互斥但不对立事件

合集下载

第05练 概率-2023年新高考数学一轮复习小题必刷(解析版)

第05练 概率-2023年新高考数学一轮复习小题必刷(解析版)

第05练概率1.(2020·汪清县汪清第六中学高一期中(文))袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;都是白球B.至少有一个白球;至少有一个红球C.恰有一个白球;一个白球一个黑球D.至少有一个白球;红、黑球各一个【答案】D【解析】对于A,“至少有一个白球”说明有白球,白球的个数可能为1或2,而“都是白球”说明两个全是白球,这两个事件可以同时发生,故A不是互斥的;对于B,当两球一个白球一个红球时,“至少有一个白球”与“至少有一个红球”均发生,故不互斥;对于C,“恰有一个白球”,表示黑球个数为0或1,这与“一个白球一个黑球”不互斥;对于D,“至少一个白球”发生时,“红、黑球各一个”不会发生,故互斥,但不对立,故选:D 2.(2018·江西省高一期末)甲、乙两人下棋,甲获胜的概率为0.4,甲不输的概率为0.9,则甲、乙两人下成和棋的概率为()A.0.6B.0.3C.0.1D.0.5【答案】D【解析】甲、乙两人下棋,甲获胜的概率为0.4,甲不输的概率为0.9,则甲、乙下成平局的概率为:0.90.40.5-=.故选:D.3.(2020·苏州大学附属中学高二月考)甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.3,乙击中敌机的概率为0.5,敌机被击中的概率为()A.0.8B.0.65C.0.15D.0.5【答案】B【解析】根据题意,敌机没被击中的概率为0.70.50.35⨯=,所以敌机被击中的概率为10.350.65-=.故选:B4.(2020·江苏省高一期末)抛掷一枚硬币,连续出现9次正面向上,则第10次出现正面向上的概率为()A.110B.19C.15D.12【答案】D【解析】第10次抛硬币结果不受前9次结果的影响,由于硬币正面向上或正面向下可能性相同, 则概率为12,故选:D . 5.(2020·山东省菏泽一中高一月考)同时投掷两枚硬币一次,互斥而不对立的两个事件是( ) A .“至少有1枚正面朝上”与“2枚都是反面朝上”B .“至少有1枚正面朝上”与“至少有1枚反面朝上”C .“恰有1枚正面朝上”与“2枚都是正面朝上”D .“至少有1枚反面朝上”与“2枚都是反面朝上”【答案】C【解析】在A 中,“至少有1枚正面朝上”与“2枚都是反面朝上”不能同时发生,且“至少有1枚正面朝上”不发生时,“2枚都是反面朝上”一定发生,故A 中的两个事件是对立事件;在B 中,当两枚硬币恰好1枚正面朝上,1枚反面朝上时,“至少有1枚正面朝上”与“至少有1枚反面朝上”能同时发生,故B 中的两个事件不是互斥事件;在C 中,“恰有1枚正面朝上”与“2枚都是正面朝上”不能同时发生,且其中一个不发生时,另一个有可能发生也有可能不发生,故C 中的两个事件是互斥而不对立事件;在D 中,当2枚硬币同时反面朝上时,“至少有1枚反面朝上”“2枚都是反面朝上”能同时发生,故D 中的两个事件不是互斥事件.故选:C.6.(2020·全国高三其他(文))从5名男生,1名女生中随机抽取2名,则抽取的2名学生中恰好是一名男生,一名女生的概率是( )A .1B .12C .13D .23 【答案】C【解析】把5名男生分别记为1A ,2A ,3A ,4A ,5A ,1名女生记为1B ,从中随机抽取两名共有:()12,A A ,()13,A A ,()14,A A ,()15,A A ,()11,A B ,()23,A A ,()24,A A ,()25,A A ,()21,A B ,()34,A A ,()35,A A ,()31,A B ,()45,A A ,()41,A B ,()51,A B ,共15种情况.抽取的两名学生中恰好是一名男生,一名女生的情况有()11,A B ,()21,A B,()31,A B ,()41,A B ,()51,A B 共有5种情况, 所以概率为51153=.故选:C.7.(2020·河南省高三其他(文))2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,甲工厂率先转业生产口罩.为了了解甲工厂生产口罩的质量,某调查人员随机抽取了甲工厂生产的6个口罩,将它们的质量(单位:g)统计如下图所示.记这6个口罩质量的平均数为m,则在其中任取2个口罩,质量都超过m的概率为()A.115B.215C.15D.415【答案】C【解析】依题意,0.0030.0010.0030.0050.0080.01215.0015.0046m--++++=+=,可知6个口罩中有3个质量超过m,记为A,B,C,另外3个记为d,e,f.随机抽取2个,所有的情况有AB,AC,Ad,Ae,Af,BC,Bd,Be,Bf,Cd,Ce,Cf,de,df,ef,共15种,其中满足条件的有AB,AC,BC,共3种.由古典概型的概率得所求概率31155P==.故选:C.8.(2020·四川省成都实外高三其他)《周易》是我国古代典籍,用“卦”描述了天地世间万象变化.如图是一个八卦图,包含乾、坤、震、巽、坎、离、艮、兑八卦(每一卦由三个爻组成,其中“”表示一个阳爻,“”表示一个阴爻).若从含有两个及以上阳爻的卦中任取两卦,这两卦的六个爻中都恰有两个阳爻的概率为()A.13B.12C.23D.34【答案】B【解析】由图可知,含有两个及以上阳爻的卦有巽、离、兑、乾四卦,取出两卦的基本事件有(巽,离),(巽,兑),(巽,乾),(离,兑),(离,乾),(兑,乾)共6个,其中符合条件的基本事件有(巽,离),(巽,兑),(离,兑)共3个, 所以,所求的概率3162P ==.故选:B. 9.(2020·江苏省高一期末)已知一只口袋内装有大小相同的4只球,其中2只白球,2只黑球,从中一次摸出2只球,则摸出的2只球中至少有1只是白球的概率是( )A .16B .13C .23D .56【答案】D【解析】依题意,摸出的2只球中至少有1只是白球的概率是2224151166C C -=-=.故选:D 10.(2020·江苏省苏州第十中学校高一期中)袋中共有完全相同的4只小球,编号为1,2,3,4,现从中任取2只小球,则取出的2只球编号之和是偶数的概率为( )A .25B .35C .13D .23【答案】C【解析】在编号为1,2,3,4的小球中任取2只小球,则有{}1,2,{}1,3,{}1,4,{}2,3,{}2,4,{}3,4,共6种取法,则取出的2只球编号之和是偶数的有{}1,3,{}2,4,共2种取法,即取出的2只球编号之和是偶数的概率为2163=,故选:C. 11.(2020·北京高二期末)哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1257=+,在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,其和等于18的概率是( )A .142B .121C .221D .17【答案】C【解析】在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,基本事件总数2721n C ==,其和等于18包含的基本事件有:(5,13),(7,11),共2个,∴其和等于18的概率是221P =.故选:C. 12.(2020·全国高二)下列事件中,是随机事件的为_________(填所有正确的序号)①实数a ,b 都不为0,则220a b +=;②任取一个正方体的4个顶点,这4个顶点不共面;③汽车排放尾气会污染环境;④明天早晨不会有雾.【答案】②④【解析】逐一考查所给的事件:①实数a ,b 都不为0,则220a b +=是不可能事件;②任取一个正方体的4个顶点,这4个顶点不共面是随机事件;③汽车排放尾气会污染环境是必然事件;④明天早晨不会有雾是随机事件.综上可得,随机事件包括:②④.故答案为:②④.13.(2020·全国高二)抛掷一枚质地均匀的骰子(六个面上的点数分别为1,2,3,4,5,6),事件A 为“正面朝上的点数为3”,事件B 为“正面朝上的点数为偶数”,则()P A B +=________. 【答案】23【解析】由题意可得1()6P A =,1()2P B =,事件A 与事件B 互斥, 则2()()()3P A B P A P B +=+=.故答案为:23. 14.(2020·吉化第一高级中学校高二期末(理))若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 . 【答案】112【解析】所有的基本事件共6636⨯=个,其中,点数和为4的有(1,3)、(2,2)、(3,1)共3个,∴出现向上的点数之和为4的概率是313612=,故答案为:112. 15.(2020·辽宁省高三其他(文))2019年9月10日是我国第35个教师节,某班班委决定在这天给每个任课老师赠送一份礼物,为公平起见,他们从4种不同的礼物中随机选取一种给老师(礼物可以重复,即不同的老师收到的礼物可能相同),则语文老师与英语老师收到的礼物不同的概率为_______. 【答案】34【解析】设四件礼物分别为a b c d ,,,, 所以语文老师与英语老师收到的礼物的方法有(,),(,),(,),(,),(,),(,),a a a b a c a d b a b b(,),(,),(,),(,),(,),(,),(,),(,),(,),(,),b c b d c a c b c c c d d a d b d c d d 共16种;语文老师与英语老师收到的礼物不同的方法有(,),(,),(,),(,),a b a c a d b a (,),(,),b c b d (,),(,),(,),(,),(,),(,),c a c b c d d a d b d c 共12种. 由古典概型的概率公式得语文老师与英语老师收到的礼物不同的概率为123164P ==.故答案为:34. 16.(2020·河南省高三其他(理))汉语文化博大精深,成语更是其中不可缺少的一部分.在某个猜成语的节目中,一个小选手需要从A ,B ,C ,D 四个不同的字中选出两个字填入所给的缺少两个字的四字成语中,使其组成一个正确的成语,假设这个小选手没见过这个成语,随意选了两个字,则他选A 且没选B 的概率为______. 【答案】13【解析】基本事件总数246n C ==,选A 且没选B 包含的基本事件个数11122m C C ==,则他选A 且没选B 的概率为2163m P n ===.故答案为:13.1.(2020·河南省南阳中学高二月考(理))某转播商转播一场排球比赛,比赛采取五局三胜制,即一方先获得三局胜利比赛就结束,已知比赛双方实力相当,且每局比赛胜负都是相互独立的,若每局比赛转播商可以获得20万元的收益,则转播商获利不低于80万元的概率是( )A .34B .58C .38D .916【答案】A【解析】当比赛中的一方连续三次取得胜利,则转播商获利低于80万元,转播商获利不低于80万元的概率是3131224⎛⎫-⨯= ⎪⎝⎭.本题选择A 选项. 2.(2020·江苏省高一期末)下列叙述正确的是( )A .频率是稳定的,概率是随机的B .互斥事件一定不是对立事件,但是对立事件一定是互斥事件C .5张奖券中有1张有奖,甲先抽,乙后抽,那么乙比甲抽到有奖奖券的可能性小D .若事件A 发生的概率为P (A ),则0()1P A ≤≤【答案】D【解析】频率是随机变化的,概率是频率的稳定值,A 错;互斥事件也可能是对立事件,对立事件一定是互斥事件,B 错;5张奖券中有1张有奖,甲先抽,乙后抽,那么乙、甲抽到有奖奖券的可能性一样大,都是15,C 错; 由概率的定义,随机事件的概率在[0,1]上,D 正确.故选:D .3.(2020·海南省高考真题)某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是( )A .62%B .56%C .46%D .42% 【答案】C【解析】记“该中学学生喜欢足球”为事件A ,“该中学学生喜欢游泳”为事件B ,则“该中学学生喜欢足球或游泳”为事件A B +,“该中学学生既喜欢足球又喜欢游泳”为事件A B ⋅, 则()0.6P A =,()0.82P B =,()0.96P A B +=,所以()P A B ⋅=()()()P A P B P A B +-+0.60.820.960.46=+-=所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.4.(2020·全国高二)从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知()0.7P A =,()0.2P B =,()0.1P C =.则事件“抽到的不是一等品”的概率为( )A .0.7B .0.2C .0.1D .0.3 【答案】D【解析】∵抽到的不是一等品的对立事件是抽到一等品,事件A ={抽到一等品},()0.7P A =,∴抽到不是一等品的概率是10.70.3-=.故选D .5.(2020·福建省厦门一中高三其他(理))《镜花缘》是清代文人李汝珍创作的长篇小说,书中有这样一个情节:一座阁楼到处挂满了五彩缤纷的大小灯球,灯球有两种,一种是大灯下缀2个小灯,另一种是大灯下缀4个小灯,大灯共360个,小灯共1200个.若在这座楼阁的灯球中,随机选取两个灯球,则至少有一个灯球是大灯下缀4个小灯的概率为( )A .1191077B .160359C .9581077D .289359【答案】C【解析】设一大二小与一大四小的灯球数分别为,x y ,则360241200x y x y +=⎧⎨+=⎩,解得120240x y =⎧⎨=⎩,若随机选取两个灯球,则至少有一个灯球是一大四小的概率为2120236095811077C C -=.故选C 6.(2020·广东省高三二模(文))在此次抗击新冠肺炎疫情过程中,中医治疗起到了重要作用.中医理论讲究食物相生相克,合理搭配饮食可以增强体质,提高免疫力,但不恰当的搭配也可能引起身体的不适.食物相克是指事物之间存在着相互拮抗、制约的关系,若搭配不当,会引起中毒反应.已知猪肉与菊花,猪肉与百合,螃蟹与茄子相克.现从猪肉、螃蟹、茄子、菊花、百合这五种食物中任意选取两种,则它们相克的概率为( )A .13B .23C .310D .710【答案】C【解析】因为从猪肉、螃蟹、茄子、菊花、百合这五种食物中任意选取两种有2510C =种,相克的有3种,则相克的概率为310P =.故选:C . 7.(2020·江苏省丰县中学高二期中)洛书,古称龟书,是阴阳五行术数之源,被世界公认为组合数学的鼻祖,它是中华民族对人类的伟大贡献之一.洛书上记载,在古代传说中有神龟出于洛水,其甲壳上有图1:“以五居中,五方白圈皆为阳数,四隅黑点为阴数”,这就是有记载的最早的三阶幻方.按照这样的说法,将1到9这九个数字,填在如图2的九宫格中,九宫格的中间填5,四个角填偶数,其余位置填奇数,则每一横行,每一竖列以及两条对角线上三个数字之和都等于15的结果数为()A.16B.32C.8D.128【答案】C【解析】九宫格的中间填5,①③⑤⑦位置填偶数2,4,6,8,②④⑥⑧位置填奇数1,3,7,9,因为每一横行,每一竖列以及两条对角线上三个数字之和都等于15,所以①⑤、③⑦位置填2,8或4,6;先从2,4,6,8中选出一个数填入①位置,则有4个结果;若①填2,则⑤填8,③填6,⑦填4,②填7,④填1,⑥填3,⑧填9;或⑤填8,③填4,⑦填6,②填9,④填3,⑥填1,⑧填7;⨯=.故选:C.共包含2个结果;因此,总的结果个数为4288.(2020·四川省高三其他(理))五声音阶是中国古乐的基本音阶,故有成语“五音不全”,中国古乐中的五声音阶依次为:宫、商、角、徵、羽.如果把这五个音阶全用上,排成一个5个音阶的音序,从所有的这些音序中随机抽出一个音序,则这个音序中宫、羽不相邻的概率为()A .15B .25C .35D .45【答案】C【解析】中国古乐中的五声音阶依次为:官、商、角、微、羽,把这五个音阶全用上,排成一个5个音阶的音序,基本事件总数55120n A ==,其中宫、羽不相邻的基本事件有323472m A A ==,则从所有的这些音序中随机抽出一个音序,这个音序中宫、羽不相邻的概率为7231205m p n ===,故选:C 9.(2020·甘肃省静宁县第一中学高三其他(理))《宋人扑枣图轴》是作于宋朝的中国古画,现收藏于中国台北故宫博物院.该作品简介:院角的枣树结实累累,小孩群来攀扯,枝桠不停晃动,粒粒枣子摇落满地,有的牵起衣角,有的捧着盘子拾取,又玩又吃,一片兴高采烈之情,跃然于绢素之上.甲、乙两人想根据该图编排一个舞蹈,舞蹈中他们要模仿该图中小孩扑枣的爬、扶、捡、顶中的两个动作,两人每人模仿一个动作.若他们采用抽签的方式来决定谁模仿哪个动作,则甲只能模仿“爬”或“扶”且乙只能模仿“扶”或“捡”的概率是( )A .35B .712C .14D .512【答案】C【解析】记“甲只能模仿“爬”或“扶”且乙只能模仿“扶”或“捡””为事件A .全部基本事件为:(爬,扶)、(爬,捡)、(爬,顶)、(扶,爬)、(扶,捡)、(扶,顶)、(捡,爬)、(捡,扶)、(捡,顶)、(顶,爬)、(顶,扶)、(顶,捡)共12个.事件A 包含(爬,扶)、(爬,捡)、(扶,捡)共3个基本事件故事件A 的概率:()14P A =故选:C. 10.(2020·辽宁省高三其他(文))抛掷一枚质地均匀的骰子两次,记事件{A =两次的点数均为偶数且点数之差的绝对值为2},则()P A =( )A .19B .13C .49D .59【答案】A【解析】连续两次抛掷一枚骰子,记录向上的点数,基本事件总数n=6×6=36,两次的点数均为偶数且点数之差的绝对值为2包含的基本事件有:(2,4),(4,2), (4,6),(6,4),共有4个,∴两次的点数均为偶数且点数之差的绝对值为2的概率:41369p== .本题选择A选项.11.(2020·开鲁县第一中学高二期末(理))2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜潮举行,长三角城市群包括,上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市".现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游则恰有一个地方未被选中的概率为()A.2764B.916C.81256D.716【答案】B【解析】4名同学去旅游的所有情况有:44256=种恰有一个地方未被选中共有2113424322144C CC AA⋅⋅=种情况;所以恰有一个地方未被选中的概率:144925616p==;故选:B.12.(2020·重庆八中高三其他(理))某高校数学学院安排4名研究生在开学日当天随机到三个不同的车站迎接新生,要求每个车站至少有一人,则其中小李和小明不在同一车站的概率为()A.712B.23C.56D.1112【答案】C【解析】4人到3个车站的方法总数为234336C A=,其中小李和小明在同一车站的方法数为336A=,因此小李和小明在同一车站的概率是61366P'==,小李和小明不在同一车站的概率为516P P'=-=.故选:C.13.(2020·重庆西南大学附中高二月考)已知函数f(x)=13x3+ax2+b2x+1,若a是从1,2,3三个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则该函数有两个极值点的概率为()A.79B.13C.59D.23【答案】D【解析】将a记为横坐标,将b记为纵坐标,可知总共有(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)9个的结果,而函数有两个极值点的条件为其导函数有两个不相等的实根,f′(x)=x 2+2ax +b 2,满足题中条件为Δ=4a 2−4b 2>0,即a >b ,所以满足条件的基本事件有(1,0),(2,0),(2,1),(3,0),(3,1),(3,2)共6个基本事件,所以所求的概率为P =69=23,故选D .14.(2020·江苏省高一期末)在4件产品中,有一等品2件,二等品1件(一等品与二等品都是正品),次品1件,现从中任取2件,则下列说法正确的是( ) A .两件都是一等品的概率是13B .两件中有1件是次品的概率是12C .两件都是正品的概率是13D .两件中至少有1件是一等品的概率是56【答案】BD【解析】由题意设一等品编号为a 、b ,二等品编号为c ,次品编号为d ,从中任取2件的基本情况有:(),a b 、(),a c 、(),a d 、(),b c 、(),b d 、(),c d ,共6种; 对于A ,两件都是一等品的基本情况有(),a b ,共1种,故两件都是一等品的概率116P =,故A 错误;对于B ,两件中有1件是次品的基本情况有(),a d 、(),b d 、(),c d ,共3种,故两件中有1件是次品的概率23162P ==,故B 正确; 对于C ,两件都是正品的基本情况有(),a b 、(),a c 、(),b c ,共3种,故两件都是正品的概率33162P ==,故C 错误; 对于D ,两件中至少有1件是一等品的基本情况有(),a b 、(),a c 、(),a d 、(),b c 、(),b d ,共5种,故两件中至少有1件是一等品的概率456P =,故D 正确.故选:BD. 15.(2020·山东省临沂第一中学高二月考)下列说法正确的是( )A .某班4位同学从文学、经济和科技三类不同的图书中任选一类,不同的结果共有64种;B .甲乙两人独立地解题,已知各人能解出的概率分别是1124,,则题被解出的概率是18;C .某校200名教师的职称分布情况如下:高级占比20%,中级占比50%,初级占比30%,现从中抽取50名教师做样本,若采用分层抽样方法,则高级教师应抽取10人;D .两位男生和两位女生随机排成一列,则两位女生不相邻的概率是12. 【答案】CD【解析】对于A ,第一个同学可以参加三个课外兴趣小组任意一个,有3种报名方法,同理其他的三名学生也都有3种报名方法,则不同的报名方法有3×3×3×3=81种,故A 错; 对于B ,∵他们各自解出的概率分别是1124,,则此题不能解出的概率为(112-)•(114-)38=,则此题能解出的概率为13588-=,故B 错; 对于C ,高级教师应抽取50×20%=10人,故C 正确对于D ,两位女生和两位男生站成一排照相,基本事件总数n 44A ==24, 两位女士不相邻包含的基本事件个数m 2223A A =⋅=12,∴两位女生不相邻的概率P 121242m n ===,故D 正确.故选:CD . 16.(2020·山东省枣庄八中高一开学考试)抛掷一枚骰子1次,记“向上的点数是4,5,6”为事件A ,“向上的点数是1,2”为事件B ,“向上的点数是1,2,3”为事件C ,“向上的点数是1,2,3,4”为事件D ,则下列关于事件A ,B ,C ,D 判断正确的有( ) A .A 与B 是互斥事件但不是对立事件 B .A 与C 是互斥事件也是对立事件 C .A 与D 是互斥事件D .C 与D 不是对立事件也不是互斥事件 【答案】ABD【解析】抛掷一枚骰子1次,记“向上的点数是4,5,6”为事件A ,“向上的点数是1,2”为事件B , “向上的点数是1,2,3”为事件C ,“向上的点数是1,2,3,4”为事件D ,在A 中,A 与B 不能同时发生,但能同时不发生,是互斥事件但不是对立事件,故A 正确; 在B 中, A 与C 是互斥事件也是对立事件,故B 正确; 在C 中,A 与D 能同时发生,不是互斥事件,故C 错误;在D 中,C 与D 能同时发生,不是对立事件也不是互斥事件,故D 正确.故选:ABD .17.(2020·大名中学高二月考)抛掷一枚骰子 1 次,记“向上的点数是 1,2”为事件 A ,“向上的点数是 1,2,3”为事件B ,“向上的点数是 1,2,3,4”为事件C ,“向上的点数是 4,5,6”为事件D ,则下列关于事件 A , B ,C ,D 判断正确的有( ) A .A 与D 是互斥事件但不是对立事件 B .B 与D 是互斥事件也是对立事件 C .C 与D 是互斥事件 D .B 与C 不是对立事件也不是互斥事件【答案】ABD【解析】抛掷一枚骰子 1 次,记“向上的点数是 1,2”为事件 A , “向上的点数是 1,2,3”为事件B , “向上的点数是 1,2,3,4”为事件C , “向上的点数是 4,5,6”为事件D .事件A 与D 不能同时发生,但能同时不发生, 是互斥事件但不是对立事件,故选项A 正确; 事件B 与D 不可能同时发生,且必有一个发生, 故B 与D 是互斥事件,也是对立事件, 故选项B 正确;事件C 与D 可能同时发生,故不是互斥事件, 故选项C 错误;事件B 与C 能同时发生,不是互斥事件也不是对立事件, 故选项D 正确.故选:ABD.18.(2019·江门市第二中学高二期中)设某同学选择等级考科目时,选择物理科目的概率为0.5,选择化学科目的概率为0.6,且这两个科目的选择相互独立,则该同学在这两个科目中至少选择一个的概率是________ 【答案】0.8【解析】因为选择物理科目的概率为0.5,选择化学科目的概率为0.6, 所以既不选择物理也不选择化学的概率为()()10.510.60.2--= 所以由对立事件的性质可知至少选择一个科目的概率为10.20.8-= 故答案为: 0.819.(2020·陕西省高三三模(理))甲、乙两人下棋,结果是一人获胜或下成和棋.已知甲不输的概率为0.8,乙不输的概率为0.7,则两人下成和棋的概率为______. 【答案】0.5【解析】设甲、乙两人下成和棋P ,甲获胜的概率为()P A ,则乙不输的概率为()1P A -,甲不输的概率为0.8,乙不输的概率为0.7,()0.8P A P ∴+=,()10.7P A -=, 1 1.5P ∴+=,解得0.5P =.∴两人下成和棋的概率为0.5.故答案为:0.520.(2020·黑龙江省哈尔滨三中高三其他(理))我国在北宋年间(公元1084年)第一次印刷出版了《算经十书》,即贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》、《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.这些书中涉及的很多方面都达到古代数学的高峰,其中一些“算法”如开立方和开四次方也是当时世界数学的高峰.哈三中图书馆中正好有这十本书,现在小张同学从这十本书中任借三本阅读,那么他借到的三本书中书名中恰有一个“算”字的概率为______. 【答案】512【解析】根据题意可知,这十本书中共有五本有一个“算”字,所以小张同学从这十本书中任借三本阅读共有310C 种情况,他借到的三本书中书名中恰有一个“算”字共有1255C C 种情况,故概率为1255310512C C C =.故答案为:51221.(2020·江西省高三其他(理))辊子是客家传统农具,南方农民犁开田地后,仍有大的土块.农人便用六片叶齿组成辊轴,两侧装上木板,人跨开两脚站立,既能掌握平衡,又能增加重量,让牛拉动辊轴前进,压碎土块,以利于耕种.这六片叶齿又对应着菩萨六度,即布施、持戒、忍辱、精进、禅定与般若.若甲从这六片叶齿中任取两片不同的叶齿,放回后,乙再从这六片叶齿中任取两片不同的叶齿,则这两人选的叶齿对应的“度”没有相同的概率为______. 【答案】25【解析】由题意可知所求概率2264226662155C C P C C ===.故答案为:25.1.(2018•新课标Ⅲ)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付 的概率为0.15,则不用现金支付的概率为( )A .0.3B .0.4C .0.6D .0.7【答案】B【解析】某群体中的成员只用现金支付,既用现金支付也用非现金支付,不用现金支付,是互斥事件,所以不用现金支付的概率为:1﹣0.45﹣0.15=0.4.故选:B .2.(2020•新课标Ⅰ)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3 点共线的概率为( ) A .15B .25C .12D .45【答案】A【解析】O ,A ,B ,C ,D 中任取3点,共有C 53=10种,其中共线为A ,O ,C 和B ,O ,D 两种,故取到的3点共线的概率为P =210=15,故选:A .3.(2020•新课标Ⅱ)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订 单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已 知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人 每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至 少需要志愿者( ) A .10名 B .18名 C .24名 D .32名【答案】B【解析】第二天的新订单超过1600份的概率为0.05,就按1600份计算, 第二天完成积压订单及当日订单的配货的概率不小于0.95就按1200份计算, 因为公司可以完成配货1200份订单,则至少需要志愿者为1600+500−120050=18名,故选:B .4.(2019•新课标Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14C .13D .12【答案】D【解析】方法一:用捆绑法将两女生捆绑在一起作为一个人排列,有A 33A 22=12种排法, 再所有的4个人全排列有:A 44=24种排法, 利用古典概型求概率原理得:p =1224=12,方法二:假设两位男同学为A 、B ,两位女同学为C 、D ,所有的排列情况有24种,如下:。

