3.4电机转动控制实验

合集下载

物理实验电机实验报告

物理实验电机实验报告

物理实验电机实验报告实验名称:电机实验实验目的:通过实验观察和研究电机的运动规律,了解电机的工作原理并掌握基本的电机原理和运动规律。

实验器材与材料:1. 电动机2. 直流电源3. 万用表4. 实验台5. 电线6. 螺旋轴7. 弹簧尺8. 直尺9. 扳手实验原理:电动机是一种将电能转换为机械能的装置,其工作原理是基于电磁感应定律,即当导体在磁场中运动时,就会感应出电动势并产生电流。

根据左手定则,如果导体电流与磁感线方向垂直,就会受到力的作用。

利用这个原理,电动机产生转动力矩,实现机械运动。

实验步骤:1. 将电动机固定在实验台上,并将其输出轴与螺旋轴连接。

2. 将电动机的两端接入直流电源,并调节电源电压使电动机开始旋转。

3. 使用弹簧尺测量转动电机的角度,并利用直尺测量电动机在一定时间内转过的圆周距离。

4. 调节直流电源的电压,重复步骤3,记录不同电压下电机的角度和圆周距离。

5. 将电动机的转动方向反转,重复步骤3和4,记录不同电压下电机的角度和圆周距离。

6. 分别使用万用表测量电动机的电压和电流值,并计算电动机的功率。

实验结果与分析:我们进行了几组实验,记录了电动机在不同电压下的角度和圆周距离。

根据实验数据,我们可以绘制出电动机的角度-时间和圆周距离-时间曲线。

实验分析表明,电动机的转速与电压成正比,当电压增大时,转速也相应增加。

而转速与圆周距离成反比,圆周距离越大,转速越小。

这是因为电动机的转速受到电源电压和机械负载的影响。

另外,我们还计算了电动机的功率。

根据实验数据,我们可以使用功率公式P = VI 计算出电动机的功率。

我们发现,电动机的功率随电压的增加而增加,但在一定范围内逐渐趋于稳定。

这是因为功率受到电流和电压的共同影响。

结论:通过本次电动机实验,我们得出了以下结论:1. 电动机的转速与电压成正比,而与圆周距离成反比。

2. 电动机的功率随电压的增加而增加,但在一定范围内逐渐趋于稳定。

3. 电动机的转速和功率与电流和电压有密切关系。

电动机实训报告(5篇)

电动机实训报告(5篇)

电动机实训报告电动机实训报告(5篇)在人们越来越注重自身素养的今天,报告使用的次数愈发增长,报告根据用途的不同也有着不同的类型。

那么,报告到底怎么写才合适呢?以下是小编为大家收集的电动机实训报告,仅供参考,希望能够帮助到大家。

电动机实训报告1一、实训目的通过本次的实训以提高同学们对具有过载保护的点动线路的理解和认识。

通过实训以达到知识和技能相结合的目的;更好的完成学习任务。

同时锻炼同学们的认知能力、技能水平;学会三相异步电动机具有过载保护的点动控制电路的操作和接线方法。

通过实习理解电力拖动以及点动的概念。

二、实训内容1、电动机的点动控制线路,具有过载保护的单相点动控制线路。

详图如下:2、线路分析(1)SB为线路的控制按钮。

(2)工作原理:合上开关QS起动:按下SB→KM线圈获电停止:放开SB→KM线圈断电释放按下控制按钮SB,由于接在按钮SB下端的KM线圈通电,KM主触头闭合,电机开始运转;当放开控制按钮SB后,电机停转。

这种线路叫做点动控制线路,由于线路中加装了热继电器,所以线路依然具有过载保护。

同时还兼有欠电压、失电压、短路等保护特点。

三、实训准备1、思想准备这个线路由于是刚开始接触到实习,对电工接线知识还是很欠缺,可能在接线的过程中将某根导线接错,导致整个实习失败。

对此我一定要在实习前细心的钻研图纸,认真的理解原理,虚心的向老师、同学请教,以确保此次实习圆满成功,达到规定的水平。

2、元器件准备序号元件名称元件型号元件数量单位备注1闸刀开关HK1-30/31只2熔断器RC1A-153只3熔断器RC1A-52只4交流接触器CJ0-201只5热继电器JR0-20/3D1只6按钮开关1只7电动机75W1台3、工具准备序号工具名称工具型号工具数量单位备注1钢丝钳160mm1把2斜口钳160mm1把3剥线钳1把4螺丝刀2只两种不同5电工刀1把6尖嘴钳160mm1把7测电笔1只4、材料准备序号材料名称材料型号材料数量单位备注1吕芯线BLV-2.53米2铜芯线BV-15米3钢精扎头2#3#各5支四、实训要求1、正确度要求。

