三角形的证明练习题

合集下载

八年级数学上册三角形全等证明题专项练习

八年级数学上册三角形全等证明题专项练习

八年级数学上册三角形全等证明题专项练习1、如图,已知: AD是BC上的中线,且DF=DE.求证:BE∥CF.2、已知:点A、F、E、C在同一条直线上,AF=CE,BE∥DF,BE=DF.求证:△ABE ≌△CDF.3、如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。

求证:AM是△ABC的中线。

4、已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DE F.5、如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。

求证:AE=AF6、如图:DF=CE,AD=BC,∠D=∠C。

求证:△AED≌△BFC。

7、如图:在△ABC中,BA=BC,D是AC的中点。

求证:BD⊥AC。

8、已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,DE BF.求证:AB CD∥.ADECBFM FE CB ADCBACMFEFED CBA9、如图,已知∠1=∠2,∠3=∠4,求证:AB=CD10、如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.11、如图,已知AB =DC ,AC =DB ,BE =CE ,求证:AE =DE.12、如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .13、已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14、已知:AB=CD ,∠A=∠D ,求证:∠B=∠C15、P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB16、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE17、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DCDCBA FEA BC DP DACBACEDBABECD.3421DCBAABC DE F图918、如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC.19、如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA20. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

完整版)全等三角形基础练习证明题

完整版)全等三角形基础练习证明题

完整版)全等三角形基础练习证明题1.已知三角形ABC中,AD为中线,BE⊥AD,CF⊥AD,证明BE=CF。

2.已知四边形ACBD中,AC=BD,AE=CF,BE=DF,证明AE∥CF。

3.已知四边形ABCD中,AB=CD,BE=DF,AE=CF,证明AB∥CD。

4.已知四边形ABCD中,AB=CD,AD=CB,证明AB∥CD。

5.已知两个三角形中,∠BAC=∠DAE,∠1=∠2,BD=CE,证明三角形ABD≌三角形ACE。

6.已知四边形ABED中,CD∥AB,DF∥EB,DF=EB,证明AF=CE。

7.已知四边形BEFC中,BE=CF,AB=CD,∠B=∠C,证明AF=DE。

8.已知四边形ABED中,AD=CB,∠A=∠C,AE=CF,证明EB∥DF。

9.已知三角形ABC中,M为AB的中点,∠1=∠2,MC=MD,证明∠C=∠D。

10.已知四边形ABFE和CDFE中,AE=DF,BF=CE,AE∥DF,证明AB=CD。

11.已知四边形ABCD中,∠1=∠2,∠3=∠4,证明AC=AD。

12.已知四边形ABCD中,∠E=∠F,∠1=∠2,AB=CD,证明AE=DF。

13.已知四边形ABCDEF中,ED⊥AB,EF⊥BC,BD=EF,证明BM=ME。

14.已知三角形ABC中,高AD与BE相交于点H,且AD=BD,证明三角形BHD≌三角形ACD。

15.已知四边形ABCDE中,∠A=∠D,AC∥FD,AC=FD,证明AB∥DE。

16.已知三角形ABC和三角形ADE中,AC=AB,AE=AD,∠1=∠2,证明∠3=∠4.17.已知三角形ABC和三角形DEF中,EF∥BC,AF=CD,AB⊥BC,DE⊥EF,证明三角形ABC≌三角形DEF。

18.已知四边形ABED中,AD=AE,∠B=∠C,证明AC=AB。

19.已知三角形ABC中,AD⊥BC,BD=CD,证明AB=AC。

20.已知三角形ABC和三角形BAD中,∠1=∠2,BC=AD,证明三角形ABC≌三角形BAD。

全等三角形练习(基础证明题)

全等三角形练习(基础证明题)

全等三角形的判定训练1.已知AD是⊿ABC的中线,BE⊥AD,CF⊥AD,问BE=CF吗?说明理由。

2.已知AC=BD,AE=CF,BE=DF,问AE∥CF吗?3.已知AB=CD,BE=DF,AE=CF,问AB∥CD吗?4.已知在四边形ABCD中,AB=CD,AD=CB,问AB∥CD吗?说明理由。

5.已知∠BAC=∠DAE,∠1=∠2,BD=CE,问ABD≌⊿ACE.吗?为什么?6.已知CD∥AB,DF∥EB,DF=EB,问AF=CE吗?说明理由。

AB CDFEA C DE FDCFEA BAB CADEB C1 2AD CEFB7.已知BE=CF,AB=CD,∠B=∠C.问AF=DE吗?8.已知AD=CB,∠A=∠C,AE=CF,问EB∥DF吗?说明理由。

9.已知,M是AB的中点,∠1=∠2,MC=MD,问∠C=∠D吗?说明理由。

10.已知,AE=DF,BF=CE,AE∥DF,问AB=CD吗?说明理由。

11.已知∠1=∠2,∠3=∠4,问AC=AD吗?说明理由。

12.已知∠E=∠F,∠1=∠2,AB=CD,问AE=DF吗?说明理由。

13.已知ED⊥AB,EF⊥BC,BD=EF,问BM=ME吗?说明理由。

ACDB1234A B C DE F1 2ACDB E FBA DFECMA BC D1 2DCFEA B14.在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问⊿BHD ≌⊿ACD ,为什么?15.已知∠A =∠D ,AC ∥FD ,AC =FD ,问AB ∥DE 吗?说明理由。

16.已知AC =AB ,AE =AD , ∠1=∠2,问∠3=∠4吗?17.已知EF ∥BC ,AF =CD ,AB ⊥BC ,DE ⊥EF ,问⊿ABC ≌⊿DEF 吗?说明理由。

18.已知AD =AE ,∠B =∠C ,问AC =AB 吗?说明理由。

A B C EH DACME F B D A B C E FD AB C ED F ADE AD E B C 1 23 419.已知AD⊥BC,BD=CD,问AB=AC吗?20.已知∠1=∠2,BC=AD,问⊿ABC≌⊿BAD吗?21.已知AB=AC,∠1=∠2,AD=AE,问⊿ABD≌⊿ACE.说明理由。

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)

相似三角形性质与判定专项练习30题(有答案)1.在三角形ABC中,点D在边BC上,且∠BAC=∠DAG,∠XXX∠BAD。

证明:=。

当GC⊥BC时,证明:∠BAC=90°。

2.在三角形ABC中,∠ACB=90°,点D在边BC上,CE⊥AB,CF⊥AD,E、F分别是垂足。

证明:AC^2=AF•AD。

联结EF,证明:AE•DB=AD•EF。

3.在三角形ABC中,PC平分∠ACB,PB=PC。

证明:△APC∽△ACB。

若AP=2,PC=6,求AC的长。

4.在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠XXX∠C。

证明:△ABF∽△EAD。

若AB=4,∠BAE=30°,求AE的长。

5.在三角形ABC中,∠ABC=2∠C,BD平分∠ABC。

证明:AB•BC=AC•CD。

6.在直角三角形ABC中,AC=BC,点E、F在AB上,∠ECF=45°,设△ABC的面积为S。

说明AF•BE=2S的理由。

7.在等边三角形ABC中,边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P。

若AE=CF,证明:AF=BE,并求∠APB的度数。

若AE=2,试求AP•AF的值。

若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长。

8.在钝角三角形ABC中,AD,BE是边BC上的高。

证明。

9.在三角形ABC中,AB=AC,DE∥BC,点F在边AC 上,DF与BE相交于点G,且∠XXX∠ABE。

证明:(1)△DEF∽△BDE;(2)DG•DF=DB•EF。

10.在等边三角形ABC、△DEF中,点D为AB的中点,E在BC上运动,DF和EF分别交AC于G、H两点,BC=2.问E在何处时CH的长度最大?11.在AB和CD交于点O的图形中,当∠A=∠C时,证明:OA•OB=OC•OD。

12.在等边三角形△AEC中,以AC为对角线做正方形ABCD(点B在△AEC内,点D在△AEC外)。

中考数学全等三角形证明经典50题(含答案)+经典因式分解练习题100道

中考数学全等三角形证明经典50题(含答案)+经典因式分解练习题100道

全等三角形经典证明题50道1、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE2、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC3、如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .FAEDC B4.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA5.(5分)如图,已知AD∥BC,∠P AB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.PCEDBA6.(6分)如图①,E、F分别为线段AC上的两个动点,且DE ⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.7.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):8.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .OEDCB AFE D CB A25、如图:DF=CE ,AD=BC ,∠D=∠C 。

求证:△AED ≌△BFC 。

证明:∵DF=CE , ∵DF-EF=CE-EF , 即DE=CF ,在∵AED 和∵BFC 中,∵ AD=BC , ∵D=∵C ,DE=CF ∵∵AED ∵∵BFC (SAS )26、(10分)如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

三角形全等证明方法归类练习题

三角形全等证明方法归类练习题

姓名 班级 。

SSS1.如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架。

求证:△ABD ≌△ACD2.如图,AB = AD ,DC = BC ,∠B 与∠D 相等吗为什么3.如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件怎样才能得到这个条件4.如图, AB =ED ,BC =DF ,AF =CE . 求证:AB ∥DE .A BCD5.已知:如图,AC =BD ,AD =BC ,求证:∠D =∠C .6.如图, ∠AOB 是一个任意角,在边OA,OB 上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N 重合,过角尺顶点C 的射线OC 便是∠AOB 的平分线,为什么7.如图,在ABC ∆中, 90=∠C ,D 、E 分别为AC 、AB 上的点,且AD=BD,AE=BC,DE=DC.求证:DE⊥AB。

8.如图,AB=AC,BE 和CD 相交于P ,PB=PC,求证:PD=PE.9.如图,AB=DE,AC=DF,BF=EC,△ABC和△DEF全等吗?请说明理由.10.已知:如图,点A、C、B、D在同一直线AC=BD,AM=CN, BM=DN。

求证:AM∥CN,BM∥DN。

SAS1.已知:如图,AB=CB,∠ABD=∠CBD,△ABD和△CBD全等吗?2.已知:点D分别是AD,BC的中点,求证:AB ∥CD3.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF .求证:△ABE ≌△CDF .4.已知:如图,AB ∥CD ,AB = CD .求证:△ABD ≌△CDB5.已知:如图,AB = AC ,AD = AE .求证:∠B =∠C6.如图,已知,AB =AD ,AC =AE ,∠BAD =∠CAE , 求证:BC =DEOADBCAB CDEA DB7. 如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA.连结BC并延长到E,使EC=CB,连结DE,量出DE的长,就是A、B的距离.写出你的证明.8. 已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:AC∥DF.9. 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF.10.如图,已知AB =DC ,AC =DB ,BE =CE,求证:AE =DE.11.如图,已知AC ⊥AB ,DB ⊥AB ,AC =BE ,AE =BD ,试猜想线段CE 与DE 的大小与位置关系,并证明你的结论.12.如图,AD 与BC 相交于O,OC=OD,OA=OB,求证:DBA CAB ∠=∠13.如图,AD F B ,,,在同一直线上,AD BF =,AE BC =,且AE BC ∥. 求证:(1)AEF BCD △≌△;(2)EF CD ∥.AB E CDACEDBB FD A E14.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):15.已知:如图,AB ∥CD ,AB =CD ,点E 、F 在线段AD 上,且AF=DE .求证:BE =CF .16.已知:如图,AB ∥CD ,AB =EC ,BC =CD . 求证:AC =ED .17.已知:如图,CA 平分BCD ∠, 点E 在AC 上,BC EC =,AC DC =.求证:A D ∠=∠.O ED C B A FE ACDBE DA18.如图,若AB =DE ,BE =CF ,∠B=∠DEC ,试说明:AF =DC.19.如图,AB 与CD 相交于E ,EA=EC ,EB=ED ,试说明AD=CB.20.已知:如图,AD=AE ,点D 、E 在BCBD=CE ,∠1=∠2。