概率练习题(必修三) 菁优网

概率练习题(必修三) 菁优网

概率练习题(必修三)一.选择题(共12小题)1.(2015•武汉模拟)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A .B.C.D.2.(2014•湖北)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A .p1<p2<p3B.p2<p1<p3C.p1<p3<p2D.p3<p1<p23.(2014•江西)掷两颗均匀的骰子,则点数之和为5的概率等于()A .B.C.D.4.(2013•陕西)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A .B.C.D.5.(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A .B.C.D.6.(2014秋•保定期末)16个同类产品中有14个正品,2个次品,从中任意抽取3个,则下列事件中概率为1的是()A.三个都是正品B.三个都是次品C.三个中至少有一个是正品D.三个中至少有一个次品7.(2014秋•江岸区校级期中)把红、黄、蓝3张卡片随机分给甲、乙、丙三人,每人1张,事件A:“甲得红卡”与事件B:“乙得红卡”是()A.不可能事件B.必然事件C.对立事件D.互斥且不对立事件8.(2013春•泰安期末)某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少1名女生”与事件“全是男生”()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件9.(2015•湖北)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()A .p1<p2<B.C.p2<D.10.(2015•贵州模拟)如图,在半径为R的圆内随机撒一粒黄豆,它落在阴影部分内接正三角形上的概率是()A .B.C.D.11.(2015•漳州模拟)在区间[0,π]上随机取一个数x,则事件“”发生的概率为()A .B.C.D.12.(2015•咸阳一模)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A .B.C.D.2015年07月20日nxyxy的高中数学组卷参考答案与试题解析一.选择题(共12小题)1.(2015•武汉模拟)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A .B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.解答:解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概得到P=,故选A.点评:本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.2.(2014•湖北)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A .p1<p2<p3B.p2<p1<p3C.p1<p3<p2D.p3<p1<p2考点:古典概型及其概率计算公式.专题:概率与统计.分析:首先列表,然后根据表格点数之和不超过5,点数之和大于5,点数之和为偶数情况,再根据概率公式求解即可.解答:解:列表得:(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)种等可能的结果,∴两个骰子点数之和不超过5的有10种情况,点数之和大于5的有26种情况,点数之和为偶数的有18种情况,∴向上的点数之和不超过5的概率记为p1=,点数之和大于5的概率记为p2=,点数之和为偶数的概率记为p3=,∴p1<p3<p2故选:C.点评:本题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.3.(2014•江西)掷两颗均匀的骰子,则点数之和为5的概率等于()A .B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:本题是一个求概率的问题,考查事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”这是一个古典概率模型,求出所有的基本事件数N与事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”包含的基本事件数N,再由公式求出概率得到答案解答:解:抛掷两颗骰子所出现的不同结果数是6×6=36事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件有(1,4),(2,3),(3,2),(4,1)共四种故事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”的概率是=,故选:B.点评:本题是一个古典概率模型问题,解题的关键是理解事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”,由列举法计算出事件所包含的基本事件数,判断出概率模型,理解求解公式是本题的重点,正确求出事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件数是本题的难点.4.(2013•陕西)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是()A .B.C.D.考点:几何概型.专题:计算题;概率与统计.分析:根据题意,算出扇形区域ADE和扇形区域CBF的面积之和为,结合矩形ABCD的面积为2,可得在矩形ABCD内且没有信号的区域面积为2﹣,再用几何概型计算公式即可算出所求的概率.解答:解:∵扇形ADE的半径为1,圆心角等于90°∴扇形ADE的面积为S1=×π×12=同理可得,扇形CBF的在,面积S2=又∵长方形ABCD的面积S=2×1=2∴在该矩形区域内随机地选一地点,则该地点无信号的概率是P===1﹣故答案为:1﹣点评:本题给出矩形ABCD内的两个扇形区域内有无线信号,求在区域内随机找一点,在该点处没有信号的概率,着重考查了几何概型及其计算方法的知识,属于基础题.5.(2012•湖北)如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是()A .B.C.D.考点:几何概型.专题:概率与统计.分析:求出阴影部分的面积即可,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,那么阴影部分的面积就是图中扇形的面积﹣直角三角形AOB的面积.解答:解:设扇形的半径为r,则扇形OAB的面积为,连接OC,把下面的阴影部分平均分成了2部分,然后利用位移割补的方法,分别平移到图中划线部分,则阴影部分的面积为:﹣,∴此点取自阴影部分的概率是.故选C .点评: 本题考查几何概型,解题的关键是利用位移割补的方法求组合图形面积,此类不规则图形的面积可以转化为几个规则的图形的面积的和或差的计算.6.(2014秋•保定期末)16个同类产品中有14个正品,2个次品,从中任意抽取3个,则下列事件中概率为1的是( )A . 三个都是正品B . 三个都是次品C . 三个中至少有一个是正品D . 三个中至少有一个次品考点: 概率的意义.专题:概率与统计. 分析:根据必然事件的概率为1,从选项在找出必然事件即可. 解答: 解:16个同类产品中,有14个正品,2个次品,任意抽取3个产品,则抽出的3件产品中一定至少有一个是正品,即“至少有一个是正品”为必然事件,故它的概率等于1;故选C.点评:本题主要考查必然事件的定义,必然事件的概率值,属于基础题7.(2014秋•江岸区校级期中)把红、黄、蓝3张卡片随机分给甲、乙、丙三人,每人1张,事件A:“甲得红卡”与事件B:“乙得红卡”是()A .不可能事件B.必然事件C .对立事件D.互斥且不对立事件考点:随机事件.专题:概率与统计.分析:利用对立事件和互斥事件的定义求解.解答:解:黑、红、白3张卡片分给甲、乙、丙三人,每人一张,事件“甲分得红卡”与“乙分得红卡”不可能同时发生,但事件“甲分生时,事件“乙分得红卡”有可能发生,有可能不发生,∴事件“甲分得红牌卡”与“乙分得红卡”是互斥但不对立事件.故选:D.点评:本题考查对立事件、必然事件、不可能事、互斥事件的判断,解题时要认真审题,是基础题.8.(2013春•泰安期末)某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少1名女生”与事件“全是男生”()A .是互斥事件,不是对立事件B .是对立事件,不是互斥事件C .既是互斥事件,也是对立事件D .既不是互斥事件也不是对立事件考点:随机事件.专题:阅读型.分析:互斥事件是两个事件不包括共同的事件,对立事件首先是互斥事件,再就的和事件是全集,本题所给的两个事件不可能同时发生,且和是全集.解答:解:“至少有一名女生”包括“一男一女”和“两个女生”两种情况,这两种情况再加上“全是男生”构成全集,且不能同时发生,故互为对立事件,故选C.点评:本题考查互斥事件与对立事件,解题的关键是理解两个事件的定义及两事件之间的关系.属于基本概念型题.9.(2015•湖北)在区间[0,1]上随机取两个数x,y,记p1为事件“x+y≤”的概率,P2为事件“xy≤”的概率,则()A .p1<p2<B.C.p2<D.考点:几何概型.专题:概率与统计.分析:分别求出事件“x+y≤”和事件“xy≤”对应的区域,然后求出面积,利用几何概型公式求出概率,比较大小.解答:解:由题意,事件“x+y≤”表示的区域如图阴影三角形,p1=;满足事件“xy≤”的区域如图阴影部分所以p2===>;所以;故选:B.点评:本题考查了几何概型的公式运用;关键是分别求出阴影部分的面积,利用几何概型公式解答.10.(2015•贵州模拟)如图,在半径为R的圆内随机撒一粒黄豆,它落在阴影部分内接正三角形上的概率是()A .B.C.D.考点:几何概型.专题:计算题.分析:先明确是几何概型中的面积类型,分别求三角形与圆的面积,然后求比值即可.解答:解:设落在阴影部分内接正三角形上的概率是P∵∴故选D.点评:本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.11.(2015•漳州模拟)在区间[0,π]上随机取一个数x,则事件“”发生的概率为()A .B.C.D.考点:几何概型.专题:概率与统计.分析:先化简不等式,确定满足sin(x+)≥且在区间[0,π]内x的范围,根据几何概型利用长度之比可得结论.解答:解:∵,即sin(x+)≥,∴sin(x+)≥,∵x∈[0,π],∴x+∈[,],∴在区间[,]内,满足sin(x+)≥的x+∈[,],∴在区间[0,π]内,满足sin(x+)≥的x∈[,],∴事件发生的概率为P==.故选B.点评:本题考查几何概型,考查三角函数的化简,考查学生的计算能力,属于中档题.12.(2015•咸阳一模)一只蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为()A .B.C.D.考点:几何概型.专题:概率与统计.分析:小蜜蜂的安全飞行范围为:以这个正方体的中心为中心且棱长为1的正方体内.这个小正方体的体积为大正方体的体积的,故安全飞行的概率为.解答:解:由题知小蜜蜂的安全飞行范围为:以这个正方体的中心为中心且边长为1的正方体内.这个小正方体的体积为1,大正方体的体积为27,故安全飞行的概率为p=.故选C.点评:本题考查几何概型概率的求法,解题时要认真审题,注意小蜜蜂的安全飞行范围为:以这个正方体的中心为中心且边长为1的正方体内.。

