江苏省南京市新城中学2021届九年级上学期数学第一次月考试卷
2021年苏教版九年级数学上册第一次月考试卷【及参考答案】
2021年苏教版九年级数学上册第一次月考试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+- 3.若式子2m 2(m 1)+-有意义,则实数m 的取值范围是( ) A .m 2>- B .m 2>-且m 1≠C .m 2≥-D .m 2≥-且m 1≠4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2> B .x 3> C .3x 2< D .x 3<8.如图,正方形ABCD 的边长为2cm ,动点P ,Q 同时从点A 出发,在正方形的边上,分别按A D C →→,A B C →→的方向,都以1/cm s 的速度运动,到达点C 运动终止,连接PQ ,设运动时间为x s ,APQ ∆的面积为2y cm ,则下列图象中能大致表示y 与x 的函数关系的是( )A .B .C .D .9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为( )A .4B .23C .3D .2.510.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm =,则水的最大深度为( )A .8cmB .10cmC .16cmD .20cm二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是 __________.2.分解因式:x 2-2x+1=__________.3.抛物线23(1)8y x =-+的顶点坐标为____________.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解方程:11322x x x-=---2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE=CF ;(2)当四边形ACDE为菱形时,求BD的长.4.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如果∠BED=60°,PD=3,求PA的长;(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、D4、C5、A6、B7、C8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、(x-1)2.3、(1,8)4、125、406、454353x yx y+=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、无解2、(1)k﹥34;(2)k=2.3、(1)略(24、(1)略;(2)1;(3)略.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。
2021年苏教版九年级数学上册第一次月考试卷含答案
2021年苏教版九年级数学上册第一次月考试卷含答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣6的倒数是( )A .﹣16B .16C .﹣6D .62.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b . 4.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x 名同学,那么依题意,可列出的方程是( )A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是()A.80°B.120°C.100°D.90°9.如图,已知AB是O的直径,点P在BA的延长线上,PD与O相切于点D,过点B作PD的垂线交PD的延长线于点C,若O的半径为4,6BC ,则PA的长为()A.4 B.23C.3 D.2.510.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是 __________.2.分解因式:2x2﹣8=_______.3.已知二次函数y=x2﹣4x+k的图象的顶点在x轴下方,则实数k的取值范围是__________.4.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,△ABC的面积是__________.5.如图,已知AB是⊙O的直径,AB=2,C、D是圆周上的点,且∠CDB=30°,则BC的长为______.6.如图,在矩形ABCD中,8AD=,对角线AC与BD相交于点O,AE BD⊥,垂足为点E,且AE平分BAC∠,则AB的长为__________.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.先化简,再求值:2221111x x xx x++⎛⎫-÷⎪--⎝⎭,其中2x=.3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、B4、C5、B6、A7、D8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、22、2(x+2)(x ﹣2)3、k <44、425、16、.三、解答题(本大题共6小题,共72分)1、3x =2、11x +,13.3、(1)相切,略;(2)4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)200 , 8415m n ==,;(2)1224人;(3)见解析,23.6、(1)y=﹣5x 2+800x ﹣27500(50≤x ≤100);(2)当x=80时,y 最大值=4500;(3)70≤x ≤90.。
2021年苏教版九年级数学上册第一次月考试卷及完整答案