八年级三角形证明练习题学生版

八年级三角形证明练习题学生版

八年级三角形证明练习题一.选择题(共15小题)1.若一个等腰三角形的两边长分别为2,4,则第三边的长为()A.2B.3C.4D.2或42.如图,在△ABC中,∠C=90°,AC=8,DC=AD,BD平分∠ABC,则点D到AB的距离等于()A.4B.3C.2D.13.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°4.把Rt△ABC与Rt△CDE放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,若∠B=25°,∠D=58°,则∠BCE的度数是()A.83°B.57°C.54°D.33°5.下列命题是假命题的是()A.到线段两端点距离相等的点在线段的垂直平分线上B.等边三角形既是轴对称图形,又是中心对称图形C.n边形(n≥3)的内角和是180°n﹣360°D.旋转不改变图形的形状和大小6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.2+B.+C.2+D.37.如图,在△ABC中AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE 平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°8.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12B.13C.14D.159.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.310.如图,等边△OAB的边长为2,则点B的坐标为()A.(1,1)B.(1,)C.(,1)D.(,)11.如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.4212.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,若BC=6,AC=5,则△ACE的周长为()A.8B.11C.16D.1713.如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确()A.∠1<∠2B.∠1=∠2C.∠A+∠2<180°D.∠A+∠1>180°14.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点D,交AB与点E,已知△BCE的周长为10,且BC =4,则AB的长为()A.3B.4C.5D.615.如图,在∠MON中,以点O为圆心,任意长为半径作弧,交射线OM于点A,交射线ON于点B,再分别以A,B为圆心,OA的长为半径作弧,两弧在∠MON的内部交于点C,作射线OC.若OA=5,AB=6,则点B到AC 的距离为()A.5B.C.4D.二.填空题(共15小题)16.如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC.若DE=1,则BC的长是.17.已知∠AOB=60°,OC是∠AOB的平分线,点D为OC上一点,过D作直线DE⊥OA,垂足为点E,且直线DE交OB于点F,如图所示.若DE=2,则DF=.18.如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为.19.如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=°.20.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为度.21.下面三个命题:①底边和顶角对应相等的两个等腰三角形全等;②两边及其中一边上的中线对应相等的两个三角形全等;③斜边和斜边上的中线对应相等的两个直角三角形全等,其中正确的命题的序号为.22.直线上依次有A,B,C,D四个点,AD=7,AB=2,若AB,BC,CD可构成以BC为腰的等腰三角形,则BC 的长为.23.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是.24.如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB于C,若EC=1,则OF=.25.在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为.26.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC,则图中等腰三角形的个数是.27.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特征值”,记作k,若k=,则该等腰三角形的顶角为度.28.如图,△ABC中,AB=AC,AD⊥BC于D点,DE⊥AB于点E,BF⊥AC于点F,DE=3cm,则BF=cm.29.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠F AE=19°,则∠C=度.30.如图,等边△A1C1C2的周长为1,作C1D1⊥A1C2于D1,在C1C2的延长线上取点C3,使D1C3=D1C1,连接D1C3,以C2C3为边作等边△A2C2C3;作C2D2⊥A2C3于D2,在C2C3的延长线上取点C4,使D2C4=D2C2,连接D2C4,以C3C4为边作等边△A3C3C4;…且点A1,A2,A3,…都在直线C1C2同侧,如此下去,则△A1C1C2,△A2C2C3,△A3C3C4,…,△A n∁n C n+1的周长和为.(n≥2,且n为整数)三.解答题(共10小题)31.如图,在△ABC中,CD是AB边上的高,BE是AC边上的中线,且BD=CE.求证:(1)点D在BE的垂直平分线上;(2)∠BEC=3∠ABE.32.如图,在△ABC中,AB=AC,AD⊥BC于点D.(1)若∠C=42°,求∠BAD的度数;(2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE.33.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.34.如图,点P是∠MON中一点,P A⊥OM于点A,PB⊥ON于点B,连接AB,∠P AB=∠PBA.求证:OP平分∠MON.35.如图,已知∠AOB=60°,点P在边OA上,点M、N在边OB上.(1)若∠PNO=60°,证明△PON是等边三角形;(2)若PM=PN,OP=12,MN=2,求OM的长度.36.如图,△ABC中,AB=AC.O是△ABC内一点,OD是AB的垂直平分线,OF⊥AC,且OD=OF.(1)当∠OAC=27°时,求:∠OBC的度数.(2)求证:AF=CF.37.如图,点D是△ABC边BC上一点,AD=BD,且AD平分∠BAC,AE是△ABC的高.(1)若∠B=50°,求∠DAE的度数;(2)若∠C=30°,求∠ADC的度数.38.如图,在△ABC中,AB=AC,点D在BC上,且BD=BA,点E在BC的延长线上,且CE=CA.(1)若∠BAC=90°(图1),求∠DAE的度数;(2)若∠BAC=120°(图2),求∠DAE的度数;(3)当∠BAC>90°时,探求∠DAE与∠BAC之间的数量关系,直接写出结果.39.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC 于点D,交BE于点F.求证:线段BF垂直平分线段AD.40.如图1,点A、D在y轴正半轴上,点B、C分别在x轴上,CD平分∠ACB与y轴交于D点,∠CAO=90°﹣∠BDO.(1)求证:AC=BC;(2)如图2,点C的坐标为(4,0),点E为AC上一点,且∠DEA=∠DBO,求BC+EC的长.。

第一章三角形的证明练习(课本习题)

第一章三角形的证明练习(课本习题)

19.已知等腰三角形底边和腰的长分别为6和5,求 这个等腰三角形的面积.
提示:如图所示,AB=AC=5,BC=6. 过A作AD⊥BC于点D,利用三线合一 得到D为BC中点, 即BD=CD=3. 在Rt△ABD中, 根据勾股定理得: AD2=AB2-BD2=52-32=16, ∴AD=4. ∴S△ABC=12.
BC 4 3. 3
SRtABC
1 2
4 3
34 8 3. 3
13.如图,已知∠ACB=∠BDA=900,要使△ACB≌△BDA, 还需要添加什么条件?请你选择其中一个加以证 明.
提示: ∵∠ACB=∠BDA=900, AB=BA, ∴可以添加AC=BD 或BC=AD利用HL判定; 添加∠ABC=∠BAD或∠CAB=∠DBA 利用AAS判定. 证明过程略.
8.如图,已知线段a,利用尺规求作以a为底边、以 2a为高的等腰三角形.
提示:(1)作线段BC=a. (2)再作线段BC的垂直平分线交 BC于D. (3)在BC的垂直平分线上截取 DA=2a. (4)连接AB、AC(如图所示). △ABC即为所求作的等腰三角形.
9.如图,在△ABC中,∠BAC=900,AB=AC=a,AD是△ABC 的高,求AD的长.
第一章
三角形的证明
练习(课本习题)
1.请将下面证明中每一步的理由填在括号内. 已知:如图,D,E,F分别是BC,CA,AB上的 点,DE∥BA,DF∥CA. 求证:∠FDE=∠A. 证明:∵DE∥BA( 已知 ), ∴∠FDE=∠BFD( 两直线平行,内错角相等 ). ∵DF∥CA( 已 ), ∴∠BFD=∠A(知 两直线平行,同位角相等 ). ∴∠FDE=∠A(等量代换 ). .
(2)求证:△BDF≌△ADC.

初中数学三角形证明题练习及答案

初中数学三角形证明题练习及答案

三角形证明题练习之蔡仲巾千创作1.如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AB 与D ,交BC 于E ,连接AE ,若CE=5,AC=12,则BE 的长是( )2.如图,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )3.如图,在△ABC 中,AD 是它的角平分线,AB=8cm ,AC=6cm ,则 S △ABD :S △ACD =( )4.如图,在△ABCAB=AC ,∠A=40°,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则∠CBE 的度数为( )5.如图,在△ABC 中,AB=AC ,且D 为BC 上一点,CD=AD ,AB=BD ,则∠B 的度数为( )6.如图,点O 在直线AB 上,射线OC 平分∠AOD ,若∠AOC=35°,则∠BOD 等于( ) 7.如图,在△ABC 中,∠ACB=90°,BA的垂直平分线交BC 边于D,若AB=10,AC=5,则图中等于60°的角的个数是( )8.如图,已知BD 是△ABC 的中线,AB=5,BC=3,△ABD 和△BCD 的周长的差是( )9.在Rt △ABC 中,如图所示,∠C=90°,∠CAB=60°,AD 平分∠CAB ,点D 到AB 的距离DE=3.8cm ,则BC 等于( )10.△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等;∠A=40°,则∠BOC=( )11.如图,已知点P 在∠AOB 的平分线OC 上,PF ⊥OA ,PE ⊥OB ,若PE=6,则PF 的长为( )12.如图,△ABC 中,DE 是AB 的垂直平分线,交BC 于点D ,交AB 于点E ,已知AE=1cm ,△ACD 的周长为12cm ,则△ABC 的周长是( )13.如图,∠BAC=130°,若MP 和QN 分别垂直平分AB 和AC ,则∠PAQ 等于( )14.如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()15.如图,MN是线段AB的垂直平分线,C在MN 外,且与A 点在MN的同一侧,BC交MN于P点,则()16.如图,已知在△ABC中,AB=AC,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()17.如图,在△ABC中,AB=AC,AD平分∠BAC,那么下列结论纷歧定成立的是()三角形证明中经典题21.如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.2.如图,点D是△ABC中BC边上的一点,且AB=AC=CD,AD=BD,求∠BAC的度数.3.如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:(1)∠B=∠C.(2)△ABC是等腰三角形.4如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.5.如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.6.阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ABC中,已知∠ABC和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+CE.7.如图,AD是△ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△AEF是等腰三角形.2015年05月03日初中数学三角形证明组卷参考答案与试题解析一.选择题(共20小题)1.(2015•涉县模拟)如图,在△ABC中,∠C=90°,AB的垂直平分线交AB 与D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是()A .13 B.10 C.12 D.5考点:线段垂直平分线的性质.A.50°B.75°C.80°D.105°A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′A.B C>PC+AP B.B C<PC+AP C.B C=PC+AP D.B C≥PC+APA.90°﹣∠A B.90°﹣∠A C.180°﹣∠A D.45°﹣∠AA.△ABD≌△ACD B.AD是△ABC的高线C.AD是△ABC的角平分线D.△ABC是等边三角形分析:先根据勾股定理求出AE=13,再由DE是线段AB的垂直平分线,得出BE=AE=13.解答:解:∵∠C=90°,∴AE=,∵DE是线段AB的垂直平分线,∴BE=AE=13;故选:A.点评:本题考查了勾股定理和线段垂直平分线的性质;利用勾股定理求出AE是解题的关键.2.(2015•淄博模拟)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A .5个B.4个C.3个D.2个考点:等腰三角形的判定;三角形内角和定理.专题:证明题.分析:根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,即可得出答案.解答:解:共有5个.(1)∵AB=AC∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:A.点评:此题主要考查学生对等腰三角形判定和三角形内角和定理的理解和掌握,属于中档题.A .4:3 B.3:4 C.16:9 D.9:16考点:角平分线的性质;三角形的面积.专题:计算题.分析:首先过点D作DE⊥AB,DF⊥AC,由AD是它的角平分线,根据角平分线的性质,即可求得DE=DF,由△ABD的面积为12,可求得DE与DF的长,又由AC=6,则可求得△ACD的面积.解答:解:过点D作DE⊥AB,DF⊥AC,垂足分别为E、F…(1分)∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,…(3分)∴S△ABD=•DE•AB=12,∴DE=DF=3…(5分)∴S△ADC=•DF•AC=×3×6=9…(6分)∴S△ABD:S△ACD=12:9=4:3.故选A.点评:此题考查了角平分线的性质.此题难度不大,解题的关键是熟记角平分线的性质定理的应用,注意数形结合思想的应用,注意辅助线的作法.4.(2014•丹东)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A .70°B.80°C.40°D.30°考点:线段垂直平分线的性质;等腰三角形的性质.专题:几何图形问题.分析:由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.解答:解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.,A .30°B.36°C.40°D.45°考点:等腰三角形的性质.分析:求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,解答:解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°的垂直平分),CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于()。

