____________.2.将n支球队看作是平面内的n个点(任意三点不在同一直线),再将任意两点作为线段的端点连接起来,共有条线段,m与n的数量关系是______ _______.问题2 某种产品现在的年产量是20t,计划今后两年增加产量,如果每年都比上一年的产量增加x倍,那么两年后这种产品的产量y将随计划所定的x的值而确定,y与x之间的关系怎样表示?教师引导学生思考以下问题:一年后的产量为.再过一年后的产量为.即两年后的产量为,展开整理得,.由此,我们可以列出y与x的数量关系是____________.师生活动:学生将实际问题中的语言转化成数学符号语言,寻找等量关系,学习建模.将列得的函数化简整理.【设计意图】在建模的过程中不仅加强学生的数学思维能力,而且对二次式产生的根源将更加明晰.问题3 这些变量之间的关系是函数吗?师生活动:对照函数的概念判断这些变量之间的关系是否是函数.“对于x的每一个值,y都有唯一确定的值与它对应”是检验函数的唯一标准.【设计意图】一次函数、二次函数是在函数的前提下研究.问题4 这些函数有什么共同点?它们是什么函数?共同点:(1)等式的左边为函数,等式的右边为自变量的二次式;(2)等式的右边可统一为“”的形式.师生活动:观察本课得出的一些函数,思考它们的共性,类比一次函数的概念,同学们尝试给出二次函数的定义,并且概括出二次函数的一般形式.1.二次函数的概念:一般地,形如的函数叫做二次函数,其中x是自变量,是常数.2.二次函数的一般形式是.其中是二次项,a是二次项系数;是一次项,b是一次项系数;c是常数项.【注意】①函数中,是必要条件,切不可忽视.而b,c的值可以为任何实数.②定义是关于x的二次整式(切不可把当成二次函数).【设计意图】让学生自己给出定义就是对所学一次函数的定义的类比,对比一次函数也容易理解.(三)辨析应用,加深理解问题5 下列哪些函数是二次函数?例1 下列函数中,哪些是关于x的二次函数?如果是二次函数,指出a,b,c的值.(1);(2);(3);(4);(5).答案:(1)(3).师生活动:用概念指导辨析,函数(3)、(4)、(5)同学们可能会产生争议,(3)帮助学生明确右边是关于x的二次整式,(4)对条件加深认识;(5)体会化为一般形式的必要性,对条件加深认识.【设计意图】从正反两个方面进行概念辨析,关注二次函数的本质,帮助学生进一步巩固概念,深化对二次函数的认识.例2 k为何值时,函数是二次函数?答案:.师生活动:根据函数概念,确定字母系数的取值范围.【设计意图】字母系数二次函数,通过辨析函数的二次式,抓住二次函数的本质,深化理解.(四)巩固概念,学以致用巩固练习:教科书29页练习,对练习2增加三个问题:(1)指出y是x的什么函数;(2)当矩形绿地的长和宽各增加5m时,求扩充后的绿地面积;(3)当扩充后绿地面积是1200m2时,问矩形绿地的长和宽各增加了多少米?【设计意图】巩固性练习,检验二次函数概念的掌握情况,同时回顾函数值的求法和解一元二次方程,了解一元二次方程是二次函数的特殊情况,实现把旧知识主动与新知建构,并理解新旧知识的差异性与共同性.(五)归纳小结,反思提高谈对二次函数概念的认识,为什么要求二次项系数不为零,二次函数与一元二次方程的关系.(六)布置作业:教科书习题22.1复习巩固:第1,2,12题.五、目标检测设计1.下列函数是二次函数的有()A. B.C.D.【设计意图】考查对二次函数概念的理解.紧扣定义中的两个特征:①;②是整式(二次三项式).2.如果函数是y关于x的二次函数,求k的值.【设计意图】考查自变量的二次和的条件.3.已知与成正比例,并且当时,,求:(1)函数与的函数关系式;(2)当时,函数的值;(3)当时,的值.【设计意图】考查对二次函数一般式和函数值的掌握情况.一、教材分析:《二次函数》选自义务教育课程标准试验教科书(五四学制)《数学》(人教版)九年级上册第二十一章,这章是在学生学习了一次函数与反比例函数,对于函数已经有所认识,从一次函数和反比例函数的学习大家已经知道学习函数大致包括以下内容:1.通过具体的事例认识这种函数;2.探索这种函数的图像和性质;3.利用这种函数解决实际问题;4.探索这种函数与相应方程等的关系。
二次函数的综合运用
二次函数的综合运用【知识概述】二次函数的综合运用是为考察学生综合运用知识的能力而设计的题目,常以中考压轴题出现,其特点是知识点多,覆盖面广,条件隐蔽,关系复杂,思路难觅,解法灵活,因此成为拉开分值而具有选拔功能。
有的学生对二次函数的综合题有一种恐惧感,认为自己的水平一般,做不了,甚至连看也没看就放弃了,当然也就得不到应得的分数,为了提高函数的综合题(压轴题)的得分率,解好函数的综合题(压轴题),本讲将以具体实例介绍几种常用的解题策略,从心理上打消望而生畏的忧虑,获得数学高分的制胜法宝。
【解题策略】1、以坐标系为桥梁,运用数形结合思想;2、以直线或抛物线知识为载体,运用函数与方程思想;3、利用条件或结论的多变性,运用分类讨论的思想;4、综合多个知识点,运用等价转换思想;5、分题分段得分:对题要理解多少做多少,最大限度地发挥自己的水平,做到得一分算一分。
