(完整版)机械设计基础平面连杆机构
(完整版)《机械设计基础》答案
《机械设计基础》作业答案第一章平面机构的自由度和速度分析1-11-21-31-41-5自由度为:11 19211)0192(73')'2(3=--=--+⨯-⨯=--+-=FPPPnFHL或:1182632 3=-⨯-⨯=--=HLPPnF1-6自由度为11)01122(93')'2(3=--+⨯-⨯=--+-=FPPPnFHL或:11 22241112832 3=--=-⨯-⨯=--=HLPPnF1-10自由度为:1128301)221142(103')'2(3=--=--⨯+⨯-⨯=--+-=F P P P n F H L或: 122427211229323=--=⨯-⨯-⨯=--=HL P P n F1-1122424323=-⨯-⨯=--=HL P P n F1-13:求出题1-13图导杆机构的全部瞬心和构件1、3的角速度比。
1334313141P P P P ⨯=⨯ωω11314133431==P P ω1-14:求出题1-14图正切机构的全部瞬心。
设s rad /101=ω,求构件3的速度3v 。
s mm P P v v P /20002001013141133=⨯===ω1-15:题1-15图所示为摩擦行星传动机构,设行星轮2与构件1、4保持纯滚动接触,试用瞬心法求轮1与轮2的角速度比21/ωω。
构件1、2的瞬心为P 12P 24、P 14分别为构件2与构件1相对于机架的绝对瞬心1224212141P P P P ⨯=⨯ωω121214122421r P P ==ω 1-16:题1-16图所示曲柄滑块机构,已知:s mm l AB /100=,s mm l BC /250=,s rad /101=ω,求机构全部瞬心、滑块速度3v 和连杆角速度2ω。
在三角形ABC 中,BCA AB BC∠=sin 45sin 0,52sin =∠BCA ,523cos =∠BCA , 045sin sin BCABC AC=∠,mm AC 7.310≈s mm BCA AC P P v v P /565.916tan 1013141133≈∠⨯===ω1224212141P P P P ωω=s rad AC P P P P /9.21002101001122412142≈-⨯==ωω1-17:题1-17图所示平底摆动从动件凸轮1为半径20=r 的圆盘,圆盘中心C 与凸轮回转中心的距离mm l AC 15=,mm l AB 90=,s rad /101=ω,求00=θ和0180=θ时,从动件角速度2ω的数值和方向。
机械设计基础平面连杆机构
机械设计基础平面连杆机构1. 介绍平面连杆机构是机械设计中常见的一种机械结构,由若干杆件组成并通过铰链连接。
这种机构广泛应用于各种机械装置和系统中,如发动机、机械手等。
平面连杆机构的设计目标是通过合理配置连杆的长度和铰链位置来实现特定的运动,使它能够完成所需的工作。
在设计过程中,需要考虑机构的稳定性、刚度、运动路径等因素,以确保机构能够正常运行并满足设计要求。
本文将介绍平面连杆机构的基本原理、设计要点和常见应用实例。
2. 基本原理平面连杆机构的基本原理是利用杆件的长度和铰链的位置,通过特定的连杆结构来实现机构的运动。
2.1 连杆连杆是平面连杆机构中的主要组成部分,通常由刚性材料制成。
连杆通过铰链连接在一起,形成一个闭合的结构。
连杆的长度和形状对机构的运动特性有重要影响。
常见的连杆形状有直杆、曲杆和弧杆等。
在设计时,需要根据具体的运动要求和空间限制选择适当的连杆形状和长度。
2.2 铰链铰链是连杆机构中的连接件,用于连接连杆并允许相对运动。
铰链通常由轴和轴承组成,能够实现转动或滑动运动。
铰链的位置对机构的运动轨迹和运动范围有决定性影响。
在设计时,需要合理选择铰链的位置和类型,以满足设计要求。
3. 设计要点3.1 运动要求在设计平面连杆机构时,首先需要明确机构的运动要求。
例如,需要确定机构的运动类型(旋转、直线、滑动等)、运动范围、速度和加速度等。
这些要求将指导后续的连杆和铰链的设计。
3.2 连杆长度连杆的长度直接决定机构的运动幅度和工作空间。
在设计时,需要根据运动要求和空间限制选择合适的连杆长度。