三角形全等证明习题(10道)

三角形全等证明习题(10道)

探索三角形全等的条件练习题
1、AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,问BE =CF 吗?说明理由。

2、AC =BD ,AE =CF ,BE =DF ,问AE ∥CF 吗?
3、在四边形ABCD 中,AB =CD ,AD =CB ,问AB ∥CD 吗?说明理由。

4、∠BAC =∠DAE ,∠1=∠2,BD =CE ,问AD =AE .吗?为什么?
5、在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,问BH =AC 吗?为什么?
6、AB =AC ,AD =AE ,∠1=∠2,问CE =BD 吗?
A
B C E
H D A C D
B E F G 1
2 A C
D E F A D E B C 1 2
A B C D F E
7、如图,D ,E ,F ,B 在一条直线上,AB =CD ,∠B =∠D ,BF =DE ,问(1)AE =CF (2)AE ∥CF 。

8、,AC ⊥CE ,AC =CE , ∠ABC =∠DEC =900,问BD =AB +ED 吗?
9、⊿ABC ≌⊿A ′B ′C ′,AD 与A ′D ′分别是中线,问AD =A ′D ′吗?
10、如图,在△ABC 和△DEF 中,∠A=∠D ,AC=DF ,请你添加一个条件,使△ABC 和△DEF 全等,并说明的理由.
本文档局部内容来源于网络,如有内容侵权请告知删除,感谢您的配合!
C D E
F A B A B C D A B C D
A B C
D E。

第一章《三角形的证明》单元练习(含答案)

第一章《三角形的证明》单元练习(含答案)

第一章三角形的证明单元练习一、单选题1.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点2.如图,在△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是( )A. 8B. 9C. 10D. 113.在Rt△ABC中,∠ACB=90°,D是AB的中点,若AB=8,则CD的长为()A. 6B. 5C. 4D. 34.如图,已知直线MN∥AB,把△ABC剪成三部分,点C在直线AB上,点O在直线MN上,则点O是△ABC 的()A. 垂心B. 重心C. 内心D. 外心5.如图,C、D是线段AB上两点,分别以点A和点B为圆心,AD、BC长为半径作弧,两弧相交于点M,连接AM、BM,测量∠AMB的度数,结果为()A. 100°B. 110°C. 120°D. 130°6.如图,C、D是线段AB上两点,分别以点A和点B为圆心,AD、BC长为半径作弧,两弧相交于点M,连接AM、BM,测量∠AMB的度数,结果为()A. 100°B. 110°C. 120°D. 130°7.如图,在△ABC中,AB=AC,∠A=120°,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC 的垂直平分线交BC于点N,交AC于点F,则MN的长为( )A. 4cmB. 3cmC. 2cmD. 1cm8.如图,已知在中,是边上的高线,平分,交于点,,,则的面积等于().A. B. C. D.9.如图,等腰△ABC的周长为19,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC 的周长为()A. 9B. 10C. 11D. 1210.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A. AE=DFB. ∠A=∠DC. ∠B=∠CD. AB=DC11.如图,在△BAC中,∠B和∠C的平分线相交于点F,过点F作DE∥BC交AB于点D,交AC于点E,若BD=5,CE=4,则线段DE的长为()A. 9B. 6C. 5D. 412.在联欢晚会上,有A,B,C三名同学站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置在△ABC的( )A. 三边中线的交点B. 三边中垂线的交点C. 三边上高的交点D. 三条角平分线的交点13.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A. 75°B. 60°C. 45°D. 30°二、填空题14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到AB的距离为________ .15.如图,在Rt△ABC中,AB=AC,∠CBD=∠ABD,DE⊥BC,BC=10,则△DEC的周长=________ .16.如图,已知四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,那么Rt△ABC≌Rt△ADC,根据是 ________17.一个等腰三角形的一个角为80°,则它的顶角的度数是________.18.下列语句:①有一边对应相等的两个直角三角形全等;②一般三角形具有的性质,直角三角形都具有;③有两边相等的两直角三角形全等;④两直角三角形的斜边为5cm,一条直角边都为3cm,则这两个直角三角形必全等.其中正确的有 ________个.三、解答题19.如图,在△ABC中,AB=AD=DC,∠BAD=20°,求∠C的度数?20.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AB于E,求EB:EA的值.四、综合题21.证明命题“角的平分线上的点到角的两边的距离相等”,要根据题意,画出图形,并用符号表示已知和求证,写出证明过程,下面是小明同学根据题意画出的图形,并写出了不完整的已知和求证.(1)已知:如图,∠AOC=∠BOC,点P在OC上,________求证:________.请你补全已知和求证(2)并写出证明过程.22.如图,中,,垂直平分,交于点,交于点.(1)若,,求的周长;(2)若,求的度数.答案解析部分一、单选题1.【答案】D【解析】【解答】解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故答案为:D.【分析】点P到角的两边的距离相等知点P在∠AOB平分线上,由点P在CD上,故点P在CD与∠AOB 的平分线的交点。