【典例精析】专题一 知识回顾【例1】1、已知二次函数c bx ax y ++=2的图象的对称轴是直线 2=x ,且有最大值2,其图象在x 轴上截得的线段长为2,求这个二次函数的解析式。
2、已知二次函数y=ax 2+bx +c 满足a -b +c =0,其图像过点A(2, -3),并且以x =1为对称轴,求此二次函数的解析式。
3、已知二次函数24y ax x c =-+的图象与x 轴正、负半轴分别交于A 、B 两点,与y 轴负半轴交于点C ,tan ∠ACO =15,CO =BO , △ABC 的面积为15。
求该二次函数的解析式。
专题二 能力提升题型1:利用一元二次方程根与系数的关系求二次函数的解析式【例2】已知二次函数b ax x y ++-=2与x 轴从左到右交于A 、B 两点,与y 轴正半轴交于C 点,∠ACB =90°,且tan ∠BAC -tan ∠ABC =2,求此二次函数的解析式。
变式:在直角坐标平面内,点O 为坐标原点,二次函数)4()5(2+--+=k x k x y 的图象交x 轴于点 A )0,(1x 、B )0,(2x ,且8)1)(1(21-=++x x 。
二次函数综合应用 知识归纳+真题解析
二次函数综合应用 知识归纳+真题解析【知识归纳】一.二次函数与一元二次方程的关系一元二次方程ax 2+bx+c=0(a ≠0)的解的情况等价于抛物线y=ax 2+bx+c(c ≠0)与直线y=0(即x 轴)的公共点的个数。
抛物线y=ax 2+bx+c(a ≠0)与x 轴的公共点有三种情况: 公共点(即有两个交点), 公共点, 公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有 个不等实根△=b 2-4ac 0。
⇔(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点(,0)一2b a -⇔元二次方程ax 2+bx+c=0有 实根, 122b x x a==-⇔(3)抛物线y=ax 2+bx+c 与x 轴没有公共点,一元二次方程ax 2+bx+c=0 根△⇔=b 2-4ac 0.二.二次函数的应用.利用二次函数能解决生活实际问题如物体运动规律、销售问题、利润问题、几何图形变化问题等等.【知识归纳答案】一.二次函数与一元二次方程的关系两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax 2+bx+c 与x 轴有两个公共点(x 1,0)(x 2,0),一元二次方程ax 2+bx+c=0有两个不等实根△=b 2-4ac >0。
⇔(2)抛物线y=ax 2+bx+c 与x 轴只有一个公共点时,此公共点即为顶点(,0) 一元2b a -⇔二次方程ax 2+bx+c=0有两个相等实根,122b x x a==-⇔240b ac -=(3)抛物线y=ax 2+bx+c 与x 轴没有公共点,一元二次方程ax 2+bx+c=0没有实数根△⇔=b 2-4ac <0.二.二次函数的应用.利用二次函数能解决生活实际问题如物体运动规律、销售问题、利润问题、几何图形变化问题等等.真题解析一.选择题(共5小题)1.设直线x=1是函数y=ax2+bx+c(a,b,c是实数,且a<0)的图象的对称轴,( )A.若m>1,则(m﹣1)a+b>0B.若m>1,则(m﹣1)a+b<0C.若m<1,则(m﹣1)a+b>0D.若m<1,则(m﹣1)a+b<0【考点】H4:二次函数图象与系数的关系.【分析】根据对称轴,可得b=﹣2a,根据有理数的乘法,可得答案.【解答】解:由对称轴,得b=﹣2a.(m+1)a+b=ma+a﹣2a=(m﹣1)a,当m>1时,(m﹣1)a<0,(m﹣1)a+b与0无法判断.当m<1时,(m﹣1)a>0,(m﹣1)a+b>0.故选:C.2.如图,是二次函数y=ax2+bx+c的图象,对下列结论①ab>0,②abc>0,③<1,其中错误的个数是( )A.3B.2C.1D.0【考点】H4:二次函数图象与系数的关系.【分析】根据抛物线的开口方向,判断a的符号,对称轴在y轴的右侧判断b 的符号,抛物线和y轴的交点坐标判断c的符号,以及抛物线与x轴的交点个数判断b2﹣4ac的符号.【解答】解:∵抛物线的开口向上,∴a>0,∵对称轴在y轴的右侧,∴b<0,∴ab<0,故①错误;∵抛物线和y轴的负半轴相交,∴c<0,∴abc>0,故②正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴<1,故③正确;故选C.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是( )A.①②B.②④C.①③D.③④【考点】H4:二次函数图象与系数的关系.【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.4.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为( )A.B.C.D.【考点】H5:二次函数图象上点的坐标特征.