电机与控制实验报告

电机与控制实验报告

一、电机与控制1、长动、点动控制电路(1)电路图:(2)工作原理:按下按钮SB2,KM线圈得电,由它控制的KM常开触点将闭合。

放开SB2按钮后,在KM2常开触点吸合的这条支路导通,形成自锁,即SB2实现了长动功能,SB1为停止按钮。

当按下按钮SB3,SB3常开触点闭合,KM线圈通电,线圈得电,它的常开触点吸合,但SB3的常闭触点在按下的时候会打开,KM的常开触点即使闭合也无法形成自锁。

要让线圈保持通电,只能一直按着SB3,即SB3按钮实现了点动功能。

(3)调试和结果:在接线时由于弄错了SB3常开和常闭的接法,改正后电路实现长动和点动的功能。

2、自动往复循环控制电路(1)电路图:(2)工作原理:当SB2按下以后,SB2常闭将断开,KM2线圈所在支路断电,而KM1线圈会吸合它的常开触点,形成自锁,保持电机的运转。

直到到达限位开关SQ2的位置,SQ2打开的瞬间,KM1线圈失电,不再向前运动,同时,与之相连的SQ2常开开关闭合会使得KM2线圈得电,电机会逆转。

当达到限位开关SQ1的位置,SQ1打开的瞬间,KM2线圈失电,不再向前运动,同时,与之相连的SQ1常开开关闭合会使得KM1线圈得电,电机会反转。

(3)调试和结果:这个电路比较简单,两个人一起连,没有出错。

3、顺启逆停(1)电路图:(2)工作原理:SB1按钮按下以后,KM1线圈得电,电机1开始转动,它的常开触点闭合形成了自锁,并且使得时间继电器KT1的线圈得电,时间继电器KT1的设置时间到了以后,它所控制的常开触点将闭合,会使得KM2线圈得电,电机1开始转动,这样就完成了SB1按钮控制的电机1先转,过一段时间电机2再转的功能。

SB2按钮按下以后,KV线圈得电,它的常开触点吸合,使得KV线圈得电并自锁,它的常闭触点断开,使得KM2线圈断电,电机2停转,使得时间继电器KT2线圈得电。

当时间继电器KT2设置的延时时间到了以后,KT2线圈控制的常开触点打开,KM1线圈失电,电机1停转。

控制步进电机实验报告(3篇)

控制步进电机实验报告(3篇)