三角形的证明综合练习题

三角形的证明综合练习题

三角形的证明综合练习一.解答题(共20小题)1.如图,已知AC⊥BC,AD⊥BD,E为AB的中点,(1)如图1,求证:△ECD是等腰三角形;(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.2.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若BC=20,DE=12,求△MDE的面积.3.如图,直线l1:y=mx+4m与x轴负半轴、y轴正半轴分别交于A、B两点.(1)如图(1),当OA=OB时,求直线l1的解析式;(2)如图(2),当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为腰,点B为直角顶点在第一、二象限作等腰直角△OBF和等腰直角△ABE,连接EF交y轴于点P,试猜想PB的长是否为定值?若是,求出其值;若不是,说明理由.(3)m取不同的值时,点B在y轴正半轴上运动,以AB为腰,点B为直角顶点在第二象限作等腰直角△ABD,满足条件的动点D在直线l2上运动,直线l2与x轴和y轴分别交于F、H两点,若直线l1将△OHF分成面积比为m:1的两部分,求此时直线l1和直线l2的解析式.4.如图,在矩形ABCO中,点O为坐标原点,点B的坐标为(﹣4,3),点A,C在坐标轴上,将直线l1:y=﹣2x+3向下平移6个单位长度得到直线l2.(1)求直线l2的解析式;(2)求直线l2与两坐标轴围成的三角形的面积S;(3)已知点M在第二象限,且是直线l2上的点,点P在BC边上,若△APM是等腰直角三角形,求点M的坐标.5.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE 中AE边上的高,试证明:AE=2CM+BN.6.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.(1)如图1,若AB=,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=,设BP=4,求QF的长.7.学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①;②;③.并对②,③的判断,选择一个给出证明.8.如图,P为等边△ABC内的一点,以PB为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)猜想AP与CQ的大小关系,并证明结论.(2)若PA:PB:PC=5:12:13,连接PQ,试判断△PQC的形状,并说明理由.9.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC 于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.10.如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?11.如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,连接AP.(1)求证:PA平分∠BAC的外角∠CAM;(2)过点C作CE⊥AP,E是垂足,并延长CE交BM于点D.求证:CE=ED.12.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.13.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.14.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.15.如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)请猜想∠B与∠CAF的大小关系,并证明你的结论.16.在△ABC中,AD⊥BC,垂足为点D(D在BC边上),BE⊥AC,垂足为点E,M为AB的中点,联结ME、MD、ED.(1)当点AC边上时(如图),容易证明∠EMD=2∠DAC;当点E在CA的延长线上,请在图中画出相应的图形,并说明“∠EMD=2∠DAC”是否还成立?若成立,请证明:若不成立,请说明理由;(2)如果△MDE为正三角形,BD=4,且AE=1,求△MDE的周长.17.如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D 是BC的中点,BE,CF交于点M.(1)如果AB=AC,求证:△DEF是等边三角形;(2)如果AB≠AC,试猜想△DEF是不是等边三角形?如果△DEF是等边三角形,请加以证明;如果△DEF不是等边三角形,请说明理由;(3)如果CM=4,FM=5,求BE的长度.18.如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.(I)探究:线段BM,MN,NC之间的关系,并加以证明.(Ⅱ)若点M是AB的延长线上的一点,N是CA的延长线上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图②中画出图形,并说明理由.19.如图,在△ABC中,BC=AC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于点E,且AE=BD,求证:BD是∠ABC的角平分线.20.如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.2018年11月15日倪涛的初中数学组卷参考答案与试题解析一.解答题(共20小题)1.如图,已知AC⊥BC,AD⊥BD,E为AB的中点,(1)如图1,求证:△ECD是等腰三角形;(2)如图2,CD与AB交点为F,若AD=BD,EF=3,DE=4,求CD的长.【解答】(1)证明:∵AC⊥BC,AD⊥BD,∴∠ACB=90°,∠ADB=90°,又∵E为AB的中点,∴CE=AB,DE=AB∴CE=DE,即△ECD是等腰三角形;(2)∵AD=BD,E为AB的中点,∴DE⊥AB,已知DE=4,EF=3,∴DF=5,过点E作EH⊥CD,∵∠FED=90°,EH⊥DF,∴EH==,∴DH==,∵△ECD是等腰三角形,∴CD=2DH=.2.如图,在△ABC中,BD⊥AC于D,CE⊥AB于E,M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若BC=20,DE=12,求△MDE的面积.【解答】(1)证明:连接ME、MD,∵BD⊥AC,∴∠BDC=90°,∵M是BC的中点,∴DM=BC,同理可得EM=BC,∴DM=EM,∵N是DE的中点,∴MN⊥DE;(2)解:∵BC=10,ED=6,∴DM=BC=10,DN=DE=6,由(1)可知∠MND=90°,∴MN===4,∴S=DE×MN=×12×8=48.△MDE3.如图,直线l1:y=mx+4m与x轴负半轴、y轴正半轴分别交于A、B两点.(1)如图(1),当OA=OB时,求直线l1的解析式;(2)如图(2),当m取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为腰,点B为直角顶点在第一、二象限作等腰直角△OBF和等腰直角△ABE,连接EF交y轴于点P,试猜想PB的长是否为定值?若是,求出其值;若不是,说明理由.(3)m取不同的值时,点B在y轴正半轴上运动,以AB为腰,点B为直角顶点在第二象限作等腰直角△ABD,满足条件的动点D在直线l2上运动,直线l2与x轴和y轴分别交于F、H两点,若直线l1将△OHF分成面积比为m:1的两部分,求此时直线l1和直线l2的解析式.【解答】解:(1)∵直线l1:y=mx+4m与x轴负半轴、y轴正半轴分别交于A、B 两点,∴A(﹣4,0),B(0,4m),由OA=OB,得4m=4,m=1,∴直线解析式为:y=x+4;(2)PB的长为定值.理由:如图②所示:过点E作EG⊥y轴于G点.∵△AEB为等腰直角三角形,∴AB=EB,∠ABO+∠EBG=90°.∵EG⊥BG,∴∠GEB+∠EBG=90°.∴∠ABO=∠GEB.在△ABO和△EGB中,,∴△ABO≌△EGB.(AAS)∴BG=AO=4,OB=EG∵△OBF为等腰直角三角形,∴OB=BF∴BF=EG.在△BFP和△GEP中,,∴△BFP≌△GEP.(AAS)∴BP=GP=BG=2是定值;(3)如图③,∵A(﹣4,0),B(0,4m),由(2)证得OA=BG=4,DG=OB=4m,∴OG=OB+BG=4m+4,∴点D(﹣4m,4m+4),∵动点D在直线y=﹣x+4上运动,∴直线l2的解析式为:y=﹣x+4,∴F(4.0),H(0,4),∴S=×4×4=8,△OHF设直线l1和直线l2的交点为K,解得,,∴K(,),∵直线l1将△OHF分成面积比为m:1的两部分,∴当S△HBK :S四边形OFKB=m:1时,S△HBK=(4﹣4m)•=8×,解得:m=,m=,当S△HBK :S四边形OFKB=1:m时,S△HBK=(4﹣4m)•=8×,解得:m=2,m=0,∵4m<4,且m≠0,∴m=,∴直线l1的解析式为:y=x+6﹣2.4.如图,在矩形ABCO中,点O为坐标原点,点B的坐标为(﹣4,3),点A,C在坐标轴上,将直线l1:y=﹣2x+3向下平移6个单位长度得到直线l2.(1)求直线l2的解析式;(2)求直线l2与两坐标轴围成的三角形的面积S;(3)已知点M在第二象限,且是直线l2上的点,点P在BC边上,若△APM是等腰直角三角形,求点M的坐标.【解答】解:(1)直线l2的解析式为y=﹣2x+3﹣6=﹣2x﹣3.(2)由(1)知直线l2的解析式为y=﹣2x﹣3,令y=0,即﹣2x﹣3=0,∴x=﹣;令x=0,则y=﹣3,∴S=×3×=.(3)若△APM是等腰直角三角形,分以下三种情况讨论:①当点A为直角顶点时,∠MPA=45°,连接AC.∵点M在第二象限,若∠MAP=90°,则点M必在AB上方,∴∠MPA>∠BPA>∠BCA=45°,这与∠MPA=45°矛盾,∴点M不存在;②当点P为直角顶点时,即∠MPA=90°.∵M在第二象限,∴点M必在AB上方,如图a,过点M作MN⊥CB交CB的延长线于点N,易证△ABP≌△PNM,∴PN=AB=4,MN=BP.∵B(﹣4,3),∴CB=3.设点M的坐标为(x,﹣2x﹣3),则BP=MN=﹣4﹣x,CN=﹣2x﹣3.∵CN=CB+PN﹣BP,∴﹣2x﹣3=3+4﹣(﹣4﹣x),∴x=﹣,则﹣2x﹣3=,∴点M的坐标为(﹣,);③当点M为直角顶点时,分两种情况讨论:如图b,当点M在AB下方时,过点M作HG⊥OA交OA于点G,交BC于点H,易证△MPH≌△AMG,∴MH=AG.设点M的坐标为(a,﹣2a﹣3),则AG=3﹣(﹣2a﹣3)=6+2a,MG=﹣a,∴HG=MH+MG=AG+MG=6+2a﹣a=4,∴a=﹣2,则﹣2a﹣3=1.∴点M的坐标为(﹣2,1);如图c,当点M在AB上方时,同理可得﹣2a﹣6﹣a=4,∴a=﹣,则﹣2a﹣3=,∴点M2的坐标为(﹣,),综上所述,点M的坐标为(﹣,)或(﹣2,1)或(﹣,).5.如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE 中AE边上的高,试证明:AE=2CM+BN.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=BN+2CM.6.已知∠ABC=90°,点P为射线BC上任意一点(点P与点B不重合),分别以AB、AP为边在∠ABC的内部作等边△ABE和△APQ,连接QE并延长交BP于点F.(1)如图1,若AB=,点A、E、P恰好在一条直线上时,求此时EF的长(直接写出结果);(2)如图2,当点P为射线BC上任意一点时,猜想EF与图中的哪条线段相等(不能添加辅助线产生新的线段),并加以证明;(3)若AB=,设BP=4,求QF的长.【解答】解:(1)∵△ABE是等边三角形,A、E、P在同一直线上,∴AB=AE且∠BAE=60°,∴点E是AP的中点,∴AP=2AB=2×2=4,∴QE=4×=6,QF=PQ÷cos30°=4÷=8,∴EF=2;(2)EF=BF.证明:∵∠BAP=∠BAE﹣∠EAP=60°﹣∠EAP,∠EAQ=∠QAP﹣∠EAP=60°﹣∠EAP,∴∠BAP=∠EAQ.在△ABP和△AEQ中,∵,∴△ABP≌△AEQ(SAS)∴∠AEQ=∠ABP=90°,∴∠BEF=180°﹣∠AEQ﹣∠AEB=180°﹣90°﹣60°=30°,又∵∠EBF=90°﹣60°=30°,∴∠BEF=∠EBF,∴EF=BF;(3)如图,过点F作FD⊥BE于点D,∵△ABE是等边三角形,∴BE=AB=2,由(2)得∠EBF=30°,在Rt△BDF中,BD=BE=×2=,∴BF===2,∴EF=2,∵△ABP≌△AEQ,∴QE=BP=4,∴QF=QE+EF=4+2=6.7.学完“几何的回顾”一章后,老师布置了一道思考题:如图,点M,N分别在正三角形ABC的BC,CA边上,且BM=CN,AM,BN交于点Q.求证:∠BQM=60度.(1)请你完成这道思考题;(2)做完(1)后,同学们在老师的启发下进行了反思,提出了许多问题,如:①若将题中“BM=CN”与“∠BQM=60°”的位置交换,得到的是否仍是真命题?②若将题中的点M,N分别移动到BC,CA的延长线上,是否仍能得到∠BQM=60°?③若将题中的条件“点M,N分别在正三角形ABC的BC,CA边上”改为“点M,N分别在正方形ABCD的BC,CD边上”,是否仍能得到∠BQM=60°?…请你作出判断,在下列横线上填写“是”或“否”:①是;②是;③否.并对②,③的判断,选择一个给出证明.【解答】(1)证明:在△ABM和△BCN中,,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∴∠BQM=∠BAQ+∠ABQ=∠MBQ+∠ABQ=60°.(2)①是;②是;③否.②的证明:如图,在△ACM和△BAN中,,∴△ACM≌△BAN(SAS),∴∠AMC=∠BNA,∴∠NQA=∠NBC+∠BMQ=∠NBC+∠BNA=180°﹣60°=120°,∴∠BQM=60°.③的证明:如图,在Rt△ABM和Rt△BCN中,,∴Rt△ABM≌Rt△BCN(SAS),∴∠AMB=∠BNC.又∵∠NBM+∠BNC=90°,∴∠QBM+∠QMB=90°,∴∠BQM=90°,即∠BQM≠60°.8.如图,P为等边△ABC内的一点,以PB为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)猜想AP与CQ的大小关系,并证明结论.(2)若PA:PB:PC=5:12:13,连接PQ,试判断△PQC的形状,并说明理由.【解答】解:(1)猜想:AP=CQ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC,BQ=BP,∴△ABP≌△CBQ,∴AP=CQ;(2)由PA:PB:PC=5:12:13可设PA=5a,PB=12a,PC=13a,在△PBQ中由于PB=BQ=12a,且∠PBQ=60°,∴△PBQ为正三角形.∴PQ=12a.于是在△PQC中∵PQ2+QC2=144a2+25a2=169a2=PC2∴△PQC是直角三角形.9.如图,在Rt△ABC中,∠ACB=90°,∠A=22.5°,斜边AB的垂直平分线交AC 于点D,点F在AC上,点E在BC的延长线上,CE=CF,连接BF,DE.线段DE和BF在数量和位置上有什么关系?并说明理由.【解答】解:DE=BF,DE⊥BF.理由如下:连接BD,延长BF交DE于点G.∵点D在线段AB的垂直平分线上,∴AD=BD,∴∠ABD=∠A=22.5°.在Rt△ABC中,∵∠ACB=90°,∠A=22.5°,∴∠ABC=67.5°,∴∠CBD=∠ABC﹣∠ABD=45°,∴△BCD为等腰直角三角形,∴BC=DC.在△ECD和△FCB中,,∴Rt△ECD≌Rt△FCB(SAS),∴DE=BF,∠CED=∠CFB.∵∠CFB+∠CBF=90°,∴∠CED+∠CBF=90°,∴∠EGB=90°,即DE⊥BF.10.如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?【解答】解:(1)△OBC≌△ABD.证明:∵△AOB,△CBD都是等边三角形,∴OB=AB,CB=DB,∠ABO=∠DBC,∴∠OBC=∠ABC,在△OBC和△ABD中,,∴△OBC≌△ABD(SAS);(2)∵△OBC≌△ABD,∴∠BOC=∠BAD=60°,又∵∠OAB=60°,∴∠OAE=180°﹣60°﹣60°=60°,∴∠EAC=120°,∠OEA=30°,∴以A,E,C为顶点的三角形是等腰三角形时,AE和AC是腰,∵在Rt△AOE中,OA=1,∠OEA=30°,∴AE=2,∴AC=AE=2,∴OC=1+2=3,∴当点C的坐标为(3,0)时,以A,E,C为顶点的三角形是等腰三角形.11.如图,在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,连接AP.(1)求证:PA平分∠BAC的外角∠CAM;(2)过点C作CE⊥AP,E是垂足,并延长CE交BM于点D.求证:CE=ED.【解答】证明:(1)过P作PT⊥BC于T,PS⊥AC于S,PQ⊥BA于Q,如图,∵在△ABC中,∠ABC的平分线与∠ACB的外角的平分线相交于点P,∴PQ=PT,PS=PT,∴PQ=PS,∴AP平分∠DAC,即PA平分∠BAC的外角∠CAM;(2)∵PA平分∠BAC的外角∠CAM,∴∠DAE=∠CAE,∵CE⊥AP,∴∠AED=∠AEC=90°,在△AED和△AEC中∴△AED≌△AEC,∴CE=ED.12.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.(1)求证:①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.【解答】解:(1)①∵AD∥BE,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD;②∵AD∥BE,∴∠ADC=∠DCE,由①知AB=AD,又∵AB=AC,∴AC=AD,∴∠ACD=∠ADC,∴∠ACD=∠DCE,∴CD平分∠ACE;(2)∠BDC=∠BAC,∵BD、CD分别平分∠ABE,∠ACE,∴∠DBC=∠ABC,∠DCE=∠ACE,∵∠BDC+∠DBC=∠DCE,∴∠BDC+∠ABC=∠ACE,∵∠BAC+∠ABC=∠ACE,∴∠BDC+∠ABC=∠ABC+∠BAC,∴∠BDC=∠BAC.13.如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.【解答】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.14.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=25°,∠DEC=115°;点D从B向C运动时,∠BDA逐渐变小(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.【解答】解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°,∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°,∠BDA逐渐变小;故答案为:25°,115°,小;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∠AED=∠C+∠EDC=30°+40°=70°,∴∠DAC=∠AED,∴△ADE的形状是等腰三角形;∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴∠DAC=∠ADE,∴△ADE的形状是等腰三角形.15.如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)请猜想∠B与∠CAF的大小关系,并证明你的结论.【解答】证明:(1)∵DE∥AC,∴∠EDA=∠DAC,∵AD平分∠BAC,∴∠EAD=∠DAC,∴∠EAD=∠EDA∴AE=ED;(2)∠B=∠CAF,证明:∵AE=ED,EF⊥AD,∴EF是AD的垂直平分线,∴FA=FD,∴∠FAD=∠FDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∵∠FDA=∠B+∠BAD,∠FAD=∠FAC+∠CAD,∴∠B=∠CAF.16.在△ABC中,AD⊥BC,垂足为点D(D在BC边上),BE⊥AC,垂足为点E,M为AB的中点,联结ME、MD、ED.(1)当点AC边上时(如图),容易证明∠EMD=2∠DAC;当点E在CA的延长线上,请在图中画出相应的图形,并说明“∠EMD=2∠DAC”是否还成立?若成立,请证明:若不成立,请说明理由;(2)如果△MDE为正三角形,BD=4,且AE=1,求△MDE的周长.【解答】(1)解:如图,“∠EMD=2∠DAC”成立.理由:∵BE⊥CA,AD⊥BC,∴∠BEA=∠ADB=90°,∵BM=AM,∴EM=BM=AM=DM,∴B、D、A、E四点共圆,∴∠DAC=∠EBD,∵∠EMD=2∠EBD,∴∠EMD=2∠DAC.(2)解:①当点E在CA的延长线上,∵△EMD是等边三角形,∴∠EMD=60°,∴∠DAC=∠EBC=30°,设DC=a,则AC=2a,AD=a,在Rt△BEC中,BC=2EC,∴4+a=2(1+2a),∴a=,∴AD=,在Rt△ADB中,AB==,∴DM=AB=,∴△EDM的周长为.②如图当点E在线段AC上时,∵△EMD是等边三角形,∴∠EMD=60°,∴∠DAC=∠EBC=30°,设DC=a,则AC=2a,AD=a,在Rt△BEC中,BC=2EC,∴4+a=2(2a﹣1),∴a=2∴AD=2,在Rt△ADB中,AB==2,∴DM=AB=,∴△EDM的周长为3.综上所述,△EDM的周长为或3.17.如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D 是BC的中点,BE,CF交于点M.(1)如果AB=AC,求证:△DEF是等边三角形;(2)如果AB≠AC,试猜想△DEF是不是等边三角形?如果△DEF是等边三角形,请加以证明;如果△DEF不是等边三角形,请说明理由;(3)如果CM=4,FM=5,求BE的长度.【解答】(1)证明:∵∠A=60°,AB=AC,∴△ABC是等边三角形,∵BE⊥AC,垂足为E,CF⊥AB,垂足为F,∴E、F分别是AC、AB边的中点,又∵点D是BC的中点,EF=BC,DE=AB,DF=AC,∴EF=ED=DF,∴△DEF是等边三角形;(2)解:△DEF是等边三角形.理由如下:∵∠A=60°,BE⊥AC,CF⊥AB,∴∠ABE=∠ACF=90°﹣60°=30°,在△ABC中,∠BCF+∠CBE=180°﹣60°﹣30°×2=60°,∵点D是BC的中点,BE⊥AC,CF⊥AB,∴DE=DF=BD=CD,∴∠BDF=2∠BCF,∠CDE=2∠CBE,∴∠BDF+∠CDE=2(∠BCF+∠CBE)=2×60°=120°,∴∠EDF=60°,∴△DEF是等边三角形;(3)解:∵∠A=60°,BE⊥AC,CF⊥AB,∴∠ABE=∠ACF=90°﹣60°=30°,∴BM=2FM=2×5=10,ME=CM=×4=2,∴BE=BM+ME=10+2=12.18.如图①,△ABC是正三角形,△BDC是顶角∠BDC=120°的等腰三角形,以D 为顶点作一个60°角,角两边分别交AB,AC边于M,N两点,连接MN.(I)探究:线段BM,MN,NC之间的关系,并加以证明.(Ⅱ)若点M是AB的延长线上的一点,N是CA的延长线上的点,其它条件不变,请你再探线段BM,MN,NC之间的关系,在图②中画出图形,并说明理由.【解答】解:(1)MN=BM+NC.理由如下:延长AC至E,使得CE=BM(或延长AB至E,使得BE=CN),并连接DE.∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,∵,∴△MBD≌△ECD(SAS),∴MD=DE,∠BDM=∠EDC,∵∠BDC=120°,∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠NDC+∠EDC=60°,即∠NDE=60°,∴∠MDN=∠NDE,∵MD=DE,DN=DN,∴△DMN≌△DEN(SAS),∴MN=NE=NC+CE=NC+BM.(2)按要求作出图形,(1)中结论不成立,应为MN=NC﹣BM.在CA上截取CE=BM.∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中∵,∴△BMD≌△CED(SAS),∴MD=DE,∠BDM=∠EDC,∵∠BDC=120°,即∠BDE+∠EDC=120°,∴∠BDE+∠BDM=120°,即∠MDE=120°,∵∠MDN=60°,∴∠NDE=60°,∴∠MDN=∠NDE,在△MDN和△EDN中∵,∴△MDN≌△EDN(SAS),∴MN=NE=NC﹣CE=NC﹣BM.19.如图,在△ABC中,BC=AC,∠ACB=90°,D是AC上一点,AE⊥BD交BD的延长线于点E,且AE=BD,求证:BD是∠ABC的角平分线.【解答】证明:延长AE、BC交于点F.∵AE⊥BE,∴∠BEF=90°,又∠ACF=∠ACB=90°,∴∠DBC+∠AFC=∠FAC+∠AFC=90°,∴∠DBC=∠FAC,在△ACF和△BCD中,∴△ACF≌△BCD(ASA),∴AF=BD.又AE=BD,∴AE=AF=EF,即点E是AF的中点.∵BE⊥AF∴DE是AF的垂直平分线∴AB=BF,根据等腰三角形三线合一的性质可知:BD是∠ABC的角平分线.20.如图(1),等边△ABC中,D是AB边上的动点,以CD为一边,向上作等边△EDC,连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2),将(1)动点D运动到边BA的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.【解答】解:(1)△DBC和△EAC会全等证明:∵∠ACB=60°,∠DCE=60°∴∠BCD=60°﹣∠ACD,∠ACE=60°﹣∠ACD∴∠BCD=∠ACE在△DBC和△EAC中,∵,∴△DBC≌△EAC(SAS),(2)∵△DBC≌△EAC∴∠EAC=∠B=60°又∠ACB=60°∴∠EAC=∠ACB∴AE∥BC(3)结论:AE∥BC理由:∵△ABC、△EDC为等边三角形∴BC=AC,DC=CE,∠BCA=∠DCE=60°∠BCA+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE 在△DBC和△EAC中,∵,∴△DBC≌△EAC(SAS),∴∠EAC=∠B=60°又∵∠ACB=60°∴∠EAC=∠ACB∴AE∥BC.。