【分析】可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、BF的长度,即可解题.【解答】解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,BF=a,CE=a2,OE=a2,∴则==×=,故选D.5.如图,将函数y=(x﹣2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是( )A.B.C.D.【考点】H6:二次函数图象与几何变换.【分析】先根据二次函数图象上点的坐标特征求出A、B两点的坐标,再过A 作AC∥x轴,交B′B的延长线于点C,则C(4,1),AC=4﹣1=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.【解答】解:∵函数y=(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,1),∴AC=4﹣1=3,∵曲线段AB扫过的面积为9(图中的阴影部分),∴AC•AA′=3AA′=9,∴AA′=3,即将函数y=(x﹣2)2+1的图象沿y轴向上平移3个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=(x﹣2)2+4.故选D.二.填空题(共5小题)6.对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2}=1,因此,min{﹣,﹣}= ﹣ ;若min{(x﹣1)2,x2}=1,则x= 2或﹣1 .【考点】H3:二次函数的性质;2A:实数大小比较.【分析】首先理解题意,进而可得min{﹣,﹣ }=﹣,min{(x﹣1)2,x2}=1时再分情况讨论,当x=0.5时,x>0.5时和x<0.5时,进而可得答案.【解答】解:min{﹣,﹣ }=﹣,∵min{(x﹣1)2,x2}=1,当x=0.5时,x2=(x﹣1)2,不可能得出,最小值为1,∴当x>0.5时,(x﹣1)2<x2,则(x﹣1)2=1,x﹣1=±1,x﹣1=1,x﹣1=﹣1,解得:x1=2,x2=0(不合题意,舍去),当x<0.5时,(x﹣1)2>x2,则x2=1,解得:x1=1(不合题意,舍去),x2=﹣1,故答案为:;2或﹣1.7.若抛物线y=ax2+bx+c的开口向下,则a的值可能是 ﹣1 .(写一个即可)【考点】H3:二次函数的性质.【分析】根据二次项系数小于0,二次函数图象开口向下解答.【解答】解:∵抛物线y=ax2+bx+c的开口向下,∴a<0,∴a的值可能是﹣1,故答案为:﹣1.8.已知抛物线:y=ax2+bx+c(a>0)经过A(﹣1,1),B(2,4)两点,顶点坐标为(m,n),有下列结论:①b<1;②c<2;③0<m<;④n≤1.则所有正确结论的序号是 ①②④ .【考点】H4:二次函数图象与系数的关系.【分析】根据点A、B的坐标,利用待定系数法即可求出b=﹣a+1、c=﹣2a+2,结合a>0,可得出b<1、c<2,即结论①②正确;由抛物线顶点的横坐标m=﹣,可得出m=﹣,即m<,结论③不正确;由抛物线y=ax2+bx+c(a>0)经过A(﹣1,1),可得出n≤1,结论④正确.综上即可得出结论.【解答】解:∵抛物线过点A(﹣1,1),B(2,4),∴,∴b=﹣a+1,c=﹣2a+2.∵a>0,∴b<1,c<2,∴结论①②正确;∵抛物线的顶点坐标为(m,n),∴m=﹣=﹣=﹣,∴m<,结论③不正确;∵抛物线y=ax2+bx+c(a>0)经过A(﹣1,1),顶点坐标为(m,n),∴n≤1,结论④正确.综上所述:正确的结论有①②④.故答案为:①②④.9.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是 2≤m≤8 .【考点】H6:二次函数图象与几何变换.【分析】根据向下平移横坐标不变,分别代入B的横坐标和D的横坐标求得对应的函数值,即可求得m的取值范围.【解答】解:设平移后的解析式为y=y=(x+1)2﹣m,将B点坐标代入,得4﹣m=2,解得m=2,将D点坐标代入,得9﹣m=1,解得m=8,y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是2≤m≤8,故答案为:2≤m≤8.10.如图是抛物线y1=ax2+bx+c(a≠0)的图象的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①abc>0;②方程ax2+bx+c=3有两个相等的实数根;③抛物线与x轴的另一个交点是(﹣1,0);④当1<x<4时,有y2>y1;⑤x(ax+b)≤a+b,其中正确的结论是 ②⑤ .(只填写序号)【考点】HC:二次函数与不等式(组);H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系一一判断即可.【解答】解:由图象可知:a<0,b>0,c>0,故abc<0,故①错误.