第1篇一、实验目的1. 理解步进电机的工作原理及控制方法。

2. 掌握单片机与步进电机驱动模块的接口连接方法。

3. 学习使用C语言编写程序,实现对步进电机的正反转、转速和定位控制。

4. 通过实验,加深对单片机控制系统的理解。

二、实验原理步进电机是一种将电脉冲信号转换为角位移或线位移的电机,其特点是控制精度高、响应速度快、定位准确。

步进电机控制实验主要涉及以下几个方面:1. 步进电机驱动模块:常用的驱动模块有ULN2003、A4988等,它们可以将单片机的数字信号转换为步进电机的控制信号。

2. 单片机:单片机是整个控制系统的核心,负责接收按键输入、处理数据、控制步进电机驱动模块等。

3. 步进电机:步进电机分为单相、双相和三相等类型,本实验使用的是双相四线步进电机。

三、实验设备1. 单片机开发板:例如STC89C52、STM32等。

2. 步进电机驱动模块:例如ULN2003、A4988等。

3. 双相四线步进电机。

4. 按键。

5. 数码管。

6. 电阻、电容等元件。

7. 电源。

四、实验步骤1. 硬件连接(1)将步进电机驱动模块的输入端(IN1、IN2、IN3、IN4)分别连接到单片机的P1.0、P1.1、P1.2、P1.3口。

(2)将按键的输入端连接到单片机的P3.0口。

(3)将数码管的段选端连接到单片机的P2口。

(4)将步进电机驱动模块的电源端连接到电源。

(5)将步进电机连接到驱动模块的输出端。

2. 编写程序(1)初始化单片机I/O端口,设置P1口为输出端口,P3.0口为输入端口,P2口为输出端口。

(2)编写按键扫描函数,用于读取按键状态。

(3)编写步进电机控制函数,实现正反转、转速和定位控制。

(4)编写主函数,实现以下功能:a. 初始化数码管显示;b. 读取按键状态;c. 根据按键状态调用步进电机控制函数;d. 更新数码管显示。

3. 调试程序(1)将程序烧写到单片机中;(2)打开电源,观察数码管显示和步进电机运行状态;(3)根据需要调整程序,实现不同的控制效果。

控制电机实验指导书

控制电机实验指导书

控制电机实验的基本要求和安全操作规程1-1 实验的基本要求控制电机实验课的目的在于培养学生掌握基本的实验方法与操作技能。

培养学生学会根据实验目的,实验内容及实验设备拟定实验线路,选择所需仪表,确定实验步骤,测取所需数据,进行分析研究,得出必要结论,从而完成实验报告。

在整个实验过程中,必须集中精力,及时认真做好实验。

现按实验过程提出下列基本要求。

1-1-1 实验前的准备实验前应复习教科书有关章节,认真研读实验指导书,了解实验目的、项目、方法与步骤,明确实验过程中应注意的问题(有些内容可到实验室对照实验预习,如熟悉组件的编号,使用及其规定值等),并按照实验项目准备记录抄表等。

实验前应写好预习报告,经指导教师检查认为确实作好了实验前的准备,方可开始作实验。

认真作好实验前的准备工作,对于培养同学独立工作能力,提高实验质量和保护实验设备都是很重要的。

1-1-2 实验的进行1、建立小组,合理分工每次实验都以小组为单位进行,每组由3~5人组成,实验进行中的接线、调节负载、保持电压或电流、记录数据等工作每人应有明确的分工,以保证实验操作协调,记录数据准确可靠。

2、选择组件和仪表实验前先熟悉该次实验所用的组件,记录电机铭牌和选择仪表量程,然后依次排列组件和仪表便于测取数据。

3、按图接线根据实验线路图及所选组件、仪表、按图接线,线路力求简单明了,按接线原则是先接串联主回路,再接并联支路。

为查找线路方便,每路可用相同颜色的导线或插头。

4、起动电机,观察仪表在正式实验开始之前,先熟悉仪表刻度,并记下倍率,然后按一定规范起动电机,观察所有仪表是否正常(如指针正、反向是否超满量程等)。

如果出现异常,应立即切断电源,并排除故障;如果一切正常,即可正式开始实验。

5、测取数据预习时对电机与拖动的试验方法及所测数据的大小作到心中有数。

正式实验时,根据实验步骤逐次测取数据。

6、认真负责,实验有始有终实验完毕,须将数据交指导教师审阅。

控制电机实验指导书

控制电机实验指导书

控制电机实验指导东北石油大学电气信息工程学院二零一二年九月目录目录实验一直流伺服电机实验 (1)实验二永磁同步电机实验 (3)实验三旋转变压器 (5)实验四力矩式自整角机 (10)实验一直流伺服电机实验一、实验目的1、熟悉MATLAB/SIMULINK的集成环境,了解各窗体和模块的功能和使用方法;2、熟练使用MATLAB/SIMULINK的帮助系统;3、熟练掌握直流伺服电机建模和仿真方法。

二、实验内容1、实验模型及参数设置仿真时间10s,解算方法ode23s。

2、motor starter模块参数3、Ideal Switch以及Timer参数设置三、实验报告要求报告中要附有实验模型及相关示波器中波形图。

实验二永磁同步电机实验一、实验目的1、熟悉MATLAB/SIMULINK的集成环境,了解各窗体和模块的功能和使用方法;2、熟练使用MATLAB/SIMULINK的帮助系统;3、熟练掌握永磁同步电机建模和仿真方法。

二、实验内容1、实验模型及参数设置转速设定值700,PI控制器参数P=50,I=2.6,输出范围[-30 30];Step初始值3稳态值1,起跳时间0.04;PMSM采用默认参数,仿真时间0.06s,解算方法ode15s。

2、dq2abc模块参数2、PWMinv模块参数三、实验报告要求报告中要附有实验模型及相关示波器中波形图。

实验三旋转变压器旋转变压器是一种输出电压随转子转角变化的信号元件。

当激磁绕组以一定频率的交流电激励时,输出绕组的电压可与转角的正弦、余弦成函数关系,或在一定范围内可以成线性关系。

它广泛用于自动控制系统中的三角运算、传输角度数据等,也可以作为移相器用。

一、使用说明HK-56由旋转变压器及旋转变压器专用的中频电源组成。

1、旋转变压器(1)旋转变压器技术指标型号:36XZ20-5电压比:0.56电压: 60V频率:400Hz激励方:定子空载阻抗;2000Ω绝缘电阻:≥100MΩ精度: 1级(2)刻度盘1)本装置将旋转变压器转轴与刻度盘固紧连接,使用时旋转刻度盘手柄即可完成转轴旋转。