2021年苏教版九年级数学上册第一次月考试卷及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.4的平方根是( )A .±2B .2C .﹣2D .162.若a ≠b ,且22410,410a a b b -+=-+=则221111a b+++的值为( ) A .14B .1C ..4D .3 3.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人4.下列各数:-2,0,13,0.020020002…,π,9,其中无理数的个数是( )A .4B .3C .2D .15.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是( )A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-26.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A .-1B .0C .3D .47.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是:( )A .B .C .D .10.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A .25394+B .25392+C .18253+D .253182+ 二、填空题(本大题共6小题,每小题3分,共18分)1.计算:2﹣|18|+(﹣12)﹣3=_____. 2.因式分解:a 3-ab 2=____________.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,在△ABC 中,AD ⊥BC 于D ,BE ⊥AC 于E ,AD 与BE 相交于点F ,若BF =AC ,则∠ABC =__________度.5.如图,AB 为△ADC 的外接圆⊙O 的直径,若∠BAD=50°,则∠ACD=_____°.6.菱形的两条对角线长分别是方程214480x x -+=的两实根,则菱形的面积为__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++=(1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值3.如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O ,点D 为⊙O 上一点,且CD=CB 、连接DO 并延长交CB 的延长线于点E(1)判断直线CD 与⊙O 的位置关系,并说明理由;(2)若BE=4,DE=8,求AC 的长.4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分) 众数(分)(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.6.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天. (1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、C4、C5、A6、C7、D8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、-72、a (a+b )(a ﹣b )3、增大.4、455、406、24三、解答题(本大题共6小题,共72分)1、2x =2、(1)详见解析(2)k 4=或k 5=3、(1)相切,略;(2).4、(1)答案略;(2)45°.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)100,50;(2)10.。
2021年苏教版九年级数学上册第一次月考考试卷及参考答案
2021年苏教版九年级数学上册第一次月考考试卷及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .3,4,5B .1,2,3C .6,7,8D .2,3,44.关于x 的一元二次方程2(1)20x k x k ---+=有两个实数根12,x x ,()1212122(2)2x x x x x x -+--+3=-,则k 的值() A .0或2 B .-2或2 C .-2 D .25.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x =6.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣27.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是( )A .B .C .D .9.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣110.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:02(3)π-+-=_____________.2.分解因式:x 2﹣9x =________.3.已知x=2是关于x 的一元二次方程kx 2+(k 2﹣2)x+2k+4=0的一个根,则k 的值为__________.41.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.如图,在矩形ABCD 中,AB=4,AD=3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A ,B ,C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:33122x x x-+=--2.先化简再求值:(a ﹣22ab b a -)÷22a b a -,其中a=1+2,b=1﹣2.3.如图,已知抛物线2(0)y ax bx c a =++≠的对称轴为直线1x =-,且抛物线与x 轴交于A 、B 两点,与y 轴交于C 点,其中(1,0)A ,(0,3)C .(1)若直线y mx n =+经过B 、C 两点,求直线BC 和抛物线的解析式;(2)在抛物线的对称轴1x =-上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求出点M 的坐标;(3)设点P 为抛物线的对称轴1x =-上的一个动点,求使BPC ∆为直角三角形的点P 的坐标.4.如图,四边形ABCD 内接于⊙O ,∠BAD=90°,点E 在BC 的延长线上,且∠DEC=∠BAC .(1)求证:DE 是⊙O 的切线;(2)若AC ∥DE ,当AB=8,CE=2时,求AC 的长.5.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表借阅图书的次数0次1次2次3次4次及以上人数7 13 a 10 3请你根据统计图表中的信息,解答下列问题:()1a=______,b=______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、B4、D5、D6、D7、D8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、32、x (x-9)3、﹣34、5、40°6、35r <<.三、解答题(本大题共6小题,共72分)1、x=12、原式=a b a b -=+3、(1)抛物线的解析式为223y x x =--+,直线的解析式为3y x .(2)2()1,M -;(3)P 的坐标为(1,2)--或(1,4)-或3(1,2+-或3(1,2--.4、(1)略;(2)AC5、()117、20;()22次、2次;()372;()4120人.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