三角形全等证明基础练习试题打印

三角形全等证明基础练习试题打印

专业知识分享探索三角形全等的条件练习题1、已知AD 是△ABC 的中线,BE ⊥AD ,CF ⊥AD ,证明:BE=CF2、已知AB=CD ,AE=BF ,CE=DF ,求证:AE ∥BF 。

3、已知AB=CD ,BE=CF ,AF=DE ,求证:AB ∥CD4、已知在四边形ABCD 中,AB=CD ,AD=CB ,求证:AB ∥CD 。

5、已知CD ∥AB ,DF ∥EB ,DF=EB ,求证:AF=CE 。

D AB CCBB DB专业知识分享6、已知BE=CF ,AB=CD ,∠B=∠C ,求证:AF=DE 。

7、已知AB=CD , ∠A=∠C ,AE=CF ,求证:EB ∥DF 。

8、已知,M 是AB 的中点,∠1=∠2,MC=MD ,求证:∠C=∠D 。

9、已知∠1=∠2,∠3=∠4,求证:AC=AD 。

10、已知∠E=∠F ,∠1=∠2,AB=CD ,求证:AE=DF 。

11、已知ED ⊥AB ,EF ⊥BC ,BD=EF ,求证:BM=ME 。

ACMEFBB CEMA BA ECB A D专业知识分享12、已知AC=AB ,AE=AD , ∠EAB=∠DAC ,求证:∠B=∠C13、已知AD=AE ,∠B=∠C ,求证:AC=AB 。

14、已知∠1=∠2,BC=AD ,求证:△ABC ≌△BAD 。

15、已知AB=AC , ∠1=∠2,AD=AE ,求证:△ABD ≌△ACE 。

16、已知AD=AE ,BD=CE ,∠1=∠2,求证:△ABD ≌△ACEA D EB CA BAB CD E12 B D ADEC 1 2B专业知识分享17、已知AB=AC ,AD=AE ,∠1=∠2,求证:CE=BD18、已知CE ⊥AB ,DF ⊥AB ,AC ∥DB ,AC=BD ,求证:CE=DF 。

