函数的奇偶性课件【优质PPT】
合集下载
函数的奇偶性(精辟讲解)精品PPT课件
f(x)=-f(-x). (2)可用定义法,也可以用特殊值代入,如 f(1)=f(-1), 再验证. (3)可考虑 f(x)在[-2,2]上的单调性.
解 (1)∵f(x)是定义在 R 上的奇函数, ∴f(0)=0,当 x<0 时,-x>0, 由已知 f(-x)=(-x)2-(-x)-1=x2+x-1=-f(x). ∴f(x)=-x2-x+1.
所以 f(x)在(0,+∞)内单调递增.
故|lg x|>1,即 lg x>1 或 lg x<-1,
解得
x>10
或
1 0<x<10.
点评 解决本题的关键在于利用函数的奇偶性把不等
式两边的函数值转化到同一个单调区间上,然后利用函
数的单调性脱掉符号“f”.
题型三 函数的奇偶性与周期性 例 3 设 f(x)是定义在 R 上的奇函数,且对任意实数 x,
域是否关于原点对称.若对称,再验证 f(-x)=±f(x)或
其等价形式 f(-x)±f(x)=0 是否成立.
解 (1)由x32--x32≥≥0
,得 x=±3.∴f(x)的定义域为{-3,3}.
又 f(3)+f(-3)=0,f(3)-f(-3)=0.即 f(x)=±f(-x).
∴f(x)既是奇函数,又是偶函数.
基础自测
1.下列函数中,所有奇函数的序号是__②__③____.
①f(x)=2x4+3x2;②f(x)=x3-2x; ③f(x)=x2+x 1;④f(x)=x3+1. 解析 由奇偶函数的定义知:①为偶函数;②③为奇函
数;④既不是偶函数,也不是奇函数. 2.若函数 f(x)=2x+2 1+m 为奇函数,则实数 m=_-__1__.
f (x) 0x2 x 1
解 (1)∵f(x)是定义在 R 上的奇函数, ∴f(0)=0,当 x<0 时,-x>0, 由已知 f(-x)=(-x)2-(-x)-1=x2+x-1=-f(x). ∴f(x)=-x2-x+1.
所以 f(x)在(0,+∞)内单调递增.
故|lg x|>1,即 lg x>1 或 lg x<-1,
解得
x>10
或
1 0<x<10.
点评 解决本题的关键在于利用函数的奇偶性把不等
式两边的函数值转化到同一个单调区间上,然后利用函
数的单调性脱掉符号“f”.
题型三 函数的奇偶性与周期性 例 3 设 f(x)是定义在 R 上的奇函数,且对任意实数 x,
域是否关于原点对称.若对称,再验证 f(-x)=±f(x)或
其等价形式 f(-x)±f(x)=0 是否成立.
解 (1)由x32--x32≥≥0
,得 x=±3.∴f(x)的定义域为{-3,3}.
又 f(3)+f(-3)=0,f(3)-f(-3)=0.即 f(x)=±f(-x).
∴f(x)既是奇函数,又是偶函数.
基础自测
1.下列函数中,所有奇函数的序号是__②__③____.
①f(x)=2x4+3x2;②f(x)=x3-2x; ③f(x)=x2+x 1;④f(x)=x3+1. 解析 由奇偶函数的定义知:①为偶函数;②③为奇函
数;④既不是偶函数,也不是奇函数. 2.若函数 f(x)=2x+2 1+m 为奇函数,则实数 m=_-__1__.
f (x) 0x2 x 1
函数的奇偶性(课件PPT)
作业:
P39 : 1、2
5 5 f ( x ) ( x ) x f ( x) , 于原点对称,并且
所以函数是奇函数。
(4)函数的定义域为 (,0) (0,)关于原点
对称。对于函数定义域内的每一个
f ( x)
x ,都有
1 1 f ( x )所以函数是偶函数。 2 2 ( x) x
问题5:如何判断f(x)是奇函数? 1 形----函数图像关于原点对称(图像容易画出的
函数) 2 数----利用定义 (1)首先确定函数的定义域,并判断其定义域
是否关于原点对称
(2)确定f(x)与f(-x)的关系
(3)若f(-x)= -f(x),则f(x)是奇函数
问题6:你能举一些奇函数吗?
比如: f ( x ) x; f ( x ) 1 等等 x
问题5:请举出一些偶函数,为什么它是偶函数?
比如: f ( x ) x 2 1;f ( x ) 2 等等 2 x 11
练习:下列哪几个函数是偶函数?