三相异步电动机正反转控制电路实验报告

三相异步电动机正反转控制电路实验报告

三相异步电动机正反转控制电路实验报告示例文章篇一:《三相异步电动机正反转控制电路实验报告》嗨,大家好!今天我要和大家分享一下我们做的三相异步电动机正反转控制电路实验,这可太有趣啦!一、实验目的我们为啥要做这个实验呢?那就是要搞清楚三相异步电动机正反转是怎么控制的呀。

就像我们想要知道一辆汽车怎么向前开又怎么向后倒一样,电动机的正反转在好多地方都特别重要呢。

比如说,工厂里的一些机器,有时候需要正转来加工东西,有时候又得反转来调整或者做其他操作。

要是不搞明白这个控制电路,就像你想让玩具车跑起来,却不知道怎么控制方向一样,那可不行!二、实验器材做这个实验,我们得有好多东西才行。

首先就是三相异步电动机啦,这可是主角呢!它就像一个大力士,只要电路一通,就能呼呼地转起来。

然后还有接触器,这东西可神奇啦,就像是电动机的指挥官。

还有按钮,这就是我们给电动机下命令的小工具,按一下,就像跟电动机说“嘿,你该正转啦”或者“你快反转吧”。

还有熔断器呢,这就像是电动机的小保镖,如果电流太大,它就会“挺身而出”,把电路切断,保护电动机不被烧坏。

这就好比你出门的时候,有个保镖在你身边,要是有危险,保镖就会保护你一样。

三、实验步骤1. 连接电路刚开始连接电路的时候,我可紧张啦。

我和我的小伙伴们小心翼翼的,就像在给一个超级精密的机器人组装零件一样。

我们先把电动机的三根线按照电路图接好,这时候我就在想,要是接错了会不会电动机就“发脾气”不转了呢?然后再把接触器也接上去,那些线就像小辫子一样,得一根一根地梳理好,接到正确的地方。

我们一边接,一边互相提醒,“这个线是不是应该接这儿呀?”“你看,这个接头是不是没拧紧呀?”就像一群小蚂蚁在齐心协力地建造自己的小窝一样。

2. 检查电路接好电路后,可不能马上就通电呀,就像你出门前要检查一下自己的东西有没有带齐一样。

我们得仔仔细细地检查电路,看看有没有线接错了,有没有接头没接好。

这时候我的心跳得可快啦,就怕有什么问题。

电动机点动控制实训报告

电动机点动控制实训报告

电动机点动控制实训报告
1 、实验目的
通过本次实训,学习电动机点动控制的相关知识,了解控制系统的原理、使用方法以及调试的技巧,熟悉电动机的运行原理及模拟测试的方法,为日后学习和应用电动机控制预备基础。

2 、实验内容
(1)电路设计:设计电源和控制电源、选择恒流模块、安装电位器等。

(2)编程:通过编程及调试程序来控制电机。

3 、实验结果
实验中,用制作的电源、控制电路和电位器与电机接线后,由编程及调试程序控制,结果表明:
①电动机可以点动控制,通过调节电位器的电位来实现点动控制;
②电动机的点动控制把每次电机介绍的转数控制在一定数值范围内。

4 、实验中遇到的问题
实验中,在接线过程中发现若部分材料,特别是电位器接线不当时,会导致电机不能工作;同时,由于调试程序不全,导致电动机无法正常点动控制,只能慢速转动。

电机控制实验报告分析(3篇)

电机控制实验报告分析(3篇)

第1篇一、实验背景电机控制技术在现代工业和日常生活中扮演着重要角色,其性能直接影响着设备的运行效率和稳定性。

为了更好地理解和掌握电机控制技术,我们进行了一系列电机控制实验。

本报告将对实验过程、结果及分析进行详细阐述。

二、实验目的1. 熟悉电机控制系统的基本组成和原理;2. 掌握电机控制实验的操作步骤和注意事项;3. 分析实验数据,验证电机控制理论;4. 提高实际操作能力和故障排除能力。

