基于MATLAB的图像平滑算法实现及应用

合集下载

matlab 点之间平滑曲线

matlab 点之间平滑曲线

matlab 点之间平滑曲线(原创实用版)目录1.MATLAB 简介2.平滑曲线的绘制方法3.应用实例正文【1.MATLAB 简介】MATLAB 是一种广泛使用的数学软件,它主要用于数据分析、可视化以及算法开发等方面。

在 MATLAB 中,用户可以利用各种函数和工具箱轻松地完成复杂的数学计算和工程任务。

【2.平滑曲线的绘制方法】在 MATLAB 中,我们可以使用曲线拟合工具箱来实现点之间平滑曲线的绘制。

以下是具体的操作步骤:1) 首先,打开 MATLAB 软件,并创建一个新的脚本文件。

2) 在脚本中,输入以下命令来加载曲线拟合工具箱:```matlabclc;clear;load curvefit;```3) 接下来,定义需要绘制平滑曲线的点。

例如,假设我们有以下五个点:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 5, 4, 2];```4) 使用`cftool`函数创建一个曲线拟合对象,并指定拟合类型。

例如,我们可以使用线性拟合(`lin`)或者二次拟合(`quad`):```matlabf = cftool(@(x) lin(x, y), x, y);```5) 使用`fit`函数进行曲线拟合:```matlab[fit_result, fit_obj] = fit(f, x, y);```6) 最后,使用`plot`函数绘制平滑曲线:```matlabplot(x, y, "o", x, fit_result(1:length(x)), "-");xlabel("x");ylabel("y");title("平滑曲线示例");grid on;```【3.应用实例】假设我们有以下一组数据,需要绘制点之间的平滑曲线:```matlabx = [1, 2, 3, 4, 5];y = [3, 5, 7, 9, 11];```我们可以按照上述步骤,使用 MATLAB 绘制平滑曲线。

图像平滑的MATLAB实现

图像平滑的MATLAB实现

图像平滑的MATLAB实现摘要:图像平滑技术用于平滑图像的噪声,本文对均值滤波、中值滤波、维纳滤波等三种平滑滤波器进行理论学习,并通过MATLAB对滤波效果进行仿真。

关键词:图像平滑均值滤波中值滤波维纳滤波实际获得的图像一般都因受到某种干扰而含有噪声。

引起噪声的原因有敏感元器件的内部噪声、照相底片上感光材料的颗粒、传输通道的干扰及量化噪声等。

噪声产生的原因决定了噪声的分布特性及它和图像信号的关系。

根据噪声服从的分布,可以分为高斯噪声、泊松噪声和颗粒噪声等。

平滑技术用于平滑图像的噪声,平滑噪声可以在空间域中进行,基本方法是求像素灰度的平均值或中值。

为了既平滑噪声又保护图像信号,也有一些改进的技术,比如在频域中运用低通滤波器。

MATLAB图像处理工具箱提供了模拟噪声生成的函数imnoise和去除噪声的方法。

函数imnoise可以对图像添加一些典型的噪声。

由于噪声的随机性,它们对某一像点的影响使其灰度和邻点的灰度显著不同,因此可以利用这种不同来消除噪声。

去除噪声的方法有线性滤波、中值滤波、自适应滤波。

本文就针对上述三种平滑滤波进行MATLAB仿真。

1 图像平滑的MATLAB实现1.1 均值滤波[1]1.1.1理论基础邻域平均法是空间域平滑噪声技术,其均值滤波器对于扫描得到的图像中的颗粒噪声非常适用,理论依据如下:对于给定的图像f(i,j)中的每个像点(m,n),取其邻域S。

设S含有M个像素,取其平均值作为处理后所得图像像点(m,n)处的灰度。

用一像素邻域内各像素灰度平均值来代替该像素原来的灰度,即是邻域平均技术。

邻域S的形状和大小根据图像特点确定。

一般取的形状是正方形、矩形及十字形等,S的形状和大小可以在全图处理过程中保持不变,也可根据图像的局部统计特性而变化,点(m,n)一般位于S的中心。

如S为3×3邻域,点(m,n)位于S中心,则:假设噪声n是加性噪声,在空间各点互不相关,且期望为0,方差δ2,g是未受污染的图像,含有噪声的图像f经过邻域平均后为由上式可知,经邻域平均后,噪声的均值不变,方差,即噪声方差变小,说明噪声强度减弱了,即抑制了噪声。

利用Matlab进行图像处理的常用方法

利用Matlab进行图像处理的常用方法

利用Matlab进行图像处理的常用方法概述:图像处理是数字信号处理的一个重要分支,也是计算机视觉领域的核心内容之一。

随着计算机技术的不断发展,利用Matlab进行图像处理的方法变得越来越重要。

本文将介绍一些常用的Matlab图像处理方法,包括图像的读取与显示、图像的预处理、图像的滤波处理、基本的图像增强方法以及图像的分割与检测等。

一、图像的读取与显示在Matlab中,可以使用imread函数直接读取图像。

通过指定图像的路径,我们可以将图像读取为一个矩阵,并且可以选择性地将其转换为灰度图像或彩色图像。

对于灰度图像,可以使用imshow函数将其显示出来,也可以使用imwrite函数将其保存为指定格式的图像文件。

对于彩色图像,可以使用imshow函数直接显示,也可以使用imwrite函数保存为指定格式的图像文件。

此外,还可以使用impixel函数获取图像中指定像素点的RGB值。

二、图像的预处理图像的预处理是指在进一步处理之前对图像进行调整和修复以消除图像中的噪声和不良的影响。

常用的图像预处理方法包括图像的平滑处理、图像增强和图像修复等。

1. 图像平滑处理:常用的图像平滑方法有均值滤波、中值滤波和高斯滤波等。

其中,均值滤波将每个像素点的值替换为其周围像素点的平均值,中值滤波将每个像素点的值替换为其周围像素点的中值,高斯滤波则通过加权平均的方式平滑图像。

2. 图像增强:图像增强是指通过一些方法提高图像的质量和信息内容。

常用的图像增强方法包括直方图均衡化、对比度拉伸和锐化等。

直方图均衡化通过调整图像的灰度分布,以提高图像的对比度和细节。

对比度拉伸是通过将图像的像素值线性拉伸到整个灰度范围内,以增强图像的对比度。

锐化则是通过增强图像的边缘和细节,使图像更加清晰。

三、图像的滤波处理图像的滤波处理是指通过对图像进行一系列滤波操作,来提取图像中的特征和信息。

常用的图像滤波方法包括模板滤波、频域滤波和小波变换等。

1. 模板滤波:模板滤波是基于局部像素邻域的滤波方法,通过定义一个滤波模板,将其与图像进行卷积操作,从而实现图像的滤波。

图像处理与matlab实例之图像平滑(一)