(1) f ( x) 2 x
2
不是 不是 不是
(2) f ( x) x , x (1,2)
(3) f ( x ) x 2 (4) f ( x ) 3
问题4:如何判断一个函数是偶函数?
1 形----函数图像关于y轴对称(图像容易画出 的函数) 2 数----利用定义 (1)首先确定函数的定义域,并判断其定义域 是否关于原点对称 (2)确定 f ( x)与f ( x) 的关系 (3)若 f ( x) f ( x),则 f ( x )是偶函数
2
不是
奇函数和偶函数的比较:
函数 定义域 函数满足 的条件 图像特点 代表函数 奇函数 偶函数 函数的定义域关于原点对称
人教版函数的奇偶性-高中数学(共41张PPT)教育课件
f(-x)= f(x) 函数f(x)叫作偶函数
图象关于 y轴 对称
f(-x)= -f(x) 函数f(x)叫作奇函数 图象关于 原点 对 称
3
知识点聚焦:
• 二、奇偶性
定义
如果函数f(x)是奇函数或是偶函数,那么就说函数 f(x)具有 奇偶性
图象特征 奇(偶)函数 图象关于原点或y轴对称
4
探究一 函数奇偶性的判断
∵f(x)是奇函数,
•
∴f(x)=-f(-x)=-[(-x)(1+x)]=x(1+x).
• 【答案】B
37
随堂训练
• 5.已知函数f(x)是定义域为R的奇函数且f(1)=-2,那么f(-1)+f(0)=( )
•
A.-2
B.0
C.1
D.2
38
解析:
• 【解析】函数f(x)是定义域为R的奇函数且f(1)=-2,
•
: 其实兴趣真的那么重要吗?很多事情我 们提不 起兴趣 可能就 是运维 我们没 有做好 。想想 看,如 果一件 事情你 能做好 ,至少 做到比 大多数 人好, 你可能 没有办 法岁那 件事情 没有兴 趣。再 想想看 ,一个 刚来到 人世的 小孩, 白纸一 张,开 始什么 都不会 ,当然 对事情 开始的 时候也 没有 兴趣这 一说了 ,随着 年龄的 增长, 慢慢的 开始做 一些事 情,也 逐渐开 始对一 些事情 有兴趣 。通过 观察小 孩的兴 趣,我 们可以 发现一 个规律 ,往往 不是有 了兴趣 才能做 好,而 是做好 了才有 了兴趣 。人们 总是搞 错顺序 ,并对 错误豪 布知晓 。尽管 并不绝 对是这 样,但 大多数 事情都 需要熟 能生巧 。做得 多了, 自然就 擅长了 ;擅长 了,就 自然比 别人做 得好; 做得比 别人好 ,兴趣 就大起 来,而 后就更 喜欢做 ,更擅 长,更 。。更 良性循 环。教 育小孩 也是如 此,并 不是说 买来一 架钢琴 ,或者 买本书 给孩子 就可以 。事实 上,要 花更多 的时间 根据孩 子的情 况,选 出孩子 最可能 比别人 做得好 的事情 ,然后 挤破脑 袋想出 来怎样 能让孩 子学会 并做到 很好, 比一般 人更好 ,做到 比谁都 好,然 后兴趣 就自然 出现了 。
函数的奇偶性课件(共14张PPT)
y
则f (x) f (x) 2x
即2 f (x) 2x
2
即f (x) x
-2 o
2
x
故解集为:- 2,-1 0,1
-2
高中数学必修1同步辅导课程——函数的奇偶性
变式2:定义在R 上的函数 f (x), 对任意x, y R都有 f (x y) f (x) f ( y) 1, 且x 0时,f (x) 1, f (1) 2
f (x)单调递减,则f (1 m) f (m) 成立的 m 取值范围 是 ________。
高中数学必修1同步辅导课程——函数的奇偶性
例2:定义在 3,3 上的函数 f (x), g(x)分别为偶函数、
奇函数,图像如下,则不等式 f (x) 0的解集是:
g(x)
(_2_,_1_)__(_0_,1_) __(_2,_3_) 。
(1)求证:f (x)是R上的增函数; (2)解不等式: f (3x 1) 7; (3)求证:g(x) f (x) 1是奇函数。
高中数学必修1同步辅导课程——函数的奇偶性
课堂总结:
1:函数奇偶性的定义: “数”与“形”的特征
2:利用函数的奇偶性求值、求解析式
3:函数奇偶性与单调性的联系: “模拟图像”
题型三:奇偶性与单调性的联系:
例:已知函数 y f (x)(x 0)为奇函数,在 x 0,
上为单调增函数,且 f (1) 0 ,则不等式 f (2x 1) 0 解集为__________.