较短的连杆长度可提高机构的刚度和稳定性,但限制了运动范围;较长的连杆长度可以实现更大的运动幅度,但可能会导致机构不稳定。
3.3 铰链位置铰链的位置是机构设计中的关键因素之一,它直接影响机构的运动轨迹和运动范围。
在选择铰链位置时,需要考虑到机构的运动要求、连杆长度以及其他约束条件,以实现所需的运动轨迹。
3.4 负载和刚度在设计平面连杆机构时,需要考虑机构受到的负载和所需的刚度。
机械设计基础习题及答案3平面连杆机构的自由度
平面机构的自由度和速度分析一、复习思考题1、什么是运动副?运动副的作用是什么?什么是高副?什么是低副?2、平面机构中的低副和高副各引入几个约束?3、机构自由度数和原动件数之间具有什么关系?4、用机构运动简图表示你家中的缝纫机的踏板机构。
5、计算平面机构自由度时,应注意什么问题?二、填空题1、运动副是指能使两构件之间既保持接触。
而又能产生一定形式相对运动的。
2、由于组成运动副中两构件之间的形式不同,运动副分为高副和低副。
3、运动副的两构件之间,接触形式有接触,接触和接触三种。
4、两构件之间作接触的运动副,叫低副。
5、两构件之间作或接触的运动副,叫高副。
6、回转副的两构件之间,在接触处只允许孔的轴心线作相对转动。
7、移动副的两构件之间,在接触处只允许按方向作相对移动。
8、带动其他构件的构件,叫原动件。
9、在原动件的带动下,作运动的构件,叫从动件。
10、低副的优点:制造和维修,单位面积压力,承载能力。
11、低副的缺点:由于是摩擦,摩擦损失比大,效率。
12、暖水瓶螺旋瓶盖的旋紧或旋开,是低副中的副在接触处的复合运动。
13、房门的开关运动,是副在接触处所允许的相对转动。
14、抽屉的拉出或推进运动,是副在接触处所允许的相对移动。
15、火车车轮在铁轨上的滚动,属于副。
三、判断题1、机器是构件之间具有确定的相对运动,并能完成有用的机械功或实现能量转换的构件的组合。
()2、凡两构件直接接触,而又相互联接的都叫运动副。
()3、运动副是联接,联接也是运动副。
()4、运动副的作用,是用来限制或约束构件的自由运动的。
()5、螺栓联接是螺旋副。
()6、两构件通过内表面和外表面直接接触而组成的低副,都是回转副。
()7、组成移动副的两构件之间的接触形式,只有平面接触。
()8、两构件通过内,外表面接触,可以组成回转副,也可以组成移动副。
()9、运动副中,两构件联接形式有点、线和面三种。
()10、由于两构件间的联接形式不同,运动副分为低副和高副。
机械设计基础-平面机构分析
平面机构分析
图2-10 闭式运动链及开式运动链
平面机构分析
4.一般机构中的构件的分类 一般机构中的构件可分为三类: (1)固定件(机架):用来支 承活动构件的构件。例如图1-1中的气缸体就是固定件, 用以支承活塞和曲轴等。在研究机构中活动构件的运动 时,常以固定件作为参考坐标系。 (2)原动件:运动规律已知的活动构件,它的运动规律是由 外界给定的。比如内燃机 中的活塞就是原动件。
平面机构分析
这样,该机构共有活动构件数n=5,低副数pL =7(其中滑块 5与机架构成移 动副,其余均为回转副),高副数pH =0。所以, 由式(2-1)得该机构自由度为
平面机构分析
图2-17 钢板剪切机构及其复合铰链
平面机构分析
2.局部自由度 机构中某些构件所具有的自由度仅与其自身的局部运动 有关,并不影响其他构件的运 动。计算自由度时,应除去局部 自由度,即设想把滚子与安装滚子的构件固结在一起视为 一 个构件。
平面机构分析 对于图2-16所示的构件组合,其自由度为
平面机构分析
三、 计算平面机构自由度时应注意的一些问题 1.复合铰链 复合铰链是由两个以上的构件通过回转副并联在一起所
构成的铰链。图2-17(a)为一 钢板剪切机的机构运动简图,B 处是由2、3和4三个构件通过两个轴线相重合的回转副并 联 在一起的复合铰链,其具体结构如图2-17(b)所示。因此,在统 计回转副数目时应根据 运动副的定义按两个回转副计算。 同理,当用 K 个构件组成复合铰链时,其回转副数应为 (K-1) 个。
平面机构分析
图2-1 平面机构
平面机构分析
任务实施 一、 平面机构的组成
平面机构是所有构件都在同一平面或相互平行的平面内 运动的机构。机构中的构件只 有通过一定的方式相互联接 起来,并且满足一定的条件才能传递确定的运动和动力,如图 2-1所示。