概率论知识点整理及习题答案

概率论知识点整理及习题答案

概率论知识点整理及习题答案概率论知识点整理及习题答案第一章随机事件与概率1.对立事件与互不相容事件有何联系与区别?它们的联系与区别是:(1)两事件对立(互逆),必定互不相容(互斥),但互不相容未必对立。

(2)互不相容的概念适用于多个事件,但对立的概念仅适用于两个事件。

(3)两个事件互不相容只表示两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生。

而两个事件对立则表明它们有且仅有一个发生,即肯定了至少有一个发生。

特别地,=A、AU= 、AI=φ。

2.两事件相互独立与两事件互不相容有何联系与区别?两事件相互独立与两事件互不相容没有必然的联系。

我们所说的两个事件A、B相互独立,其实质是事件A是否发生不影响事件B发生的概率。

而说两个事件A、B互不相容,则是指事件A发生必然导致事件B不发生,或事件B发生必然导致事件A不发生,即AB=φ,这就是说事件A是否发生对事件B发生的概率有影响。

3.随机事件与样本空间、样本点有何联系?所谓样本空间是指:随机试验的所有基本事件组成的集合,常用来记。

其中基本事件也称为样本点。

而随机事件可看作是有样本空间中具有某种特性的样本点组成的集合。

通常称这类事件为复合事件;只有一个样本点组成的集合称为基本事件。

在每次试验中,一定发生的事件叫做必然事件,记作。

而一定不发生的事件叫做不可能事件,记作φ。

为了以后讨论问题方便,通常将必然事件和不可能事件看成是特殊的随机事件。

这是由于事件的性质随着试验条件的变化而变化,即:无论是必然事件、随机事件还是不可能事件,都是相对“一定条件”而言的。

条件发生变化,事件的性质也发生变化。

例如:抛掷两颗骰子,“出现的点数之和为3点”及“出现的点数之和大于33点”,则是不可能事件了;而“出现的点数之和大于3点”则是必然事件了。

而样本空间中的样本点是由试验目的所确定的。

例如:(1)={3,4,5,L,18}。

(2)将一颗骰子连续抛掷三次,观察六点出现的次数,其样本空间为 ={0,1,2,3}。

2022-2023学年北京市第十二中学高二上学期期末数学试题(解析版)

2022-2023学年北京市第十二中学高二上学期期末数学试题(解析版)