2021年苏教版九年级数学上册第一次月考测试卷【及参考答案】
2021年苏教版九年级数学上册第一次月考测试卷【及参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <3.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( )A .1B .2C .3D .86.若关于x 的一元一次方程x −m +2=0的解是负数,则m 的取值范围是( )A .m ≥2B .m >2C .m <2D .m ≤27.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:33a b ab -=___________.31x -x 的取值范围是__________.4.把长方形纸片ABCD 沿对角线AC 折叠,得到如图所示的图形,AD 平分∠B ′AC ,则∠B ′CD=__________.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象经过A(-1,0)、B(4,0)、C(0,2)三点.(1)求该二次函数的解析式;(2)点D是该二次函数图象上的一点,且满足∠DBA=∠CAO(O是坐标原点),求点D的坐标;(3)点P是该二次函数图象上位于一象限上的一动点,连接PA分别交BC,y轴与点E、F,若△PEB、△CEF的面积分别为S1、S2,求S1-S2的最大值.5.某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.6.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的32倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、D5、C6、C7、C8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、ab (a+b )(a ﹣b ).3、1x ≥4、30°5、6、3三、解答题(本大题共6小题,共72分)1、4x =2、3x3、(1)略(2)64、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165. 5、(1)25;28;(2)平均数:18.6;众数:21;中位数:18.6、(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.。
2021年苏教版九年级数学上册第一次月考测试卷【参考答案】
2021年苏教版九年级数学上册第一次月考测试卷【参考答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab = 2.计算12+16+112+120+130+……+19900的值为( ) A .1100 B .99100 C .199D .10099 3.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =4 4.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( )A .4≤m <7B .4<m <7C .4≤m ≤7D .4<m ≤75.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.把函数2(1)2y x =-+的图象向右平移1个单位长度,平移后图象的函数解析式为( )A .22y x =+B .2(1)1y x =-+C .2(2)2y x =-+D .2(1)3y x =--7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .18 8.如图,A B 、是函数12y x=上两点,P 为一动点,作//PB y 轴,//PA x 轴,下列说法正确的是( )①AOP BOP ∆≅∆;②AOP BOP S S ∆∆=;③若OA OB =,则OP 平分AOB ∠;④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④9.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )A .16B .17C .18D .1910.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( ).A .BD =DC ,AB =ACB .∠ADB =∠ADC ,BD =DC C .∠B =∠C ,∠BAD =∠CAD D .∠B =∠C ,BD =DC二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是__________.2.分解因式:2x +xy =_______.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.如图,在ABC ∆中,AB AC =,点A 在反比例函数k y x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.三、解答题(本大题共6小题,共72分)1.解分式方程:21124x x x -=--2.先化简,再求值:2443(1)11m mmm m-+÷----,其中22m=-.3.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果BE=BC,且∠CBE:∠BCE=2:3,求证:四边形ABCD是正方形.4.如图,已知P是⊙O外一点,PO交圆O于点C,OC=CP=2,弦AB⊥OC,劣弧AB的度数为120°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、A5、B6、C7、C8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、()x x+y.3、20204、85、4π6、3三、解答题(本大题共6小题,共72分)1、32x=-.2、22mm-+1.3、(1)略;(2)略.4、(1)2(2)略5、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.6、(1)35元/盒;(2)20%.。
2021年苏教版九年级数学上册第一次月考考试卷及答案【各版本】