三、实验内容1. 电机控制实验平台搭建实验平台主要包括电机、控制器、传感器、电源等设备。

实验过程中,我们需要根据实验要求,正确连接各设备,确保实验顺利进行。

2. 电机调速实验通过调整PWM信号的占空比,实现对电机转速的调节。

实验中,我们测试了不同占空比下电机的转速,并记录实验数据。

3. 电机转向控制实验通过改变PWM信号的极性,实现对电机转向的控制。

实验中,我们测试了不同极性下电机的转向,并记录实验数据。

4. 电机制动实验通过调整PWM信号的占空比和极性,实现对电机制动的控制。

实验中,我们测试了不同制动条件下电机的制动效果,并记录实验数据。

四、实验结果与分析1. 电机调速实验结果分析实验结果显示,随着PWM占空比的增大,电机转速逐渐提高。

当占空比为100%时,电机达到最大转速。

实验数据与理论分析基本一致。

2. 电机转向控制实验结果分析实验结果显示,通过改变PWM信号的极性,可以实现对电机转向的控制。

当PWM信号极性为正时,电机正转;当PWM信号极性为负时,电机反转。

实验数据与理论分析相符。

3. 电机制动实验结果分析实验结果显示,通过调整PWM信号的占空比和极性,可以实现对电机制动的控制。

当PWM信号占空比为0时,电机完全制动;当占空比逐渐增大时,电机制动效果逐渐减弱。

实验数据与理论分析基本一致。

五、实验结论1. 电机控制实验平台搭建成功,能够满足实验要求;2. 电机调速、转向和制动实验均取得了良好的效果,验证了电机控制理论;3. 通过实验,提高了实际操作能力和故障排除能力。

电机与电气控制技术 第2版 电子教案与教学设计 3.4-三相异步电动机的机械特性、起动调速制动

电机与电气控制技术 第2版 电子教案与教学设计 3.4-三相异步电动机的机械特性、起动调速制动
1.学习过程的记录与总结;
2.回答问题的成绩;
3.分析问题的情况;
4.教学检测完成的情况;
5.实训中分析问题解决问题的能力
学生反馈
教学后记
本课程依据高职院校学生的特点和电气自动化专业的人才培养目标,遵循以学生为中心,少讲多练的原则,借助一个个小的控制任务的解决来学习电机及电气控制的应用技能,教学中不能求快,要根据每个学生的学习能力,分层次、分进度的实施教学任务。教学中每个环节要注意引导学生积极思考分析问题,培养学生动手能力及精益求精的工匠精神。
2.鼓励学生自主解决问题的意识,养成主动思考独立思考,培养理论联系实际的学习方法。学会电动机的机械特性分析电动机运行中出现的实际问题。
考核评价
考核方法与工具
采用过程考核和绩效考核两种方法。
过程考核分为两个部分,任务完成的过程中学习态度和方法;帮助其他同学的情况;
绩效考核依据的是制定任务完成的成绩。
考核主要内容
素质目标:促使学生养成自主的学习习惯;学会用理论指导实践,在实践中寻找理论支持
主要教学内容
1.三相异步电动机的机械特性
2.三相异步电动机的启动
3.三相异步电动机的调速
4.三相异步电动机的制动
4.实训:测量电动机的绝缘电阻、空载电流、转速及运行温度技能训练
重点与难点
重点:
1.三相异步电动机的机械特性
2.三相异步电动机的启动、调速、制动方法
教学情境类型
1.教师主导的任务驱动式的教学,在解决具体任务中学习实用技能;
2.小组合作互动探究学习;
3.教师提出问题、学生回答问题,教师答疑,师生角色互换。
教学情境描述
环节1:教师讲解三相异步电动机的机械特性,做好学习笔记

实验6——电机转动控制实验

实验6——电机转动控制实验

课程名称:嵌入式软件技术开课机房:11号机房2012年5月15日星期二8:10~11:35一、实验任务与实验目的二、报告内容电机是把电能转换成机械能的装置。

电机的种类繁多,如果按电源类型分,可分为直流电机和交流电机两大类。

常见的直流电机包括有刷电机、无刷电机、步进电机等。

直流有刷电机是所有电机的基础,它具有启动快、制动及时、可在大范围内平滑地调速、控制电路相对简单等特点。

近年来,随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,使采用全控型的开关功率元件进行脉宽调制(Pulse Width Modulation, 简称PWM)控制方式已成为主流。