机械设计基础(专科)第2章平面连杆机构
缝纫机踏板机构动画
缝纫机动画(3D)
缝纫机跳线机构动画
缝纫机刺布机构动画(3D)
搅拌机动画
雷达天线俯仰机构动画
双曲柄机构动画
惯性筛动画
升降台动画(3D)
正平行四边形动画
机车车轮动画(3D)
机车车轮联动机构动画
反平行四边形动画
车门启闭机构动画
车门启闭动画(3D)
3、双摇杆机构:两个连架杆都是摇杆。
右图中的局部自由度 经上述处理后,则机构 自由度:
F 3n 2P P 3 2 2 2 1 1 L H
局部自由度动画
(3) 虚约束:
对机构运动实际上不起约束作用的约束 称为虚约束。 1)转动副轴线重合的虚约束
转动副轴线重合的虚约束动画
2)移动副导路平行的虚约束 当两构件在多处形成移动副,并且各 移动副的导路互相平行,则其中只有一个 移动副起实际的约束作用,而其余移动副 均为虚约束。
解:1)分析运动,确定构 件的类型和数量
进气阀3
2)确定运动副的类型和 数目
3)选择视图平面
活塞2
排气阀4
顶杆8
气缸体1
4)选取比例尺,根据机 连杆5 构运动尺寸,定出各运动副 间的相对位置 曲轴6
5)画出各运动副和机构 符号,并表示出各构件
齿轮10
凸轮7
内燃机的机构运动简图
内燃机凸轮动画
2.2.4
机构运动简图绘制 1.分析机械的结构和动作原理,确定构件 的数目。 2.分析构件间的相对运动,确定运动副的 数目和类型。 3.选定视图投影面及比例尺μL=实际尺寸/ 图上尺寸(m/mm),顺序确定转动副和移动 副导路的位置,根据原动件的位置及各杆 长等绘出各构件,得到机构运动简图。
《机械设计基础》 平面连杆机构PPT课件
§3-1平面四杆机构的类型及其应用
C 连杆
B
整转副 A
连架杆 机架
摆动副
D
连架杆 转动副
★曲柄 能绕其轴线转360º的连架杆。 ★摇杆 仅能绕其轴线作往复摆动的连架杆。 ★整转副 组成转动副的两构件能作整周转动。 ★摆动副 组成转动副的两构件仅能作往复摆动。
§3-1平面四杆机构的类型及其应用
1. 铰链四杆机构的
C
C2
4 C1
1
A
牛头刨床
摇块机构的应用
B
1
2 3
A
4C
C3
4
2
B
A 1
A1
4
2B
C3
自卸卡车举升机构
定块机构的应用
A1 B
42
C3
A
44A
1 B
2
3C
定块机构 手摇唧筒
手摇唧筒2
双移动副四杆机构
2
1
4
3
正弦机构
2
1
4
3
双转块机构
2
1
4
3
2
1
4
3
双滑块机构
双转块机构的应用
2
1
4
3
双滑块机构的应用
2
1
4
3
三、转动副扩大
偏心轮机构
三、转动副扩大
偏心轮机构
一、铰链四杆机构
运动副A成为周转副的条件: 若A为周转副,则B绕A可到达任意位置,不应出现B、C、D三
点共线的情况,此时,机构不能转动。
B C
A
D
C
A
D
B
§ 3-2 铰链四杆机构有整转副的条件
《机械设计基础》第2章_平面连杆机构解析
由上式可知,机构的急回程度取决于极位夹
角θ的大小。θ角越大,K值越大,机构的急回程
度也越高,但机构运动的平稳性就越差。反之反 然。 一般机械中1≤K≤2。
5.连杆机构具有急回特性的条件
⑴ 输入件等速整周转动;
⑵ 输出件往复运动;
⑶ 极位夹角
。 0
6.常见具有急回特性的四杆机构
二、平面连杆机构的特点及应用
1.平面连杆机构的特点
⑴寿命长 低副联接,接触表面为平面或圆柱面,
压力小;便于润滑,磨损较小。
⑵易于制造 连杆机构以杆件为主,结构简单。 ⑶可实现远距离操纵控制 因连杆易于作成较长
的构件。
⑷可实现比较复杂的运动规律 ⑸设计计算较繁复,当机构复杂时累计误差较大,
2、双曲柄机构
具有两个曲柄的铰链四杆机构。
⑴平行四边形机构:连杆与机架的长度相等,且曲
柄的转向相同长度也相等的双曲柄机构。 这种机构两曲柄的角速度始终保持相等,且连杆 始终做平动,故应用较广。
运动的不确定性
有辅助构件的重复机构
有辅助构件的错列机构
⑵逆平行四边形机构:连杆与机架的长度相等,两
含有两个移动副的四杆机构应用实例
2.3 平面四杆机构的基本特性
一、铰链四杆机构存在曲柄的条件
设 AB 为曲柄,
由 △BCD :
且 a <d .