2022-2023学年北京市第十二中学高二上学期期末数学试题一、单选题1.一个袋中装有大小、质地相同的3个红球和3个黑球,从中随机摸出3个球,设事件A =“至少有2个黑球”,下列事件中,与事件A 互斥而不互为对立的是( ) A .都是黑球 B .恰好有1个黑球 C .恰好有1个红球 D .至少有2个红球【答案】B【分析】利用对立事件、互斥事件的定义直接求解即可.【详解】解:从装有大小和质地完全相同的3个红球和3个黑球的口袋内任取3个球, 在A 中,至少有2个黑球和都是黑球能同时发生,不是互斥事件,故A 错误,在B 中,至少有2个黑球和恰有1个黑球不能同时发生,是互斥而不对立事件,故B 正确, 在C 中,至少有2个黑球和恰有1个红球能同时发生,不是互斥事件,故C 错误, 在D 中,至少有2个黑球和至少有2个红球事件不能同时发生,是对立事件,故D 错误. 故选:B .2.若向量(1,1,),(1,2,1),(1,1,1)a b c λ=-=-=,满足条件()1c a b -⋅=-,则λ=( ) A .1- B .2- C .1 D .2【答案】B【分析】首先通过向量的减法的坐标运算可得()(0,2,1)c a λ-=-,再通过数量积运算即可得解. 【详解】根据向量的运算可得: ()(0,2,1)c a λ-=-,所以()012(2)(1)1c a b λ-⋅=⨯+⨯-+-⨯4131λλ=-+-=--=-,所以2λ=-, 故选:B3.椭圆2221x y +=的焦点坐标为( ) A .12(1,0),(1,0)F F - B .12(0,1),(0,1)F F -C .12,F F ⎛⎫⎫ ⎪⎪ ⎪⎪⎝⎭⎝⎭D .120,,F F ⎛⎛ ⎝⎭⎝⎭【答案】D【分析】根据题意可得22112x y +=,故该椭圆焦点在y 轴上,2211,2a b ==,求得22212c a b =-=即可得解.【详解】由2221x y +=可得22112x y +=,故该椭圆焦点在y 轴上,2211,2a b ==, 所以22212c a b =-=,22c =, 故焦点坐标为12220,,0,22F F ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故选:D4.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是( ) A .该地农户家庭年收入低于4.5万元的农户比率估计为6% B .该地农户家庭年收入不低于10.5万元的农户比率估计为10% C .估计该地农户家庭年收入的平均值不超过6.5万元D .估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间 【答案】C【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+==,故A 正确; 该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%+⨯==,故B 正确; 该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为0.100.140.2020.6464%50%++⨯==>,故D 正确;该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.6⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=(万元),超过6.5万元,故C 错误. 综上,给出结论中不正确的是C. 故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于⨯频率组距组距. 5.已知12,F F 是双曲线22146x y-=的两个焦点,点P 在双曲线上,若15PF =,则2PF =( )A .1或9B .3或7C .9D .7【答案】C【分析】由题知点P 在双曲线左支上,进而根据双曲线的定义求解即可;【详解】解:由题知,2,a b c ===因为P 在双曲线上,且152PF a c =<+=所以,点P 在双曲线左支上,由双曲线定义知2124PF PF a -==,故29PF =; 所以,29PF = 故选:C6.在空间直角坐标系中,已知三点(0,0,0),(1,2,1),(1,1,0)O A B -,若点C 在平面OAB 内,则点C 的坐标可能是( ) A .(1,1,3)-- B .(3,0,1)C .(1,1,2)D .(1,1,2)-【答案】B【分析】根据向量的运算可得(1,2,1)OA =,(1,1,0)OB =-,由OA ,OB 不共线,结合向量基本定理可得(,2,)OC OA OB λμλμλμλ=+=+-,求得C 点坐标为(,2,)λμλμλ+-,代入验算即可得解. 【详解】由(1,2,1)OA =,(1,1,0)OB =-,显然OA ,OB 不共线,根据向量基本定理可得(,2,)OC OA OB λμλμλμλ=+=+-, 故C 点坐标为(,2,)λμλμλ+-, 经验算只有B 选项符合条件, 此时1,2λμ==, 故选:B7.2||12x y y -=-表示的曲线为( ) A .两个半圆 B .一个圆 C .半个圆 D .两个圆【答案】A【分析】去方程中的绝对值符号,平方整理,再分类讨论方程表示的曲线即可得解. 【详解】依题意,||10x -≥,则有1x ≤-或1x ≥,当1x ≤-时,2222||1211(1)(1)(1)1x y y x y x y -=-⇔--=--⇔++-=, 此时方程表示以点O 2(-1,1)为圆心,1为半径的圆在直线x =-1及左侧的半圆, 当1x ≥时,2222||1211(1)(1)(1)1x y y x y x y -=-⇔-=--⇔-+-=, 此时方程表示以点O 1(1,1)为圆心,1为半径的圆在直线x =1及右侧的半圆, 如图,2||12x y y -=-.故选:A8.已知点A ,B 是椭圆2222:1(0)x y W a b a b+=>>长轴上的两个顶点,点P 在椭圆上(异于A ,B 两点),若直线,PA PB 斜率之积为43a ca -,则椭圆的离心率为( ) A .13B .14C .23D .34【答案】C【分析】根据题意可设P 点坐标为(,)m n ,则22221m n a b +=,即22222a n m a b-=-,由(,0),(,0)A a B a -,则2222243PA PBn n n b a ck k m a m a m a a a-⋅=⋅==-=+--,整理解方程即可. 【详解】设P 点坐标为(,)m n ,则22221m n a b +=,22222a n m a b-=-,不妨设(,0),(,0)A a B a -, 则22222222243PA PBn n n n b a ck k a n m a m a m a a a b-⋅=⋅===-=+---, 整理可得223440c ac a +-=,即23e 4e 40+-=,23e =或2e =-(舍), 故选:C9.已知圆22:(7)(1)2C x y -+-=和两点(0,),(0,)(0)A a B a a ->,若圆C 上存在点P ,使得90APB ∠=,则a 的最大值为( )A.B.C.D.【答案】C【分析】以AB 为直径的圆与圆C 有公共点,进而根据圆与圆的位置关系求解即可. 【详解】解:因为圆C 上存在点P ,使得90APB ∠=, 所以,以AB 为直径的圆与圆C 有公共点,因为以AB 为直径的圆的方程为222:O x y a +=,圆心为()0,0O ,r a = 因为圆C 的圆心为()7,1C,半径为R =所以r R OC r R -≤=+,即r R r R -≤+,所以,R r R ≤≤,即a ≤≤所以,a的最大值为故选:C10.如图,棱长为2的正方体1111ABCD A B C D -中,点E 是11D C 的中点,F 是侧面11ADD A 的中心,则F 到平面1EB C 的距离为( )A 26B 10C .32D 3【答案】A【分析】连接1A D ,证明1//A D 平面1CEB ,进而将其转化为D 到平面1EB C 的距离,再根据等体积法求解即可.【详解】解:连接1A D ,因为F 是侧面11ADD A 的中心, 所以1F A D ∈,因为,由正方体的性质知1111//,A B CD A B CD =, 所以,11A B CD 是平行四边形, 所以11//A D CB ,因为1A D ⊄平面1CEB ,1CB ⊂平面1CEB 所以1//A D 平面1CEB ,所以,F 到平面1EB C 的距离与D 到平面1EB C 的距离相等, 设D 到平面1EB C 的距离为h1CEB 中,115,22EB CE BC ==11225262CEB S =⨯-△ 因为111111133D EB C B E CEB C CED D V V S h S B C --==⋅⋅=△△,1136111423323CED S B C ⨯⨯===⋅△,解得266h =所以,F 到平面1EB C 26故选:A11.已知椭圆22:14x E y +=,直线l 与两个坐标轴分别交于点M ,N .且与椭圆E 有且只有个公共点,O 是坐标原点,则OMN 面积的最小值是( ) A .2B .4C .2D .2【答案】D【分析】根据题意首先设直线l 方程为y kx b =+,和椭圆方程联立结合韦达定理求得参数k 和b 之间的关系,利用面积公式结合基本不等式求最值即可得解. 【详解】若要直线l 与两个坐标轴分别交于点M ,N , 则直线l 的斜率存在,故设直线l 方程为y kx b =+, 代入到椭圆方程2214x y +=可得222(41)8440k x kbx b +++-=,根据提意可得222222644(41)(44)6416160k b k b k b ∆=-+-=-+=, 所以2241k b +=,根据题意对方程y kx b =+,0,0k b ≠≠, 所以令0x =得y b =,令0y =得bx k=-,所以2211114111422222OMNb b k SOM ON b k k k k k+=⋅=⋅-===+ 111(4)422k k k k=+⋅=, 当且仅当14k k=时取等,所以OMN 面积的最小值是2. 故选:D12.设圆22:2O x y +=,直线:40l x y +-=,P 为l 上的动点.过点P 作圆O 的两条切线,PA PB ,切点为,A B ,给出下列四个结论:①当四边形OAPB 为正方形时,点P 的坐标为(2,2)②||PA 的取值范围为)+∞③当PAB 为等边三角形时,点P 坐标为(1,3) ④直线AB 恒过定点11,22⎛⎫⎪⎝⎭其中正确结论的个数是( ) A .1 B .2 C .3 D .4【答案】B【分析】对于①,当四边形OAPB 为正方形时,利用||||||||OA OB AP BP ===,求出||2PO =,再设00(,)P x y ,利用004y x =-,解方程||2PO =,可知①不正确;对于②,设00(,)P x y ,利用004y x =-, ||AP ==||AP ≥②正确对于③,根据PAB 为等边三角形,可得30APO BPO ∠=∠=,||OP =P 的坐标,利用||OP =对于④,设出点P 的坐标,求出以||PO 为直径的圆的方程,利用两圆的方程相减得到公共弦AB 的方程,将12x y ==代入直线AB 的方程恒成立,可得答案. 【详解】对于①,当四边形OAPB 为正方形时,||||||||OA OB AP BP ===,又圆22:2O x y +=的圆心(0,0)O ,半径r =所以||2PO ==, 设点00(,)P x y ,则004y x =-,所以||PO ===2=,化简得200460x x -+=,该方程的判别式16240∆=-<,该方程无解,所以不存在点P 使得四边形OAPB 为正方形,故①不正确;对于②,由①可知,||AP ==≥PA 的取值范围为)+∞,故②正确; 对于③,设点00(,)P x y ,则004y x =-, 当PAB 为等边三角形时,可知60APB ∠=,又OP 平分APB ∠,所以30APO BPO ∠=∠=,在直角三角形PAO 中,由于||OA =所以||sin ||OA APO OP ∠=,即2sin30||OP =,所以||OP =又点00(,4)P x x -=化简得20(2)0x -=,解得02x =,所以0042y x =-=,则(2,2)P ,故③不正确;对于④,设点00(,)P x y ,则004y x =-,00(,4)P x x -,以||PO 为直径的圆的圆心为004(,)22x x -,半径为||2PO =所以以||PO 为直径的圆的方程为222200004(4)()()224x x x x x y -+--+-=, 化简得2200(4)0x y x x x y +---=,联立220022(4)02x y x x x y x y ⎧+---=⎨+=⎩,得00(4)2x x x y +-=, 所以直线AB 的方程为:00(4)2x x x y +-=,将12x y ==代入直线AB 的方程恒成立, 故直线AB 恒过定点11,22⎛⎫⎪⎝⎭,故④正确.所以正确的答案有2个, 故选:B.二、填空题13.一组数据按从小到大的顺序排列为1,4,4,x ,7,8(其中7x ≠),若该组数据的中位数是众数的54倍,则该组数据的第60百分位数是__________.【答案】6【分析】先求出众数,进而求得中位数,解出6x =,再由百分位数的求法求解即可. 【详解】由题意知,众数是4,则中位数为5454⨯=,则452x+=,解得6x =,又660% 3.6⨯=,则第60百分位数是6. 故答案为:6.14.过椭圆22143x y +=的焦点且垂直于长轴的直线被椭圆截得线段的长度为________.【答案】3【分析】根据题意即求通径大小,先求1c =,令1x =代入椭圆方程求得32y =±即可得解.【详解】由2221c a b =-=,故1c =, 不妨令1x =,代入22143x y +=可得294y =, 所以32y =±,故弦长为3.故答案为:315.已知直线12:210,:(1)10l x my l m x y --=--+=,若12l l //,则m =________. 【答案】2【分析】由题知()210m m -+-=,进而解方程并检验即可得答案. 【详解】解:因为直线12:210,:(1)10l x my l m x y --=--+=平行, 所以,()210m m -+-=,即220m m --=,解得:1m =-或2m = 当1m =-时,12:210,:210l x y l x y +-=--+=,显然重合,舍; 当2m =时,121:0,:102l x y l x y --=-+=,满足12l l //. 所以,2m = 故答案为:2 16.已知双曲线2222:1(0,0)x y C a b a b -=>>经过点P ⎫⎪⎝⎭,双曲线C 的离心率为53,则双曲线C 的焦点到其渐近线的距离为_______. 【答案】4【分析】利用已知条件先求出双曲线的标准方程,找出一个焦点和一条渐近线, 利用点到直线距离公式求解即可.【详解】由双曲线经过点P ⎫⎪⎝⎭,则222221a b ⎝⎭-=,① 双曲线离心率为:53c e a ==,②又222+=a b c ,③联立①②③解得:2229,16,25a b c ===, 所以双曲线标准方程为:221916x y -= 所以双曲线的一个焦点为()5,0, 一条渐近线为430x y -=,所以双曲线C 的焦点到其渐近线的距离为:4d ==,故答案为:4.17.已知椭圆22195x y +=的左右焦点分别为1F ,2F ,P 是椭圆上的一点,且1260F PF ︒∠=,则21PF F 的面积是________. 【解析】根据椭圆的定义,得到12PF PF +的值,再由1260F PF ︒∠=,在21PF F 中,用余弦定理,求出12PF PF ,根据三角形面积公式,即可得出结果.【详解】根据椭圆定义,可得1226PF PF a +==,且椭圆的焦距为124F F ==,又1260F PF ︒∠=,在21PF F 中,由余弦定理,可得222121212121cos 22PF PF F F F PF PF PF +-∠==, 所以()22221121212122PF PF PF PF F F PF PF +--=, 即211236162122PF PF PF PF --=,所以21203PF PF =, 因此21PFF的面积是1221211120sin 223PF F S PF PF F PF =∠=⨯=. . 18.如图,在直三棱柱111ABC A BC 中,11AB BB ==,BC =90ABC ∠=︒,CH xCB =,1(01,01)CP yCB x y =<≤≤≤.记(,)f x y AH HP =+,给出下列四个结论:①对于任意点H ,都存在点P ,使得平面AHP ⊥平面11A B P ; ②(,)f x y 的最小值为3;③满足(,)3f x y =的点P 有无数个;④当(,)f x y 取最小时,过点A ,H ,P 作三棱柱的截面,则截面面积为154.其中所有正确结论的序号是________.【答案】①②③④【分析】过点H 作01HP B C ⊥,根据线面垂直判定定理,面面垂直判定定理证明平面0AHP ⊥平面110A B P ,由此判断①;作展开图,利用平面几何结论判断②,③;确定过点A ,H ,P 作三棱柱的截面,解三角形计算截面面积,判断命题④.【详解】因为三棱锥111ABC A B C 为直三棱锥,所以1BB ⊥平面111A B C ,又11A B ⊂平面111A B C ,所以111BB A B ⊥,又90ABC ∠=︒,所以11190A B C ∠=︒,所以1111A B B C ⊥, 1111BB B C B =,111,BB B C ⊂平面11BB C C ,所以11A B ⊥平面11BB C C ,对于任意点H ,过点H 作01HP B C ⊥,垂足为0P ,因为11A B ⊥平面11BB C C ,0HP ⊂平面11BB C C ,所以110A B HP ⊥,又1111B CA B B =,111,B C A B ⊂平面110A B P ,所以0HP ⊥平面110A B P ,又0HP ⊂平面0AHP ,所以平面0AHP ⊥平面110A B P ; 所以对于任意点H ,都存在点P ,使得平面AHP ⊥平面11A B P ;命题①正确;将ABC 绕BC 翻折到平面1BB C 内,则AH HP +的最小值为点A 到直线1B C 的距离,又11AB BB ==,3BC =,90ABC ∠=︒,190B BC ∠=,所以112AC CB AB ===,所以点A 到直线1B C 的距离为3,所以(,)f x y 的最小值为3;②正确;当(,)f x y 取最小时,P 为1B C 的中点,因为1AB C 为等边三角形,点B 为线段1AB 的中点,所以H 为1AB C 的重心,故13BH BC =,在平面11BCC B 中,延长HP 交11B C 于点M ,因为1PC PB =,11,PB M PCH B PM HPC ∠=∠∠=∠,所以1PB M PCH ≅,故123B M CH ==,取1B M 的中点Q ,N 为11A C 的中点,则1//MN AQ ,因为1//BH B Q ,1=BH B Q ,所以四边形1BB QH 为平行四边形,所以11//,HQ BB HQ BB =,又1111,//AA BB AA BB =,所以1//A Q AH ,所以//MN AH ,故过点A ,H ,P 的三棱柱的截面为梯形AHMN ,又2323133AH ⎛⎫=+= ⎪ ⎪⎝⎭,11323MN A Q ==, 22233MH MQ HQ =+=, 22112AN AA A N =+=,在下图中过点M 作MG AH ⊥,设,HG x AG y ==, 因为222MH HG AG =+,()222AN AG MN NG =-+, 所以22243x y MH +==,22323x y ⎛⎫=++ ⎪ ⎪⎝⎭, 所以36x =,52y =, 所以四边形AHNM 的面积35152224MN AH S AG +=⋅=⨯=, 故过点A ,H ,P 的截面面积为154.命题④正确;当52HB ≥时,32AH ≥,则12AH HP AH HB AH +≤+≤,在下图中过点H 作HR BC ⊥,垂足为R ,则AH HP AH HR +≥+, 又2AH HR AH HC +<+<,23AH ≥,故对于任意的点H ,当52HB ≥时,都存在对应的点P ,满足3AH HP +=,故满足(,)3f x y =的点P 有无数个;命题③正确;故答案为:①②③④.【点睛】对于求空间中的线段和的距离最小值的问题,一般通过转化为平面图形中的线段和问题加以解决.三、解答题19.为贯彻十九大报告中“要提供更多优质生态产品以满足人民日益增长的优美生态环境需要”的要求,某生物小组通过抽样检测植物高度的方法来检测培育的某种植物的生长情况,现分别从,,A B C 三块试验田中各随机抽取7株植物测量高度,数据如下表(单位:厘米):假设所有植株的生产情况相互独立.从,,A B C 三组各随机选1株,A 组选出的植株记为甲,B 组选出的植株记为乙,C 组选出的植株记为丙. (1)求丙的高度小于15厘米的概率; (2)求甲的高度大于乙的高度的概率;(3)表格中所有数据的平均数记0μ.从,,A B C 三块试验田中分别再随机抽取1株该种植物,它们的高度依次14,16,15(单位:厘米).这3个新数据与表格中的所有数据构成的新样本的平均数记为1μ,试比较0μ和1μ的大小.(结论不要求证明) 【答案】(1)27(2)1049(3)01μμ<【分析】(1)设事件i A 为“甲是A 组的第i 株植物”,事件i B 为“乙是B 组的第i 株植物”, 事件i C 为“甲是C 组的第i 株植物”,其中1,2,3,,7i =,设事件D 为“丙的高度小于15厘米”,利用互斥事件求出概率即可;(2)由(1)中的事件分析直接求出“甲的高度大于乙的高度” 的概率, (3)依题意分别计算出0μ和1μ比较即可.【详解】(1)设事件i A 为“甲是A 组的第i 株植物”,事件i B 为“乙是B 组的第i 株植物”,事件i C 为“甲是C 组的第i 株植物”,其中1,2,3,,7i =,由题意得:1()()(),1,2,3,,77i i i P A P B P C i ====,设事件D 为“丙的高度小于15厘米”, 由题知12D C C =⋃,且12,C C 互斥, 所以丙的高度小于15厘米的概率为: ()()()()1212112777P D P C C P C P C ==+=+=. (2)设事件E 为“甲的高度大于乙的高度”, 所以甲的高度大于乙的高度的概率为:()()()()()()()415161115262P E P A B P A B P A B P A B P A B P A B =+++++ ()()()()72637374P A B P A B P A B P A B ++++11111111117777777777=⨯+⨯+⨯+⨯+⨯ 11111111117777777777+⨯+⨯+⨯+⨯+⨯ 1110107749=⨯⨯=.(3)由题意得:01(1011121314151612131421μ=⨯+++++++++ 1516171813141516171819)14.67+++++++++++≈,11(1011121314151612131421μ=⨯+++++++++ 1516171813141516171819141615)14.71++++++++++++++≈,所以01μμ<.20.已知圆C 的圆心在直线30x y -=上,且经过点(1,3),(1,5)A B -. (1)求圆C 的标准方程;(2)过点(2,1)P 的直线l 与圆C 相交于,M N 两点,且||MN =l 的方程. 【答案】(1)()()22134x y -+-= (2)34100x y +-=或2x =【分析】(1)由已知设出圆心的坐标(),3a a ,再求出AB 的中点M ,利用AB CM ⊥求出a的值,进而可以求出圆心和半径,即可解决问题;(2)先判断直线的斜率是否存在,存在的话根据点斜式方程设出直线方程,求出圆心到直线的距离,然后利用2222MN R d ⎛⎫=+ ⎪⎝⎭求出直线的斜率即可解决问题.【详解】(1)因为圆C 的圆心在直线30x y -=上, 所以设圆C 的圆心为:(),3a a , 由(1,3),(1,5)A B -, 所以AB 的中点()0,4M , 由题知:AB CM ⊥, 所以1AB CM k k ⋅=-, 即()53341110a a --⋅=----,解得1a =,所以圆心为()1,3C ,半径2R AC ===所以圆C 的标准方程为:()()22134x y -+-=.(2)①当直线l 的斜率不存在时,因为直线l 过点(2,1)P , 所以方程为:2x =,代入()()22134x y -+-=中解得:3y =±(()||33MN =-=满足题意;②当直线l 的斜率存在时,设直线l 方程为:1(2)210y k x kx y k -=-⇔--+=, 由圆心()1,3C 到直线l 的距离为:d ==由2222MN R d ⎛⎫=+ ⎪⎝⎭,所以2222=+⎝⎭,解得:34k =-,所以直线l 的方程为:34100x y +-=, 综上,直线l 的方程为:34100x y +-=或2x =.21.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的菱形,侧面PAD ⊥底面ABCD ,60BCD ∠=︒,2PA PD ==,E 为BC 的中点,点Q 在侧棱PC 上.(1)求证:AD PB ⊥;.(2)若Q 是PC 的中点,求二面角E DQ C --的余弦值; (3)若PQPCλ=,当//PA 平面DEQ 时,求λ的值.【答案】(1)见解析;(221;(3)23λ=.【详解】分析:(1)先利用等腰三角形的“三线合一”和面面垂直的性质得到线面垂直,再利用菱形的对角线垂直得到线线垂直,进而建立空间直角坐标系,利用两直线的方向向量数量积为0进行求解;(2)先求出两平面的法向量,再利用法向量的夹角公式进行证明;(3)利用三点共线设出Q 的坐标,分别求出平面的法向量和直线的方向向量,利用两向量数量积为0进行求解. 详解:(1)取AD 的中点O ,连结OP ,OB ,BD , ∵ PA PD =, ∴ PO AD ⊥,∵ 侧面PAD ⊥底面ABCD , 平面PAD ⋂平面ABCD AD =, ∴ PO ⊥底面ABCD ,∵ 底面ABCD 是菱形,60BCD ∠=︒, ∴ BA BD =,BO AD ⊥,以O 为原点,分别以OA ,OB ,OP 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系O xyz -, 由题意可得()0,0,0O ,()1,0,0A ,()3,0B ,()3,0C -,()1,0,0D -,()3,0E -,()0,0,1P ,()2,0,0AD =-,()0,3,1PB -,∵ ·0AD PB =,∴ AD PB ⊥.(2)由题意,12Q ⎛⎫- ⎪ ⎪⎝⎭, 设平面DQC 的一个法向量()1,,n x y z =,()DC =-,12DQ ⎛⎫= ⎪ ⎪⎝⎭,由11·0·0n DC n DQ ⎧=⎪⎨=⎪⎩,即0102x z ⎧-=+=,令x =1y =,z =(13,1,n =,又平面EDQ 的一个法向量()21,0,0n =, 由121212·21cos ,7n n n n nn ==⋅, 右图可知,二面角E DQ C --. (3)∵ PQ PC λ=,01λ<<, 易得()2,1Q λλ--,设平面DEQ 的一个法向量()3,,n xy z =, ()0,DE =,()2,1DQ λλ=-+-,由33·0·0n DE n DQ ⎧=⎪⎨=⎪⎩,即()()02110x y z λλ⎧=⎪⎨-++-=⎪⎩,取21z λ=-,得()31,0,21n λλ=--, 又()1,0,1PA =-,∵ //PA 平面DEQ ,∴ 3·0PAn =, 即()()()11210λλ-+--=,得23λ=, 所以当23λ=时,//PA 平面DEQ . 点睛:本题考查空间中垂直的转化、空间向量在立体几何中的应用等知识,意在考查学生的空间想象能力和基本计算能力.22.已知椭圆W 以坐标轴为对称轴,且经过两点3(2,0),1,2A B ⎛⎫⎪⎝⎭.(1)求椭圆W 的方程;(2)设过点(2,1)P 的直线l 交椭圆W 于C D 、两点,过点D 作垂直于x 轴的直线,与线段AB 交于点M ,与AC 交于点E ,再从条件①、条件②、条件③中选择一个作为已知.求||||MD ME 的值. 条件①:直线l 的斜率为1;条件②:直线l 过点B 关于y 轴的对称点; 条件③:直线l 过坐标原点O . 【答案】(1)22143x y += (2)1【分析】(1)由题设()221,0,mx ny m o n m n +=>>≠,进而待定系数求解即可;(2)条件①:由题知直线l 的方程为1y x =-,进而联立方程221143y x x y =-⎧⎪⎨+=⎪⎩,设()()1122,,,C x y D x y 得121288,77x x x x +==-,再根据AB 方程为()322y x =--,AC 方程为()1122y y x x =--得()223,22M x x ⎛⎫-- ⎪⎝⎭,()12212,2y x E x x ⎛⎫- ⎪-⎝⎭,再计算2852x MD -=,()()()12158222x x ME x --=-,再结合韦达定理求比值即可;条件②:由题知,点B 关于y 轴的对称点为31,2⎛⎫- ⎪⎝⎭,直线l 的方程为1463y x =-+,进而结合①的方法求解即可;条件③:由题知直线l 的方程为12y x =,进而联立方程2212143y x x y ⎧=⎪⎪⎨⎪+=⎪⎩得,D C ⎛⎭⎝⎭,再求得3M ⎫⎪⎭,E ,再求距离,比值即可. 【详解】(1)解:因为椭圆W 以坐标轴为对称轴,且经过两点3(2,0),1,2A B ⎛⎫⎪⎝⎭所以,设椭圆W 的方程为()2210,0,mx ny m n m n +=>>≠,所以41914m m n =⎧⎪⎨+=⎪⎩,解得11,43m n == 所以,椭圆W 的方程为22143x y += (2)解:条件①:直线l 的斜率为1;因为过点(2,1)P 的直线l 交椭圆W 于C D 、两点,所以,直线l 的方程为12y x -=-,即1y x =-, 联立方程221143y x x y =-⎧⎪⎨+=⎪⎩得27880x x --=,设()()1122,,,C x y D x y 所以121288,77x x x x +==-, 因为AB 方程为()322y x =--,AC 方程为()1122y y x x =-- 所以()223,22M x x ⎛⎫-- ⎪⎝⎭,()12212,2y x E x x ⎛⎫- ⎪-⎝⎭所以()2222853524222x MD x y x -=---=-+=, ()()()()()12122112582322222y x x x ME x x x ---=+-=--, 所以()()()()()()()221112212121212185852816510258251081658222x x x MD x x x x ME x x x x x x x x x -----+===----+---()()221212212122228888165228165277718885102162510162777x x x x x x x x x x x x x x ⎛⎫⨯--⨯-+-+ ⎪+--+⎝⎭====-+++⎛⎫-+⨯--⨯++ ⎪⎝⎭所以1MDME =条件②:直线l 过点B 关于y 轴的对称点;由题知,点B 关于y 轴的对称点为31,2⎛⎫- ⎪⎝⎭, 所以直线l 的方程为()11421663y x x =--+=-+, 所以联立方程221463143y x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩得274110x x --=,设()()1122,,,C x y D x y 所以1212411,77x x x x +==-, 因为AB 方程为()322y x =--,AC 方程为()1122y y x x =-- 所以()223,22M x x ⎛⎫-- ⎪⎝⎭,()12212,2y x E x x ⎛⎫- ⎪-⎝⎭所以()()2222233144522226333MD x y x x x =---=--+-=-+, ()()()()()()()1212212211114222810336322222262x x y x x x ME x x x x x ⎛⎫-+- ⎪---⎝⎭=+-=+-=---, 所以()()()212121221211451016820338101620281062x MD x x x x ME x x x x x x x -++--==--+---()()221221212122224111210682061068207771121148166206816610777x x x x x x x x x x x x x x ⎛⎫⨯+-⨯--- ⎪++--⎝⎭====-+++⎛⎫-⨯--⨯++ ⎪⎝⎭所以1MDME =条件③:直线l 过坐标原点O .由题知直线l 的方程为12y x =, 所以联立方程2212143y x x y ⎧=⎪⎪⎨⎪+=⎪⎩得23x =,解得x=所以,交点坐标为,⎛ ⎭⎝⎭因为过点D 作垂直于x 轴的直线,与线段AB 交于点M ,与AC交于点E ,所以,D C ⎛ ⎭⎝⎭因为AB 方程为()322y x =--,AC方程为))22y x x -=-所以3M ⎫⎪⎭,)2E ⎫=⎪⎪⎭所以33MD ==-,633ME ==-,所以1MDME =23.对于集合A ,定义函数1,()1,A x A f x x A ∉⎧=⎨-∈⎩,对于两个集合A ,B ,定义运算A *B ={x |fA (x )fB (x )=﹣1}.(1)若A ={1,2,3},B ={2,3,4,5},写出fA (1)与fB (1)的值,并求出A *B ;(2)证明:*运算具有交换律和结合律,即A *B =B *A ,(A *B )*C =A *(B *C ).【答案】(1)fA (1)=﹣1,fB (1)=1,A *B ={1,4,5};(2)证明见详解.【分析】(1)由新定义的元素即可求出fA (1)与fB (1)的值,再分情况求出A *B ;(2)先证明fA *B (x )=fA (x )fB (x )即可证明出*运算具有交换律和结合律.【详解】(1)∵A ={1,2,3},B ={2,3,4,5},∴fA (1)=﹣1,fB (1)=1,由运算定义知:只需保证元素属于集合A ∪B ,不属于集合A ∩B ,即有A *B ={1,4,5};(2)先证明fA *B (x )=fA (x )fB (x ):①当x ∈A 且x ∈B 时,fA (x )=fB (x )=﹣1,所以x ∉A *B .所以fA *B (x )=1,所以fA *B (x )=fA (x )fB (x ),②当x ∈A 且x ∉B 时,fA (x )=﹣1,fB (x )=1,所以x ∈A *B .所以fA *B (x )=﹣1,所以fA *B (x )=fA (x )fB (x ),③当x ∉A 且x ∈B 时,fA (x )=1,fB (x )=﹣1.所以x ∈A *B .所以fA *B (x )=﹣1.所以fA *B (x )=fA (x )fB (x ).④当x ∉A 且x ∉B 时,fA (x )=fB (x )=1.所以x ∉A *B .所以fA *B (x )=1.所以fA *B (x )=fA (x )fB (x ).从而可得fA *B (x )=fA (x )fB (x );因为A *B ={x |fA (x )fB (x )=﹣1},B *A ={x |fB (x )fA (x )=﹣1}={x |fA (x )fB (x )=﹣1},所以A*B=B*A.因为(A*B)*C={x|fA*B(x)fC(x)=﹣1}={x|fA(x)fB(x)fC(x)=﹣1},A*(B*C)={x|fA(x)fB*C(x)=﹣1}={x|fA(x)fB(x)fC(x)=﹣1},所以(A*B)*C=A*(B*C).。