高中数学必修1同步辅导课程——函数的奇偶性
变式:定义在 2,2上的偶函数 f (x),当x 0 时,
高中数学必修1同步辅导课程——函数的奇偶性
1 第1课时 函数奇偶性的概念(共45张PPT)
【解】 (1)因为 x∈R, 所以-x∈R, 又因为 f(-x)=|-x+1|-|-x-1| =|x-1|-|x+1|=-(|x+1|-|x-1|) =-f(x), 所以 f(x)为奇函数. (2)因为函数 f(x)的定义域为{-1,1}, 关于原点对称,且 f(x)=0, 所以 f(-x)=-f(x),f(-x)=f(x), 所以 f(x)既是奇函数又是偶函数.
解:(1)由题意作出函数图象如图所示:
(2)由图可知,单调递增区间为(-1,1). (3)由图可知,使 f(x)<0 的 x 的取值集合为(-2,0)∪(2,+∞).
巧用奇偶性作函数图象的步骤 (1)确定函数的奇偶性. (2)作出函数在[0,+∞)(或(-∞,0])上对应的图象. (3)根据奇(偶)函数关于原点(y 轴)对称得出在(-∞,0](或[0,+∞))上对应的 函数图象. [注意] 作对称图象时,可以先从点的对称出发,点(x0,y0)关于原点的对称 点为(-x0,-y0),关于 y 轴的对称点为(-x0,y0).
C.坐标原点对称
D.直线 y=x 对称
解析:选 C.函数 f(x)=1x-x 是奇函数,其图象关于坐标原点对称.
3.(2020·武汉高一检测)函数 f(x)=x+x22+a+8 3为奇函数,则实数 a=
(
)
A.-1
B.1
C.-32
D.32
解析:选 C.由题得 f(x)为奇函数,则 f(0)=0,即 0+2a+3=0,所以 a=
探究点 2 奇、偶函数的图象 已知函数 y=f(x)是定义在 R 上的偶函数,且当 x≤0 时,f(x)=x2+2x.
现已画出函数 f(x)在 y 轴左侧的图象,如图所示.
(1)请补出完整函数 y=f(x)的图象; (2)根据图象写出函数 y=f(x)的递增区间; (3)根据图象写出使 f(x)<0 的 x 的取值集合.
函数的奇偶性(数学教学课件)课件
例如
$f(x)=x^3$,满足$f(-x)=-x^3=f(x)$,是奇函数。
偶函数实例
偶函数
如果对于函数$f(x)$的定义域内任意 一个$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
例如
$f(x)=x^2$,满足$f(-x)=(x)^2=x^2=f(x)$,是偶函数。
THANKS
函数的奇偶性
目录
• 奇偶性定义 • 奇偶性判断 • 奇偶性性质 • 奇偶性应用 • 奇偶性实例
01
奇偶性定义
Chapter
奇函数
定义
如果对于函数$f(x)$的定义域内任意一个$x$,都有 $f(-x)=-f(x)$,则称$f(x)$为奇函数。
性质
奇函数的图像关于原点对称。
实例
$f(x)=x^3$,$f(-x)=-(-x)^3=-x^3=-f(x)$,满足奇 函数的定义。
偶函数
定义
如果对于函数$f(x)$的定义 域内任意一个$x$,都有$f(x)=f(x)$,则称$f(x)$为偶函 数。
性质
偶函数的图像关于y轴对称。
实例
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,满足偶函 数的定义。
02
奇偶性判断
Chapter
奇函数判断
1 2 3
奇函数定义
如果对于函数$f(x)$的定义域内任意一个$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。
奇函数性质
奇函数的图像关于原点对称,即如果$f(x)$是奇 函数,那么其图像在$x$轴上方的部分与下方的 部分关于原点对称。
奇函数举例
例如,函数$f(x)=x^3$和$f(x)=sin(x)$都是奇函 数。
$f(x)=x^3$,满足$f(-x)=-x^3=f(x)$,是奇函数。
偶函数实例
偶函数
如果对于函数$f(x)$的定义域内任意 一个$x$,都有$f(-x)=f(x)$,则称 $f(x)$为偶函数。
例如
$f(x)=x^2$,满足$f(-x)=(x)^2=x^2=f(x)$,是偶函数。
THANKS
函数的奇偶性