b+c>f 、 b+f >c 、 c+f >b
以 fmax = a + d , fmin = d - a b+c >a+d 、 b+d >a+c 、 c+d >a+b 化简后得: a<b 、 a<c 、 a< d 若 d <a d<a、d<b、d<c 代入并整理得:
机械设计基础-平面连杆机构
平面连杆机构的运动分析
运动分析是设计平面连杆机构中的重要步骤,通过分析各部件的运动规律和 约束关系,可以确定机构的性能和工作范围。
实例与案例分析
案例一
设计一个机械手臂,使其能够在不同位置和角度进 行精确定位。
案例二
设计一个车门开闭机构,使其能够平稳地打开和关 闭。
机械设计基础-平面连杆机构
这个幻灯片将介绍平面连杆机构的基本知识,包括组成、作用、种类、设计 要点、运动分析以及实例与案例分析。
平面连杆机构简介
平面连杆机构是一种常见而重要的机械传动机构,它由连杆、铰链和机构连接件组成,用于将旋转运动转化为 直线运动或相反。
平面连杆机构的组成
连杆
起支撑作用,将旋转运动转化为直线运动。
由滑块和曲杆组成,常用于发动 机的活塞连杆传动。
四连杆机构
由四个连杆组成,常见于机械手 臂和门的开闭机构。
平面伸缩杆机构
通过类似电车接触网的结构实现 伸缩变形。
平面连杆机构的设计要点
1
连杆比例设计
确定连杆的比例关系以实现所需的运动。
铰链选型
2
选择合适的铰链类型和尺寸以满足设计
要求。
3
机构连接方式
选择适当的机构连接件和连接方式以保 证机构的稳定性。
铰链
连接连杆和机构连接件,使其能够相对运动。
机构连接件
固定在机构上,用于连接铰链和机构化为直线运动或相反。
2 传递力量
通过连杆将动力从一个地方传递到另一个地方。
3 控制位置
通过调整连杆的长度和角度来控制机构的位置。
平面连杆机构的种类
滑块曲杆机构
机械设计基础——平面连杆机构
B
A
C
B
曲柄滑块机构
A B
导杆机构
C
AB > AC
A
转动导杆机构
C A
AB < AC C B
摆动导杆机构
A
C
曲柄摇块机构
B
A
定块机构 (移动导杆机构) C
B
(1)导杆机构
演化过程:曲柄滑块机构
曲柄改为机架
导杆机构。
转动导杆机构的应用
简易刨床
摆动导杆机构的应用
牛头刨床机构
(2)曲柄摇块机构
M 相距 h F
。
(3)不含力偶的三力杆件:三个力汇交于一点。
(4)确定摩擦总反力 FRik 方位: 判断 F 指向 Rik
确定
ki转向
使 F 与摩擦圆相切, Rik
并
ki与转向相反
例. 已知:驱动力F,f, φ=arctanf, 各销钉半径r,
当量摩擦系数f0, ρ=r f0, 求:Mq
Fr
Fr
Fr 作用在契块上的力
Fr f 驱动力:F 2 Ff f Fr fV Fr sin sin
f fV 楔形槽面当量摩擦系数 sin
fV f
2 . 转动副中的摩擦力
已知:M、ω21 、Fr . 摩擦力矩:
21
M f FR 21 Fr
(2)当螺母沿轴向与Fa方向相同移动时
支持力(阻力)
' M tan( ) ' d ' M do tan
' Md 支持阻力力矩 ' M do 理想支持阻力矩
Fd'
机械设计基础课件-2-3平面连杆机构
定义
2-3平面连杆机构由两个或三 个连杆以及其它连接件组成 的一种机械机构。
连杆
连杆是机构的主要组成部分, 负责传递力、转动和滑动运 动。
连接件
连接件用于连接连杆,并保 证其固定和自由运动。
2-3平面连杆构中各连杆和连接件的长度和位置。
2
步骤二
使用运动学原理分析各连杆的运动轨迹和速度。
使用尽可能少的连杆和连接件, 减少运动系统中的摩擦和能量 损失。
运动可靠
确保连杆机构在运行中稳定、 可靠,并且符合预期的运动要 求。
易于维护
设计机构时考虑到维护和维修 的方便性,减少因故障导致的 停机时间。
2-3平面连杆机构的应用与案例分析
应用领域 汽车工业 机械工业 航空航天
案例 悬挂系统、刹车系统 压力机、冲床 升降舵、襟翼机构