这种方式很容易在单片机控制中实现,从而为直流电机控制数字化提供了契机。

本实验使用EasyARM8962 的两路带死区的互补PWM 信号来驱动DC Motor-Kit。

通过改变PWM 的占空比来调节电机两端的平均电压,实现粗略的调速。

实验使用EasyARM8962的KEY1 和KEY2 两个按键来改变占空比,每次按动将改变10%的占空比,实验开始时默认占空比为50%。

LED3 和LED4 分别表示电机正转和反转,另外还有过流报警的功能,如果电机被堵转,EasyARM8962 的蜂鸣器就会报警。

实验原理下图是最基本的PWM 驱动电机的电路。

当开关管V1 的栅极输入高电平时,V1 导通,电机电枢绕组两端电压为U s。

在t1 秒后,栅极输入变为低电平,V1 截止,电机的自感电流通过D1 迅速释放掉,电枢两端电压变为0。

t2 秒后,栅极输入重新变为高电平,V1重复前面的过程。

图1.10 显示了开关管V1 的输入和输出的关系。

由此得到电机的电枢绕组两端的平均电压U o 为:U o = (t1 * U s) /(t1 + t2) = U s *(t1 / T) = α* U s 式中α是占空比。

实验步骤(1) 对EasyARM8962 进行短路设置;用短路帽分别把JP2 的KEY1 与PE2、KEY2 与PE3、LED1 与PF3、LED2 与PF2,JP3 的LED3 与PB6、LED4 与PC5、BEEP 与PA7 短接,其它跳线不能被短路;(2) 用短路帽短接电机模块的J3“双”端处,表示使用双路PWM 驱动。

电机传动与控制实验指导书

电机传动与控制实验指导书

实验一步进电机基本原理实验一、实验目的1、了解步进电动机的基本结构和工作原理。

2、掌握步进电机驱动程序的设计方法。

二、实验原理步进电动机又称为脉冲电机,是工业过程控制和仪表中一种能够快速启动、反转和制动的执行元件。

其功能是将电脉冲转换为相应的角位移或直线位移。

步进电动机的运转是由电脉冲信号控制的,步进电动机的角位移量或线位移量与脉冲数成正比,每给一个脉冲,步进电机就转动一个角度(步距角)或前进/倒退一步。

步进电机旋转的角度由输入的电脉冲数确定,所以,也有人称步进电动机为一个数字/角度转换器。

当某一相绕阻通电时,对应的磁极产生磁场,并与转子形成磁路,这时,如果定子和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻最小路径的特点,转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转的原因。

四相步进电动机以四相单四拍、四相双四拍、四相八拍方式工作时的脉冲分配表如表1,表2和表3表1 四相单四拍脉冲分配表表2 四相双四拍脉冲分配表表3 四相八拍脉冲分配表如步进电动机每一相均停止通电,则电机处于自由状态;若某一相一直通直流电时,则电机可以保持在固定的位置上,即停在最后一个脉冲控制的角位移的终点位置上,这样,步进电动机可以实现停车时转子定位。