图像处理与matlab实例之图像平滑(一)

图像处理与matlab实例之图像平滑(⼀) ⼀、何为图像噪声?噪声是妨碍⼈的感觉器官所接受信源信息理解的因素,是不可预测只能⽤概率统计⽅法认识的随机误差。

举个例⼦: 从这个图中,我们可以观察到噪声的特点:1>位置随机 2>⼤⼩不规则。

我们将这种噪声称为随机噪声(random noise),这是⼀种⾮常常见的噪声类型。

⼆、噪声的类型 噪声可以借⽤随机过程以及概率密度函数(Probability Density Function,PDF)来描述,通常可采⽤其数组特征,即均值,⽅差,相关函数等。

按照概率密度函数分为⾼斯噪声、瑞利噪声、伽马噪声、指数分布噪声、均匀分布噪声、脉冲噪声、泊松噪声等。

有的噪声与图像信号的强度不相关,如图像传输过程引⼊的信道噪声、摄像机扫描噪声等,这种噪声称为加性噪声(additive noise)。

常见的加性噪声按照概率密度函数特征分为短拖尾加性噪声(如均匀分布噪声)、中拖尾加性噪声(⾼斯分布噪声)、长拖尾加性噪声(如指数分布噪声)、脉冲噪声(如椒盐噪声、随机数脉冲噪声等)。

有的噪声与图像信号有关,往往随着图像信号的变化⽽变化,如光照变化引起的噪声、飞机扫描图像中的噪声、电视扫描光栅中的相⼲噪声、斑点噪声等。

这种噪声称为乘性噪声(multiplicative noise)。

matlab向图中添加噪声的指令: I1=imnoise(I,type,parameters); 其中,当type为gaussian,所加⼊噪声是parameters为m(均值)、v(⽅差)的⾼斯噪声,这是最普通的噪声。

当type为localvar时,所加⼊噪声是parameters为0(均衡)、v(⽅差)的⾼斯噪声。

当type为poission时,所加⼊的是⽆参数的泊松噪声,在照度⾮常⼩时出现,或在⾼倍电⼦放⼤线路中出现。

当type为salt&pepper时,所加⼊的噪声是parameters为d(密度)的椒盐噪声。

图像边沿平滑处理的matlab实现

图像边沿平滑处理的matlab实现

图像边沿平滑处理的matlab实现完成图像处理的算法:1、读⼊⽂件通过matlab读取图像⽂件。

2、获取蒙版对图像进⾏逐点扫描,当点的三个通道值⾄少有⼀个⼩于阈值时让这个点变为纯⿊⾊。

如图,可见此时的蒙版中⼼有空缺,且边缘有噪声⽽且有粘连⼩块。

为了消除这些噪声和⼩块,我们对图像的蒙版进⾏腐蚀和扩张操作。

3、对蒙版进⾏腐蚀应⽤matlab的腐蚀函数,选择腐蚀的结构元素为11*11的全1矩阵,对图像进⾏腐蚀操作,腐蚀后,图像缩⼩,边缘变得平滑。

腐蚀后效果如图:4、对图像进⾏扩张操作将图像复原到原始蒙版,该扩张或丢失边缘信息,正好删除掉噪声和多余的⼩块。

进⾏扩张所⽤的结构元素和腐蚀所⽤的结构元素相同。

可以明显看到边缘得到改善。

扩张后效果如图:5、⽤蒙版遮罩⽣成图像利⽤蒙版的遮罩⽅式,通过原图⽣成新的图像。

能明显看出边沿的噪声和多余⼩块被去除。

产⽣的图像如下图:6、调整图像⼤⼩⾸先通过getFrame函数得到图像的边框,该函数的原理是从上下左右四个⽅向对图像进⾏逼近,记录四个边缘的位置,以便计算缩放的⼤⼩。

原理如下图:在获得了边框后,将框内的图像进⾏⼀个缩放,使该⼦图像的长或宽和原图⼀致,再⽤空⽩补齐另外⼀个⽅向。

最后达到缩放后的图像如下:附matlab程序:附1:main.minputFilePrefix = 'datacache\\';outFilePrefix = 'output\\';fileNamePrefix = 'dst_';picNum = 79;pxmin = 10000000;pdxmax = 0;pymin = 10000000;pdymax = 0;for p = 0:picNum-1if(p<10)fileName = sprintf('%s0%d.jpg',fileNamePrefix,p);else fileName = sprintf('%s%d.jpg',fileNamePrefix,p);end;inputFilePath = [inputFilePrefix fileName];outputFilePath = [outFilePrefix fileName];BW = imread(inputFilePath);[BW1 mask] = getSmoothImage(BW,230);[px py pdx pdy] = getFrame(mask);pxmin = min(pxmin,px);pdxmax = max(pdxmax,pdx);pymin = min(pymin,py);pdymax = max(pdymax,pdy);imwrite(BW1,outputFilePath,'jpg');pend%重新调整⼤⼩for p = 0:picNum-1if(p<10)fileName = sprintf('%s0%d.jpg',fileNamePrefix,p);else fileName = sprintf('%s%d.jpg',fileNamePrefix,p);end;inputFilePath = [outFilePrefix fileName];outputFilePath = [outFilePrefix fileName];I = imread(inputFilePath);INew = reScale(I,pxmin,pdxmax,pymin,pdymax);imwrite(INew,outputFilePath,'jpg');imshow(INew);pEnd附2:getSmoothImage.mfunction [ BW1 mask ] = getSmoothImage( BW,threshold )%GETSMOOTHIMAGE Summary of this function goes here% Detailed explanation goes here% 该函数⾸先得到图形的蒙版,然后对蒙版进⾏腐蚀和扩张,最后利⽤蒙版收缩和扩张 HEIGHT = size(BW,1);WIDTH = size(BW,2);mask = zeros(HEIGHT,WIDTH,'uint8');%得到蒙版threshold = 230;for i = 1:HEIGHTfor j = 1:WIDTHif(BW(i,j,1)>threshold&&BW(i,j,2)>threshold&&BW(i,j,3)>threshold)mask(i,j) = 255;endendend%腐蚀扩张蒙版SE = strel('square',11);mask = imdilate(mask,SE);mask = imerode(mask,SE);%利⽤蒙版遮罩获取图像BW1 = BW;for i = 1:HEIGHTfor j = 1:WIDTHif(mask(i,j) == 255)BW1(i,j,1) = 255;BW1(i,j,2) = 255;BW1(i,j,3) = 255;endendendend附3:getFrame.mfunction [ x,y,dx,dy ] = getFrame( mask )%GETFRAME Summary of this function goes here % Detailed explanation goes here获取图像外框backGroundColor = 255;found = false;for i = 1:size(mask,1)for j = 1:size(mask,2)if(mask(i,j) ~= backGroundColor)y = i;found = true;break;endendif foundbreak;endendfound = false;for i = 1:size(mask,1)for j = 1:size(mask,2)if(mask(size(mask,1)-i+1,j) ~= backGroundColor) dy = size(mask,1)-i+1-y;found = true;break;endendif foundbreak;endendfound = false;for i = 1:size(mask,2)for j = 1:size(mask,1)if(mask(j,i) ~= backGroundColor)x = i;found = true;break;endendif foundbreak;endendfound = false;for i = 1:size(mask,2)for j = 1:size(mask,1)if(mask(j,size(mask,2)-i+1) ~= backGroundColor)dx = size(mask,2)-i+1-x;found = true;break;endendif foundbreak;endendend附4:reScale.mfunction [ INew ] = reScale(I,pxmin,pdxmax,pymin,pdymax) %RESCALE Summary of this function goes here% Detailed explanation goes hereglobal WIDTH;global HEIGHT;ISub = I(pymin:pymin+pdymax,pxmin:pxmin+pdxmax,:);ISubScaled = imresize(ISub,min(WIDTH/pdxmax,HEIGHT/pdymax));INew = 255*ones(HEIGHT,WIDTH,3,'uint8');copyWidth = min(size(ISubScaled,2),WIDTH);copyHeight = min(size(ISubScaled,1),HEIGHT);if(copyWidth==WIDTH)pstarty = max(1,floor((HEIGHT-copyHeight)/2));pstartx = 1;elsepstartx = max(1,floor((WIDTH-copyWidth)/2));pstarty = 1;endt = ISubScaled(1:copyHeight,1:copyWidth,1);%INew(pstarty:pstarty+copyHeight-1,pstartx:pstartx+copyWidth-1,3) = t;for i = 1:copyHeightfor j = 1:copyWidthINew(pstarty+i-1,pstartx+j-1,:) = ISubScaled(i,j,:);endendend附:5:在探索过程中所写的⼀些函数:1、获取主体中的像素点:通过getRect函数,通过逐⾏扫描,依次查找不是纯⽩⾊的点,在找到这个点之后,搜索以这个点为左上定点以estimateLength为边长的矩形,统计出纯⽩点和⾮纯⽩点的⽐例,让这个⽐例达到⼀个阈值时,我们认为这个点就是主体中的⼀个点,可以根据这个点采⽤floodfill算法。