总结与展望
2-3平面连杆机构是一种重要的机械结构,广泛应用于各个领域。未来,随着技术的不断发展,它将在更多的 领域得到应用和改进。
3
步骤三
根据运动分析结果,优化连杆机构设计,并解决可能的运动干涉问题。
2-3平面连杆机构的驱动方式
1 电动驱动
通过电动机提供动力驱动 连杆机构的运动。
2 液压驱动
通过液压系统产生的压力 控制连杆机构的运动。
3 气动驱动
通过气动系统产生的压力 控制连杆机构的运动。
2-3平面连杆机构的设计原则
结构简单
机械设计基础课件-2-3平 面连杆机构
本课件将介绍2-3平面连杆机构的概述、定义与组成部分、运动分析、驱动方 式、设计原则、应用与案例分析,并总结与展望。
2-3平面连杆机构的概述
2-3平面连杆机构是一种基本的机械结构,由多个连杆构成,并通过铰链连接。 它具有简单的结构和广泛的应用领域。
机械设计基础第二章平面连杆机构
(4)AC1=L2-L1, AC2=L2+L1→ L1=1/2(AC2-AC1)
→无数解
以L1为半径作圆,交B1,B2点 →曲柄两位置
M
N
在圆上任选一点A
C1M与C2N交于P点
作∠C1C2N=90-θ,
P
2.导杆机构: P.33
→取决于机构各杆的相对长度
A
D
B
B’
B”
C
C’
C”
三式相加 → ┌ l1≤l2 │ l1≤l3 └ l1≤l4
当杆1处于AB ”位置→ △AC ”D
→ l1+l2≤l3+l4 (2-3)
→┌(l2-l1) +l3 ≥l4 →┌l1+l4≤l2+l3 (2-1) └(l2-l1) +l4 ≥l3 └l1+l3≤l2+l4 (2-2)
图2-4
曲柄摇杆机构
φ1
φ2
ψ
(2-4)
(二)压力角和传动角 P.30
1.压力角α-
2.传动角γ
:BC是二力杆,驱动 力F 沿BC方向
作用在从动件上的驱动力F与该力作用点绝对速度VC之间所夹的锐角。
工作行程: 空回行程:
B2→B1 (φ 2) →摇杆C2→C1 (ψ) ∵ φ 1> φ 2 , 而ψ不变
B1→B2 (φ1) → 摇杆C1→C2 (ψ)
→ 工作行程时间>空回行程时间
曲柄(主)匀速转动(顺) 摇杆(从)变速往复摆动
图2-4
曲柄摇杆机构
φ1
φ2
ψ
极位:
缺点:
2.应用:
优点
1.手动冲床: ← 两个四杆机构组成 (双摇杆~+摇杆滑 块机构)
2.筛料机构: 六杆机构←两个四杆 机构组成(双曲柄~ +曲柄滑块~)
机械设计基础--四杆机构资料
5.偏心轮机构
机械设计基础
偏心轮机构
第二节 平面四杆机构的基本特性
一、 铰链四杆机构存在曲柄的条件
1. 整转副的存在条件
在 AC' D 中 l4 (l2 l1) l3 l3 (l2 l1) l4
在 AC'' D 中
l1 l2 l3 l4
即 l1 l2 l1 l3 l1 l4
不同的轨迹要求。 • (5)能方便地实现转动、摆动和移动等基本运动形式及
相互转换
机械设计基础
• 平面连杆机构的缺点: ➢ 低副中存在间隙,容易产生累积误差,当构件数和运动 当构件数和运动副较多时,传动的精度和效率较低。 ➢不易精确实现复杂的运动规律,且设计较为复杂。
机械设计基础
2.2 铰链四杆机构
机械设计基础
•
若满足最短杆与最长杆长度之和小于或等于其余两杆
长度之和时,可得到以下三种结构;
• (1)连架杆是最短杆 为曲柄摇杆机构;
• (2)机架是最短杆 为双曲柄机构;
• (3)若最短杆是连杆,此机构为双摇杆机构。
•
若满足最短杆与最长杆长度之和大于其余两杆长度之
和时,为双摇杆机构。
机械设计基础
二、学习指导
是
否
lmax+lmin ≤ l余1+l余2
不存在曲柄
双摇杆机构
可能有曲柄 固定件
机械设计基础
最短构件 最短构件的邻边 最短构件的对边
图3-9
双曲柄机构 曲柄摇杆机构
双摇杆机构
二、 急回特性与行程速比系数 1. 摇杆摆角 摇杆在两极限位置的夹角