2021年苏教版九年级数学上册第一次月考考试卷及答案【各版本】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( )A .2B .12C .12-D .2-2.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( )A .2a +2b -2cB .2a +2bC .2cD .03.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.用配方法解方程2890x x ++=,变形后的结果正确的是( )A .()249x +=-B .()247x +=-C .()2425x +=D .()247x += 5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.已知1x =是一元二次方程22(2)40m x x m -+-=的一个根,则m 的值为( )A .-1或2B .-1C .2D .07.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .8.如图所示,四边形ABCD 为⊙O 的内接四边形,∠BCD=120°,则∠BOD 的大小是()A.80°B.120°C.100°D.90°9.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣110.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5 B.3:5 C.9:25 D.4:25二、填空题(本大题共6小题,每小题3分,共18分)1.81的平方根是__________.2.分解因式:a2﹣4b2=_______.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.先化简,再求值:22122()121x x x x x x x x ----÷+++,其中x 满足x 2-2x -2=0.3.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.4.已知AB 是O 的直径,弦CD 与AB 相交,38BAC ∠=︒.(Ⅰ)如图①,若D 为AB 的中点,求ABC ∠和ABD ∠的大小;(Ⅱ)如图②,过点D 作O 的切线,与AB 的延长线交于点P ,若//DP AC ,求OCD ∠的大小.5.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有多少名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.6.某学校为了改善办学条件,计划购置一批电子白板和台式电脑.经招投标,购买一台电子白板比购买2台台式电脑多3000元,购买2台电子白板和3台台式电脑共需2.7万元.(1)求购买一台电子白板和一台台式电脑各需多少元?(2)根据该校实际情况,购买电子白板和台式电脑的总台数为24,并且台式电脑的台数不超过电子白板台数的3倍.问怎样购买最省钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、D5、B6、B7、D8、B9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、(a+2b)(a﹣2b)3、84、10.5、40°6、2 5三、解答题(本大题共6小题,共72分)1、2x2、1 23、(1)略;(2.4、(1)52°,45°;(2)26°5、(1)参与问卷调查的学生人数为100人;(2)补全图形见解析;(3)估计该校学生一个月阅读2本课外书的人数约为570人.6、(1)购买一台电子白板需9000元,一台台式电脑需3000元;(2)购买电子白板6台,台式电脑18台最省钱.。
江苏省南京市2021年九年级上学期数学第一次月考试卷(II)卷
江苏省南京市2021年九年级上学期数学第一次月考试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017九上·高台期末) 方程x2﹣4=0的解是()A . x=±2B . x=±4C . x=2D . x=﹣22. (2分) (2019九上·芜湖月考) 一元二次方程根的情况是()A . 有两个相等的实数根B . 有两个不相等的实数根C . 只有一个实数根D . 没有实数根3. (2分) (2019九上·获嘉月考) 下列函数是二次函数的是()A . y=x(x+1)B . x2y=1C . y=2x2-2(x-1)2D . y=x—0.54. (2分) (2016九上·重庆期中) 下列关于x的方程有实数根的是()A . x2﹣x+1=0B . x2+x+1=0C . (x﹣1)(x+2)=0D . (x﹣1)2+1=05. (2分)如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且OB=OC,下列结论:①b>1且b≠2;②b2﹣4ac<4a2;③a>;其中正确的个数为()A . 0B . 1C . 2D . 36. (2分)某种型号的电视机经过连续两次降价,每台售价由原来的1500元,降到了980元,设平均每次降价的百分率为x,则下列方程中正确的是()A . 1500(1﹣x)2=980B . 1500(1+x)2=980C . 980(1﹣x)2=1500D . 980(1+x)2=15007. (2分) (2019九上·江北期末) 如图,在平面直角坐标系中,直线不经过第四象限,且与轴,轴分别交于两点,点为的中点,点在线段上,其坐标为,连结,,若,那么的值为()A .B . 4C . 5D . 68. (2分) (2016九上·瑞安期中) 将抛物线向右平移2个单位所得抛物线的函数表达式为()A .B .C .D .9. (2分)二次函数y=-3x2-6x+5的图象的顶点坐标是()A . (-1,8)B . (1,8)C . (-1,2)D . (1,4)10. (2分) (2017九上·吴兴期中) 二次函数,自变量x与函数y的对应值如下表:x…-5-4-3-2-10…y…40-2-204…下列说法正确的是()A . 抛物线的开口向下B . 当x>-3时,y随x的增大而增大C . 二次函数的最小值是-2D . 抛物线的对称轴x=11. (2分) (2018九上·椒江月考) 已知抛物线y=ax2+bx+c(a<0)过A(-2,0),O(0,0),B(-3,y1),C(1,y2)四点,则y1与y2的大小关系是()A . y1=y2B . y1>y2C . y1<y2D . 