基于MATLAB的数字图像处理的设计与实现

基于MATLAB的数字图像处理的设计与实现

基于MATLAB的数字图像处理的设计与实现摘要数字图像处理是一门新兴技术,随着计算机硬件的发展,数字图像的实时处理已经成可能,由于数字图像处理的各种算法的出现,使得其处理速度越来越快,能更好的为人们服务。

数字图像处理是一种通过计算机采用一定的算法对图形图像进行处理的技术。

目的:改善医学图像质量,使图像得到增强。

方法:利用Matlab工具箱函数,采用灰度直方图均衡化和高通滤波的方法对一幅X线图像进行增强处理。

结果:用直方图均衡化的算法,将原始图像密集的灰度分布变得比较稀疏,处理后的图像视觉效果得以改善。

高通滤波对于局部细节增强显著,高通滤波后使不易观察到的细节变得清晰。

结论:使用Matlab工具箱大大简化了编程工作,为医学图像处理提供了一种技术平台。

经过直方图均衡化和高通滤波处理后的医学图像,视觉效果得到改善。

关键词:MATLAB;直方图均衡化;高通滤波;图像增强AbstractDigital image processing is an emerging technology, with the development of computer hardware, real—time digital image processing has become possible due to digital image processing algorithms to appear,making it faster and faster processing speed,better for people services .Digital image processing is used by some algorithms computer graphics image pro cessing technology. Objective:To improve the quality of medical image by enhancing the details。

Matlab中的插值和平滑方法

Matlab中的插值和平滑方法

Matlab中的插值和平滑方法1. 引言在数值分析和数据处理中,插值和平滑是常用的技术手段,可以用于填补数据的空缺以及降低数据中的噪声。

Matlab作为一种强大的数值计算和数据处理软件,提供了丰富的插值和平滑方法,本文将介绍其中的一些常用方法及其应用。

2. 插值方法2.1 线性插值线性插值是最简单的一种插值方法,它假设待插值函数在相邻数据点之间是线性变化的。

Matlab中提供了interp1函数实现线性插值,可以通过设定插值点的横坐标向量和已知数据点的横坐标向量,以及对应的纵坐标向量,得到插值结果。

2.2 分段插值分段插值是一种更精确的插值方法,它假设待插值函数在相邻数据点之间是分段线性变化的。

Matlab中的interp1函数也可以实现分段插值,通过指定'linear'插值方法和 'pchip'插值方法,可以得到不同的插值结果,前者得到的结果比较平滑,而后者更接近原始数据的形状。

2.3 样条插值样条插值是一种更高阶的插值方法,它假设待插值函数在相邻数据点之间是多项式变化的。

Matlab中的spline函数可以实现三次样条插值,它通过计算每个数据点处的二阶导数,得到一个以每个数据点为节点的三次多项式函数。

样条插值可以更加精确地还原数据,但也容易受到离群点的干扰。

3. 平滑方法3.1 移动平均移动平均是一种常用的平滑方法,它通过计算数据点周围一定范围内的平均值,得到平滑后的结果。

Matlab中的smoothdata函数提供了不同的平滑方法,包括简单移动平均、指数移动平均和加权移动平均等,可以根据具体需求选择适当的方法。

3.2 Savitzky-Golay滤波Savitzky-Golay滤波是一种基于最小二乘法的平滑方法,它通过拟合多项式曲线来实现数据的平滑。

Matlab中的sgolay函数可以实现Savitzky-Golay滤波,通过指定不同的拟合阶数和窗口大小,可以得到不同程度的平滑结果。

matlab 邻域平均法

matlab 邻域平均法

matlab邻域平均法邻域平均法是图像处理中一种常用的平滑滤波方法,用于减小图像中噪声的影响。

在MATLAB中,你可以通过邻域平均法实现图像的平滑处理。

以下是一个简单的步骤:1.读取图像:```matlab%读取图像img=imread('your_image.jpg');```2.设定滤波器的大小:选择邻域平均法的滤波器大小,通常为一个正方形的区域,例如3x3、5x5等。

3.应用邻域平均法:```matlab%设置滤波器大小filter_size=3;%例如,3x3的滤波器%应用邻域平均法smoothed_img=imfilter(img,fspecial('average',[filter_size filter_size]));```上述代码中,`fspecial('average',[filter_size filter_size])`用于创建一个平均滤波器。