2. 极位夹角 对应摇杆两极限位置,曲柄两位置所夹的锐角。
机械设计基础 第3章
3.1 平面连杆机构及其应用
连杆机构有平面连杆机构和空间连杆机构两种, 其中,若各运动构件均在相互平行的平面内运动, 则称为平面连杆机构;若各运动构件不都在相互 平行的平面内运动,则称为空间连杆机构。平面 连杆机构较空间连杆机构的应用更为广泛,在平 面连杆机构中,结构最简单且应用最广泛的是由4 个构件所组成的平面四杆机构,其他多杆机构可 看成在此基础上依次增加杆件而组成的。故本章 着重介绍平面四杆连杆机构。
3.双摇杆机构 两个连架杆均为摇杆的铰链四杆机构称为双摇 杆机构。图3.8所示的鹤式起重机吊臂,其中 ABCD构成双摇杆机构,AD为机架,在主动摇杆 AB的驱动下,随着机构的运动,连杆BC的外伸 端点M获得近似直线的水平运动,使吊重Q能作水 平移动而完成其功能。图3.9所示为电风扇的摇头 机构,电动机外壳作为其中的一根摇杆AB,蜗轮 作为连杆BC,构成双摇杆机构ABCD。蜗杆随扇 叶同轴转动,带动BC作为主动件绕C点摆动,使 摇杆AB随电动机及扇叶一起摆动,实现一台电动 机同时驱动扇叶和摇头机构的功能。
2 双曲柄机构 两连架杆均为曲柄的铰链四杆机构,称为双曲柄机构。 在该机构中,主动曲柄等速转动,从动曲柄一般为变速转 动。图3.5所示的惯性筛,从动曲柄3与主动曲柄1的长度 不同,当主动曲柄1匀速回转一周时,从动曲柄3变速回转 一周,机构利用这一特点使筛子6作加速往复运动,实现 其功能。 当两曲柄的长度相等且平行布置时,称平行双曲柄机 构,图3.6(a)所示为正平行双曲柄机构,其特点是两曲 柄转向相同、转速相等且连杆作平动,因而应用广泛。图 3.7(a)所示的火车驱动轮联动机构就是利用了同向等速 的特点。两曲柄长度相同,而连杆与机架不平行的铰链四 杆机构,称为逆平行四边形机构,如图3.6(b)所示的路 灯检修车的载人升斗就是利用了这一特点。
机械设计基础项目一 任务3 平面连杆机构分析与设计
为0 °(转向点),从动曲柄可能向正反两个方向
转动,机构运动不确定,平行四边形机构可能变成 反平行四边形机构。
B 2 C 1 A 4 3 D
双摇杆机构,也有死 点位置,在实际设计中常 采用限制摆杆的角度来避 免死点位置。
克服的方法: 安装飞轮,利用惯性克服死点(例如:内燃机、
缝纫机)
例:缝纫机借助于带轮
△ B′C′D和△ B〞C〞D成立
由△B〞C〞D得 a+d≤b+c (1) 由△B′C′D得 或 b≤(d-a)+c c≤(d-a)+b a+b≤d+c a+c≤b+d (2) (3)
由式(1)、(2)、(3)得
a≤c a≤b a≤d a为最短杆
整转副存在条件
四杆长度满足杆长条件:最短杆与最长杆长度之和
知极为夹角θ为:
k 1 180 k 1
四杆机构有无急回运动,取决于曲柄与连杆共
线位置的夹角,即有无极位夹角,不论是何种机构,
只要机构在运行过程中具有极位夹角,则该机构就
具有急回作用。
角越大,则K 值越大,说明急回运动的性质也 越显著。
曲柄滑块机构
B
l1
A
l2
B2
e
C
工作行程 aθ b B1 l 1 l C C1 2 A A e e
缺点: 连杆机构一殷具有较长的运动链,各构件的尺寸误 差和运动副中的间隙将使连杆机构产生较大的积累
误差,也使机械效率降低。
连杆及滑块作变速运动,其惯性力难于平衡,会增
加机构的动载荷,一般不宜用于高速传动。
设计过程却十分繁难,在多数情况下一般只能近似 地得以满足。
四杆机构:由四个构件组成的平面连杆机构
(完整版)机械设计基础知识点详解
机械设计基础知识点详解绪论1、机器的特征:(1)它是人为的实物组合;(2)各实物间具有确定的相对运动;(3)能代替或减轻人类的劳动去完成有效的机械功或转换机械能。
第一章平面机构的自由度和速度分析要求:握机构的自由度计算公式,理解的基础上掌握机构确定性运动的条件,熟练掌握机构速度瞬心数的求法。