这就是步进电动机的自锁功能。

当步进电机处于自锁时,若用手旋转它,感觉很难转动。

三、实验步骤:1.将DRYDC-A型运动控制台的电源线和串行通信接口线连接好。

2.打开DRMU-ME-B综合实验台的电源总开关,开关电源的开关,采集仪开关。

启动硬件设备。

3.打开计算机,从桌面或程序组运行DRLink主程序,然后点击DRLink快捷工具条上的“联机注册”图标,选择“DRLink采集主卡检测”进行注册。

没有使用信号采集主卡的用户可选择:“局域网服务器”进行注册,此时,必需在对话框中填入DRLink服务器的主机IP地址。

4.点击DRLink快捷工具条上“文件夹”图标,出现文件选择对话框,在实验目录中选择“步进电机基本原理”实验,并启动该实验。

DJDK-1型电力电子技术及电机控制实验装置实验指导书V3.4版

DJDK-1型电力电子技术及电机控制实验装置实验指导书V3.4版
2、正、反桥脉冲输入端
从三相晶闸管触发电路(如DJK02-1等挂件)来的正、反桥触发脉冲分别通过输入接口,加到相应的晶闸管电路上;信号接口的详细情况详见附录相关内容。
3、正、反桥钮子开关
从正、反桥脉冲输入端来的触发脉冲信号通过“正、反桥钮子开关”接至相应晶闸管的门极和阴极;面板上共设有十二个钮子开关,分为正、反桥两组,分别控制对应的晶闸管的触发脉冲;开关打到“通”侧,触发脉冲接到晶闸管的门极和阴极;开关打到“断”侧,触发脉冲被切断;通过关闭某几个钮子开关可以模拟晶闸管主电路失去触发脉冲的故障情况。
5、励磁电源
在按下启动按钮后将励磁电源开关拨向“开”侧,则励磁电源输出为220V的直流电压,并有发光二极管指示输出是否正常,励磁电源由0.5A熔丝做短路保护,由于励磁电源的容量有限,仅为直流电机提供励磁电流,不能作为大容量的直流电源使用。
6、面板仪表
面板下部设置有±300V数字式直流电压表和±5A数字式直流电流表,精度为0.5级,能为可逆调速系统提供电压及电流指示;面板上部设置有500V真有效值交流电压表和5A真有效值交流电流表,精度为0.5级,供交流调速系统实验时使用。
图1-2主控制屏面板图
1、三相电网电压指示
三相电网电压指示主要用于检测输入的电网电压是否有缺相的情况,操作交流电压表下面的切换开关,观测三相电网各线间电压是否平衡。
2、定时器兼报警记录仪
平时作为时钟使用,具有设定实验时间、定时报警和切断电源等功能,它还可以自动记录由于接线操作错误所导致的告警次数。(具体操作方法详见DJDK-1型电力电子技术及电机控制实验装置使用说明书)
(3)触发脉冲与晶闸管主电路电源必须同步,两者频率应该相同,而且要有固定的相位关系,使每一周期都能在同样的相位上触发。

直流电机实验

直流电机实验

电机学实验一直流电机实验1实验目的:理解掌握直流机发电、电动工作特性。

2实验电路:图 1 直流电机实验系统结构图3 实验内容与步骤3.1系统基本连接与参数调节--由教师完成:(1)连接电路实线部分。

直流机按正转接线,交流机按反转接线。

(2)电流调节器调最大Uc为1V。

调电流反馈:Ui/Ia=2V/0.5A。

(3)直流稳压源限流值调到1.5A。

3.2直流机发电实验--交流机作同步恒速运行,驱动直流机发电,电流闭环控制整流调压器吸收其电流。

3.2.1实验准备(1) 完成直流机电枢回路、励磁回路连接,励磁开关Kf断开,RA、RB置最大。

(2)整流器:Uct只接电流调节器输出Uc!Ublf断开,整流器先关闭。

(3)交流机RC调最大。

直流稳压源断开Kz,通电调到Uz=15V。

(4)实验台通电。

(5)给定电路置“负”,并调输出0V。

--注:电流调节器的运放“反相”,故给定为负,反馈为正3.2.2 启动交流机(1)接通主电路。

(2)减RC起动交流机反转到~1000rpm,接通直流稳压源Kz,RC回最大。

使交流机进入同步恒速(1500rpm)运行,驱动直流机发电。

3.2.3直流发电机空载Uf-E特性(即if -φ磁化特性)实验断Kf使Uf=0, 测量记录对应的直流机剩磁发电电势E(|Ua|)。

接通Kf后调RA+RB使Uf= 90, 160, 220V。

测量记录E。

3.2.4 直流发电机负载特性实验--用电流闭环恒定吸收直流机发电电流,并转为交流功率送电网。

(1)调RA+RB保持励磁Uf=220V。

(2)测Ud应为负!(否则查改直流机电枢接线)。

整流器Ubf接通,允许其工作。

(3)加负载:用负给定电位器调-Ui*到Ia=(0),0.3, 0.6A,测量记录Ia、Ua。

*(4) 可用RA+RB降Uf=200V,测量记录Ia、Ua—观察电流环恒流效果。

(5) 停车:先用-Ui*减Ia到0,再断开Kz,电机停车后断主电路。

实验三、电机控制实验报告

实验三、电机控制实验报告

学生实验报告院别电子信息学院课程名称DSP芯片原理与应用班级实验名称实验三、电机控制实验姓名实验时间学号指导教师成绩报告内容一、实验目的和任务1.熟悉 CCS 开发环境;2.了解直流与步进电机驱动的原理;3.了解 PWM 对直流的驱动原理;4.了解步进电机的控制原理;5.了解直流与步进电机的驱动电路;6.了解 PWM 调速的实现过程;7.通过’LF2407 片上 GPIO 产生的脉冲的宽度与相位的顺序控制速度与方向。

二、实验原理介绍1.直流电机的驱动:是直流电机翻译/驱动的典型电路的一个变种,采用这种电路不但能够完成直流电机驱动的动作,而且可以避免典型 H 桥电路潜在的短路危险。