`imfilter`函数将滤波器应用于原始图像,得到平滑后的图像。

4.显示原始图像和平滑后的图像:```matlab%显示原始图像subplot(1,2,1);imshow(img);title('原始图像');%显示平滑后的图像subplot(1,2,2);imshow(smoothed_img);title('邻域平均法平滑后的图像');```这段代码将原始图像和经过邻域平均法平滑处理后的图像进行了对比显示。

5.调整参数:根据实际情况,你可能需要调整滤波器的大小以及其他参数,以获得最佳的平滑效果。

请注意,邻域平均法是一种简单的平滑方法,适用于一些简单的降噪需求。

在实际应用中,还有其他更复杂的滤波器和方法,可以根据具体情况选择。

《数字图像处理及MATLAB实现》图像增强与平滑实验

《数字图像处理及MATLAB实现》图像增强与平滑实验

《数字图像处理及MATLAB实现》图像增强与平滑实验一.实验目的及要求1、熟悉并掌握MA TLAB 图像处理工具箱的使用;2、理解并掌握常用的图像的增强技术。

二、实验设备MATLAB 6.5 以上版本、WIN XP 或WIN2000 计算机三、实验内容(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。

熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。

(可将每段程序保存为一个.m文件)1.直方图均衡化clear all; close all % Clear the MATLAB workspace of any variables% and close open figure windows.I = imread('pout.tif'); % Reads the sample images ‘pout.tif’, and stores it inimshow(I) % an array named I.display the imagetext(60,20,'李荣桉1909290239','horiz','center','color','r')figure, imhist(I) % Create a histogram of the image and display it in% a new figure window.[I2,T] = histeq(I); % Histogram equalization.figure, imshow(I2) % Display the new equalized image, I2, in a new figure window.text(60,20,'李荣桉1909290239','horiz','center','color','r')figure, imhist(I2) % Create a histogram of the equalized image I2.figure,plot((0:255)/255,T); % plot the transformation curve.imwrite (I2, 'pout2.png'); % Write the newly adjusted image I2 to a disk file named% ‘pout2.png’.imfinfo('pout2.png') % Check the contents of the newly written file2.直接灰度变换clear all; close allI = imread('cameraman.tif'); 注意:imadjust()功能:调整图像灰度值或颜色映像表,也可实现伽马校正。

matlab计算曲线平滑度的函数

matlab计算曲线平滑度的函数

matlab计算曲线平滑度的函数曲线平滑度是研究曲线光滑程度的重要指标。

在曲线分析与处理中,我们常常需要对曲线进行平滑处理,以去除噪声、消除不必要的震荡或变化过快的部分。

在MATLAB中,有多种方法可以用于计算曲线的平滑度,下面将介绍几种常用的方法。

1. 曲线平滑度的定义曲线平滑度是指曲线在各点上具有的光滑程度。

一般来说,平滑度越高,曲线越光滑;平滑度越低,曲线越具有明显的起伏和变化。

常用的曲线平滑度指标包括曲率和弯曲度。

2. 曲线平滑度的计算方法2.1 曲率计算方法曲率是曲线在某一点上的弯曲程度。

计算曲线的曲率可以通过求取曲线的二阶导数来实现。

在MATLAB中,可以使用diff函数计算曲线点的一阶导数,再通过计算导数的导数来获得曲线的二阶导数,从而求取曲率。

2.2 弯曲度计算方法弯曲度是曲线在某一点上的弯曲角度。

计算曲线的弯曲度可以通过计算曲线的切线与法线之间的夹角来实现。

在MATLAB中,可以使用polyfit函数对曲线进行多项式拟合,从而获得曲线的切线和法线方程,进而计算弯曲度。

3. MATLAB中计算曲线平滑度的函数3.1 计算曲率的函数在MATLAB中,可以编写一个名为"compute_curvature"的函数来计算曲线的曲率。

该函数输入曲线的坐标点,并根据上述方法计算曲率并输出。

以下是该函数的示例代码:```matlabfunction curvature = compute_curvature(x, y)dx = diff(x);dy = diff(y);ddx = diff(dx);ddy = diff(dy);curvature = abs(ddx.*dy(2:end) - ddy.*dx(2:end)) ./ ...(dx(2:end).^2 + dy(2:end).^2).^1.5;end```3.2 计算弯曲度的函数在MATLAB中,可以编写一个名为"compute_torsion"的函数来计算曲线的弯曲度。

matlab平滑曲面

matlab平滑曲面

在MATLAB中,可以使用多种方法对曲面进行平滑处理。

以下是一种常用的方法:
1. 创建或导入曲面数据。

这可以通过使用MATLAB的函数如`surf`或`mesh`来完成。

2. 使用MATLAB的平滑函数对曲面进行平滑处理。

例如,可以使用`smooth`函数,该函数可以平滑曲面的颜色、表面或网格线。

以下是使用`smooth`函数平滑曲面的一个例子:
```matlab
创建一些示例数据
[x,y] = meshgrid(-10:0.5:10, -10:0.5:10);
z = x.^2 + y.^2;
绘制原始曲面
figure;
surf(x, y, z);
使用smooth函数对曲面进行平滑处理
smoothed_z = smooth(z);
绘制平滑后的曲面
figure;
surf(x, y, smoothed_z);
```
在这个例子中,我们首先创建了一个示例的曲面,然后使用`smooth`函数对曲面的高度(z值)进行了平滑处理。