1、基本概念运动副:凡两个构件直接接触而又能产生一定相对运动的联接称为运动副。
低副:两构件通过面接触组成的运动副称为低副。
高副:两构件通过点或线接触组成的运动副称为高副。
复合较链:两个以上的构件同时在一处用回转副相联构成的回转副。
局部自由度:机构中常出现的一种与输出构件运动无关的自由度,称为局部自由度或多余自由度。
虚约束:对机构运动不起限制作用的重复约束称为虚约束或称消极约束。
瞬心:任一刚体相对另一刚体作平面运动时,具相对运动可看作是绕某一重合点的转动,该重合点称为瞬时回转中心或速度瞬心,简称瞬心。
如果两个刚体都是运动的,则其瞬心称为相对速度瞬心;如果两个刚体之一是静止的,则其瞬心称为绝对速度瞬心。
2、平面机构自由度计算作平面运动的自由构件具有三个自由度,每个低副引入两个约束,即使构件失去两个自由度;每个高副引入一个约束,使构件失去一个自由度。
计算平面机构自由度的公式:F=3n-2P L-P H机构要具有确定的运动,则机构自由度数必须与机构的原动件数目相等。
即, 机构具有确定运动的条件是F>0,且F等于原动件个数。
3、复合校链、局部自由度和虚约束(a)K个构件汇交而成的复合较链应具有(K-1)个回转副。
(b)局部自由度虽然不影响整个机构的运动,但滚子可使高副接触处的滑动摩擦变成滚动摩擦,减少磨损,所以实际机械中常有局部自由度出现。
(c)虚约束对机构运动虽不起作用,但是可以增加构件的刚性和使构件受力均衡,所以实际机械中虚约束随处可见。
4、速度瞬心如果一个机构由K个构件组成,则瞬心数目为N=K(K-1)/2瞬心位置的确定:(a)已知两重合点相对速度方向,则该两相对速度向量垂线的交点便是两构件的瞬心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双曲柄 机构
曲柄摇杆 机构
铰链四 杆机构
双摇杆 机构
1.曲柄摇杆机构
平面四杆机构1\平面 四杆机构\曲柄摇杆 n.gif
两连架杆中一个为曲柄,
另一个为摇杆。
曲柄1为主动件时, 可以实现由曲柄1的整周回转运 动到摇杆3往复摆动的运动转换。 摇杆3为主动件时, 则可以将摇杆3的摆动转换为曲 柄1的整周回转运动。
Fundamentals of Machine Design
机械工程组-机械工程
第3章 平面连杆机构
预热: 什么是平面连杆机构?特点及研究内容是什么?
定义: 全由低副(转动副、移动副)构成的平面机构称为平面连杆机构 特点:面接触,承载能力强,耐磨损;
易于制造和获得较高的制造精度; 能实现多种运动规律。 缺点:效率低; 累计运动误差较大; 高速运转时不平衡动载荷较大,且难于消除。 内容:类型、应用及其特性,平面四杆机构的设计
②如果四个构件的长度满足杆长之和条件,则最短杆 所联接的两个转动副均为整转副,另两个转动副均为摆动 副。此时若取最短杆为机架,则得双曲柄机构;而取最短 杆的任一相邻杆为机架,则得曲柄摇杆机构;又若取最短 杆的相对杆为机架,则得双摇杆机构。
③如果四杆中有两个构件长度相等且均为最短,若另 两杆长度不相等,则不存在整转副; 若两杆长度也相等, 则两最短杆相邻时,有三个整转副, 当两最短杆相对时, 有四个整转副。
整理得 a b c d ②
acd b ③
将式①、②、③中的三个不等 式两两相加,化简后得④
a a
b c
④
a d
曲柄存在条件: ① 最短杆与最长杆长度之和小于或等于其余两杆长度之和; ② 连架杆与机架中必有一杆为最短杆。
若不满足①? 该机构只能是双摇杆机构。
判断由不同杆作机架时四杆机构属于哪种机构
机车驱动轮联动机构 平面四杆机构1\平面四杆机构\机车车轮 联动机构._标清.flv
机车驱动轮联动机构 平面四杆机构1\平面四杆机构\机车车 轮联动机构._标清.flv
摄影车座斗升降机构
3.双摇杆机构
3.双摇杆机构 两个连架杆均为摇杆的铰链四杆机构称为双摇杆机构。
B2 C
1 3
A
4
D
应用举例
曲柄摇杆 机构