观察图象可知,抛物线与直线y=3只有一个交点,故方程ax2+bx+c=3有两个相等的实数根,故②正确.根据对称性可知抛物线与x轴的另一个交点是(﹣2,0),故③错误,观察图象可知,当1<x<4时,有y2<y1,故④错误,因为x=1时,y1有最大值,所以ax2+bx+c≤a+b+c,即x(ax+b)≤a+b,故⑤正确,所以②⑤正确,故答案为②⑤.三.解答题(共7小题)11.设a、b是任意两个实数,用max{a,b}表示a、b两数中较大者,例如:max{﹣1,﹣1}=﹣1,max{1,2}=2,max{4,3}=4,参照上面的材料,解答下列问题:(1)max{5,2}= 5 ,max{0,3}= 3 ;(2)若max{3x+1,﹣x+1}=﹣x+1,求x的取值范围;(3)求函数y=x2﹣2x﹣4与y=﹣x+2的图象的交点坐标,函数y=x2﹣2x﹣4的图象如图所示,请你在图中作出函数y=﹣x+2的图象,并根据图象直接写出max{﹣x+2,x2﹣2x﹣4}的最小值.【考点】H7:二次函数的最值;F3:一次函数的图象;F5:一次函数的性质;H2:二次函数的图象.【分析】(1)根据max{a,b}表示a、b两数中较大者,即可求出结论;(2)根据max{3x+1,﹣x+1}=﹣x+1,即可得出关于x的一元一次不等式,解之即可得出结论;(3)联立两函数解析式成方程组,解之即可求出交点坐标,画出直线y=﹣x+2的图象,观察图形,即可得出max{﹣x+2,x2﹣2x﹣4}的最小值.【解答】解:(1)max{5,2}=5,max{0,3}=3.故答案为:5;3.(2)∵max{3x+1,﹣x+1}=﹣x+1,∴3x+1≤﹣x+1,解得:x≤0.(3)联立两函数解析式成方程组,,解得:,,∴交点坐标为(﹣2,4)和(3,﹣1).画出直线y=﹣x+2,如图所示,观察函数图象可知:当x=3时,max{﹣x+2,x2﹣2x﹣4}取最小值﹣1.(2)当y=0时(x+a)(x﹣a﹣1)=0,解得x1=﹣a,x2=a+1,y1的图象与x轴的交点是(﹣a,0),(a+1,0),当y2=ax+b经过(﹣a,0)时,﹣a2+b=0,即b=a2;当y2=ax+b经过(a+1,0)时,a2+a+b=0,即b=﹣a2﹣a;(3)当P在对称轴的左侧(含顶点)时,y随x的增大而增大,(1,n)与(0,n)关于对称轴对称,由m<n,得0<x0≤;当时P在对称轴的右侧时,y随x的增大而减小,由m<n,得<x0<1,综上所述:m<n,求x0的取值范围0<x0<1.13.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【考点】H4:二次函数图象与系数的关系;H3:二次函数的性质;H5:二次函数图象上点的坐标特征;H8:待定系数法求二次函数解析式;HA:抛物线与x 轴的交点.【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,∵S△ABP=4S△COE,∴2y=4×,∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).14.如图,△AOB的顶点A、B分别在x轴,y轴上,∠BAO=45°,且△AOB的面积为8.(1)直接写出A、B两点的坐标;(2)过点A、B的抛物线G与x轴的另一个交点为点C.①若△ABC是以BC为腰的等腰三角形,求此时抛物线的解析式;②将抛物线G向下平移4个单位后,恰好与直线AB只有一个交点N,求点N 的坐标.【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换;KH:等腰三角形的性质.【分析】(1)首先证明OA=OB,利用三角形的面积公式,列出方程即可求出OA、OB,由此即可解决问题;(2)①首先确定A、B、C的坐标,再利用的待定系数法即可解决问题;②抛物线G向下平移4个单位后,经过原点(0,0)和(4,﹣4),设抛物线的解析式为y=mx2+nx,把(4,﹣4)代入得到n=﹣1﹣4m,可得抛物线的解析式为y=mx2+(﹣1﹣4m)2x,由,消去y得到mx2﹣4mx﹣4=0,由题意△=0,可得16m2+16m=0,求出m的值即可解决问题.【解答】解:(1)在Rt△AOB中,∵∠BAO=45°,∴AO=BO,∴•OA•OB=8,∴OA=OB=4,∴A(4,0),B(0,4).(2)①由题意抛物线经过C(﹣4,0),B(0,4),A(4,0),顶点为B(0,4),时抛物线解析式为y=ax2+4,(4,0)代入得到a=﹣,∴抛物线的解析式为y=﹣x2+4.②抛物线G向下平移4个单位后,经过原点(0,0)和(4,﹣4),设抛物线的解析式为y=mx2+nx,把(4,﹣4)代入得到n=﹣1﹣4m,∴抛物线的解析式为y=mx2+(﹣1﹣4m)2x,由,消去y得到mx2﹣4mx﹣4=0,由题意△=0,∴16m2+16m=0,∵m≠0,∴m=﹣1,∴抛物线的解析式为y=﹣x2+3x,由,解得,∴N(2,2).15.已知抛物线C1:y=ax2﹣4ax﹣5(a>0).