然后,我们绘制了原始的曲面和经过平滑处理的曲面,以便比较效果。

请注意,这只是对曲面进行平滑处理的一种方法。

根据具体的需求和数据类型,可能需要使用其他的方法或函数。

Matlab技术应用在图像处理领域的介绍

Matlab技术应用在图像处理领域的介绍

Mat1ab技术应用在图像处理领域的介绍图像处理是计算机科学和工程领域的重要研究方向之一。

随着计算机技术的不断发展,图像处理技术也得到了长足的进步和应用。

其中,Mat1ab是一种强大的数字计算和图像处理工具,被广泛应用于图像处理领域。

本文将介绍Mauab技术在图像处理中的应用,包括图像读取、滤波、边缘检测、图像分割和图像识别等方面。

首先,我们来介绍图像读取和显示方面的应用。

MaUab提供了丰富的图像处理函数和工具箱,通过这些函数可以方便地读取和处理图像。

我们可以使用imread函数读取各种格式的图像,例如JPEG、PNG、BMP等。

通过imshow函数可以将读取的图像显示出来,并且可以对图像进行裁剪、旋转和缩放等操作。

此外,MaUab还提供了imwrite函数,用于将图像写入到指定的文件中。

接下来,我们来介绍滤波技术在图像处理中的应用。

滤波是一种常用的图像处理方法,可以用于图像去噪、图像锐化和图像增强等方面。

在MatIab中,有许多滤波函数可供选择,例如均值滤波、中值滤波、高斯滤波等。

这些流波函数能够通过对图像进行卷积运算,从而实现图像的平滑和增强。

此外,MaUab还提供了一些自适应滤波算法,可以根据图像的不同特点进行滤波处理,以得到更好的效果。

然后,我们来介绍边缘检测技术在图像处理中的应用。

边缘检测是图像处理中的一项基础任务,用于提取图像中物体的边界信息。

MatIab提供了多种边缘检测算法,例如Sobe1算子、Canny算子和1叩IaCian算子等。

这些算子可以通过对图像进行卷积运算,从而实现对图像边缘的检测。

通过调整算子的参数,可以得到不同精度和鲁棒性的边缘检测结果。

除了传统的边缘检测方法,Mat1ab还提供了一些基于机器学习和深度学习的边缘检测算法,例如基于卷积神经网络的边缘检测方法。

接着,我们来介绍图像分割技术在图像处理中的应用。

图像分割是一种将图像划分为多个具有相似性质的区域的方法,常用于图像理解和目标检测等任务。

基于MATLAB的图像平滑算法实现及应用

基于MATLAB的图像平滑算法实现及应用

目录第一章、概述 (2)1.1 图像平滑概述 (2)1.2图像平滑应用 (2)1.3噪声模型 (2)第二章、图像平滑方法 (5)2.1 空域低通滤波 (5)2.1.1 均值滤波器 (5)2.1.2 中值滤波器 (6)2.2 频域低通滤波 (7)第三章、图像平滑处理与调试 (10)3.1 模拟噪声图像 (10)3.2均值滤波法 (14)3.3 中值滤波法 (17)3.4 频域低通滤波法 (20)第四章、总结与体会 (20)参考文献 (23)第一章、概述1.1图像平滑概述图像平滑(S m o o t h i n g)的主要目的是减少图像噪声。

图像噪声来自于多方面,有来自于系统外部的干扰(如电磁波或经电源窜进系统内部的外部噪声),也有来自于系统内部的干扰(如摄像机的热噪声,电器机械运动而产生的抖动噪声内部噪声)。

实际获得的图像都因受到干扰而有噪声,噪声产生的原因决定了噪声分布的特性及与图像信号的关系。

减少噪声的方法可以在空间域或在频率域处理。

在空间域中进行时,基本方法就是求像素的平均值或中值;在频域中则运用低通滤波技术。

图像中的噪声往往是和信号交织在一起的,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓,线条等模糊不清,从而使图像降质。

图像平滑总是要以一定的细节模糊为代价的,因此如何尽量平滑掉图像的噪声,又尽量保持图像的细节,是图像平滑研究的主要问题之一。

1.2图像平滑应用图像平滑主要是为了消除被污染图像中的噪声,这是遥感图像处理研究的最基本内容之一,被广泛应用于图像显示、传输、分析、动画制作、媒体合成等多个方面。

该技术是出于人类视觉系统的生理接受特点而设计的一种改善图像质量的方法。

处理对象是在图像生成、传输、处理、显示等过程中受到多种因素扰动形成的加噪图像。

在图像处理体系中,图像平滑是图像复原技术针对“一幅图像中唯一存在的退化是噪声”时的特例。

1.3噪声模型1.3.1噪声来源一幅图像可能会受到各种噪声的干扰,而数字图像的实质就是光电信息,因此图像噪声主要可能来源于以下几个方面:光电传感器噪声、大气层电磁暴、闪电等引起的强脉冲干扰、相片颗粒噪声和信道传输误差引起的噪声等。

MATLAB图像处理工具箱的使用方法

MATLAB图像处理工具箱的使用方法

MATLAB图像处理工具箱的使用方法导言:MATLAB作为一种常用的数学软件,被广泛应用于科学研究和工程领域。

其中的图像处理工具箱(Image Processing Toolbox)提供了许多功能强大的工具,用于处理和分析图像数据。

本文将介绍一些常用的图像处理工具箱的使用方法,帮助读者更好地掌握这一工具箱的优势。

一、图像的读取和显示要使用MATLAB进行图像处理,首先需要将图像读入MATLAB环境中,并显示出来。

通过imread函数可以方便地读取图像文件,如下所示:img = imread('image.jpg');这将会将名为'image.jpg'的图像读入img变量中。

接下来,使用imshow函数可以将图像显示在MATLAB的图像窗口中:imshow(img);通过这种方式,我们可以直观地了解图像的内容和特征。

二、图像的灰度化和二值化在很多图像处理应用中,我们常常需要将图像转换为灰度图像或二值图像。

在MATLAB中,可以使用rgb2gray函数将彩色图像转换为灰度图像:gray_img = rgb2gray(img);这将把彩色图像img转换为灰度图像gray_img。

接下来,使用im2bw函数可以将灰度图像转换为二值图像:binary_img = im2bw(gray_img);这将把灰度图像gray_img转换为二值图像binary_img。

通过灰度化和二值化的处理,我们可以更方便地进行后续的图像分析和处理。

三、图像的平滑处理图像中常常存在噪声,这会对后续的分析和处理造成一定的干扰。

为减少这种噪声的影响,可以对图像进行平滑处理。

在MATLAB中,有多种方法可以实现图像的平滑处理,其中较常用的是均值滤波和高斯滤波。

通过使用函数imgaussfilt和imfilter,可以分别实现高斯滤波和均值滤波:smooth_img = imgaussfilt(img);或者smooth_img = imfilter(img, fspecial('average', [3 3]));这些函数可以在图像中应用指定的滤波器来平滑图像,从而减少噪声的干扰。

matlab计算曲线平滑度的函数

matlab计算曲线平滑度的函数

一、引言在工程学、数学、统计学和计算机科学等多个领域中,对曲线平滑度的计算十分重要。

曲线平滑度是指曲线的变化程度,通常用于评估数据的变化趋势和变化速度。

在Matlab中,有许多函数可以用来计算曲线的平滑度,本文将介绍其中的一些常用函数,并解释它们的用途和用法。

二、曲线平滑度的意义曲线平滑度是描述曲线变化的一个重要指标,它可以帮助我们了解数据的趋势和特点。

在实际工程应用中,我们经常需要对数据进行分析和处理,例如拟合曲线、预测趋势、找出异常值等。

而曲线平滑度可以帮助我们更好地理解和分析数据,从而做出更科学的决策。

三、Matlab中用于计算曲线平滑度的函数1. smoothdata函数smoothdata函数是Matlab R2016a版本中引入的一个全新函数,它可以用来对一维数据进行平滑处理。