双曲柄 机构
曲柄摇杆 机构
双摇杆 机构
取不同构件为机架时的铰链四杆机构型式
计
算
实
1. 根据图中注明的尺寸判断各铰链四杆机构的类型
例
双曲柄 机构
曲柄摇杆 机构
双摇杆 机构
双摇杆 机构
3.3 铰链四杆机构的传动特性
一、急回特性和行程速比系数
如图所示曲柄 摇杆机构,原动 件曲柄1在转动一 周的过程中,有 两次与连杆2共线 (即AB1C1, AB2C2);此时 摇杆3分别处于 C1D和C2D两个极 限位置,摇杆在 两个极限位置间
①港口起重机 ②飞机起落架 ③可逆式座椅 ④电风扇摇头机构 ⑤轮式车辆转向机构
港口起重机平面四杆机构1\平面四杆机构\07鹤式起重机_ 标清.flv
港口起重机
港口起重机
飞机起落架平面四杆机构1\平面四杆机构\起落架 _标清.flv
飞机起落架平面四杆机构1\平面四杆机构\起 落架_标清.flv
a、b、c、d
Y
ad bc
N 双摇杆机构
以最短杆相邻杆为机架 以与最短杆相对的杆为机架
以最短杆为机架
曲柄摇杆机构 双摇杆机构 双曲柄机构
铰链四杆机构必须满足四构件组成的封闭多边形条件:
最长杆的杆长<其余三杆长度之和。
推论:
①如果四杆长度不满足杆长条件,则机构无周转副, 此时不论取哪个构件为机架,机构均为双摇杆机构;
2、机架:机构的固定构件,如杆4 。 3、连杆:不直接与机架连接的构件,如杆2。 4、连架杆:与机架用转动副相连接的构件,如杆1、3 。
连架杆可分为:
5、曲柄:能绕机架作整周转动的连架杆,如杆1; 6、摇杆:只能绕机架作小于360°的某一角度摆动的
连架杆,如3。
2
3 1
4
二、铰链四杆机构的基本形式
应用举例
①雷达天线俯仰机构平面四杆机构1\平面四 杆机构\雷达_标清.flv ②缝纫机的踏板机构平面四杆机构1\平面四 杆机构\缝纫机踏板机构_标清.flv ③搅拌器中搅拌机构 平面四杆机构1\平面四 杆机构\搅拌器_标清.flv
雷达天线俯仰机构平面四杆机构1\平面四杆机 构\雷达_标清.flv
雷达天线俯仰机构
特例
平行双曲柄机构:双曲柄机构中,组成四边形的对边长 度分别相等,AB CD, BC AD 。 当两曲柄转向相同时,它们的角速度时时相等,连杆始 终与机架平行,四根杆形成一平行四边形,可得到正平 行四边形机构。 另:反平行四边形机构。
正平行四边形机构
蒸汽机车的车轮联动机构
反平行四边形机构
车门启闭机构
2 4
A
1
B
当主动曲柄作匀速转动时,从 动曲柄作周期性的变速运动,以满 足机器的工作要求。
应用举例
①惯性筛 ②机车驱动轮联动机构 ③摄影车座斗升降机构
惯性筛平面四杆机构1\平面四杆机构 \guanxingshai.swf
惯性筛
车门启动机构平面四杆机构1\平面 四杆机构\汽车启闭门装置_标清.flv
(回转运动→摆动)
雷达天线俯仰机构平面四杆机构1\平面四杆 机构\缝纫机踏板机构_标清.flv
搅拌器中搅拌机构 平面四杆机构1\平面四杆机构\搅拌器_标清.flv
搅拌器中搅拌机构 (实现所需运动轨迹)
2.双曲柄机构
2.双曲柄机构 两个连架杆均为曲柄的铰链四杆机构称为双曲柄机构。
C 3 D
3.1 平面四杆机构的类型及其应用
3.2
铰链四杆机构曲柄存在条件
3.3
铰链四杆机构的传动特性
3.4
铰链四杆机构的演化
3.5
平面四杆机构的设计
内容
3.1 平面四杆机构的类型及其应用
一、基本概念
1、铰链四杆机构: 全部用转动副相连的平面四杆机构。它是平面四杆 机构的基本型式,其它型式的四杆机构可看作是在它 的基础上通过演化而成的。
飞机起落架
三、铰链四杆机构类型的判别
♣ 若最短构件为连架杆,则该机构一定是曲柄摇杆机构。 ♣ 若最短构件为机架,则该机构一定是双曲柄机构。 ♣ 若最短构件为连杆,则该机构一定是双摇杆机构。
3.2 铰链四杆机构曲柄存在条件
在B1C1中D 在 B2C中2 D
ad bc ①
b (d a) c c (d a) b