不能确定12. (2分) (2019九上·临高期中) 某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2018九上·花都期中) 已知是关于x的一元二次方程,则 ________.14. (1分) (2016九上·鄂托克旗期末) 若将二次函数y=x2-2x+3配方为y=(x-h)2 +k的形式,则y=________.15. (1分) (2016八上·徐州期中) 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…﹣2﹣1012…y…1771﹣11…则当y<7时,x的取值范围是________.16. (1分) (2018九上·上杭期中) 已知是二次函数,则 ________.17. (1分)二次函数y=x2+bx+c的图象如图所示,当函数值y<0时,对应x的取值范围是________.18. (1分) (2019八下·乌兰浩特期中) 如果是一次函数,则的值是________.三、解答题 (共6题;共46分)19. (10分) (2020九上·兴业月考) 已知的两条直角边长为一元二次方程的两根.(1)当时,求的周长;(2)当为等腰直角三角形时,求的值及的周长.20. (5分) (2018九上·宁县期中) 已知关于x的方程 ,求证:不论k取何值方程都有两个不相等的实数根.21. (5分)抛物线上部分点的横坐标,纵坐标的对应值如下表:…012……04664…从上表可知,下列说法正确的是.①抛物线与轴的一个交点为;②抛物线与轴的交点为;③抛物线的对称轴是:直线;④在对称轴左侧随增大而增大.22. (10分)如图,抛物线y= x2+bx﹣2与x轴交于A,B两点,与y轴交于C点,且A(﹣1,0).(1)求抛物线的函数关系式及顶点D的坐标;(2)若点M是抛物线对称轴上的一个动点,求CM+AM的最小值.23. (10分) (2018九上·黄石期中) 如图,矩形ABCD的长AD=5 cm,宽AB=3 cm,长和宽都增加x cm,那么面积增加y cm2.(1)写出y与x的函数关系式;(2)当增加的面积y=20 cm2时,求相应的x是多少?24. (6分)如图所示,将抛物线y= x2沿x轴向右平移2个单位长度,再向下平移1个单位长度,得到新的抛物线.(1)直接写出新抛物线的解析式为________;(2)设新抛物线交x轴于A、B两点,交y轴于C,顶点为D,作CE⊥CD交抛物线于E,如图所示,探究如下问题:①求点E的坐标;②若一次函数y=kx+1的图象与抛物线存在唯一交点且交对称轴交于点F,连接DE,猜测直线DE与对称轴的夹角和一次函数y=kx+1的图象与对称轴的夹角之间的大小关系,并证明.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共46分)19-1、19-2、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省南京市新城中学2021届九年级上学期数学第一次月考试卷
一、单选题(共6题;共12分)
1.已知⊙O的半径为4,点A和圆心O的距离为3,则点A与⊙O的位置关系是()
A. 点A在⊙O内
B. 点A在⊙O上
C. 点A在⊙O外
D. 不能确定
2.一元二次方程y2-4y+3=0配方后可化为()
A. 2=3
B. 2=0
C. 2=2
D. 2=1
3.如图,AB,BC,CD,DA都是⊙O的切线,已知AD=2,BC=5,则AB+CD的值是()
A. 14
B. 12
C. 9
D. 7
4.关于x的方程(为常数)根的情况下,下列结论中正确的是()
A. 两个正根
B. 两个负根
C. 一个正根,一个负根
D. 无实数根
5.如图,某小区在一块长为16m,宽为9m的矩形空地上新修三条宽度相同的小路,其中一条和矩形的一边平行,另外两条和矩形的另一边平行,空地剩下的部分种植花草,使得花草区域占地面积为120m2.设小路的宽度为xm,则下列方程:
①(16﹣2x)(9﹣x)=120
②16×9﹣9×2x﹣(16﹣2x)x=120
③16×9﹣9×2x﹣16x+x2=120.
其中正确的是()
A. ①
B. ②
C. ①②
D. ①②③
6.如图①,若BC是Rt△ABC和Rt△DBC的公共斜边,则A、B、C、D在以BC为直径的圆上,则叫它们“四点共圆”.如图②,△ABC的三条高AD、BE、CF相交于点H,则图②中“四点共圆”的组数为()
A. 2
B. 3
C. 4
D. 6
二、填空题(共10题;共13分)
7.方程的根是________.
8.将方程x2-2=7x化成x2+bx+c=0的形式,则b=________.
9.某种商品原价是100元,经两次降价后的价格是64元,则平均每次降价的百分率为________
10.已知x= 是关于x的方程的一个根,则m=________.
11.如图,BC是⊙O的直径,A、D是⊙O上的两点,若∠ABC=25°,则∠D的度数是________°.
12.如图,⊙O半径为2,弦AB∥弦CD,AB=2,CD=2 ,则AB和CD之间的距离________.
13.如图所示,AB是⊙O的直径,弦于H,,则⊙O的半径是
________.
14.如图,PA、PB是的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=
________°.
15.如图,在△ABC中,∠A=90°,∠B=36°,点D为斜边BC的中点,将线段DC绕着点D逆时针旋转任意角度得到线段DE(点E不与A、B、C重合),连接EA,EC,则∠AEC=________°.
16.如图,矩形ABCD中,AD=4,AB=2.点E是AB的中点,点F是BC边上的任意一点(不与B、C重合),△EBF沿EF翻折,点B落在B'处,当DB'的长度最小时,BF的长度为________.
三、解答题(共11题;共60分)
17.解方程:.
18.解方程(x+1)2=(2x+1)2.
19.已知:当x=2时,二次三项式x2﹣2mx+4的值等于﹣4.当x为何值时,这个二次三项式的值是﹣1?
20.已知关于x的一元二次方程x2-2mx+2m-1=0(m为常数).
(1)若方程的一个根为0,求m的值和方程的另一个根;
(2)求证:不论m为何值,该方程总有实数根.
21.如图,在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C、D.
(1)求证AC=BD;
(2)若AC=3,大圆和小圆的半径分别为6和4,则CD的长度是________.
22.如图,在⊙O中,弦AB与弦CD相交于点M,且AB=CD,求证:BM=DM.
23.如图,已知⊙O,利用直尺和圆规完成下列作图,不写作法,保留作图痕迹.
(1)如图①,点P在⊙O上,过点P作⊙O的切线;
(2)如图②,点P在⊙O外,过点P作⊙O的切线.
24.某公司在商场购买某种比赛服饰,商店经理给出了如下优惠条件:如果一次性购买10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降价2元,但单价不得低于50元,按此优惠条件,该公司一次性购买这种比赛服装付了1200元,请问购买了多少件这种比赛服饰?25.用两种方法证明“圆的内接四边形对角互补”.