该函数提供了多种平滑算法,包括移动平均、Loess平滑、Savitzky-Golay平滑等。

我们可以根据自己的需求选择合适的平滑算法,并调整参数来实现对曲线的平滑处理。

2. smooth函数smooth函数是Matlab中的一个经典函数,它可以对一维数据进行平滑处理。

与smoothdata函数不同的是,smooth函数提供了更多的平滑算法和参数选项,可以更加灵活地适应不同的数据特点和需求。

常用的平滑算法包括移动平均、加权移动平均、指数加权移动平均等。

3. sgolay函数sgolay函数是Matlab中用于Savitzky-Golay平滑算法的函数,它可以帮助我们对一维数据进行多项式拟合和平滑处理。

Savitzky-Golay平滑算法是一种常用的平滑方法,它可以有效地去除噪声和波动,保留数据的趋势和特征。

在实际应用中,我们可以利用sgolay函数来对曲线进行平滑处理,从而更好地分析和理解数据。

四、如何使用这些函数在Matlab中,我们可以通过简单的代码来调用这些函数,并对曲线进行平滑处理。

以smoothdata函数为例,我们可以使用下面的代码来对一维数据进行平滑处理:```matlab生成随机数据x = 1:100;y = randn(1, 100);对数据进行平滑处理smooth_y = smoothdata(y, 'movmean', 10);```在上面的代码中,我们首先生成了一个包含100个随机数据的一维数组,然后使用smoothdata函数对这些数据进行了移动平均平滑处理,平滑窗口大小为10。

matlab实验报告实验二

matlab实验报告实验二

matlab实验报告实验二Matlab实验报告实验二引言Matlab是一种功能强大的数学软件,广泛应用于科学研究和工程实践中。

在实验二中,我们将探索Matlab的图像处理功能,并通过实际案例来展示其应用。

图像处理基础图像处理是指对图像进行数字化处理的过程,其目的是改善图像质量、提取有用信息或实现特定的应用需求。

在Matlab中,我们可以利用各种函数和工具箱来实现图像处理的各种任务,如图像增强、滤波、分割和特征提取等。

实验步骤1. 图像读取与显示在Matlab中,我们可以使用imread函数读取图像文件,并使用imshow函数将图像显示在屏幕上。

例如,我们可以读取一张名为"lena.jpg"的图像,并显示出来:```matlabimg = imread('lena.jpg');imshow(img);```2. 图像灰度化图像灰度化是将彩色图像转换为灰度图像的过程。

在Matlab中,我们可以使用rgb2gray函数将彩色图像转换为灰度图像。

例如,我们可以将上一步读取的图像转换为灰度图像:```matlabgray_img = rgb2gray(img);imshow(gray_img);```3. 图像二值化图像二值化是将灰度图像转换为二值图像的过程,其中只包含黑色和白色两种颜色。

在Matlab中,我们可以使用imbinarize函数将灰度图像二值化。

例如,我们可以将上一步得到的灰度图像二值化:```matlabbinary_img = imbinarize(gray_img);imshow(binary_img);```4. 图像平滑图像平滑是指去除图像中的噪声或细节,使得图像更加平滑和清晰。

在Matlab 中,我们可以使用imfilter函数对图像进行平滑处理。

例如,我们可以对上一步得到的二值图像进行平滑处理:```matlabsmooth_img = imfilter(binary_img, fspecial('average'));imshow(smooth_img);```5. 图像边缘检测图像边缘检测是指提取图像中物体边缘的过程,常用于目标检测和图像分割。

matlab 点画出平滑曲线 简单方法

matlab 点画出平滑曲线 简单方法

(原创实用版4篇)编制人员:_______________审核人员:_______________审批人员:_______________编制单位:_______________编制时间:_______________序言下载提示:该文档由本店铺原创并精心编排,下载后,可根据实际需要进行调整和使用,希望能够帮助到大家,谢射!(4篇)《matlab 点画出平滑曲线简单方法》篇1在 MATLAB 中,画出平滑曲线的简单方法有两种:1. 拟合方法:使用 polyfit 函数对数据点进行拟合,然后使用 polyval 函数求出拟合曲线上的点的值,最后使用 plot 函数将拟合曲线画出。

具体步骤如下:a. 定义数据点矩阵 X;b. 使用 polyfit 函数对数据点进行拟合,设置拟合次数(如二次拟合,使用 cpolyfit 函数);c. 使用 polyval 函数求出拟合曲线上的点的值,设置参数为拟合系数和数据点矩阵 X;d. 使用 plot 函数将拟合曲线画出。

2. 插值方法:使用 spcrv 函数对数据点进行插值,然后使用 plot 函数将插值曲线画出。

具体步骤如下:a. 定义数据点矩阵 X;b. 使用 spcrv 函数对数据点进行插值,设置插值次数和插值点数;c. 使用 values 函数求出插值曲线上的点的值;d. 使用 plot 函数将插值曲线画出。

需要注意的是,在使用以上方法画出平滑曲线前,需要先将数据点矩阵 X 中的数据点按照横坐标排序,以便得到正确的插值或拟合结果。

《matlab 点画出平滑曲线简单方法》篇2在 MATLAB 中,画出平滑曲线的简单方法有两种:1. 拟合方法:使用 polyfit 函数进行拟合,然后使用 polyval 函数求出每个横坐标对应的值,最后使用 plot 函数绘制平滑曲线。

具体步骤如下:- 定义横坐标和纵坐标的向量 x 和 y;- 使用 polyfit 函数对数据进行拟合,设置拟合次数(如二次拟合,使用cpolyfit 函数);- 使用 polyval 函数根据拟合系数求出每个横坐标对应的值,得到平滑曲线上的点;- 使用 plot 函数绘制平滑曲线。

matlab 点之间平滑曲线

matlab 点之间平滑曲线

MATLAB 是一种用于数学计算、数据分析、算法开发和可视化的高级技术计算语言和交互式环境。

它主要用于工程和科学应用程序中的数据分析和表示。

在 MATLAB 中,平滑曲线是一种常见的数据可视化方法,可以使用点之间的平滑曲线来展现数据的趋势和走势。

本文将介绍如何在 MATLAB 中使用点之间平滑曲线。

1. 准备数据在使用 MATLAB 绘制点之间的平滑曲线之前,首先需要准备好要绘制的数据。

可以通过导入外部数据文件或者手动输入数据来获取数据。

在 MATLAB 中,数据一般以矩阵或向量的形式存在,确保数据的准确性和完整性是绘制平滑曲线的基础。

2. 创建平滑曲线一旦数据准备就绪,就可以开始在 MATLAB 中创建平滑曲线了。

使用"plot" 函数绘制原始数据的散点图,然后使用 "smooth" 函数对散点进行平滑处理,最后使用 "plot" 函数再次在同一张图上绘制平滑后的曲线。

以下是一个简单的示例代码:```data = [1 2 3 4 5; 10 15 7 12 8];scatter(data(1,:), data(2,:)); % 绘制原始数据散点图smoothed_data = smooth(data(2,:),0.1,'rloess'); % 对数据进行平滑处理hold on;plot(data(1,:), smoothed_data, 'r-'); % 绘制平滑曲线```在这个示例中,首先创建了一个包含 x 和 y 坐标的数据矩阵,然后使用 "scatter" 函数绘制散点图。