19、已知∠1=∠2,AC=BD ,E ,F ,A ,B 在同一直线上,求证:∠3=∠420、已知DO ⊥BC ,OC=OA ,OB=OD ,求证:CD=AB21、已知CE=DF ,AE=BF ,AE ⊥AD ,FD ⊥AD ,求证:A C ∥BD22、已知AB 与CD 相交于点E ,EA=EC ,ED=EB ,求证:△AED ≌△CEBC AE BF D A E D C B O CD AE FB 21 3 4 A CBD EC AE BF DAD BEFG 1 2 C专业知识分享23、已知AB=AC ,D ,E 分别是AB ,AC 的中点。

难点突破——三角形全等证明题练习50道(含详细解析)

难点突破——三角形全等证明题练习50道(含详细解析)

难点突破——三角形全等证明题练习50道(含详细解析)1.如图所示,90A D ∠=∠=︒,AB DC =,AC ,BD 相交于点M ,求证:(1)ABC DCB ∠=∠;(2)AM DM =.2.如图,点C ,F ,B ,E 在同一条直线上,AC CE ⊥,DF CE ⊥,垂足分别为C ,F ,且AB DE =,CF BE =.求证:A D ∠=∠.3.如图,ABC ∆中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且//BE CF .(1)求证:DE DF =;(2)若在原有条件基础上再添加AB AC =,你还能得出什么结论.(不用证明)(写2个)4.如图,AB AC =,//CD AB ,点E 是AC 上一点,且ABE CAD ∠=∠,延长BE 交AD 于点F .(1)求证:ABE CAD ∆≅∆;(2)如果65ABC ∠=︒,25ABE ∠=︒,求D ∠的度数.5.如图,已知D 为BC 的中点,DE AB ⊥,DF AC ⊥,点E 、F 为垂足,且BE CF =.求证:ABC ∆是等腰三角形.6.已知:如图,AB AE =,C F ∠=∠,EAC BAF ∠=∠.求证:AC AF =.7.如图所示,AB AD =,12∠=∠,添加一个适当的条件,使ABC ADE ∆≅∆(不再添加其它线段,不再标注或使用其他字母).8.如图,BE ,AD 是ABC ∆的高且相交于点P ,点Q 是BE 延长线上的一点.(1)试说明:12∠=∠;(2)若AP BC =,BQ AC =,线段CP 与CQ 会相等吗?请说明理由.9.如图,AB CD =,DE AC ⊥,BF AC ⊥,点E ,F 是垂足,AE CF =,求证:(1)ABF CDE ∆≅∆;(2)//AB CD .10.如图,点C 在线段AB 上,//AD EB ,AC BE =,AD BC =,CF 平分DCE ∠. 求证:CF DE ⊥于点F .11.如图:已知在ABC ∆中,90ACB ∠=︒,1AC BC ==,点D 是AB 上任意一点,AE AB ⊥,且AE BD =,DE 与AC 相交于点F .(1)试判断CDE ∆的形状,并说明理由.(2)是否存在点D ,使AE AF =?如果存在,求出此时AD 的长,如果不存在,请说明理由.12.如图,在ABC ∆中,AB AC =,BD AC ⊥⊥于D ,CE AB ⊥于E .求证:AD AE =.13.如图,点A ,B ,C ,D 在一条直线上,且AC BD =,若12∠=∠,EC FB =. 求证:ACE DBF ∆≅∆.证明:14.已知:如图,点E 是ABC ∆外角CAF ∠平分线上的一点.(1)比大小:BE EC + A B A C+(填“>”、“ <”或“=” ) (2)证明(1)中的结论.15.如图,在ABC ∆中,BD 是边AC 上的中线,BD BC ⊥于点B ,AE BD ⊥交BD 的延长线于点E ,30ABD ∠=︒,求证:2AB BC =.16.如图所示,两个形状相同,大小不同的等腰三角形ABC 与ADE 如图放置,A 为它们共同的顶角顶点,B 、C 、D 在同一条直线上,连接CE .(1)你能在图中找到一对全等三角形吗?证明你的结论;(2)若35BAC ∠=︒,求ECD ∠的度数.17.已知,如图,直线AB BC ⊥,线段AB BC <,点D 在直线AB 上,且AD BC =,AE AB ⊥,且AE BD =,连接DE 、DC ,ADE α∠=.(1)请在下图中补全图形,并写出CDE ∠的度数 (用含α的代数式表示);(2)如图,当点D 在点B 下方,点F 在线段BC 的延长线上,且BD CF =,直线AF 与DC交于点P,试问APD∠的度数是否是定值?若是定值,求出并说明理由.18.已知等腰三角形ABC中,点D为BC中点,点E是BA延长线上一动点,点F是AC延长线上一动点连接DE、DF,且180∠+∠=︒.EDF BAC(1)如图1,若90+=;BAC∠=︒,求证:AE AC AF(2)如图2,若120∠=︒,AE、AC、AF三条线段还满足(1)中的结论吗?若满足,BAC则直接证明;若不满足,请写出结论并证明.19.已知D为ABC⊥,垂足分别为点∆所在平面内一点,且DB DC=,DE AB⊥,DF ACE、F,DE DF=.(1)如图1,当点D在BC边上时,判断ABC∆的形状;并证明你的结论;(2)如图2,当点D在ABC∆内部时,(1)中的结论是否仍然成立?若成立,请证明:若不成立,请举出反例(画图说明,不需证明).20.如图,在Rt ABC∠=︒,点P为AC边上的一点,延长BP至点D,使得AD APC∆中,90=,当AD AB⊥于E.⊥时,过点D作DE AC(1)求证:CBP ABP∠=∠;(2)若4AB BC -=,8AC =.求AB 的长度和DE 的长度.21.如图(1),8A B c m =,AC AB ⊥,BD AB ⊥,6AC BD cm ==.点P 在线段AB 上以2/m s 的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动的时间为()t s(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,判断线段PC 与PQ 满足的关系,并说明理由.(2)如图(2),将图(1)中的AC AB ⊥,BD AB ⊥为改“CAB DBA a ∠=∠=︒”,其它条件不变.设点Q 的运动速度为/xcm s ,是否存在实数x ,使得ACP ∆与BPQ ∆全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.22.如图,AD AC =,1239∠=∠=︒,C D ∠=∠,点E 在线段BC 上.(1)求证:ABC AED ∆≅∆.(2)求AEC ∠的度数.23.已知:如图,点A 、D 、C 、B 在同一条直线上,AD BC =,AE BF =,//AE FB ,求证://CE DF .24.如图,点D 在ABC ∆外部,点C 在DE 边上,BC 与AD 交于点O ,若123∠=∠=∠,AC AE =.求证:(1)B D ∠=∠;(2)ABC ADE ∆≅∆.25.已知:如图,AB AC =,AE AF =,连结BF ,CE ,交于O ,连结AO .求证:(1)B C ∠=∠;(2)AO 平分BAC ∠.26.如图所示,已知ABC ∆中AB AC =,E 、D 、F 分别在AB ,BC 和AC 边上,且BE CD =,BD CF =,过D 作DG EF ⊥于G . 求证:12EG EF =.27.已知在ABC ∆中,AC BC =,分别过A ,B 两点作互相平行的直线AM ,BN ,过点C 的直线分别交直线AM ,BN 于点D ,E .(1)如图1,若AM AB ⊥,求证:CD CE =;(2)如图2,60ABC DEB ∠=∠=︒,判断线段AD ,DC 与BE 之间的关系,并说明理由.28.阅读下列材料,并完成任务.如图,四边形ABCD是一个筝形,其中AB AD=.对角线AC,BD相交于点O,=,BC CD过点O作0M AB⊥,垂足分别为M,N.⊥,ON AD求证:四边形AMON是筝形.29.如图,在ABC∠=∠,AC与BD交于点=,AED∆中AB AC∆中AE AD=,EAD BACO.(1)试确定ADC∠与AEB∠间的数量关系,并说明理由;(2)若65∠的度数.ACB∠=︒,求BDC30.如图,AD为ABC=.求=,FD CD ∆的高,E为AC上一点,BE交AD于F,且有BF AC证:(1)BFD ACD ∆≅∆;(2)BE AC ⊥.31.在等腰OAB ∆和等腰OCD ∆中,OA OB =,OC OD =,连接AC 、BD 交于点M .(1)如图1,若40:AOB COD ∠=∠=︒①AC 与BD 的数量关系为 ;②AMB ∠的度数为 .(2)如图2,若90:AOB COD ∠=∠=︒①判断AC 与BD 之间存在怎样的数量关系?并说明理由; ②求AMB ∠的度数.32.如图,点B 、F 、C 、E 在同一直线上,AC 、DF 相交于点G ,AB BE ⊥,垂足为B ,DE BE ⊥,垂足为E ,且AC DF =,BF CE =.(1)求证:ABC DEF ∆≅∆;(2)若65A ∠=︒,求AGF ∠的度数.33.如图,在ABC ∆中,B C ∠=∠,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE CF =,AD EC AB +=.(1)求证:DE EF =.(2)当36A ∠=︒时,求DEF ∠的度数.34.在ABC ∆中,45ACB ∠=︒,AD BC ⊥垂足为D ,点E 在AD 上,ED BD =,连接CE 并延长交AB 于点F ,连接DF .(1)求证:BAD ECD ∠=∠.(2)求证:45DFE ∠=︒.35.如图,在ABC ∆和BAD ∆中,AC 与BD 相交于点E ,AD BC =,DAB CBA ∠=∠,求证:12∠=∠.36.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,122∠=︒,228∠=︒, 求3∠的度数.37.如图,在直角坐标系中有一点(5,5)P ,(0,)M m 为y 轴上任意一点,N 为x 轴上任意一点,且90MPN ∠=︒.(1)当5m =时,OM ON +的值为 ;(2)当05m <<时,OM ON +的值是否改变?说明你的理由;(3)探索:当0m <时,OM 与ON 的数量关系为 .38.已知,如图,射线BD 平分锐角ABC ∠,且平分钝角ADC ∠,求证:CD AD =.39.如图所示,BF AC ⊥于点F ,CE AB ⊥于点E ,BF 与CE 交于D ,且BD CD =. 求证:D 在BAC ∠的平分线上.40.如图(1),7A B c m =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.41.如图,在ABC∠,CE平分BCA∠,AD、CE交于点F,B∆中,60∠=︒,AD平分BAC=,连结FG.CD CG(1)求证:FD FG=;(2)线段FG与FE之间有怎样的数量关系,请说明理由;(3)若60B∠≠︒,其他条件不变,则(1)和(2)中的结论是否仍然成立?请直接写出判断结果,不必说明理由.42.已知BF平分ABC∆的外角ABE∠,D为射线BF上一动点.(1)如图所示,若DA DC∠=∠;=,求证:ABC ADC(2)在D点运动的过程中,试比较BA BC+的大小,并说明你的理由.+与DC DA43.如图,在ABC=,∠=︒,BD AC⊥于点D,点E在DB的延长线上,DE BCABC∆中,90=.12∠=∠,求证:DF AB44.如图,在ABC ∆和ADE ∆中,点E 在BC 边上,BAC DAE ∠=∠,B D ∠=∠,AB AD =.求证:AEC C ∠=∠.45.如图,AB AC =,E 、D 分别是AB 、AC 的中点,AF BD ⊥,垂足为点F ,AG CE ⊥,垂足为点G ,试判断AF 与AG 的数量关系,并说明理由.46.如图,90ACB ∠=,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D 、E .(1)求证:ACD CBE ∆≅∆;(2)已知5AD =,3DE =,求BE 的长.47.如图,AE 、BD 是ABM ∆的高,AE ,BD 交于点C ,且A E B E =,BD 平分ABM ∠.(1)求证:2BC AD =;(2)求M DE ∠的度数.48.在ABC∠交AB于D,E,F在AC,BC∠=︒,CD平分ACBA∆中,AB AC=,36上,且108∠=︒.EDF(1)求ADC∠的度数;(2)求证:AE BF BC+=.49.已知:如图,90∠的角平分线上,且点A到点⊥于点E,点A在FOCF∠=︒,AE OC=.B、点C的距离相等.求证:BF EC50.已知:如图,点C、D、B、F在一条直线上,且AB BD=,⊥,AB CD⊥,DE BD =.CE AF求证:(1)ABF CDE∆≅∆;(2)CE AF⊥.难点突破——三角形全等证明题练习50道(含详细解析)参考答案与试题解析一.解答题(共50小题)1.如图所示,90A D ∠=∠=︒,AB DC =,AC ,BD 相交于点M ,求证:(1)ABC DCB ∠=∠;(2)AM DM =.【解答】证明:(1)90A D ∠=∠=︒,ABC ∴∆和DCB ∆都是直角三角形.在Rt ABC ∆和Rt DCB ∆中,BC CB AB DC =⎧⎨=⎩, Rt ABC Rt DCB(HL)∴∆≅∆,ABC DCB ∴∠=∠;(2)Rt ABC Rt DCB ∆≅∆,AC DB ∴=,ACB DBC ∠=∠,MC MB ∴=,AM DM ∴=.2.如图,点C ,F ,B ,E 在同一条直线上,AC CE ⊥,DF CE ⊥,垂足分别为C ,F ,且AB DE =,CF BE =.求证:A D ∠=∠.【解答】证明:AC CE ⊥,DF CE ⊥,90C DFE ∴∠=∠=︒,CF BE =,CB FE ∴=,AB DE =,Rt ACB Rt DFE(HL)∴∆≅∆,A D ∴∠=∠.3.如图,ABC ∆中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且//BE CF .(1)求证:DE DF =;(2)若在原有条件基础上再添加AB AC =,你还能得出什么结论.(不用证明)(写2个)【解答】(1)证明:AD 是ABC ∆的中线, BD CD ∴=,//BE CF ,FCD EBD ∴∠=∠,DFC DEB ∠=∠,在CDE ∆和BDF ∆中,FCD EBD DFC DEB CD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()CDF BDE AAS ∴∆≅∆,DE DF ∴=(2)可以得出AD BC ⊥,BAD CAD ∠=∠.(理由等腰三角形三线合一).4.如图,AB AC =,//CD AB ,点E 是AC 上一点,且ABE CAD ∠=∠,延长BE 交AD 于点F .(1)求证:ABE CAD ∆≅∆;(2)如果65ABC ∠=︒,25ABE ∠=︒,求D ∠的度数.【解答】(1)证明://CD AB ,BAE ACD ∴∠=∠,ABE CAD ∠=∠,AB AC =,()ABE CAD ASA ∴∆≅∆;(2)解:AB AC =,65ABC ACB ∴∠=∠=︒,180180656550BAC ABC ACB ∴∠=︒-∠-∠=︒-︒-︒=︒, 又25ABE CAD ∠=∠=︒,502575BAD BAC CAD ∴∠=∠+∠=︒+︒=︒, //AB CD ,180********D BAD ∴∠=︒-∠=︒-︒=︒.5.如图,已知D 为BC 的中点,DE AB ⊥,DF AC ⊥,点E 、F 为垂足,且BE CF =.求证:ABC ∆是等腰三角形.【解答】证明:D 为BC 的中点,BD CD ∴=,DE AB ⊥,DF AC ⊥,90BED CFD ∴∠=∠=︒,在Rt BED ∆和Rt CFD ∆中,BD CD BE CF =⎧⎨=⎩,。