巧选例题辨析概率统计中几个容易混淆的概念

巧选例题辨析概率统计中几个容易混淆的概念

巧选例题辨析概率统计中几个容易混淆的概念作者:蔡鸣晶来源:《职业教育研究》2012年第07期摘要:对概率统计中几个容易混淆的概念:频率与概率、互不相容事件与相互独立事件、互不相容事件与相互对立事件、多个事件两两独立与相互独立、条件概率与乘积概率等举例辨析。

在概率统计教学过程中,选取既具有实用背景又能阐明基本概念、能够提高学生兴趣的例题,能够加强学生对知识理解的准确性和完善性,提高学生的学习效果和职业能力。

关键词:例题;概率统计;概念辨析;频率;概率;职业素质中图分类号:G712 文献标识码:A 文章编号:1672-5727(2012)07-0095-02概率统计是研究随机现象的统计规律性的数学学科,是高等学校理、工、管理类专业一门重要的基础理论课,也是高等职业院校一门重要的职业素质课程。

它的思想方法与学生以往接触过的任何一门学科均有所不同。

在概率统计中存在许多容易混淆的概念,如不能认真区分,仔细加以甄别,就难以正确理解这些重要概念,在应用时就容易出现各种各样的错误。

学生在学习这门课的过程中普遍感到概念难以理解,思维难以展开。

因此,教师在教学过程中对那些容易使学生混淆的内容一定要提出来特别强调,消除学生对这些内容理解的困难。

对于这些内容如果能精心选择适当的例子加以解释说明,会得到事半功倍的效果。

下面举例说明。

频率与概率定义1:在相同条件下重复n次实验,事件A发生的次数m与实验总次数n的比值称为频率。

定义2:大量重复进行同一试验时,事件A发生的频率总是接近某一常数p,并在它附近摆动,这个常数p叫做事件A的概率。

两者之间的关系:概率来源于频率,它是大量独立重复试验时频率的稳定值。

因此,频率是概率的先导,而概率是频率的抽象和发展。

频率在一定程度上可以反映随机事件发生的可能性的大小,但频率本身是随机的,在实验前不能确定,无法从根本上刻画事件发生可能性的大小。

概率是随机事件发生的可能性大小的数量反映,是事件在大量重复实验中频率逐渐稳定后的值,即可以用大量重复实验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同。

人教A版高中数学必修三试卷3.1.3概率的基本性质

人教A版高中数学必修三试卷3.1.3概率的基本性质

高中数学学习材料金戈铁骑整理制作3.1.3概率的基本性质A 组一、选择题1.下列说法正确的是( )A .互斥事件一定是对立事件,对立事件不一定是互斥事件B .互斥事件不一定是对立事件,对立事件一定是互斥事件C .事件B A 、中至少有一个发生的概率一定比B A 、中恰有一个发生的概率大D .事件B A 、同时发生的概率一定比B A 、中恰有一个发生的概率小2.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A.至少有一个黒球与都是红球B.至少有一个黒球与都是黒球C.至少有一个黒球与至少有1个红球D.恰有1个黒球与恰有2个黒球3.某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽验一只是正品(甲级)的概率为( )A .0.95B .0.97C .0.92D .0.084.把红,黄,蓝,白4张纸牌随机地分发给甲,乙,丙,丁四个人,每人一张,则事件"甲分得红牌"与事件"丁分得红牌"是( )A .不可能事件B .互斥但不对立事件C .对立事件D .以上答案都不对5.从集合{}543,21,,,中随机取出一个数,设事件A 为“取出的数是偶数”, 事件B 为“取出的数是奇数”,则事件A 与B ( )A .是互斥且是对立事件B .是互斥且不对立事件C .不是互斥事件D .不是对立事件6.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥7.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( )A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶8.掷两颗相同的均匀骰子(各个面分别标有1,2,3,4,5,6),记录朝上一面的两个数,那么互斥而不对立的两个事件是()A. “至少有一个奇数”与“都是奇数”B. “至少有一个奇数”与“至少有一个偶数”C.“至少有一个奇数”与“都是偶数”D.“恰好有一个奇数”与“恰好有两个奇数”9.出下列命题,其中正确命题的个数有()①有一大批产品,已知次品率为010,从中任取100件,必有10件次品;②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是37;③某事件发生的概率是随着试验次数的变化而变化的;④若()()()1P A B P A P B=+=,则,A B是对立事件。

2020-2021高中数学北师大版一课时素养评价 四十六随机事件的运算含解析

2020-2021高中数学北师大版一课时素养评价 四十六随机事件的运算含解析

2020-2021学年高中数学北师大版新教材必修一课时素养评价四十六随机事件的运算含解析温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

课时素养评价四十六随机事件的运算(15分钟30分)1。

学校将5个不同颜色的奖牌分给5个班,每班分得1个,则事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌"是()A。

对立事件 B.不可能事件C.互斥但不对立事件D。

不是互斥事件【解析】选C。

由题意,1班和2班不可能同时分得黄色的奖牌,因而这两个事件是互斥事件;又1班和2班可能都得不到黄色的奖牌,故这两个事件不是对立事件,所以事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌"是互斥但不对立事件.2.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一弹击中飞机},D={至少有一弹击中飞机},下列关系不正确的是() A.A⊆D B.B∩D=∅C.A∪C=DD.A∪B=B∪D【解析】选D。

“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,所以A∪B≠B∪D。

3.某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4";事件D:“击中环数大于0且小于4",则正确的关系是()A.A和B为对立事件B。

B和C为互斥事件C。

C与D是对立事件D.B与D为互斥事件【解析】选D。

由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环"可能发生,所以事件C和D不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D为互斥事件.4。

人教A版高中数学必修二 第十章概率复习课 作业(含答案)

人教A版高中数学必修二 第十章概率复习课 作业(含答案)

人教A版高中数学必修二第十章概率复习课作业11.任意抛两枚一元硬币,记事件A=“恰好一枚正面朝上”;B=“恰好两枚正面朝上”;C=“恰好两枚正面朝下”;D=“至少一枚正面朝上”;E=“至多一枚正面朝上”,则下列事件为对立事件的是()A.A与BB.C与DC.B与CD.C与E2.某人忘了电话号码的最后一个数字,因而他随意拨号,假设拨过的号码不再重复,若用A i=“第i次拨号接通电话”,i=1,2,3.则事件第3次拨号才接通电话可表示为,拨号不超过3次而接通电话可表示为.3.甲、乙、丙三人参加某电视台的一档节目,他们都得到了一件精美的礼物.其过程是这样的:墙上挂着两串礼物(如图),每次只能从其中一串的最下端取一件,直到礼物取完为止.甲第一个取得礼物,然后,乙、丙依次取得第2件、第3件礼物.事后他们打开这些礼物仔细比较发现礼物B最精美,那么取得礼物B可能性最大的是.4.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是16,记事件A为“向上的点数是奇数”,事件B为“向上的点数不超过3”,则概率P(A∪B)=()A.12B.13C.23D.565.某医院一天要派出医生下乡义诊,派出的医生人数及其概率如下表所示:人数012345人及5人以上概率0.10.160.30.20.20.04(1)求派出医生至多2人的概率;(2)求派出医生至少2人的概率.答案:A中,A与B不能同时发生,但能同时不发生,是互斥但不对立事件,故A错误;在B中,C 与D不能同时发生,也不能同时不发生,是对立事件,故B正确;在C中,B与C不能同时发生,但能同时不发生,是互斥但不对立事件,故C错误;在D中,C与E能同时发生,不是互斥事件,故D错误.A3A1∪ 1A2∪ 1 2A3,共有三种情况,甲C,乙A,丙B;(2)甲A,乙B,丙C;(3)甲A,乙C,丙B.可见,取得礼物B可能性最大的是丙.抛掷一枚质地均匀的骰子,向上的一面出现任意一种点数的概率都是16,∴P(A)=36 12,P(B)=36 12,P(AB)=26 13,P(A∪B)=P(A)+P(B)-P(AB)=12 12 13 23.故选C.“不派出医生”为事件A,“派出1名医生”为事件B,“派出2名医生”为事件C,“派出3名医生”为事件D,“派出4名医生”为事件E,“派出5名及5名以上医生”为事件F,事件A,B,C,D,E,F 彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.2,P(E)=0.2,P(F)=0.04.(1)“派出医生至多2人”的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)方法一“派出医生至少2人”的概率为P(C∪D∪E∪F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74.方法二“派出医生至少2人”的概率为1-P(A∪B)=1-0.1-0.16=0.74.人教A版高中数学必修二第十章概率复习课作业21.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.12B.13C.14D.162.在1,3,4,5,8路公共汽车都要停靠的一个站(假定这个站一次只能停靠一辆汽车),有一位乘客等候4路或8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于()A.12B.23C.35D.253.《易经》是中国传统文化中的精髓,如图是易经八卦图(含乾、坤、巽、震、坎、離、艮、兑八卦),每一卦由三根线组成(—表示一根阳线,——表示一根阴线),从八卦中任取一卦,这一卦的三根线中恰有2根阳线和1根阴线的概率为()A.18B.14C.38D.124.种植两株不同的花卉,若它们的成活率分别为p和q,则恰有一株成活的概率为()A.pqB.p+qC.p+q-pqD.p+q-2pq5.在某道路A,B,C三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒.某辆车在这条道路上匀速行驶,则三处都不停车的概率为()A.21192B.25192C.35192D.355766.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗卫星预报准确的概率是.7.甲、乙、丙三人一起玩“黑白配”游戏:甲、乙、丙三人每次都随机出“手心(白)”、“手背(黑)”中的某一个手势,当其中一个人出示的手势与另外两人都不一样时,这个人胜出;其他情况,不分胜负.则一次游戏中甲胜出的概率是.8.甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率.(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一所学校的概率.9.甲、乙二人进行一次围棋比赛,一共赛5局,约定先胜3局者获得这次比赛的胜利,同时比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.(1)求再赛2局结束这次比赛的概率;(2)求甲获得这次比赛胜利的概率.答案:1,2,3,4中任取2个不同的数有以下六种情况:(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足取出的2个数之差的绝对值为2的有(1,3),(2,4),故所求概率是26 13.,在该问题中基本事件总数为5,这位乘客等候的汽车首先到站这个事件包含2个基本事件,故所求概率为25.,基本事件总数n=8,这一卦的三根线中恰有2根阳线和1根阴线包含的基本事件个数m=3,∴所求概率为P=38.故选C.p(1-q)+(1-p)q=p+q-2pq.,每个交通灯开放绿灯的概率分别为512,712,34.在这条道路上匀速行驶,则三处都不停车的概率为512 712 34 35192.902甲、乙、丙预报准确依次记为事件A,B,C,不准确记为事件 , , ,则P(A)=0.8,P(B)=0.7,P(C)=0.9,P( )=0.2,P( )=0.3,P( )=0.1,至少两颗预报准确的事件有AB ,A C, BC,ABC,这四个事件两两互斥.∴至少两颗卫星预报准确的概率为P=P(AB )+P(A C)+P( BC)+P(ABC)=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.7.,甲、乙、丙出的方法种数都有2种,所以总共有8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为28 14.甲校2名男教师分别用A,B表示,1名女教师用C表示;乙校1名男教师用D表示,2名女教师分别用E,F表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种.从中选出2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,所以选出的2名教师性别相同的概率为P=49.(2)从甲校和乙校报名的6名教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出2名教师来自同一所学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种,所以选出的2名教师来自同一所学校的概率为P=615 25.A i表示事件“第i局甲获胜”,i=3,4,5,B j表示事件“第j局乙获胜”,j=3,4,5.(1)记A表示事件“再赛2局结束比赛”.A=(A3A4)∪(B3B4).由于各局比赛结果相互独立,故P(A)=P((A3A4)∪(B3B4))=P(A3A4)+P(B3B4)=P(A3)P(A4)+P(B3)P(B4)=0.6×0.6+0.4×0.4=0.52.(2)记事件B表示“甲获得这次比赛的胜利”.因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而B=(A3A4)∪(B3A4A5)∪(A3B4A5),由于各局比赛结果相互独立,故P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.64 8.。

概率的互斥与独立

概率的互斥与独立

概率的互斥与独立互斥与独立概率是描述事件发生关系的概念。

在概率论中,互斥事件是指两个事件不可能同时发生,而独立事件是指一个事件的发生不会影响另一个事件的发生。

首先,让我们来了解一下互斥事件。

在概率论中,如果两个事件A 和B是互斥的,那么事件A和事件B不可能同时发生。

这意味着如果事件A发生了,那么事件B一定不会发生,反之亦然。

一个简单的例子是抛掷一枚硬币,如果事件A是正面朝上,事件B就是反面朝上,那么事件A和事件B就是互斥事件。

接下来,我们来讨论一下独立事件。

在概率论中,如果两个事件A 和B是独立的,那么事件A的发生与否不会对事件B的发生产生任何影响,反之亦然。

一个常见的例子是抛掷一枚骰子,事件A是得到一个偶数点数,事件B是得到一个大于4的点数。

这两个事件是相互独立的,因为得到一个偶数点数并不会影响到得到一个大于4的点数的概率。

互斥事件和独立事件是概率论中非常重要的概念。

它们可以帮助我们计算复杂的概率问题,以及理解事件之间的关系。

现在让我们来看看一些使用互斥和独立概率的实际例子。

假设有一家电子公司正在考虑推出两种产品A和B。

公司的市场调研部门进行了调查,发现大约55%的顾客对产品A感兴趣,而40%的顾客对产品B感兴趣。

如果一个顾客被选择进行调查,那么以下是几种可能的情况:1. 如果事件A和事件B是互斥的,那意味着一个顾客要么对产品A 感兴趣,要么对产品B感兴趣,而不可能同时对两种产品感兴趣。

这意味着随机选择一个顾客,他对产品A感兴趣的概率是55%,对产品B感兴趣的概率是40%。

2. 如果事件A和事件B是独立的,那意味着一个顾客对产品A感兴趣与否与他对产品B感兴趣与否没有关系。

这意味着随机选择一个顾客,他对产品A感兴趣的概率仍然是55%,对产品B感兴趣的概率仍然是40%。

通过以上例子,我们可以看到互斥事件和独立事件之间的差异。

互斥事件发生的概率总和不会超过1,而独立事件发生的概率可以独立计算。

总结一下,互斥与独立是概率论中描述事件发生关系的重要概念。

互斥事件与对立事件-高中数学知识点讲解(含答案)

互斥事件与对立事件-高中数学知识点讲解(含答案)