目录
• 奇偶性定义 • 奇偶性判断 • 奇偶性性质 • 奇偶性应用 • 奇偶性实例
01
奇偶性定义
Chapter
奇函数
定义
如果对于函数$f(x)$的定义域内任意一个$x$,都有 $f(-x)=-f(x)$,则称$f(x)$为奇函数。
性质
奇函数的图像关于原点对称。
实例
$f(x)=x^3$,$f(-x)=-(-x)^3=-x^3=-f(x)$,满足奇 函数的定义。
偶函数
定义
如果对于函数$f(x)$的定义 域内任意一个$x$,都有$f(x)=f(x)$,则称$f(x)$为偶函 数。
性质
偶函数的图像关于y轴对称。
实例
$f(x)=x^2$,$f(-x)=(x)^2=x^2=f(x)$,满足偶函 数的定义。
02
奇偶性判断
Chapter
奇函数判断
1 2 3
奇函数定义
如果对于函数$f(x)$的定义域内任意一个$x$, 都有$f(-x)=-f(x)$,则称$f(x)$为奇函数。
奇函数性质
奇函数的图像关于原点对称,即如果$f(x)$是奇 函数,那么其图像在$x$轴上方的部分与下方的 部分关于原点对称。
奇函数举例
例如,函数$f(x)=x^3$和$f(x)=sin(x)$都是奇函 数。
人教版高中数学函数的奇偶性(共15张PPT)教育课件
:
那
你
的
第
一
口
罗
没
有
我
和
他
不
同
。
我
是
从
底
层
但
是
当
我
拍
完
但
是
我
年
轻
时
有
一
个
想
法
就
是
如
果
我
告
诉
你
怎
么
弄
■
电
:
“
口
罗
部
爬
一
,
1
戏
有
上
来
的
我
个
5
分
钟
后
你
还
色
其
没
清
镜
没
有
楚 弄
有 怎
完 情
么
头
我
就
胆
怯
,
像
运
作
这
个
东
西
(
,
下
不
耐
烦
像
如
果
我
自
己
弄
费
电
影
一
五
分
钟
男
女
实
里
拍
个
就
弄
尼
摄
)
所
镜
完
所
以
最
是
拍 以
后
通
不
第
一
为
人
的
一
生
说
白
了
,
也
就
是
三
万
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.3.2 │ 考点类析
[解析] ①由解析式可知函数的定义域为 R,由于 f(-x)=- (-x)2+1=-x2+1=f(x),所以函数为偶函数.
(2)观察图像是否关于原点对称或关于 y 轴对称.
1.3.2 │ 考点类析
例 1 (1)给出下列函数:①f(x)=-x2+1,②f(x)=x4, x∈[-1,3],③f(x)=0,④f(x)=x5,⑤f(x)= x,⑥f(x)=x+1x.
其中,偶函数是__①______,奇函数是__④__⑥____,非奇非偶 函数是__②__⑤____,既是奇函数又是偶函数的是___③_____.
1.3.2 │ 新课导入
[导入二] 复习在初中学习的轴对称图形和中心对称图形的定义, 同桌两人分别画出函数 f(x)=x3 与 g(x)=x2 的图像,讨论它们 图像的特点.
1.3.2 │ 预习探究
预习探究
知识点一 函数奇偶性的概念 一般地,如果对于函数 f(x)的定义域内任意一个 x,都有
____f(_-__x_)_=__f(_x_)_____________,那么函数 f(x)就叫作偶函数; 如 果 对 于 函 数 f(x) 的 定 义 域 内 任 意 一 个 x , 都 有 ____f_(_-__x_)=__-__f_(_x_) _________,那么函数 y=f(x)就叫作奇函数.
2.重要性质 (1)奇函数在区间[a,b]和[-b,-a](b>a>0)上有 相同的单调性. (2)偶函数在区间[a,b]和[-b,-a](b>a>0)上有 相反的单调性.
1.3.2 │ 备课素材
备课素材
1.函数的奇偶性与单调性的区别 奇偶性反映了函数在定义域上的对称性,是相对于函数的整个定 义域来说的,单调性反映了函数在某一区间上的函数值的变化趋势, 此区间是定义域的子区间,因此,单调性是函数的“局部”性质,奇 偶性是函数的“整体”性质. 2.奇、偶函数定义中 f(x)与 f(-x)的关系
(1)偶函数:f(-x)=f(x)⇔f(x)-f(-x)=0;
(2)奇函数:f(-x)=-f(x)⇔f(x)+f(-x)=0.