(1)当a=1时,求抛物线与x轴的交点坐标及对称轴;(2)①试说明无论a为何值,抛物线C1一定经过两个定点,并求出这两个定点的坐标;②将抛物线C1沿这两个定点所在直线翻折,得到抛物线C2,直接写出C2的表达式;(3)若(2)中抛物线C2的顶点到x轴的距离为2,求a的值.【考点】HA:抛物线与x轴的交点;H6:二次函数图象与几何变换.【分析】(1)将a=1代入解析式,即可求得抛物线与x轴交点;(2)①化简抛物线解析式,即可求得两个定点的横坐标,即可解题;②根据抛物线翻折理论即可解题;(3)根据(2)中抛物线C2解析式,分类讨论y=2或﹣2,即可解题;【解答】解:(1)当a=1时,抛物线解析式为y=x2﹣4x﹣5=(x﹣2)2﹣9,∴对称轴为x=2;∴当y=0时,x﹣2=3或﹣3,即x=﹣1或5;∴抛物线与x轴的交点坐标为(﹣1,0)或(5,0);(2)①抛物线C1解析式为:y=ax2﹣4ax﹣5,整理得:y=ax(x﹣4)﹣5;∵当ax(x﹣4)=0时,y恒定为﹣5;∴抛物线C1一定经过两个定点(0,﹣5),(4,﹣5);②这两个点连线为y=﹣5;将抛物线C1沿y=﹣5翻折,得到抛物线C2,开口方向变了,但是对称轴没变;∴抛物线C2解析式为:y=﹣ax2+4ax﹣5,(3)抛物线C2的顶点到x轴的距离为2,则x=2时,y=2或者﹣2;当y=2时,2=﹣4a+8a﹣5,解得,a=;当y=﹣2时,﹣2=﹣4a+8a﹣5,解得,a=;∴a=或;16.湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售.已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本=放养总费用+收购成本).(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值;(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为;y与t的函数关系如图所示.①分别求出当0≤t≤50和50<t≤100时,y与t的函数关系式;②设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大?并求出最大值.(利润=销售总额﹣总成本)【考点】HE:二次函数的应用.当50<t≤100时,设y与t的函数解析式为y=k2t+n2,将点(50,25)、代入,得:,解得:,∴y与t的函数解析式为y=﹣t+30;②由题意,当0≤t≤50时,W=20000(t+15)﹣=3600t,∵3600>0,∴当t=50时,W最大值=180000(元);当50<t≤100时,W=(﹣t+30)﹣=﹣10t2+1100t+150000=﹣10(t﹣55)2+180250,∵﹣10<0,∴当t=55时,W最大值=180250(元),综上所述,放养55天时,W最大,最大值为180250元.17.我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的部分对应值如图所示.0510********时间t(天)025*********日销售量y1(百件)(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.【考点】HE:二次函数的应用.【分析】(1)根据观察可设y1=at2+bt+c,将(0,0),(5,25),(10,40)代入即可得到结论;(2)当0≤t≤10时,设y2=kt,求得y2与t的函数关系式为:y2=4t,当10≤t ≤30时,设y2=mt+n,将(10,40),(30,60)代入得到y2与t的函数关系式为:y2=k+30,(3)依题意得y=y1+y2,当0≤t≤10时,得到y最大=80;当10<t≤30时,得到y最大=91.2,于是得到结论.【解答】解(1)根据观察可设y1=at2+bt+c,将(0,0),(5,25),(10,40)代入得:,解得,∴y1与t的函数关系式为:y1=﹣t2+6t(0≤t≤30,且为整数);(2)当0≤t≤10时,设y2=kt,∵(10,40)在其图象上,∴10k=40,∴k=4,∴y2与t的函数关系式为:y2=4t,当10≤t≤30时,设y2=mt+n,将(10,40),(30,60)代入得,解得,∴y2与t的函数关系式为:y2=k+30,综上所述,y2=;(3)依题意得y=y1+y2,当0≤t≤10时,y=﹣t2+6t+4t=﹣t2+10t=﹣(t﹣25)2+125,∴t=10时,y最大=80;当10<t≤30时,y=﹣t2+6t+t+30=﹣t2+7t+30=﹣(t﹣)2+,∵t为整数,∴t=17或18时,y最大=91.2,∵91.2>80,∴当t=17或18时,y最大=91.2(百件).。
专项——二次函数的综合运用
二次函数的综合运用思想与方法函数综合题的显著特征往往以二次函数为背景,融入特定的几何条件,综合考察函数知识和几何知识,是中考的难点。
此类题目入口宽、出口窄,层层深入、灵活性强。
但多数问题仔细揣摩不难发现技巧,其中数形结合与方程思想就是解题的关键。