互斥事件与对立事件(北京习题集)(教师版)一.选择题(共3小题)1.(2013•北京校级模拟)如果事件A、B互斥,那么()A.A B+是必然事件B.A B+是必然事件C.A与B一定互斥D.A与B一定不互斥2.(2010春•朝阳区期末)从1,2,3,4,5,6这六个整数中任取两个数,下列叙述中是对立事件的是()①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.A.①B.②④C.③D.①③3.(2010春•崇文区期末)某足球运动员连续射两球,事件“至少有一次射入球框”的互斥事件是() A.至多有一次射入球框B.两次都射入球框C.只有一次射入球框D.两次都不射入球框二.填空题(共2小题)4.(2017春•海淀区校级期末)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,事件“甲分得红牌”与“乙分得红牌”是.(填序号)①对立事件;②不可能事件;③互斥但不对立事件;④对立不互斥事件.5.(2009秋•通州区期中)给出如下几个命题:(1)若A为随机事件,则0P(A)1(2)若事件A是必然事件,则A与B一定是对立事件(3)若事件A与B是互斥事件,则A与B一定是对立事件(4)若事件A与B是对立事件,则A与B一定是互斥事件其中正确命题的序号是.三.解答题(共1小题)6.(2009•丰台区一模)某校高二年级开设《几何证明选讲》及《数学史》两个模块的选修科目.每名学生至多选修一个模块,23的学生选修过《几何证明选讲》,14的学生选修过《数学史》,假设各人的选择相互之间没有影响.(Ⅰ)任选一名学生,求该生没有选修过任何一个模块的概率;(Ⅱ)任选4名学生,求至少有3人选修过《几何证明选讲》的概率.互斥事件与对立事件(北京习题集)(教师版)参考答案与试题解析一.选择题(共3小题)1.(2013•北京校级模拟)如果事件A 、B 互斥,那么( )A .AB +是必然事件B .A B +是必然事件C .A 与B 一定互斥D .A 与B 一定不互斥 【分析】由于事件A 、B 互斥,利用事件的定义为:在随机试验中出现的每一个结果成为一个事件,在利用必然事件,及对立事件性质即可判断.【解答】解:因为事件A 、B 互斥,当以个随机事件出现的结果为3个或多余3个时,利用必然事件的定义则,A 错; 由互斥事件的定义,A 、B 互斥即A B 为不可能事件,故B 正确.而C 中当B A ≠时,A 与B 不互斥,故C 错误.而D 中当B A =时,A 和B 互斥,故D 错误.故选:B .【点评】此题考查了随机事件的定义,互斥事件,必然事件.2.(2010春•朝阳区期末)从1,2,3,4,5,6这六个整数中任取两个数,下列叙述中是对立事件的是( ) ①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.A .①B .②④C .③D .①③【分析】挨个分析四组事件,①中表示的是同一个事件,②前者包含后者,④中两个事件都含有同一个事件,只有第三所包含的事件是对立事件.【解答】解:在①恰有一个是偶数和恰有一个是奇数中,这两个事件是同一个事件,在②至少有一个是奇数和两个都是奇数中至少有一个是奇数包括两个都是奇数,在③至少有一个是奇数和两个都是偶数中,至少有一个是奇数包括有一个奇数和有两个奇数,同两个都是偶数是对立事件,在④至少有一个是奇数和至少有一个是偶数中,都包含一奇数和一个偶数的结果,只有第三所包含的事件是对立事件故选:C.【点评】分清互斥事件和对立事件之间的关系,互斥事件是不可能同时发生的事件,对立事件是指一个不发生,另一个一定发生的事件.3.(2010春•崇文区期末)某足球运动员连续射两球,事件“至少有一次射入球框”的互斥事件是() A.至多有一次射入球框B.两次都射入球框C.只有一次射入球框D.两次都不射入球框【分析】直接根据互斥事件的定义作出判断.【解答】解:某足球运动员连续射两球,由于事件“至少有一次射入球框”和事件“两次都不射入球框”不可能同时发生,故这两件事是互斥事件,故选:D.【点评】本题主要考查互斥事件的定义的应用,属于基础题.二.填空题(共2小题)4.(2017春•海淀区校级期末)把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁4个人,事件“甲分得红牌”与“乙分得红牌”是③.(填序号)①对立事件;②不可能事件;③互斥但不对立事件;④对立不互斥事件.【分析】事件“甲分得红牌”与事件“乙分得红牌”,由互斥事件和对立事件的概念可判断两事件是互斥事件,不是对立事件,即可得答案.【解答】解:根据题意,把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”由互斥事件和对立事件的概念可判断两者不可能同时发生,故它们是互斥事件,又事件“乙取得红牌”与事件“丙取得红牌”也是可能发生的,事件“甲分得红牌”与事件“乙分得红牌”不是对立事件,故两事件之间的关系是互斥而不对立,故答案为:③【点评】本题考查互斥事件与对立事件的概念,注意互斥事件、对立事件的区别.5.(2009秋•通州区期中)给出如下几个命题:(1)若A为随机事件,则0P(A)1(2)若事件A是必然事件,则A与B一定是对立事件(3)若事件A与B是互斥事件,则A与B一定是对立事件(4)若事件A 与B 是对立事件,则A 与B 一定是互斥事件其中正确命题的序号是 (1)、(4) .【分析】由随机事件的定义可得,它的概率得取值范围是[0,1],故(1)正确. 由于不知道事件B 是什么事件,故(2)不正确.根据互斥事件、对立事件的定义可得,对立事件一定是互斥事件,但互斥事件不一定是对立事件,故(4)正确,(3)不正确.【解答】解:由随机事件的定义可得,它的概率得取值范围是[0,1],故(1)正确.(2)不正确,若事件A 是必然事件,但不知道事件B 是什么事件,则A 与B 不一定是对立事件.根据互斥事件、对立事件的定义可得,对立事件一定是互斥事件,但互斥事件不一定是对立事件,故(4)正确,(3)不正确.故答案为 (1)、(4).【点评】本题主要考查互斥事件与对立事件的关系,随机事件的定义,属于基础题.三.解答题(共1小题)6.(2009•丰台区一模)某校高二年级开设《几何证明选讲》及《数学史》两个模块的选修科目.每名学生至多选修一个模块,23的学生选修过《几何证明选讲》,14的学生选修过《数学史》,假设各人的选择相互之间没有影响. (Ⅰ)任选一名学生,求该生没有选修过任何一个模块的概率;(Ⅱ)任选4名学生,求至少有3人选修过《几何证明选讲》的概率.【分析】(Ⅰ)根据23的学生选修过《几何证明选讲》,14的学生选修过《数学史》,每名学生至多选修一个模块,根据互斥事件的概率公式得到该生没有选修过任何一个模块的概率.()II 至少有3人选修过《几何证明选讲》,包括两种情况一是有3人修过,二是有4人修过,这两种情况是互斥的,根据独立重复试验和互斥事件的概率得到结果.【解答】解:(Ⅰ)23的学生选修过《几何证明选讲》,14的学生选修过《数学史》, 每名学生至多选修一个模块,设该生参加过《几何证明选讲》的选修为事件A ,参加过《数学史》的选修为事件B ,该生没有选修过任何一个模块的概率为P , 则2111()1()3412P P A B =-+=-+= ∴该生没有选修过任何一个模块的概率为112(Ⅱ)至少有3人选修过《几何证明选讲》的概率为33444421216()()33327W C C =+= ∴至少有3人选修过《几何证明选讲》的概率为1627. 【点评】本题考查互斥事件的概率公式,考查互斥事件和对立事件,考查n 次独立重复试验中发生k 次的概率,考查利用概率知识解决实际问题,是一个综合题.。

对立事件与互斥事件的定义

对立事件与互斥事件的定义

对立事件与互斥事件的定义对立事件和互斥事件,这两个词听起来是不是有点拗口?别担心,今天咱们就来聊聊这两个小家伙,让它们变得简单易懂,像喝水一样顺畅。

想象一下,你正在参加一个聚会,旁边的朋友提到抽奖,大家都在期待那一瞬间。

对立事件就像是你抽中了一个大礼包,而同时,另一个朋友也在想着自己能不能中个小奖。

这两种情况不管怎么想,都是发生在同一时刻。

对立事件就是两个结果互相排斥,比如今天的天气要么晴天,要么下雨,谁也别想两者兼得。

就像打麻将,赢了就不能再输,简单明了吧。

再说说互斥事件,这个名字听上去有点像老爷爷讲故事,乍一听让人有点懵,但其实它的意思也很直接。

想象一下,今天你和朋友约好了一起去看电影,结果你们在电影院门口遇到两部不同的电影。

这时候你只能选一部去看,不能一人看一部,是不是?这就叫互斥事件。

互斥事件就是在某个特定情况下,两个结果不能同时发生。

比如你不能同时在A店和B店购物,要么在这里,要么在那里,走哪儿都不能兼得,这种情况可真让人头疼。

接下来咱们换个角度,聊聊生活中常见的例子。

想象一下你在家里,打开冰箱,看到两种美食,披萨和汉堡。

咕噜咕噜肚子饿得发慌,但你心里清楚,今天只能选择一种。

要么享受那厚厚的奶酪披萨,要么咬一口多汁的汉堡,这一顿可是让人纠结得要命。

你一边想要追求美食的快乐,一边又得面对选择的痛苦,这正是互斥事件的体现。

它就像生活中的小烦恼,时时刻刻提醒你,做选择的瞬间可真是个技术活。

而对立事件呢?好比你去玩一个游戏,游戏里有赢家和输家。

你总不能一边赢得大奖,一边输得精光。

这就说明了对立事件的存在,赢家和输家就像两个兄弟,一个出头,一个下台。

人生不就是这样吗?有得必有失,有失也要有得。

你买了一注彩票,要么中大奖,要么遗憾错过,心情真是五味杂陈。

再来个有趣的比喻,想象一下春天的天气。

有时候阳光明媚,温暖得让人想跳舞;有时候突然就来一场大雨,搞得你手忙脚乱。

晴天和雨天,这两种天气总是相对的,无法同时发生。

湖北省宜昌市高中数学 第三章 概率教材习题本新人教A版必修3

湖北省宜昌市高中数学 第三章 概率教材习题本新人教A版必修3

第三章概率P1121.做同时掷两枚硬币的试验,观察试验结果。

(1)试验可能出现的结果有几种?分别把它们表示出来。

(2)做100次试验,每种结果出现的频数、频率各是多少?与其他几名同学的试验结果汇总,你会发现什么?你能估计每种结果出现的概率吗?2.(1)给出一个概率很小的随机事件的例子;(2)给出一个概率很大的随机事件的例子。

P1183.在乒乓球、排球等比赛中,裁判员还用哪些方法决定谁先发球?这些方法公平吗?4.“一个骰子掷一次得到2的概率是1/6,这说明一个骰子掷6次会出现一次2”,这种说法对吗?说说你的理由。

P1211.如果某人在某种比赛(这种比赛不会出现“和”的情况)中获胜的概率是0.3,那么他输的概率是多少?4. 一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A . 至多有一次中靶。

B . 两次都中靶。

C . 只有一次中靶。

D . 两次都不中靶。

5. 把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是()A . 对立事件。

B . 互斥但不对立事件。

C . 不可能事件。

D . 以上都不对。

P1231. 若A、B为互斥事件,则()A . P(A)+P(B)<1。

B . P(A)+P(B)>1。

C . P(A)+P(B)=1。

D . P(A)+P(B)≤1。

5. 某人捡到不规则形状的五面体石块,他在每个面上作了记号,投掷了100次,并且记录了每个面落在桌面上的次数(如下表)。

如果再投掷一次,请估计石块的第4面落在桌面上的概率是多少?6.在一个袋子中放了9个白球,1个红球,摇匀后随机摸球:(1)每次摸出球后记下球的颜色然后放回袋中;(2)每次摸出球后不放回袋中。

在两种情况下分别做10次试验,求每种情况下第4次摸到红球的频率,两个频率相差得远吗?两个事件的概率一样吗?第4次摸到红球的频率与第1次摸到红球的频率相差得远吗?请说明原因。

互斥事件及其概率

互斥事件及其概率

互斥事件及其概率教学目标:(1)了解互斥事件及对立事件的概念,能判断某两个事件是否是互斥事件,进而判断它们是否是对立事件.(2)了解两个互斥事件概率的加法公式,知道对立事件概率之和为1的结论.会用相关公式进行简单概率计算.(3)注意学生思维习惯的培养,在顺向思维受阻时,转而逆向思维. 教学重点:互斥事件和对立事件的概念,互斥事件中有一个发生的概率的计算公式. 教学难点:利用对立事件的概率间的关系把一个复杂事件的概率计算转化成求其对立事件的概率.教学过程:(一) 知识要点:1.互斥事件:不能同时发生的两个事件称为互斥事件.2.互斥事件的概率:如果事件A ,B 互斥,那么事件B A +发生的概率,等于事件A ,B 分别发生的概率的和,即)()()(B P A P B A P +=+.一般地,如果事件n A A A ,,,21Λ两两互斥,则)()()()(2121n n A P A P A P A A A P +++=+++ΛΛ.3.对立事件:两个互斥事件必有一个发生,则称这两个事件为对立事件.事件A 的对立事件记为A .对立事件A 和A 必有一个发生,故A A +是必然事件,从而1)()()(=+=+A P A P A A P .因此,我们可以得到一个重要公式)(1)(A P A P -=.思考:对立事件和互斥事件有何异同?(二) 例题选讲:例1、一只口袋内装有大小一样的4只白球与4只黑球,从中一次任意摸出2只球.记摸出2只白球为事件A ,摸出1只白球和1只黑球为事件B .问事件A 和B 是否为互斥事件?是否为对立事件?解:事件A 和B 互斥。

因为从中一次可以摸出2只黑球,所以事件A 和B 不是对立事件.(2) 求射击1次,命中不足7环的概率.解:记事件“射击1次,命中k 环”为),10,(≤∈k N k A k 且则事件k A 两两相斥.(1)记“射击一次,至少命中7环”的事件为A ,那么当10A ,9A ,8A 或7A 之一发生时,事件A 发生.由互斥事件的概率加法公式,得)()(78910A A A A P A P +++==)()()()(78910A P A P A P A P +++=9.032.028.018.012.0=+++.(2)事件“射击一次,命中不足7环”是事件“射击一次,命中至少7环”的对立事件,即A 表示事件“射击一次,命中不足7环”.根据对立事件的概率公式,得1.09.01)(1)(=-=-=A P A P .答:此人射击1次,至少命中7环的概率为0.9;命中不足7环的概率为0.1. 血型A B AB O 该血型的人所占比/%28 29 8 35 血都可以输给AB 型血的人,其他不同血型的人不能互相输血.小明是B 型血,若小明因病需要输血,问:(1) 任找一个人,其血可以输给小明的概率是多少?(2) 任找一个人,其血不能输给小明的概率是多少?解(1)对任一人,其血型为A ,B ,AB ,O 型血的事件分别记为,,,,D C B A ''''它们是互斥的.由已知,有35.0)(,08.0)(,29.0)(,28.0)(='='='='D P C P B P A P .因为B ,O 型血可以输给B 型血的人,故“可以输给B 型血的人”为事件D B '+'.根据互斥事件的加法公式,有64.035.029.0)()()(=+='+'='+'D P B P D B P .(2)由于A ,AB 型血不能输给B 型血的人,故“不能输给B 型血的人”为事件C A '+',且36.008.028.0)()()(=+='+'='+'C P A P C A P .答任找一人,其血可以输给小明的概率为0.64,其血不能输给小明的概率为0.36.注 :第(2)问也可以这样解:因为事件“其血可以输给B 型血的人”与事件“其血不能输给B 型血的人”是对立事件,故由对立事件的概率公式,有 36.064.01)(1)(=-='+'-='+'D B P D B P例3 、某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21、0.23、0.25、0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率(2)不够7环的概率例4 、在一只袋子中装有7个红玻璃球,3个绿玻璃球.从中无放回地任意抽取两次,每次只取一个.试求:(1)取得两个红球的概率; (2)取得两个绿球的概率;(3)取得两个同颜色的球的概率; (4)至少取得一个红球的概率.(答案: (1)157 (2)151 (3)158 (4)1514) 例5 、盒中有6只灯泡,其中2只次品,4只正品,有放回地从中任取两次,每次取一只,试求下列事件的概率:(1)取到的2只都是次品; (2)取到的2只中正品、次品各一只;(3)取到的2只中至少有一只正品.解:从6只灯泡中有放回地任取两只,共有36种不同取法.(1)取到的2只都是次品情况为4种.因而所求概率为91364=. (2)由于取到的2只中正品、次品各一只有两种可能:第一次取到正品,第二次取到次品;及第一次取到次品,第二次取到正品.因而所求概率为9423624=⨯⨯=P . (3)由于“取到的两只中至少有一只正品”是事件“取到的两只都是次品”的对立事件.因而所求概率为98911=-=P . 例6 、从男女学生共有36名的班级中,任意选出2名委员,任何人都有同样的当选机会.如果选得同性委员的概率等于21,求男女生相差几名? 解:设男生有x 名,则女生有x -36名.选得2名委员都是男性的概率为3536)1(⨯-x x . 选得2名委员都是女性的概率为3536)35)(36(⨯--x x . 上两种选法是互斥的,又选得同性委员的概率等于21,得213536)35)(36(3536)1(=⨯--+⨯-x x x x .解得15=x 或21=x即男生有15名,女生有36-15=21名,或男生有21名,女生有36-21=15名.总之,男女生相差6名.(三) 巩固练习:1、判别下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件.从一堆产品(其中正品与次品都多于2个)中任取2件,其中:(1)恰有1件次品和恰有2件正品;(2)至少有1件次品和全是次品;(3)至少有1件正品和至少有1件次品;(4)至少有1件次品和全是正品;答案:(互斥但不对立,不互斥,不互斥,互斥对立)2、在一个盒子内放有10个大小相同的小球,其中有7个红球、2个绿球、1个黄球,从中任取一个球,求:⑴得到红球的概率; ⑵得到绿球的概率; ⑶得到红球或绿球的概率; ⑷得到黄球的概率.(5) “得到红球”和“得到绿球”这两个事件A 、B 之间有什么关系,可以同时发生吗?(6) ⑶中的事件D “得到红球或者绿球”与事件A 、B 有何联系?答案:(1)107 (2)51 (3)109 (4)101 (5)互斥事件(6))()()(B P A P D P +=.3、下列说法中正确的是( D )A .事件A 、B 中至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B .事件A 、B 同时发生的概率一定比事件A 、B 恰有一个发生的概率小C .互斥事件一定是对立事件,对立事件不一定是互斥事件D .互斥事件不一定是对立事件,对立事件一定是互斥事件4、回答下列问题:(1)甲、乙两射手同时射击一目标,甲的命中率为0.65,乙的命中率为0.60,那么能否得出结论:目标被命中的概率等于0.65+0.60=1.25,为什么?(2)一射手命中靶的内圈的概率是0.25,命中靶的其余部分的概率是0.50,那么能否得出结论:目标被命中的概率等于0.25+0.50=0.75,为什么?(3)两人各掷一枚硬币,“同时出现正面”的概率可以算得为221.由于“不出现正面”是上述事件的对立事件,所以它的概率等于432112=-这样做对吗?说明道理.解: (1)不能.因为甲命中目标与乙命中目标两事件不互斥.(2)能.因为命中靶的内圈和命中靶的其余部分是互斥事件.(3)不对.因为“不出现正面”与“同时出现正面”不是对立事件,故其概率和不为1.5、某市派出甲、乙两支球队参加全省足球冠军赛.甲乙两队夺取冠军的概率分别是73和41.试求该市足球队夺得全省足球冠军的概率.(2819) 6、在房间里有4个人.问至少有两个人的生日是同一个月的概率是多少?(9641) 7、某单位36人的血型类别是:A 型12人,B 型10人,AB 型8人,O 型6人.现从这36人中任选2人,求此2人血型不同的概率.(4534)(四)课堂小结:1.互斥事件和对立事件的概念;2.互斥事件中有一个发生的概率的计算公式;3.对立事件的概率间的关系.。