三角形全等证明练习题

三角形全等证明练习题

数学作业1.如图,E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,再添一个条件仍不能证明△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠E=∠ABC D.AB∥DE2.如图,已知∠ABC=∠BAD.下列条件中,不能作为判定△ABC≌△BAD的条件的是()A.∠C=∠D B.∠BAC=∠ABD C.B C=AD D.A C=BD3.如图,点A在DE上,AC=CE,∠1=∠2=∠3,则DE的长等于()A.DC B.BC C.AB D.AE+AC4.如图,将两块相同的三角板(含30°角)按图中所示位置摆放,若BE交CF 于D,AC交BE于M,AB交CF于N,则下列结论中错误的是()A.∠EAC=∠FAB B.∠EAF=∠EDF C.△ACN≌△ABM D.AM=AN5.如图,点B,D,C,F在一条直线上,AB=EF,∠ABC=∠EFD,BD=CF.证明:AC=DE.6.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.7.已知:如图所示,△ABC中,∠ABC=45°,高AE与高BD交于点M,BE=4,EM=3.(1)求证:BM=AC;(2)求△ABC的面积.8.如图,已知∠ABC=90°,D是直线AB上的点,AD=BC,过点A作AF⊥AB,并截取AF=BD,连接DC,DF,CF,判断△CDF的形状并证明.9.如图,已知在Rt△ABC中,AB=AC,∠BAC=90°,AN是过点A的任一直线,BD⊥AN于点D,CE⊥AN于点E.求证:BD﹣CE=DE.10.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC.(1)证明:BC=DE;(2)若AC=12,求四边形ABCD的面积.。

2024届初中数学重难点题型专项(全等三角形证明题)练习(附答案)

2024届初中数学重难点题型专项(全等三角形证明题)练习(附答案)

2024届初中数学重难点题型专项(全等三角形证明题)练习题型1:重叠边技巧①短边相等+重叠边=长边相等②长边相等-重叠边=短边相等1.(∙广东)如图,点A 、C 、F 、D 在同一直线上,AF=DC ,AB=DE ,BC=EF ,求证:∥AB DE .2.(∙重庆)已知点A 、E 、F 、C 在同一直线上,已知AD BC ∥,AD BC =,AE CF =,试说明BE 与DF 的关系.3.(∙湖北荆门)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C.求证:∠A=∠D.4.(∙甘肃)如图,AB∥CD,BN∥MD,点M、N在AC上,且AM=CN,求证:BN=DM.5.(∙新疆)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A =∠D,AF=DC.求证:(1)ABC≌△DEF;(2)BC∥EF.△题型2:重叠角技巧重叠角技巧: 小角相等+重叠角=大角相等大角相等-重叠角=小角相等∠=2∠,AB=AD.求证:△ABC≌△ADE.6.(∙福建∙福州)如图,AC=AE,17.(∙四川资阳)如图,在△ABC和△ADE中,AB=AD,∠B=∠D,1=2∠∠.求证:BC=DE.∠,求证:△ABC≌△ADE.8.如图,AB=AD,∠C=∠E,1∠=29.(雅礼)如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.∠∠.10.(∙四川达州)已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,1=2(1)求证:BD=CE;(2)求证:∠M=∠N.题型3:等角的余角相等技巧: ∠1+∠2=90,∠2+∠3=90, ∠1=∠3技巧:把全等三角形中一个三角形的两个锐角分别随意标上∠1、∠2,再从第二个三角形的两个锐角中挑一个和∠1或∠2互余的角标上∠3。