解决问题的常用思路是:1、根据几何条件,得出线段之间的数量关系(以水平或竖直的线段为优)——2、代入相应的距离公式——3、解方程1、P(x,y)到x 轴的距离=y到y 轴的距离=x到原点的距离=22y x +2、两点之间的水平距离=21x x -两点之间的竖直距离=21y y -3、任意两点之间的距离=()()221221y y x x -+-4、抛物线在x 轴上的截距=自我检测已知抛物线y =ax 2(a >0)上有两点A 、B ,其横坐标分别为-1,2,请探求关于a 的取值情况,△ABO 可能是直角三角形吗?若不能,说明理由;若能是直角三角形,写出探求过程,并与同伴交流专项训练1、开口向下的抛物线y =a (x +1)(x -9)与x 轴交于A 、B 两点,与y 轴交于点C ,若∠ACB =90°,求a 的值a acb 42-2、已知抛物线y=12x2-x+k与x轴有两个交点.(1)求k的取值范围;(2)设抛物线与x轴交于A、B两点,且点A在点B的左侧,点D是抛物线的顶点,如果△ABD是等腰直角三角形,求抛物线的解析式;3、二次函数y=x2-m x+3的图象交x轴于A、B两点,交y轴于点C,则△ABC 的面积为3,求m的值4、已知抛物线y=x2-2x-3与x轴的两个交点A、B,在抛物线上是否存在一点P,使△ABP=8,若存在,求出点P坐标;若不存在,请说明理由。
5、已知抛物线y=-x2+mx-m+2.(Ⅰ)若抛物线与x轴的两个交点A、B分别在原点的两侧,并且AB,试求m的值;(Ⅱ)设C为抛物线与y轴的交点,若抛物线上存在关于原点对称的两点M、N,并且△MNC的面积等于27,试求m的值.。
二次函数与根与系数关系综合运用
二次函数与根与系数关系综合运用二次函数是数学中一种重要的函数类型,其表达式可以写成:$y=ax^2+bx+c$,其中$a, b, c$为常数,且$a\neq0$。
二次函数的图像是一个抛物线,其根的数量取决于判别式$S=b^2-4ac$的正负性。
一、根与系数的关系根据二次函数的定义,我们可以推导出根与系数之间的关系。
1.虚根的情况若判别式$S=b^2-4ac$小于零,则二次函数的图像与$x$轴没有交点,即方程$ax^2+bx+c=0$无实根。
此时,方程的根为复数。
2.重根的情况若判别式$S=b^2-4ac$等于零,则二次函数的图像与$x$轴有一个交点,即方程$ax^2+bx+c=0$有一个实根。
此时,方程的根为重根。
3.两个不同实根的情况若判别式$S=b^2-4ac$大于零,则二次函数的图像与$x$轴有两个交点,即方程$ax^2+bx+c=0$有两个不同实根。
此时,方程的根为实数。
二、根与系数的综合应用根与系数的关系在实际问题中有着广泛的应用,下面我们来看几个例子:例1:已知二次函数$y=ax^2+bx+c$的图像上有两个交点$(1,3)$和$(-2,7)$,求该二次函数的表达式及其判别式。
解:由已知条件可得两个方程:\[a+b+c=3 \quad...(1)\]\[4a-2b+c=7 \quad...(2)\]将(1)式左右两边乘以2,再与(2)式相减可以解得:\[-4b+3a=1 \quad...(3)\]解得$a=\frac{5}{3}, b=-\frac{7}{6}$。
将$a, b$的值代入(1)式或(2)式中,可以解得$c=\frac{7}{3}$。
所以该二次函数的表达式为:\[y=\frac{5}{3}x^2-\frac{7}{6}x+\frac{7}{3}\]判别式$S=(-\frac{7}{6})^2-4(\frac{5}{3})(\frac{7}{3})=\frac{49}{36}-\frac{140}{27}=-\frac{23}{108}<0$。
13、二次函数的综合与应用PPT课件
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
9
②依题意得,∠AkBkBk+1=∠AmBmBm+1=90°, 有两种情况:i)当 Rt△AkBkBk+1∽Rt△AmBmBm+1 时, AAmkBBkm=BBmkBBkm++11,121222mk--33=1212mk ,(12)2k-2m=(12)k-m, 所以,k=m(舍去), ii)当 Rt△AkBkBk+1∽Rt△Bm+1BmAm 时, BmA+kB1kBm=BBkBmkA+m1,12212k-m 3=12212m-k 3,(12)2k-3-m=(12)k-2m+3,∴k+m=6,
中考新突破 · 数学(江西)
知识要点 · 归纳
三年中考 · 讲练
202X权威 · 预测
第一部分 教材同步复习
7
【思路点拨】 本题考查二次函数综合题.(1)直接把点 A1 的坐标代入 y=ax2 求出 a 的值;(2)由题意可知:A1B1 是点 A1 的纵坐标:则 A1B1=2×12=2;A2B2 是点 A2 的纵坐标:则 A2B2=2×(12)2=12;…则 AnBn=2x2=2×[( 12)n-1]2=(12)2n-3;B1B2 =1-12=12,B2B3=12-(12)2=14=(12)2,…,BnBn+1=(12)n;(3)①当 AnBn=BnBn+1 时, Rt△AnBnBn+1 是等腰三角形; ②因为 Rt△AkBkBk+1 与 Rt△AmBmBm+1 是直角 三角形,所以分两种情况讨论:根据(2)的结论代入所得的对应边的比例式,计算求 出 k 与 m 的关系,并与 1≤k<m≤n(k,m 均为正整数)相结合,得出两种符合条件 的值,分别代入两相似直角三角形计算相似比.