接着使用 "smooth" 函数对散点进行平滑处理,并使用 "plot" 函数绘制平滑后的曲线。

这样就完成了点之间的平滑曲线的绘制。

3. 调整平滑参数在实际应用中,适当调整平滑参数对于得到理想的平滑效果至关重要。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录1.3 图像噪声一幅图像在获取和传输等过程中,会受到各种各样噪声的干扰,其主要来源有三:一为在光电、电磁转换过程中引入的人为噪声;二为大气层电(磁)暴、闪电、电压、浪涌等引起的强脉冲性冲激噪声的干扰;三为自然起伏性噪声,由物理量的不连续性或粒子性所引起,这类噪声又可分成热噪声、散粒噪声等。

一般在图像处理技术中常见的噪声有:加性噪声、乘性噪声、量化噪声、“盐和胡椒”噪声等。

下面介绍两种主要的噪声。

1、高斯噪声这种噪声主要来源于电子电路噪声和低照明度或高温带来的传感器噪声,也称为正态噪声,是在实践中经常用到的噪声模型。

高斯随机变量z 的概率密度函数(P D F )由下式给出:}2/)(ex p{2/1)(22σμσπ--=z z p其中, z 表示图像像元的灰度值;μ表示z 的期望;σ表示z 的标准差。

2、椒盐噪声主要来源于成像过程中的短暂停留和数据传输中产生的错误。

其P D F 为:⎪⎩⎪⎨⎧===其他0)(b z pba z pa z p如果b > a , 灰度值b 在图像中显示为一亮点,a 值显示为一暗点。

如果P a和图像均不为零,在图像上的表现类似于随机分布图像上的胡椒和盐粉微粒,因此称为椒盐噪声。

当P a为零时,表现为“盐”噪声;当P b为零时,表现为“胡椒”噪声。

图像中的噪声往往是和信号交织在一起的尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边缘轮廓‘线条等模糊不清,从而使图像质量降低。

第二章、图像平滑方法2.1 空域低通滤波将空间域模板用于图像处理,通常称为空间滤波,而空间域模板称为空间滤波器。

空间域滤波按线性和非线性特点有:线性、非线性平滑波器。

线性平滑滤波器包括领域平均法(均值滤波器),非线性平滑滤波器有中值滤波器。

2.1.1 均值滤波器对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的均值滤波器就非常适用于去除通过扫描得到的图像中的颗粒噪声。

邻域平均法是空间域平滑技术。

这种方法的基本思想是,在图像空间,假定有一副N ×N 个像素的原始图像f (x ,y ),用领域内几个像素的平均值去代替图像中的每一个像素点值的操作。

经过平滑处理后得到一副图像 g (x ,y ), 其表达式如下:∑∈=s n m n m f My x g ),(),(/1),(式中: x ,y =0,1,2,…,N -1;s 为(x ,y )点领域中点的坐标的集合,但不包括(x ,y )点;M 为集合内坐标点的总数。

领域平均法有力地抑制了噪声,但随着领域的增大,图像的模糊程度也愈加严重。

为了尽可能地减少模糊失真,也可采用阈值法减少由于领域平均而产生的模糊效应。

其公式如下:⎪⎩⎪⎨⎧>-=∑∑∈∈其他),(),(/1),(),(/1),(),(),(y x f Tn m f M y x f n m f M y x g s n m s n m式中:T 为规定的非负阈值。

上述方法也可称为算术均值滤波器,除此之外还可以采用几何均值滤波器、谐波均值滤波器和逆谐波均值滤波器。

几何均值滤波器所达到的平滑度可以与算术均值滤波器相比,但在滤波过程中会丢失更少的图像细节。

谐波均值滤波器对“盐”噪声效果更好,但是不适用于“胡椒”噪声。

它善于处理像高斯噪声那样的其他噪声。

逆谐波均值滤波器更适合于处理脉冲噪声,但它有个缺点,就是必须要知道噪声是暗噪声还是亮噪声,以便于选择合适的滤波器阶数符号,如果阶数的符号选择错了可能会引起灾难性的后果。

2.1.2 中值滤波器中值滤波是一种常用的去除噪声的非线性平滑滤波处理方法,其基本思想用图像像素点的领域灰度值的中值来代替该像素点的灰度值。

二维中值滤波可以用下式表示:{}ij ij f Med y = 式中:A 为滤波窗口;{}ij f 为二维数据序列。

其主要功能是让周围象素灰度值的差比较大的像素改取与周围的像素值接近的值,从而可以消除孤立的噪声点,所以中值滤波对于滤除图像的椒盐噪声非常有效。

中值滤波器可以做到既去除噪声又能保护图像的边缘,从而获得较满意的复原效果,而且,在实际运算过程中不需要图像的统计特性,这也带来不少方便,但对一些细节多,特别是点、线、尖顶细节较多的图像不宜采用中值滤波的方法。

如果希望强调中间点或距中间点最近的几个点的作用,则可采用加权中值滤波。

其基本原理是改变窗口中变量的个数,可以使一个以上的变量等于同一点的值,然后对扩张后的数字集求中值。

这种方法比简单中值滤波性能更好地从受噪声污染的图像中恢复出阶跃边缘以及其他细节。

另有一种可以处理具有更大概率的冲激噪声的是自适应中值滤波器,在进行滤波处理时,能依赖一定条件而改变领域的大小。

其优点是在平滑非冲激噪声时可以保存细节,所以既能除去“椒盐”噪声,平滑其他非冲激噪声,还能减少诸如物体边界细化或粗化等失真。

2.2 频域低通滤波在分析图像信号的频率特性时,对于一副图像,直流分量表示了图像的平均灰度,大面积的背景区域和缓变部分是低频分量,其边缘、细节、跳跃部分以及颗粒噪声都代表图像的高频分量。

频域低通滤波就是除去其高频分量就能去掉噪声,从而使图像得到平滑。

利用卷积定理,可以写成以下形式:G (u ,v )=H (u ,v )F (u ,v )式中,F (u ,v )是含噪图像的傅立叶变换,G (u ,v )是平滑后图像的傅立叶变换,H (u ,v )是传递函数。