11.(∙甘肃)如图所示,在△ABC中,AD⊥BC于D,CE⊥AB于E,AD与CE交于点F,且AD=CD, (1)求证:△ABD≌△CFD;(2)已知BC=7,AD=5,求AF的长.12.(∙辽宁沈阳)如图,在ABC 中,90ACB ∠=︒,AC BC =,BE CE ⊥于E ,AD CE ⊥于D , 2.5cm AD =,1.7cm DE =,求BE 的长.13.(长郡)如图,△ABC 中,∠ACB =90°,AC =BC ,E 是BC 边上的一点,连接AE ,过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D .(1)求证:△ACE ≌△CBD ;(2)若BE =3,AB =6,求点E 到AB 的距离.14.(∙广东)如图,△ABC 中,AB =AC ,AD ⊥BC ,CE ⊥AB ,AE =CE .求证:(1)△AEF ≌△CEB ;(2)AF =2CD .15.(周南)(1)如图1,△ABC 中,∠BAC =90°,AB =AC ,AE 是过A 点的一条直线,且B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E ,求证:BD =DE +CE .(2)若直线AE绕点A旋转到图2的位置时(BD<CE),其余条件不变,问BD与DE、CE的关系如何?请予以证明.题型4:证两次全等的证明题16.如图,已知AB=DC,AE=DF,CE=BF.求证:AF=DE.17.如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC.CF平分∠DCE.求证:(1)△ACD≌△BEC;(2)CF⊥DE.18.如图1所示,点E、F在线段AC上,过E,F分别作DE⊥AC,BF⊥AC,垂足分别为点E,F;DE,BF分别在线段AC的两侧,且AE=CF,AB=CD,BD与AC相交于点G.(1)求证:EG=GF;(2)若点E在F的右边,如图2时,其余条件不变,上述结论是否成立?请说明理由.题型5:旋转型全等(手拉手模型)19.(∙浙江)如图,在△ABC中,AB=CB,∠ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,DC连接AE、DE、.(1)求证:△ABE≌△CBD;(2)若∠CAE=30°,求∠BDC的度数.20.(∙山东聊城)如图,在ABC 中,90ACB ∠= ,AC BC =,D 是AB 边上一点(点D 与A ,B 不重合),连接CD ,将线段CD 绕点C 按逆时针方向旋转90 得到线段CE ,连接DE 交BC 于点F ,连接BE . 1()求证:ACD △≌BCE ;2()当AD BF =时,求BEF ∠的度数.21.(∙湖南∙澧县)如图,四边形ABCD 中,对角线AC 、BD 交于点O ,AB =AC ,点E 是BD 上一点,且AE =AD ,EAD ∠=BAC,∠(1)求证:A ∠BD =ACD ∠;(2)若ACB ∠=65°,求BDC ∠的度数.22.(∙北京)如图,已知:△OAB ,△EOF 都是等腰直角三角形,∠AOB =90°,中,∠EOF =90°,连结AE 、BF .求证:(1)AE =BF ;(2)AE ⊥BF .23.(∙浙江)如图,点C 为线段BD 上一点,,ABC CDE △△都是等边三角形,AD 与CE 交于点,F BE 与AC 相交于点G .(1)求证:ACD BCE ≌;(2)求证:ACF BCG ≌求证:(1)AE =BF ;(2)AE ⊥BF .题型6:角平分线的性质与判定24.(∙北京)如图所示,在△ABC 中,C ∠=90°,AD 是BAC ∠的平分线,⊥DE AB 交AB 于点E ,点F 在AC 上,BD =DF .求证:(1)CF =EB ;(2)AB =AF +2EB .25.(∙广西北海)如图,⊥DE AB 于E ,⊥DF AC 于F,若BD=CD 、BE=CF ,(1)求证:AD 平分BAC ∠;(2)已知AC=20, BE=4,求AB 的长.求证:(1)AE =BF ;(2)AE ⊥BF .26.(∙浙江∙义乌)如图,已知AC 平分∠⊥BAD,CE AB 于E ,⊥CF AD 于F ,且BC=CD , (1)求证:△≌△BCE DCF(2)若AB=17,AD=9,求AE 的长.27.(∙甘肃平凉)如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,求证:AM 平分DAB ∠.∠, 28.(∙北京)如图,在四边形ABCD中,BC>BA,AD=CD,BD平分ABC ∠∠.求证:A+C=180°29.(∙全国)在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F.(1)若BE=CF,求证:AD是△ABC的角平分线.(2)若AD是△ABC的角平分线,求证:BE=CF.参考答案题型1:重叠边技巧①短边相等+重叠边=长边相等②长边相等-重叠边=短边相等1.(∙广东)如图,点A 、C 、F 、D 在同一直线上,AF=DC ,AB=DE ,BC=EF ,求证:∥AB DE .【答案详解】∵AF=DC ,∴AF ﹣FC=DC ﹣CF ,即AC=DF .在△ACB 和△DFE 中AC DF AB DE BC EF =⎧⎪=⎨⎪=⎩,∴△≌△ACB DFE(SSS ),∴∠∠A=D ,∴∥AB DE .2.(∙重庆)已知点A 、E 、F 、C 在同一直线上,已知AD BC ∥,AD BC =,AE CF =,试说明BE 与DF 的关系.【答案详解】解:数量关系BE DF =,位置关系BE DF ∥.理由:∵AD BC ∥,∴∠A =∠C ,又AE CF = ,∴AE +EF =CF +EF ,即AF =CE ,在ADF 和CBE △中,AD BC A C AF CE =⎧⎪∠=∠⎨⎪=⎩,ADF ∴ ≌()CBE SAS △∴BE =DF ,∠BEF =∠DFE ,∴BE DF ∥.3.(∙湖北荆门)如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .【答案详解】解∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE , ∴∠A =∠D .4.(∙甘肃)如图,AB ∥CD ,BN ∥MD ,点M 、N 在AC 上,且AM =CN ,求证:BN =DM .【答案详解】解:∵AB ∥CD ,BN ∥MD ,∴∠A =∠C ,∠CMD =∠ANB ,∵AM =CN ,∴AM +MN =MN +CN ,即AN =MC ,在△ANB 和△CMD 中,∠A =∠C ,AN =MC ,∠ANB =∠CMF,∴△ANB ≌△CMD (ASA ),∴BN =MD .5.(∙新疆)如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .求证:△(1)ABC ≌△DEF ;(2)BC ∥EF .【答案详解】(1)证明:∵AF =DC ,∴AF +CF =DC +CF ,∴AC =DF ,∵在△ABC 和△DEF 中,AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS );(2)证明:由(1)知△ABC ≌△DEF ,∴∠BCA =∠EFD ,∴BC ∥EF .题型2:重叠角技巧重叠角技巧:①小角相等+重叠角=大角相等②大角相等-重叠角=小角相等6.(∙福建∙福州)如图,AC =AE ,1∠=2∠,AB =AD .求证:△ABC ≌△ADE .【答案详解】证明:∵∠∠1=2,12EAB EAB ∴∠+∠=∠+∠,即CAB EAD ∠=∠,在ABC 和ADE 中,{AC AECAB EAD AB AD=∠=∠=()ABC ADE SAS ∴≅ .7.(∙四川资阳)如图,在△ABC和△ADE 中,AB =AD ,∠B =∠D ,1=2∠∠.求证:BC =DE .【答案详解】证明:∵∠∠1=2,∵∠DAC +1=2+∠∠∠DAC ∴∠BAC =∠DAE ,在△ABC 和△ADE 中,B D AB AD BAC DAE ∠∠⎧⎪⎨⎪∠∠⎩===,∴△ADE ≌△ABC (ASA )∴BC =DE ,8.如图,AB =AD ,∠C =∠E ,1∠=2∠,求证:△ABC ≌△ADE .【解答】证明:∵∠1=2∠,∴∠1+∠EAC =2+∠∠EAC ,即∠BAC =∠DAE ,在△ABC 和△ADE 中,BAC DAE C E AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (AAS ). 9.(雅礼)如图,△ABC 和△ADE 都是等腰三角形,且∠BAC =90°,∠DAE =90°,B ,C ,D 在同一条直线上.求证:BD =CE .【解答】证明:∵△ABC 和△ADE 都是等腰直角三角形,∴AD =AE ,AB =AC ,又∵∠EAC =90°+∠CAD ,∠DAB =90°+∠CAD ,∴∠DAB =∠EAC ,∵在△ADB 和△AEC中,∴△ADB ≌△AEC (SAS ),∴BD =CE .10.(∙四川达州)已知△ABN 和△ACM 位置如图所示,AB =AC ,AD =AE ,1=2∠∠.(1)求证:BD =CE ;(2)求证:∠M=∠N .【答案详解】(1)证明:在△ABD 和△ACE 中,12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴BD =CE ;(2)证明:∵∠∠1=2,∴∠∠1+DAE =2+∠∠DAE ,即∠BAN =∠CAM ,由(1)知:△ABD ≌△ACE ,∴∠B =∠C ,在△ACM 和△ABN 中,C B AC AB CAM BAN ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ACM ≌△ABN (ASA ),∴∠M =∠N .题型3:等角的余角相等技巧: ∠1+∠2=90,∠2+∠3=90,∴∠1=∠3技巧:把全等三角形中一个三角形的两个锐角分别随意标上∠1、∠2,再从第二个三角形的两个锐角中挑一个和∠1或∠2互余的角标上∠3。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册数学第一章提高训练
9.等腰三角形的周长是 2 + J 3,腰长为1,则其底边上的高为 _________________ .
12 .已知:如图,AB = AC,/A= 36°,AB 的垂直平分线交AC 于D,则下列结论:①/C=
72。

:②总。

是/AB
C 的平分线;③AAB
D 是等腰三角形;④ABCD 是等腰三角形,其中正确的有( A. 1个
B. 2个
C. 3个
D. 4个
13 .如图,已知在 AABC 中,AB = AC,/C= 30°,AB±AD,AD =
10 .以长为1、 . 2、2
,5、3,中的三条线段为边长可以构成
个直角三角形
.
(11题图)
二计算题
11 .如图,在△AEC,/C= 90°
ZB= 15°,AB 的中垂线DE 交EC 于D,E 为垂足,若BD = 10 cm,^ UAC 等 于( )A. 10 cm
B. 8 cm
C. 5cm
D. 2. 5cm
3 cm,_KU AC 的长等于( )
A. 2 2 cm
B. 2.3 cm
C. 3 2 cm
D. 3 .. 3
cm
(13题图)
14.如图,加条件能满足 AAS 来判断/ AC*/ABE 的条件是(
A. / AEB = / ADC / C = / D
B.Z AEB = / ADC CD = BE
C. AC = AB
AD = AE
D . AC = AB
/ C =/ B
一、填空题(每小题2分,共20分)
1. 在△ ABD 和厶ACE 中,有下列四个论断:① AB= AC;②AD= AE ;③/ B =Z C ;④BD= CE 请以其中三个论断作为条件,余
下的一个作为结论,写出一个正确的判断(000^0的形式写出来)
________________________________ .
2. ______________________________________________________________ 如图,在△ ABC 中,AD= DE AB= BE,/
A = 80° 则/ DEC= ________________________________________________________ .
(2题图) (3题图) (4题图) 4.如图,/ AO =/ BO =15°,PC// OA PDLOA 若 PC = 4,贝U PD=
.
5•等腰三角形一腰上的高与另一腰的夹角为
30°,则其顶角的度数为 _________________ 度.
6. 已知:如图,在厶ABC 中,AB=15m AC=12m AD 是/ BAC 的外角平分线,DE// AB 交AC 的延长线于点 E ,那么CE= _cm
7. ______________________________________________________________________________________________ 如图,人。

是厶ABC 的中线,/ ADC= 45°,把△ ADC 沿 AD 对折,点 C 落在C 的位置,如果 BC=2, _则BC' = ______________ &在联欢晚会上,有 A 、B 、C 三名同学站在一个三角形的三个顶点位置上,他们在玩一个游戏,要求在他们中间放一个木
ABC
(6题图)
(7题
(12题
图)
15 .正三角形ABD 和正三角形CBD 勺边长均为1,现把它们拼合起来如图,
E 是AD 上异于A , D 两点的一动点,
F 是CD 上一
动点,满足 AE+CF=1当E ,F 移动时,三角形 BEF 的形状为( )
A.等边三角形 B .等腰直角三角形 C •等腰三角形非正三角形 D •正三角形
已知在AAEC 中,AE = AC ,D 为EC 上一点,EE = CD ,CF = ED ,那么ZEDF 等于(
20 •如果一个三角形三条中线的交点恰在它的一条高上,那么这个三角形是 ()
A.直角三角形
B •等边三角形
C •等腰三角形
D •等腰直角三角形 三、解答题(每小题10分,共50分)
21.如图,A,B 为一公司的两个分部,为了方便 A,B 两分部的联系和沟通,现准备在距离
2km 的A,B 两部分之间修筑一条笔
直的公路(如图中的线段 AB ),经测量,在 A 地的北偏东60°方向,B 地的北偏西45°方向的C 处有一半径为0.7km 的 公园,问计划修筑的这条公路会不会穿过公园?为什么?(
15分)
22.已知:如图,在 Rt △ ABC 中, Z ACB=90 , AC=BC 点D 是BC 的中点, 点F .求
证:AC=2BF
23.如图,△ ABC WA DCE 都是等腰直角三角形,其中/ BCA=Z DCE= 90°.
请问BE 与AD 是否垂直?如果成立请证明,不成立说明理由.
24 .在△ ABC 中, AB= AC, D 是AB 上一点,E 是AC 延长线上一点,且
25.如图,△ ABC 中, E 是BC 边上的中点,DE±BC 于E ,交Z BAC 的平分线 AD 于D,过D 作
DMIL AB 于 M,作 DNL AC 于 N 。

试证明:BM= CN
O
16.如图, A. 90° 17.如图,
个.A.
1 ZA
2
H 是厶ABC 的高AD BE 的交点,且DH=DC 则下列结论:
-ZA
B. 90°
C. 45°
丄ZA
2
① BD=ADDBC=A (®BH =A @ CE=CD 中, 一定成立的有()
D. 180°-ZA
18 •一个正方形和一个等腰三角形有相等的周长,已知等腰三角形
m,则这个正方形的面积为(
) A. 64 cm? B. 48 cm
19 •已知等腰三角形的两边长分别为
C. 36 cm 2
有两边长分别为 5.6 cm 和13.2 c
2
D. 24 cm
3 cm,则该等腰三角形的周长是 () A. 9 cm B . 12 cm C. 12 cm 或者 15 cm D . 15 cm
6 cm 、 23
C
(17题)
(16题)。

相关文档
最新文档