人教版九年级数学-中考复习总结-二次函数综合运用
二次函数一、知识要点1.用待定系数法是确定二次函数解析式的常用方法:(1)一般式:所给条件是图像上任意三点(或任意三对x ,y 的值)时,可设解析式为 ,将已知条件代入,组成三元一次方程组来求解。
(2)顶点式:所给条件中已知顶点坐标或对称轴或最大(小)值时,可设解析式为 ,将已知条件代入,求出待定系数。
(3)交点式:所给条件中已知抛物线与x •轴两交点坐标12(,0),(,0)x x ,可设解析式为 ,将已知条件代入求出a 值,再将解析式化为一般形式。
2. 能根据题中函数图象所提供的信息构建二次函数模型解决一类与函数有关的应用性问题;3.应用数形结合思想来解决有关的二次函数与其他函数、方程、圆等几何图形的综合性问题是中考压轴题的重要内容。
二、知识运用典型例题例1、求满足下列条件的二次函数的解析式(1)图象经过A(﹣1,3).B(1,3).C(2,6);(2)图象经过A(﹣1,0)、B(3,0),函数有最小值﹣8;(3)图象顶点坐标是(﹣1,9),与x 轴两交点间的距离是6。
例2.(滨州)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;(2)当降价多少元时,每星期的利润最大?最大利润是多少?(3)请画出上述函数的大致图象.例3、(2013•株洲)已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D 四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.三、知识运用课堂训练1.(株洲)已知二次函数()()221y x a a =-+-(a 为常数),当a 取不同的值时,其图象构成一个“抛物线系”.右图分别是当1a =-,0a =,1a =,2a =时二次函数的图象.它们的顶点在一条直线上,这条直线的解析式是2. (长沙)已知:二次函数22y ax bx =+-的图象经过点(1,0),一次函数图象经过原点和点(1,-b ),其中0a b >>且a 、b 为实数.(1)求一次函数的表达式(用含b 的式子表示);(2)试说明:这两个函数的图象交于不同的两点;(3)设(2)中的两个交点的横坐标分别为x 1、x 2,求| x 1-x 2 |的范围.3. (2013•郴州)如图,△ABC 中,AB=BC ,AC=8,tanA=k ,P 为AC 边上一动点,设PC=x ,作PE ∥AB 交BC 于E ,PF ∥BC 交AB 于F .(1)证明:△PCE 是等腰三角形;(2)EM 、FN 、BH 分别是△PEC 、△AFP 、△ABC 的高,用含x 和k 的代数式表示EM 、FN ,并探究EM 、FN 、BH 之间的数量关系;(3)当k=4时,求四边形PEBF 的面积S 与x 的函数关系式.x 为何值时,S 有最大值?并求出S 的最大值.4. (2013•衡阳)如图,已知抛物线经过A (1,0),B (0,3)两点,对称轴是x=﹣1.(1)求抛物线对应的函数关系式;(2)动点Q 从点O 出发,以每秒1个单位长度的速度在线段OA 上运动,同时动点M 从M 从O 点出发以每秒3个单位长度的速度在线段OB 上运动,过点Q 作x 轴的垂线交线段AB 于点N ,交抛物线于点P ,设运动的时间为t 秒.①当t 为何值时,四边形OMPQ 为矩形;②△AON 能否为等腰三角形?若能,求出t 的值;若不能,请说明理由.课后训练(南京)已知二次函数2y x bx c =++中,函数y 与自变量x 的部分对应值如下表:(1(2)当x 为何值时,y 有最小值,最小值是多少?(3)若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,试比较1y 与2y 的大小.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第22课时 二次函数的综合运用 一、考点分析 1、抛物线形问题
2、二次函数与一次函数的综合
3、二次函数与存在性问题
4、二次函数与几何知识的的综合
二、典例解析
例1、(2008白银市)如图,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t (秒). (1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t = 秒或 秒时,MN =
2
1
AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;
(4) 探求(3)中得到的函数S 有没有最大值?若有,求出最大值;若没有,要说明理由.