利用H (u ,v )使F (u ,v )的高频分量得到衰减,得到G (u ,v )后再经过反变换就得到所希望的图像g (u ,v )了。

低通滤波平滑图像的系统框图如下所示:图3-1 图像频域低通滤波流程框图低通滤波法又分为以下几种:(1) 理想低通滤波器(I L P F )一个理想的低通滤波器的传递函数由下式表示:⎩⎨⎧>≤=0),(00),(1),(D v u D D v u D v u H式中D 0是一个规定的非负的量,它叫做理想低通滤波器的截止频率。

D (u ,v )代表从频率平面的原点到(u ,v )点的距离,即:2/122)(),(v u v u D += 理想低通滤波器在处理过程中会产生较严重的模糊和振铃现象。

(2) 巴特沃思低通滤波器(B L P F )n 阶巴待沃思滤波器的传递系数为n v u D D v u H 20)],(/[11),(-+= D L P F 与I L P F 不同,它的通带与阻带之间没有明显的不连续性,因此它没有“振铃”现象发生,模糊程度减少,但从它的传递函数特性曲线H (u ,v )可以看出,在它的尾部保留有较多的高频,所以对噪声的平滑效果还不如I L P F (理想低通滤波器)。

(3) 指数滤波器(E L P F )其传递函数表示为:nv u D D e v u H --=)],(/[0),( 由于E L P F 具有比较平滑的过渡形,为此平滑后的图像没有“振铃”现象,而E L P F 与B L P F 相比.它具有更快的衰减特性,所以经E L P F 滤波的图像比B L P F 处理的图像稍微模糊一些。

(4) 梯形滤波器(T L P F )梯形滤波器的传递函数介于理想低通滤波器和具有平 滑过渡带的低通滤波器之间,它的传递函数为:⎪⎩⎪⎨⎧>≤≤--<=0011011),(0),(]/[]),([),(1),(D v u D D v u D D D D D v u D D v u D v u H式中:D 0为梯形低通滤波器截止频率,D 0、D 1须满足D 0<D 1,它的性能介于I L P F 和B L P F 之间,对图像有一定的模糊和振铃效应。

第三章、图像平滑处理与调试本课程设计中程序运行的环境是w i n d o w s平台,并选用M A T L A B作为编程开发工具,M A T L A B是一种向量语言,它非常适合于进行图像处理。

3.1模拟噪声图像图像增强操作主要是针对图像的各种噪声而言的,为了说明图像处理中的滤波方法和用途,需要模拟数字图像的各种噪声来分析滤波效果。

M A T L A B图像处理工具箱提供的噪声添加函数i m n o i s e,它可以对图像添加一些典型的噪声。

其语法:J=i m n o i s e(I,t y p e)J=i m n o i s e(I,t y p e,p a r a m e t e r s)其功能是:返回对原图像I添加典型噪声的图像J,参数t y p e和p a r a m e t e r s用于确定噪声的类型和相应的参数。

三种典型的噪声:type=’gaussian’时,为高斯噪声;t y p e=’s a l t&p e p p e r’时为椒盐噪声;t y p e=’s p e c k l e’时为乘法噪声;图像数据读取函数i m r e a d从图像文件中读取图像数据。

其基本调用格式如下:I=i m r e a d(文件名,’图像文件格式’)其功能是:将文件名指定的图像文件读入I中。

I=i m s h o w(A)其功能是显示图像A。

如下程序就实现了3种噪声污染了的图像:I=i m r e a d('l e n a.b m p');%读取图像I1=i m n o i s e(I,'g a u s s i a n');%加高斯噪声I2=i m n o i s e(I,'s a l t&p e p p e r',0.02);%加椒盐噪声I3=i m n o i s e(I,'s p e c k l e');%加乘性噪声s u b p l o t(221),i m s h o w(I);%显示图像Is u b p l o t(222),i m s h o w(I1);s u b p l o t(223),i m s h o w(I2);s u b p l o t(224),i m s h o w(I3);运行结果如下:(a)原图像(b)受高斯噪声污染的图像(c)受盐椒噪声污染的图像(d)受乘法噪声污染的图像图3-1噪声污染的图像3.2均值滤波法在M A T L A B图像处理工具箱中,提供了i m f i l t e r函数用于实现均值滤波,i m f i l t e r的语法格式为:B=i m f i l t e r(A,H)其功能是,用H模板对图像A进行均值滤波,取平均值滤波模版为H1=1/9[111;111;111];H2=1/25[11111;11111;11111;1111 1;11111];分别以这两个平均值滤波算子对图3-1中的四幅图像进行滤波操作。

取H1,程序如下:I=i m r e a d('l e n a.b m p');I1=i m n o i s e(I,'g a u s s i a n');I2=i m n o i s e(I,'s a l t&p e p p e r',0.02);I3=i m n o i s e(I,'s p e c k l e');H1=o n e s(3,3)/9;%3×3领域模板J=i m f i l t e r(I,H1);%领域平均J1=i m f i l t e r(I1,H1);J2=i m f i l t e r(I2,H1);J3=i m f i l t e r(I3,H1);s u b p l o t(221),i m s h o w(J);s u b p l o t(222),i m s h o w(J1);s u b p l o t(223),i m s h o w(J2);s u b p l o t(224),i m s h o w(J3);运行结果如图3-2取H2,程序如下:I=i m r e a d('l e n a.b m p');I1=i m n o i s e(I,'g a u s s i a n');I2=i m n o i s e(I,'s a l t&p e p p e r',0.02);I3=i m n o i s e(I,'s p e c k l e');H2=o n e s(5,5)/25;J=i m f i l t e r(I,H2);J1=i m f i l t e r(I1,H2);J2=i m f i l t e r(I2,H2);J3=i m f i l t e r(I3,H2);s u b p l o t(221),i m s h o w(J);s u b p l o t(222),i m s h o w(J1);s u b p l o t(223),i m s h o w(J2);s u b p l o t(224),i m s h o w(J3);运行结果如图3-3:(a)原图像滤波后(b)受高斯噪声污染的图像滤波后(c)受盐椒噪声污染的图像滤波后(d)受乘法噪声污染的图像滤波后图3-2 图3-1中图像经过平均值算子H1滤波后图像(a)原图像滤波后(b)受高斯噪声污染的图像滤波后(c)受盐椒噪声污染的图像滤波后 (d)受乘法噪声污染的图像滤波后图3-3 图3-1中图像经过平均值算子H2滤波后图像比较处理后的图像结果可知,领域平均处理后,图像的噪声得到了抑制,但图像变得相对模糊,对高斯噪声的平滑效果比较好。

相关文档
最新文档