已知:如图①,四边形ABCD内接于⊙O.
求证:∠B+∠D=180°.
证法1:如图②,作直径DE交⊙O于点E,连接AE、CE.
∵DE是⊙O的直径,
∴().
∵∠DAE+∠AEC+∠DCE+∠ADC=360°,
∴∠AEC+∠ADC=360°-∠DAE-∠DCE=360°-90°-90°=180°.
∵∠B和∠AEC所对的弧是,
∴().
∴∠B+∠ADC=180°.
请把证法1补充完整,并用不同的方法完成证法2.
证法2:
26.如图,在中,,D是AB上一点,⊙O经过点A、C、D,交BC于点E,过点D作
,交⊙O于点F,求证:
(1)四边形DBCF是平行四边形
(2)
27.在△ABC中,∠C= ,⊙O是△ABC的内切圆,⊙P分别与CA的延长线、CB的延长线以及直线AB均相切,⊙O的半径为m,⊙P的半径为n.
(1)当=90°时,AC=6,BC=8时,m=________,n=________.
(2)当取下列度数时,求△ABC的面积(用含有m、n的代数式表示,并直接写出答案).①如图,=90°;②如图,=60°.
答案解析部分
一、单选题
1.【答案】A
2.【答案】D
3.【答案】D
4.【答案】C
5.【答案】C
6.【答案】D
二、填空题
7.【答案】x1=0,x2=2
8.【答案】-7
9.【答案】20%
10.【答案】1
11.【答案】65
12.【答案】﹣或+
13.【答案】2
14.【答案】219
15.【答案】36或144
16.【答案】
三、解答题
17.【答案】解:因式分解得:(x+1)(x-3)=0,
即x+1=0或x-3=0,
解得:x1=-1,x2=3
18.【答案】解:两边开方得:x+1=±(2x+1),解得:x1=0,x2=-.
19.【答案】解:由题意得4﹣4m+4=﹣4,即3﹣m=0,
解得m=3;
∴x2﹣6x+4=﹣1,
∴(x﹣1)(x﹣5)=0,
得x1=1,x2=5.
20.【答案】(1)解:把x=0代入原方程,得2m-1=0 ,
解得:m=.
∴x2-x=0,
x1=1,x2=0.
∴另一个根是1.
(2)证明:b2-4ac=4m2-4(2m-1)=4m2-8m+4,
∵4m2-8m+4=4 (m-1)2≥0.
∴对于任意的实数m,方程总有实数根.
21.【答案】(1)证明:作CH⊥CD于H,如图,
∵OH⊥CD,∴CH=DH,AH=BH,∴AH﹣CH=BH﹣DH,∴AC=BD;(2)
22.【答案】证明:连接BD.
∵AB=CD
∴=
∴-=-,即=
∴∠D=∠B
∴BM=DM
23.【答案】(1)解:如图:∴MN即为所求
(2)解:如图:∴PD、PE即为所求
24.【答案】解:,购买的数量超过了10件,
设多购买了x件,则每件价格是元,
,,
列式,
解得,(舍去),
(件),
答:购买了20件这种比赛服饰.
25.【答案】解:证法1:如图②,作直径DE交⊙O于点E,连接AE、CE.
∵DE是⊙O的直径,
∴∠DAE=∠DCE=90°.
∵∠DAE+∠AEC+∠DCE+∠ADC=360°,
∴∠AEC+∠ADC=360°-∠DAE-∠DCE=360°-90°-90°=180°. ∵∠B和∠AEC所对的弧是,
∴∠AEC=∠B..
∴∠B+∠ADC=180°.
证法2:连接OA、OC
∵∠B、∠1所对的弧是,
∠D、∠2所对的弧是,
∴∠B=∠1,∠D=∠2
∵∠1+∠2=360°,
∴∠B+∠D=(∠1+∠2)=×360°=180°.
26.【答案】(1)证明:,
,
,
,
又,
四边形是平行四边形.
(2)证明:如图,连接
,
四边形是的内接四边形
27.【答案】(1)2;12
(2)解:①如图,
- 11 -
由(
1)可知,
,
,即 , 由这两个式子可得 ;
②如图,设点D 、E 、F 分别是3个切点,连接PD 、PE 、PF
、CP ,
由切线长定理得 , ∵ , , ∴ 平分 , ∴
, ∴ ,
∵
,
∴ .。