高一数学互斥事件试题

高一数学互斥事件试题

高一数学互斥事件试题1.(2014•湖北模拟)从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A.“至少有一个红球”与“都是黑球”B.“至少有一个黑球”与“都是黑球”C.“至少有一个黑球”与“至少有1个红球”D.“恰有1个黑球”与“恰有2个黑球”【答案】D【解析】列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可解:对于A:事件:“至少有一个红球”与事件:“都是黑球”,这两个事件是对立事件,∴A不正确对于B:事件:“至少有一个黑球”与事件:“都是黑球”可以同时发生,如:一个红球一个黑球,∴B不正确对于C:事件:“至少有一个黑球”与事件:“至少有1个红球”可以同时发生,如:一个红球一个黑球,∴C不正确对于D:事件:“恰有一个黑球”与“恰有2个黑球”不能同时发生,∴这两个事件是互斥事件,又由从装有2个红球和2个黑球的口袋内任取2个球,得到所有事件为“恰有1个黑球”与“恰有2个黑球”以及“恰有2个红球”三种情况,故这两个事件是不是对立事件,∴D正确故选D点评:本题考查互斥事件与对立事件.首先要求理解互斥事件和对立事件的定义,理解互斥事件与对立事件的联系与区别.同时要能够准确列举某一事件所包含的基本事件.属简单题2.(2014•郑州一模)将一枚质地均匀的硬币连掷4次,出现“至少两次正面向上”的概率为()A.B.C.D.【答案】D【解析】依据题意先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可解答.解:随机掷一枚质地均匀的普通硬币两次,出现的情况如下,(正,正,正,正),(正,正,正,反),(正,正,反,正),(正,反,正,正),(反,正,正,正),(反,反,正,正),(反,正,反,正),(反,正,正,反),(正,反,反,正),(正,反,正,反),(正,正,反,反),(正,反,反,反),(反,正,反,反),(反,反,正,反),(反,反,反,正),(反,反,反,反)共有16种等可能的结果,其中至少两次正面向上情况有11种,概率是.故选:D.点评:本题主要考查古典概率模型的概率公式,即如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.(2013•宜宾一模)先后抛掷硬币三次,则至少一次正面朝上的概率是()A.B.C.D.【解析】至少一次正面朝上的对立事件是没有正面向上的骰子,先做出三次反面都向上的概率,利用对立事件的概率做出结果.解:由题意知至少一次正面朝上的对立事件是没有正面向上的骰子,至少一次正面朝上的对立事件的概率为,1﹣=.故选D.点评:本题考查对立事件的概率,正难则反是解题是要时刻注意的,我们尽量用简单的方法来解题,这样可以避免一些繁琐的运算,使得题目看起来更加清楚明了.4.一个均匀的正方体玩具的各个面上分别标以数1,2,3,4,5,6(俗称骰子),将这个玩具向上拋掷一次,设事件A表示“向上的一面出现奇数点”(指向上一面的点数是奇数),事件B表示“向上的一面出现的点数不超过3”,事件C表示“向上的一面出现的点数不小于4”,则()A.A与B是互斥而非对立事件B.A与B是对立事件C.B与C是互斥而非对立事件D.B与C是对立事件【答案】D【解析】A中A与B不互斥,因为都包含向上的一面出现的点数是3;由A知A与B不对立;事件B与C不同时发生且一定有一个发生,故B与C是对立事件解:∵事件B与C不同时发生且一定有一个发生,∴B与C是对立事件.故C不正确D正确;而A与B都包含向上的一面出现的点数是3,故A与B不互斥,也不对立.故选D点评:本题考查事件之间的关系的判断和互斥事件、对立事件的理解,属基本概念的考查.5.一袋中有红、黄、蓝三种颜色的小球各一个,每次从中取出一个,记下颜色后放回,当三种颜色的球全部取出时停止取球,则恰好取5次球时停止取球的概率为()A.B.C.D.【答案】B【解析】恰好取5次球时停止取球,分两种情况3,1,1及2,2,1,这两种情况是互斥的,利用等可能事件的概率计算每一种情况的概率,再根据互斥事件的概率得到结果.解:分两种情况3,1,1及2,2,1这两种情况是互斥的,下面计算每一种情况的概率,当取球的个数是3,1,1时,试验发生包含的事件是35,满足条件的事件数是C31C43C21∴这种结果发生的概率是=同理求得第二种结果的概率是根据互斥事件的概率公式得到P=故选B点评:本题是一个等可能事件的概率问题,考查互斥事件的概率,这种问题在高考时可以作为文科的一道解答题,要求能够列举出所有事件和发生事件的个数,本题可以列举出所有事件.6.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙二人下成和棋的概率为()A.60%B.30%C.10%D.50%【解析】本题考查的是互斥事件的概率,甲不输的概率为90%,其中包括甲获胜和甲不输两种情况,两数相减即可.解:甲不输即为甲获胜或甲、乙二人下成和棋,90%=40%+p,∴p=50%.故选D点评:分清互斥事件和对立事件之间的关系,互斥事件是不可能同时发生的事件,对立事件是指一个不发生,另一个一定发生的事件.7.某人射击10次击中目标3次,则其中恰有两次连续命中目标的概率为()A.B.C.D.【答案】A【解析】根据相互独立事件的概率乘法公式,运算求得结果解:某人射击10次击中目标3次,恰有两次连续击中目标的概率为=,故选A.点评:本题主要考查相互独立事件的概率乘法公式,所求的事件与它的对立事件概率间的关系,属于基础题.8.某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.两次都不中靶D.只有一次中靶【答案】C【解析】事件“至少有一次中靶”包含两次都中靶和两次中有一次中靶,它的互斥事件是两次都不中靶,实际上它的对立事件也是两次都不中靶.解:∵事件“至少有一次中靶”包含两次都中靶和两次中有一次中靶,它的互斥事件是两次都不中靶,故选C.点评:本题考查互斥事件和对立事件,对立事件是指同一次试验中,不会同时发生的事件,遇到求用至少来表述的事件的概率时,往往先求它的对立事件的概率.9.如果事件A、B互斥,那么()A.A+B是必然事件B.+是必然事件C.与一定互斥D.与一定不互斥【答案】B【解析】由于事件A、B互斥,利用事件的定义为:在随机试验中出现的每一个结果成为一个事件,在利用必然事件,及对立事件性质即可判断.解:因为事件A、B互斥,当以个随机事件出现的结果为3个或多余3个时,利用必然事件的定义则,A错;由互斥事件的定义,A、B互斥即A∩B为不可能事件,故B正确.而C中当B≠时,和不互斥,故C错误.而D中当B=时,和互斥,故D错误.故选B点评:此题考查了随机事件的定义,互斥事件,必然事件.10.下列说法中正确的是()A.事件A,B中至少有一个发生的概率一定比A,B中恰有一个发生的概率大B.事件A,B同时发生的概率一定比事件A,B恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件不一定是互斥事件D.互斥事件不一定是对立事件,对立事件一定是互斥事件【答案】D【解析】互斥事件是不可能同时发生的事件,而对立事件是A不发生B就一定发生的事件,他两个的概率之和是1.解:由互斥事件和对立事件的概念知互斥事件是不可能同时发生的事件对立事件是A不发生B就一定发生的事件,故选D点评:对立事件包含于互斥事件,是对立事件一定是互斥事件,但是互斥事件不一定是对立事件,认识两个事件的关系,是解题的关键.。

高中数学知识点:事件间的关系

高中数学知识点:事件间的关系

高中数学知识点:事件间的关系
(1)互斥事件:不能同时发生的两个事件叫做互斥事件;
(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做对立事件;
(3)包含:事件A发生时事件B一定发生,称事件A包含于事件B(或事件B包含事件A);
要点诠释:
从集合角度理解互斥事件为两事件交集为空,对立事件为两事件互补.
若两事件A与B对立,则A与B必为互斥事件,而若事件A与B 互斥,则不一定是对立事件.
“对立”只能是两个事件之间的关系,不会出现多个事件之间相互“对立”.
第1 页共1 页。

互斥事件与对立事件

互斥事件与对立事件

互斥事件与对立事件一、选择题1.把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是( )(A )对立事件 (B )互斥但不对立事件(C )不可能事件 (D )必然事件2.从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ).A .至少有1个白球,都是白球B .至少有1个白球,至少有1个红球C .恰有1个白球,恰有2个白球D .至少有1个白球,都是红球3.从装有2个红球和2个黑球的口袋内任取得2个球,那么互斥而不对立的两 个事件是( )A .至少有1个黑球与都是黑球B .至少有1个红球与都是黑球C .至少有1个黑球与至少有1个红球D .恰有1个黑球与恰有2个黑球4.两个事件对立是两个事件互斥的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分又不必要条件5.下列说法中正确的是( )A.若事件A 与事件B 是互斥事件,则()()1P A P B +=;B.若事件A 与事件B 满足条件:()()()1P A B P A P B ⋃=+=,则事件A 与事件B 是 对立事件;C.一个人打靶时连续射击两次,则事件 “至少有一次中靶”与事件 “至多有一次中靶”是对立事件;D.把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁 4人,每人分得1张,则事件“甲分得红牌”与事件“乙分得红牌”是互斥事件.6.若P (A ∪B )=P (A )+P (B )=1,则事件A 与B 的关系是 ( )A.互斥不对立B.对立不互斥C.互斥且对立D.以上答案都不对7.从1,2,3,4,5,6,7,8,9这9个数字中任取两个数,分别有下列事件:①恰有一个是奇数或恰有一个是偶数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.其中为互斥事件的是A .①B .②④C .③D .①③8.从一批产品(其中正品、次品都多于两件)中任取两件,观察正品件数和次品件数,下列事件是互斥事件的是( )①恰有一件次品和恰有两件次品;②至少有一件次品和全是次品;③至少有一件正品和至少有一件次品;④至少有一件次品和全是正品.(A)①②(B)①④(C)③④(D)①③9.给出以下三个命题:①将一枚硬币抛掷两次,记事件A:两次都出现正面,事件B:两次都出现反面,则事件A与事件B是对立事件;②在命题①中,事件A与事件B是互斥事件;③在10件产品中有3件是次品,从中任取3件,记事件A:所取3件中最多有2件是次品,事件B:所取3件中至少有2件是次品,则事件A与事件B是互斥事件.其中真命题的个数是()A.0 B.1 C.2 D.310.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品至少有一件是次品”,则下列结论正确的是()A.A与C互斥B.任何两个均互斥C.B与C互斥D.任何两个均不互斥11.给出如下四对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“甲射中7环”与“乙射中8环”;③甲、乙两人各射击1次,“两人均射中目标”与“两人均没有射中目标”;④甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”,其中属于互斥事件的有()A.1对 B.2对 C.3对 D.4对12.抛掷一枚骰子,记事件A为“落地时向上的数是奇数”,记事件B为“落地时向上的数是偶数”,事件C为“落地时向上的数是2的倍数”,事件D为“落地时向上的数是2或4”,则下列每对事件是互斥事件但不是对立事件的是()A.A与D B.A与B C.B与C D.B与D13.把颜色分别为红、黑、白的3个球随机地分给甲、乙、丙3人,每人分得1个球.事件“甲分得白球”与事件“乙分得白球”是( )A.对立事件 B.不可能事件C.互斥事件 D.必然事件14.[2014·宁夏检测]抽查10件产品,设事件A为“至少有2件次品”,则事件A的对立事件为( )A.至多有2件次品B.至多有1件次品C.至多有2件正品D.至少有2件正品15.[2014·承德模拟]从装有2个红球和2个白球的口袋内任取2个球,那么互斥但不对立的两个事件是( )A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.至少有1个白球,都是红球16.一个射手进行射击,记事件E1:“脱靶”,E2:“中靶”,E3:“中靶环数大于4”,E4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有 ( ).A.1对 B.2对 C.3对 D.4对17.下列叙述错误的是( )A.频率是随机的,在试验前不能确定,随着试验次数的增加,频率一般会越来越接近概率B.若随机事件A发生的概率为P(A),则0≤P(A)≤1C.互斥事件不一定是对立事件,但是对立事件一定是互斥事件D.5张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可能性相同18.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()B .“至少有一个黑球”与“都是红球”C .“至少有一个黑球”与“至少有一个红球”D .“恰有一个黑球”与“恰有两个黑球”19.下列四个命题:①对立事件一定是互斥事件;②若A,B 为两个事件,则P(A ∪B)=P(A)+P(B);③若事件A,B,C 两两互斥,则P(A)+P(B)+P(C)=1;④若事件A,B 满足P(A)+P(B)=1,则A,B 是对立事件.其中错误命题的个数是( )(A)0 (B)1 (C)2 (D)320.掷一枚均匀的正六面体骰子,设A 表示事件“出现2点”,B 表示“出现奇数点”,则P(A ∪B)等于( ) (A) (B) (C) (D)21.掷一颗质地均匀的骰子,观察所得的点数a,设事件A=“a 为3”,B=“a 为4”,C=“a 为奇数”,则下列结论正确的是( )(A)A 与B 为互斥事件(B)A 与B 为对立事件(C)A 与C 为对立事件(D)A 与C 为互斥事件22.已知事件A 与事件B 发生的概率分别为()P A 、()P B ,有下列命题:①若A 为必然事件,则()1P A =; ②若A 与B 互斥,则()()1P A P B +=; ③若A 与B 互斥,则()()()P A B P A P B ⋃=+.其中真命题有( )个A .0B .1C .2D .323.甲、乙两人下棋,甲获胜的概率为0.3,甲不输的概率为0.8,则甲、乙两人下成和棋的概率为( )A. 0.6B. 0.3C. 0.1D. 0.524.一枚均匀的正方体骰子,将它向上抛掷一次,设事件A 表示“向上的一面出现奇数点”,事件B 表示“向上的一面出现的点数不超过3”,事件C 表示“向上的一面出现的点数不小于4”则A .A 与B 是互斥而非对立事件 B .A 与B 是对立事件C .B 与C 是互斥而非对立事件D .B 与C 是对立事件25.把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则(|)P B A =( )A .17B .27C .73 D .47 26.把红、黄、蓝3张卡片随机分给甲、乙、丙三人, 每人1张, 事件A :“甲得红卡”与事件B :“乙得红卡”是 ( )A.不可能事件B.必然事件C.对立事件D.互斥且不对立事件27.从装有2个白球和2个蓝球的口袋中任取2个球,那么对立的两个事件是( )B .“至少有一个白球”与“至少有—个蓝球”C .“至少有—个白球”与“都是蓝球”D .“至少有一个白球”与“都是白球”28.从装有2个白球和2个蓝球的口袋中任取2个球,那么对立的两个事件是( )A .“恰有一个白球”与“恰有两个白球”B .“至少有一个白球”与“至少有—个蓝球”C .“至少有—个白球”与“都是蓝球”D .“至少有一个白球”与“都是白球”29.从装有2个红球和2个白球的口袋内任取2个,则互斥但不对立的两个事件是( )A 、至少一个白球与都是白球B 、至少一个白球与至少一个红球C 、恰有一个白球与恰有2个白球D 、至少有1个白球与都是红球30.抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为( )(A )至多两件次品 (B )至多一件次品(C )至多两件正品 (D )至少两件正品31.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( )A .“至少一个白球”与“都是白球”B .“至少有一个白球”与“至少有1个红球”C .“恰有一个白球”与“恰有二个白球”D .“至少有1个白球”与“都是红球”32.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的3个红球和3个黑球,现从甲、乙两个盒内各任取2个球。