例2、一蔬菜基地种植的某种绿色蔬菜,根据今年的市场行情,预计从5月1•日起的50天内,它的市场售价y 1与上市时间x 的关系可用图(a )的一条线段表示;•它的种植成本y 2与上市时间x 的关系可用图(b )中的抛物线的一部分来表示.
(1)求出图(a )中表示的市场售价y 1与上市时间x 的函数关系式. (2)求出图(b )中表示的种植成本y 2与上市时间x 的函数关系式.
(3)假定市场售价减去种植成本为纯利润,问哪天上市的这种绿色蔬菜既不赔本也不赚钱?
(市场售价和种植成本的单位:元/千克,时间单位:天)
例3、(2008年西宁市) 28.如图14,已知半径为1的
1O 与x 轴交于A B ,两点,OM 为1
O 的切线,切点为M ,圆心1O 的坐标为(20),,二次函数2
y x bx c =-++的图象经过A B ,两点.
(1)求二次函数的解析式;
(2)求切线OM 的函数解析式;
(3)线段OM 上是否存在一点P ,使得以P O A ,,为顶点的三角形与1OO M △相似.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.
三、考点精练
1.(2008年泰安市)在同一直角坐标系中,函数y mx m =+和2
22y mx x =-++(m 是常数,且0m ≠)的图象可能..
是( )
2、学校要建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA .O 恰好在水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.且在过OA 的任意平面上的抛物线如图l -2-36所示,建立平面直角坐标系(如图l -2-37),水流喷出的高度y (m)与水面距离x (m)之间的函数关系式是2532
2
y x x =-++,请回
答下列问题:
(1)花形柱子OA 的高度;
(2)若不计其它因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?
A.
B.
C.
D. 图14
3、(2006年旅顺口区)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图),其中AF=2,BF=1.试在AB 上求一点P ,使矩形PNDM 有最大面积.
4、(08枣庄)如图,在直角坐标系中放入一个边长OC 为9的矩形纸片ABCO .将纸片翻折后,
点B 恰好落在x 轴上,记为B ′,折痕为CE ,已知tan ∠OB ′C =34
. (1)求B ′点的坐标;
(2)求折痕CE 所在直线的解析式.
5、如右图,抛物线n x x y ++-=52经过点)0,1(A ,与y 轴交于点B.
(1)求抛物线的解析式;
(2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标.
6、(2008乌鲁木齐).如图9,在平面直角坐标系中,以点(11)
C ,为圆心,2为半径作圆,交x 轴于A B ,两点,开口向下的抛物线经过点A B ,,且其顶点P 在
C 上.
(1)求ACB ∠的大小;
(2)写出A B ,两点的坐标;
(3)试确定此抛物线的解析式;
(4)在该抛物线上是否存在一点D ,使线段OP 与CD 互相平分?若存在,求出点D 的坐
标;若不存在,请说明理由.
7、如图l -2-48,Rt △PMN 中,∠P =90○
,PM=PN ,MN=8cm ,矩形 ABCD 的长和宽分别为8cm 和2cm ,C 点和M 点重合,BC 和MN 在一条直线上,令 Rt △PMN 不动,矩形ABCD 沿MN 所在直线向右以每秒1cm 的速度移动(图l -2-49)直到C 点与N 点重合为止.设移动x 秒后,矩形ABCD 与△PMN 重叠部分的面积为y cm 2 ,求y 与x 之间的函数关系式.
8、如图11,在梯形ABCD 中,AD ∥BC ,AB=AD=DC=2cm ,BC=4cm ,在等腰△PQR 中,∠QPR=120°,底边QR=6cm ,点B 、C 、Q 、R 在同一直线l 上,且C 、Q 两点重合,如果等腰△PQR 以1cm/秒的速度沿直线l 箭头所示方向匀速运动,t 秒时梯形ABCD 与等腰△PQR 重合部分的面积记为S 平方厘米 (1)当t=4时,求S 的值
(2)当4t ≤≤10,求S 与t 的函数关系式,并求出S 的最大值
图
11。