1.3.2 │ 备课素材
3.根据奇偶性将函数分类 分类标准
函数 奇偶性
奇函数 偶函数
既是奇函数又是偶函数 非奇非偶函数
4.奇、偶函数图像对称性与点对称的关系 若函数 y=f(x)是奇函数,则函数 y=f(x)图像上任一点 M(x,f(x)) 关于原点的对称点 M′(-x,-f(x))也在 y=f(x)的图像上;若函数 y =f(x)是偶函数,则函数 y=f(x)图像上任一点 M(x,f(x))关于 y 轴的 对称点 M′(-x,f(x))也在 y=f(x)的图像上.
1.3.2 │ 重点难点
重点难点
[重点] 函数的奇偶性及其几何意义. [难点] 函数奇偶性的判断.
1.3.2 │ 教学建议
教学建议
对于函数奇偶性的概念的教学,(1)建议在引出概念时, 先要复习轴对称与中心对称图形,挖掘出两个引例图像中的 对称点坐标之间的关系,再得出定义.(2)要着重强调概念中 的“任意”二字,因为所取 x 为定义域中的任意数,又-x 也 在其定义域内,所以奇、偶函数的定义域关于坐标原点对称, 这是判断函数是奇函数或偶函数的前提条件.
如果函数 f(x)是奇函数或偶函数,我们就说函数 f(x)具有 __奇__偶__性______.
1.3.2 │ 预习探究
[思考] (1)为什么奇、偶函数的定义域一定要 关于原点对称?
(2)对于定义在 R 上的函数 f(x),若 f(-2)= f(2),则函数 f(x)一定是偶函数吗?
1.3.2 │ 预习探究
1.3.2 │ 新课导入
新课导入
[导入一]
“对称”是大自然的一种美,这种“对称美”在数学中也有大 量的反映.观察下列函数的图像,总结各函数之间的共性.
图 13这四个函数中,前两个的图像关于 y 轴对称,后两个的图像关 于原点对称,这样的函数的定义域有什么特点?-x 与 x 对应的函 数值有什么关系?
1.3.2 │ 教学建议
对于奇函数与偶函数图像的对称性的教学,建议在讲解 这一知识点时,只要让学生观察图像得出结论即可,不必证 明.否则将增加教学上的难度.有兴趣且有余力的同学可以 利用平面几何中有关对称点坐标间的知识进行推证.
对关于函数奇偶性与单调性综合问题的教学,建议先用 奇偶性将问题转化为比较两个函数值的大小,再利用单调性 转化为比较自变量大小的问题,使抽象不等式转化为具体不 等式求解.
1.3.2 函数的奇偶性
1.3理解奇函数、偶函数的概念,会运用定义判断函数的奇偶 性. 2.过程与方法 通过函数奇偶性概念的形成过程,培养学生观察、归纳、 抽象的能力,渗透数形结合的数学思想.
1.3.2 │ 三维目标
3.情感、态度与价值观 通过函数的奇偶性教学,培养学生从特殊到一般的概括归 纳问题的能力,培养学生善于探索的思维品质.
知识点二 奇偶函数的图像与性质 1.奇函数的图像关于_原__点_____对称.反过来,若一个函
数的图像关于__原__点____对称,那么这个函数是__奇__函__数__.
偶函数的图像关于__y_轴_____对称.反过来,若一个函数 的图像关于__y_轴_____对称,那么这个函数是偶函数.
1.3.2 │ 预习探究
解:(1)由定义知,若 x 是定义域内的一个元素,-x 也一 定是定义域内的一个元素,所以函数 y=f(x)具有奇偶性的一 个必不可少的条件是:定义域关于原点对称.
(2)不一定,仅有 f(-2)=f(2),不足以确定函数的奇偶性, 不满足定义中的“任意”,故不一定是偶函数.
1.3.2 │ 预习探究
1.3.2 │ 考点类析
考点类析
考点一 函数奇偶性的判断 重点探究型 [导入] (1)给出一个函数的解析式,你如何判断函数的奇偶性? (2)若给出一个函数的图像,你如何判断函数的奇偶性?
1.3.2 │ 考点类析
解:(1)先判断定义域是否关于原点对称,再检验 f(-x) =f(x)或 f(-x)=-f(x)是否恒成立;也可以作出函数的图像, 观察图像是否关于原点对称或关于 y 轴对称.