辨析互斥事件与对立事件

辨析互斥事件与对立事件

辨析互斥事件与对立事件作者:万青来源:《高中生学习·高二版》2015年第11期日常生活中,经常会遇到一些无法事先预测结果的随机事件,事件与事件的关系是研究概率的基础,而互斥事件与对立事件是事件的关系中两个易混淆的概念,同学们在学习过程中一定要正确理解. 这样才能夯实基础,有条理地思考,从而准确地分析问题,解决问题.互斥事件和对立事件都是对两个事件而言的,它们既有区别又有联系.在一次试验中,两个互斥的事件有可能都不发生,也可能有一个发生,而两个对立事件则必有一个发生,但不可能同时发生. 从集合的角度看:几个事件彼此互斥,是指由各个事件所含的结果组成的集合彼此交集是空集,而事件A的对应事件[A]包含的结果组成的集合,是全集中由事件A所包含的结果组成的集合的补集. 下面通过实例对这两个概念进行辨析:例1 ;在掷一枚骰子的试验中,可以定义许多事件:C1={出现1点};C2={出现2点};C3={出现3点};C4={出现4点};C5={出现5点};C6={出现6点};D1={出现的点数不大于1};D2={出现的点数大于6};D3={出现的点数小于5};E={出现的点数小于7};F={出现的点数大于6};G={出现的点数为偶数};H={出现点数为奇数}…(1)判断下列各对事件是否是互斥事件,并说明理由.①事件C1与事件C2②事件C1与事件D3③事件E与事件F分析 ;判断两个事件是否为互斥事件就是考查它们能否同时发生,如果不能同时发生则是互斥事件,反之就不是互斥事件.解 ;①是互斥事件. 因为掷一枚骰子每次只能出现一个数,出现1点就不可能同时出现2点,所以是一对互斥事件.②不可能是互斥事件. 因为“出现的点数小于5”包含“出现1点”,所以事件C1与事件D3可同时发生.③是互斥事件. 因为事件E为必然事件,它一定会发生的,而事件F为不可能事件,它一定不会发生的,即二者不可能同时发生,用集合的观点分析:事件E为全集,事件F为空集,二者的交集是空集,即不可能同时发生.点拨 ;互斥事件是概率知识中的重要概念,可以从两个方面来说明:用定义看是否同时发生;类比集合的运算,看交集是否为空集,若为空集,则两事件是互斥的.如果事件A1,A2…An中的任何两个都是互斥事件,则称事件A1,A2…An彼此互斥,如题目中的C1,C2…C6是彼此互斥的,反映在集合上,表现为由各个事件所含的结果组成的集合彼此交集为空集.(2)判断下列各对事件是否构成对立事件?①事件G与事件H ②事件E与事件F分析 ;判断两事件是否构成对立事件,关键看两事件所含结果组成的集合是否互为补集,若是互为补集则两事件是对立事件.解 ;①因为骰子的出现的点数不是奇数就是偶数,“出现的点数为偶数”所组成的集合的补集就是“出现的点数为奇数”所组成的集合.所以事件G与事件H构成对立事件.②因为在集合中,全集的补集为空集.事件E所含结果构成的集合是全集,而事件F所含结果构成的集合是空集,所以二者也是对立事件.点拨 ;对立事件是概率中又一个重要概念,要正确理解,就要清楚对立事件是对两个事件而言的,这两个事件中必须有一个发生而另一个不发生. 从集合角度看,由事件A所含结果组成的集合,是全集中事件A所含结果组成的集合的补集.(3)判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明理由.①事件F与事件G ②事件G与事件H解 ;①是互斥事件,不是对立事件.因为事件F是不可能事件,它与事件G不可能同时发生,所以二者是互斥事件,同时不能保证其中必有一个发生这是由于骰子还可能出现的点数为奇数,因此,二者不是对立事件.②既是互斥事件,又是对立事件. 因为骰子出现的点数不是奇数就是偶数,只能出现一个数,所以这两个事件不可能同时发生,但其中必有一个发生.点拨 ;互斥事件和对立事件都是就两个事件而言的,互斥事件是不可能同时发生的两个事件,而对立事件是在互斥事件基础上,其中必有一个发生的互斥事件,即对立事件是特殊的互斥事件. 因此对立事件必是互斥事件,但互斥事件不一定是对立事件,也就是说互斥事件是对立事件的必要但不充分条件.例2 ;某射手射击一次,射中10环,9环,8环,7环的概率分别为0.12,0.32,0.27,0.11. 若这名射手射击一次,求:(1)射中9环或8环的概率;(2)至少射中7环的概率.解设射手射击一次射中10环,9环,8环,7环分别记为事件A,B,C,D.它们是彼此互斥的,其概率分别为P(A)=0.12,P(B)=0.32,P(C)=0.27,P(D)=0.11.(1)射中9环或8环为事件B∪C,则P(B∪C)=P(B)+P(C)=0.32+0.27=0.59.故射中9环或8环的概率为0.59.(2)至少射中7环为事件A∪B∪C∪D,则P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.82.故至少射中7环的概率为0.82.点拨 ;本题是概率计算题中的典型题型,需要辨清事件之间的关系,从而选择正确的概率计算公式.例3 ;甲、乙两人下棋,乙不输的概率是0.7,下成和棋的概率为0.5,分别求出甲、乙获胜的概率.分析 ;记甲胜为事件A,乙胜为事件B,和棋为事件C,故事件A,B,C彼此互斥,乙不输为事件B∪C.解法一 ;甲、乙两人下棋,结果只有三种:甲胜、和棋、乙胜,彼此都是互斥的. 其中乙不输为互斥事件“乙胜”与“和棋”的并集,从而可以求出乙胜的概率,并可以求出甲胜的概率.P(B)=P(B∪C)-P(C),又根据题意有P(B∪C)=0.7,P(C)=0.5,故P(B)=0.7-0.5=0.2,P(A)=1-P(B∪C)=1-0.7=0.3.所以甲、乙获胜的概率分别为0.3,0.2.解法二 ;乙不输与甲获胜为对立事件,故可直接求出甲获胜的概率,从而求出乙获胜的概率.乙不输与甲获胜是对立事件,故P(A)=1-0.7=0.3,又结果只有三种:甲胜、和棋、乙胜,且彼此互斥. 故P(B)=1-P(A)-P(C)=1-0.3-0.5=0.2,所以甲、乙获胜的概率分别为0.3,0.2.总结 ;解答此类问题的关键,在于判断两事件是互斥事件还是对立事件,也就是牢记“在一次试验中,两个互斥的事件有可能都不发生,也可能有一个发生,而两个对立事件则必有一个发生,但不可能同时发生”. 只要我们正确理解了二者的概念,抓住了本质,再根据已经判断出的情况,开展后续计算求解,那么这类问题也就迎刃而解了.[练习]1.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是( ; )A.至多一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶2.若P(AUB)=P(A)+P(B)=1,则事件A与B的关系是( ; )A.互斥不对立B.对立不互斥C.互斥且对立D.以上答案都不对3.从扑克牌40张(红、黑、方、梅点数从1到10各10张)中,任取一张.判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明理由.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的位数”与“抽的牌点数大于9”.[参考答案]1.D ;2.D3.(1)是互斥事件,不是对立事件;(2)既是互斥事件,又是对立事件;(3)不是互斥事件,更不可能是对立事件.。

高考复习对立和互斥事件---古典概型复习题 (含答案)

高考复习对立和互斥事件---古典概型复习题 (含答案)

对立和互斥事件---古典概型一、单选题(共22题;共44分)1.若从2个海滨城市和2个内陆城市中随机选2个去旅游,至少选一个海滨城市的概率是()A. B. C. D.2.一枚骰子连续掷了两次,则点数之和为2或3的概率是()A. B. C. D.3.一枚硬币连续掷三次,至少出现一次正面朝上的概率为( )A. B. C. D.4.“微信抢红包”自2015年以来异常火爆,在某个微信群某次进行的抢红包活动中,若所发红包的总金额为8元,被随机分配为1.72元,1.83元,2.28元,1.55元,0.62元,5份供甲、乙等5人抢,每人只能抢一次,则甲、乙二人抢到的金额之和不低于3元的概率是()A. B. C. D.5.长郡中学要从师生推荐的参加说课比赛的3位男教师和2名女教师中,任选2人参加说课比赛,则选取的2人恰为一男一女的概率为()A. B. C. D.6.从混有3张假钞的10张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞,则另一张也是假钞的概率为()A. B. C. D.7.抛掷一枚骰子,记事件A为“落地时向上的点数是奇数”,事件B为“落地时向上的点数是偶数”,事件C 为“落地时向上的点数是3的倍数”,事件D为“落地时向上的点数是6或4”,则下列每对事件是互斥事件但不是对立事件的是( )A. A与BB. B与CC. A与DD. C与D8.已知100件产品中有5件次品,从这100件产品任意取出3件,设A表示事件“3件产品全不是次品”,B 表示事件“3件产品全是次品”,C表示事件“3件产品中至少有1件次品”,则下列结论正确的是( )A. B与C互斥B. A与C互斥C. A,B,C任意两个事件均互斥D. A,B,C任意两个事件均不互斥9.一个口袋中有黑球和白球各5个,从中连摸两次球,每次摸一个且每次摸出后不放回,用A表示第一次摸得白球,B表示第二次摸得白球,则A与B是()A. 互斥事件B. 不相互独立事件C. 对立事件D. 相互独立事件10.给出如下三对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”;③从装有2个红球和2和黑球的口袋内任取2个球,“没有黑球”与“恰有一个红球”.其中属于互斥事件的个数为()A. 0B. 1C. 2D. 311.把红桃、黑桃、方块、梅花四张纸牌随机发给甲、乙、丙、丁四个人,每人分得一张,事件“甲分得梅花”与事件“乙分得梅花”是()A. 对立事件B. 不可能事件C. 互斥但不对立事件D. 以上答案均不对12.有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是()A. 至多有1次中靶B. 2次都中靶C. 2次都不中靶D. 只有1次中靶13.从装有2个红球和2个白球的袋内任取两个球,那么下列事件中,对立事件的是()A. 至少有一个白球;都是白球B. 至少有一个白球;至少有一个红球C. 恰好有一个白球;恰好有2个白球D. 至少有1个白球;都是红球14.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A. 至多有一次中靶B. 两次都中靶C. 只有一次中靶D. 两次都不中靶15.从有2个红球和2个黒球的口袋内任取2个球,互斥而不对立的两个事件是()A. 至少有一个黒球与都是黒球B. 至少有一个红球与都是红球C. 至少有一个黒球与至少有1个红球D. 恰有1个黒球与恰有2个黒球16.给出如下三对事件:①某人射击1次,“射中7环”与“射中8环”;②甲、乙两人各射击1次,“至少有1人射中目标”与“甲射中,但乙未射中目标”;③从装有2个红球和2和黑球的口袋内任取2个球,“没有黑球”与“恰有一个红球”.其中属于互斥事件的个数为()A. 0B. 1C. 2D. 317.把黑、红、白3张纸牌分给甲、乙、丙三人,每人一张,则事件“甲分得黑牌”与“乙分得黑牌”是()A. 对立事件B. 必然事件C. 不可能事件D. 互斥但不对立事件18.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A. 至多有一次中靶B. 两次都中靶C. 只有一次中靶D. 两次都不中靶19.有一个人在打靶中,连续射击2次,事件“至少有1次中靶”的对立事件是()A. 至多有1次中靶B. 2次都中靶C. 2次都不中靶D. 只有1次中靶20.袋内分别有红、白、黑球3,2,1个,从中任取2个,则互斥而不对立的两个事件是()A. 至少有一个白球;都是白球B. 至少有一个白球;至少有一个红球C. 恰有一个白球;一个白球一个黑球D. 至少有一个白球;红、黑球各一个21.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是()A. 恰有1名男生与恰有2名女生B. 至少有1名男生与全是男生C. 至少有1名男生与至少有1名女生D. 至少有1名男生与全是女生22.从1,2,3,4,5中有放回地依次取出两个数,则下列各对事件是互斥而不是对立事件的是()A. 恰有1个是奇数和全是奇数B. 恰有1个是偶数和至少有1个是偶数C. 至少有1个是奇数和全是奇数D. 至少有1个是偶数和全是偶数二、解答题(共14题;共145分)23.某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为,中奖可以获得2分;方案乙的中奖率为,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为x,求x≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?24.编号为的16名篮球运动员在某次训练比赛中的得分记录如下:(Ⅰ)将得分在对应区间内的人数填入相应的空格;区间(Ⅱ)从得分在区间内的运动员中随机抽取2人,(i)用运动员的编号列出所有可能的抽取结果;(ii)求这2人得分之和大于50的概率.25.2022年第24届冬奥会将在北京举行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想一想? 这些事件之间有什么关系?
一:事件的关系与运算
(1)对于事件A与事件B,如果事件A发生, 那么事件B一定发生,则称事件B包含事 件A,(或称事件A包含于事件B)记;B A
B
A
注: 1)不可能事件记作 2)任何事件都包含不可能事件
(2)若事件A发生,则事件B一定发生,反之也成立, 则称这两个事件相等。 记:A=B
事件A:命中环数大于7环 事件B:命中环数为10环; 事件C:命中环数小于6环; 事件D:命中环数为6、7、 8 、9、10环.
解:A与C互斥(不可能同时发生),B与C互斥,C与D互 斥,C与D是对立事件(至少一个发生).
1.给定下列命题,判断对错。 1)互斥事件一定对立; 2)对立事件一定互斥; 3)互斥事件不一定对立;
3)、甲乙两人下棋比赛(这种比赛不会 出现“和”的情况)中获胜的概率是0.3, 那么他输的概率是多少?
0.7
(变题)甲乙两人下棋,和棋(事件A)的概率 为0.5,乙获胜(事件B)的概率为0.3,那 么乙不输(事件C)的概率是多少?甲胜(事 件D)的概率是多少?
0.8
0.2
4、课堂小结: 概率的基本性质: 1)必然事件概率为1,
解:(1)因为c= A ∪ B.且A和B不会同时发生,所以A 和B是互斥事件,根据概率的加法公式得到:
P(C)=P(A)+P(B)=1/2 (2)C和D也是互斥事件,又由于C∪ D为必然事件,所 以C和D互为对立事件,所以
P(D)=1- P(C) = 1/2
1.某射手射击一次射中,10环、9环、 想一想?
在掷骰子实验中,可以定义许多事件, 如 C 1 {出现1点};C 2 {出现2点};C 3 {出现3点} C 4 {出现4点};C 5 {出现5点};C 6 {出现6点} D 1 {出现的点数不大于1};D 2 {出现的点数大于3}; D 3 {出现的点数小于3}; E {出现的点数小于7};F {出现的点数大于6};; G {出现的点数为偶数};H {出现的点数为奇数};
❖ (A)至少有一次中靶。(B)两次都中靶。 ❖ (C)只有一次中靶。 (D)两次都不中靶。
❖ 2)、把红、蓝、黑、白4张纸牌随机分给甲、 乙、丙、丁4个人,每人分得一张,事件“甲分
得红牌”与事件“乙分得红牌”B是( )
❖ (A)对立事件 。 (B)互斥但不对立事件。 ❖ (C)不可能事件 。( D)以上都不是。
G
H P(G) = 1- 1/2 = 1/2
当事件A与B对立时, A发生的概率为 P(A)=1- P(B)
例1、如果从不包括大小王的52张扑克牌中随机 抽取一张,那么取到红心(事件A)的概率是1/4,取 到方片(事件B)的概率为1/4,问:
(1)取到红色牌(事件C)的概率是多少?
(2)取到黑色牌(事件D)的概率是多少?
(4)若A B为不可能事件(A B=),
那么称事件A与事件B互斥。
例如:
A
B
D={出现4点} F={出现6点}
M={出现的点数为偶数} N={出现的点数为奇数}
则有:事件D与事件F互斥 事件M与事件N互斥
(5)若A B为不可能事件,A B为必然事件, 那么称事件A与事件B互为对立事件。
不可能事件概率为0, 因此0≤P(A)≤1; 2)当事件A与B互斥时,满足加法 公式:P(A∪B)= P(A)+ P(B); 3)若事件A与B为对立事件,则 A∪B为必然事件, 所以P(A∪B)= P(A)+ P(B)=1,于 是有P(A)=1—P(B);
想一想? 错


二:概率的基本性质
1.概率P(A)的取值范围 0≤P(A)≤1
1) 必然事件B一定发生, 则 P(B)=1
2) 不可能事件C一定不发生, 则p(C)=0 3) 随机事件A发生的概率为 0<P(A) <1
2.概率的加法公式
在掷骰子实验中,事件,A {出现1点};B {出现2点};
8环、7环的概率分别是0.24、0.28、
0.19、0.16计算这名射手射击一次
1)射中10环或9环的概率;
2)至少射中7环的概率;
2.甲、乙两人下棋,和棋的概率为21,乙胜的概率
为1,求 3
1)甲胜的概率;20甲不输的概率。
❖ 1)、一个人打靶时连续射击两次,事件“至少 有一次中靶”的互斥事件是(D )
若B A,且A B,则称事件A与事件B相等。
例如: G={出现的点数不大于1} A={出现1点}
所以有G=A
注:两个事件相等也就是说这两个事件是 同一个事件。
(3)若某事件发生当且仅当事件发生A或事件B发生, 则称此事件为事件A与事件B的
并事件(或和事件)。记A B(或A+C2是互斥事件
对立事件: 其中必有一个发生的互斥事件叫做对立事件
如:G 出现的点数为偶数;H=出现的点数为奇数
①首先G与H不能同时发生,即G与H互斥 ②然后G与H一定有一个会发生,这时说G与H对立
进一步理解:对立事件一定是互斥的
例题分析:
例1 一个射手进行一次射击,试判断下列事件哪些 是互斥事件?哪些是对立事件?
事件A与事件B互为对立事件的含义是:这两个 事件在任何一次试验中有且仅有一个发生。
例如:
A
B
M={出现的点数为偶数}
N={出现的点数为奇数}
则有:M与N互为对立事件
互斥事件:
帮助理解
不可能同时发生的两个事件叫做互斥事件.如
C 1 {出现1点};C 2 {出现2点};C 3 {出现3点} C 4 {出现4点};C 5 {出现5点};C 6 {出现6点}
C {出现的点数小于3};
A
B
C=A∪B
P(C)=p(A∪B)=p(A)+p(B)=1/6+1/6=1/3
当事件A与B互斥时, A∪B发生的概率 为P(A∪B)=P(A)+P(B)
对立事件有一个发生的概率
如在掷骰子实验中,事件. G {出现的点数为偶数};
H {出现的点数为奇数};
P(G)+P(H)=1
例如:
C={出现3点} D={出现4点}
则C ∪ D={出现3点或4点}
(4)若某事件发生当且仅当事件发生且事件 B发生,则称此事件为事件A与事件B的交
事件(或积事件)。记A B(或AB)
A A∩B B
例如:
D={出现4点} H={出现的点数大于3} J={出现的点数小于5}
则有:H ∩J=D
相关文档
最新文档