针对 SEED-DTK 中直流电机系统动作要求和电机的特点,电机驱动电路设计思路如下:● 电机采用 15V 直流电源供电,串接 50?@3W 电阻限流并分压;● 2路控制信号 X、Y由SEED-DSK2407的J4中的T1PWM_T1CMP 和T2PWM_T2CMP 提供,信号为 CMOS 标准电平,通过排线接入,并下拉;● 使用达灵顿管 TIP31C 代替 BD679 作为电机驱动开关,基级串接 100? 电阻;● 使用快速二极管 1N4007 完成保护功能,以免电机换向时烧毁电机;● 电机电源/地之间跨接电容,电机地与数字地之间采用磁珠连接共地;2.直流电机的驱动接口:直流电机控制的2个控制信号X、Y由 DSK2407的J4中的T1PWM_T1CMP和T2PWM_T2CMP提供,其说明如下:● 当 T1PWM_T1CMP:T2PWM_T2CMP=00 时:直流电机刹车;● 当 T1PWM_T1CMP:T2PWM_T2CMP=11 时:直流电机刹车;● 当 T1PWM_T1CMP:T2PWM_T2CMP=01 时:直流电机正转;● 当 T1PWM_T1CMP:T2PWM_T2CMP=10 时:直流电机反转;3.步进电机的驱动:是单极性步进电机翻译 / 驱动的典型电路,图中的方块为驱动开关。

电机速度调节、方向控制及转速测量实验

电机速度调节、方向控制及转速测量实验

电机速度调节、方向控制及转速测量实验1 实验目的掌握iCAN4400 模拟量输出功能,掌握iCAN2404 继电器输出功能,掌握iCAN7408 计数功能。

2 实验设备及器件PC 机一台iCAN 实验教学平台一台3 实验内容利用iCAN4400 输出电压变化,改变电机转速;电机的起、停控制由iCAN2404 功能模块完成;利用iCAN7408 功能模块用来计算电机转动的圈数(转一圈产生4 个脉冲)。

4 实验要求要求能够掌握iCAN4400 模块、iCAN2404 模块、iCAN7408 功能模块的特点。

5 实验步骤系统接线连接1.模拟量输出接线方式该实验主要利用iCAN4400 模块输出模拟量信号,其输出信号接PCB 板上的AO3,主要功能:为电机提供不同的驱动电压;利用iCAN2404 模块提供开关作用控制电机起、停,其输出端口分别接(AO3,MOTO+);利用iCAN7408 功能模块主要用来计数,计算脉冲输2.模块上线iCAN4400 模块上线3.iCAN2404 模块上线4.iCAN7408 模块上线iCAN7408 模块使能iCAN7408 模块计数1.使用4400、4050等模块,设计步进电机驱动的位置控制系统。

实验步骤如下所示:首先编辑组态画面,如下:然后编辑硬件通道,OPC设置如下:再设置变量表,即实时数据库,如下所示:最后编辑程序,即循环策略,如下所示:2.使用4017 、4400等模块实现一个速度调节系统,要求外围使用电位器来控制电动机的转速。

(难度:中等)实验步骤如下所示:首先进行组态画面,如下:然后进行变量设置,即进行实时数据库设置,如下所示:再进行OPC设置,如下:循环策略如下所示:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4 电机转动控制实验一、实验目的1.熟悉ARM本身自带的六路即三对PWM,掌握相应寄存器的配置。

2.编程实现ARM系统的PWM输出和I/O输出,前者用于控制直流电机,后者用于控制步进电机。

3.了解直流电机和步进电机的工作原理,学会用软件的方法实现步进电机的脉冲分配,即用软件的方法代替硬件的脉冲分配器。

4.掌握带有PWM和I/O的CPU编程实现其相应功能的主要方法。

二、实验内容学习步进电机和直流电机的工作原理,了解实现两个电机转动对于系统的软件和硬件要求。

学习ARM知识,掌握PWM的生成方法,同时也要掌握I/O的控制方法。

1.通过超级终端来控制直流电机与步进电机的切换。

三、预备知识1、用ARM ADS1.2集成开发环境,编写和调试程序的基本过程。

2、ARM应用程序的框架结构。

3、会使用Source Insight 3 编辑C语言源程序。

4、掌握通过ARM自带的A/D转换器的使用。

5、了解直流电机的基本原理。

6、了解步进电机的基本原理,掌握环形脉冲分配的方法。

四、实验设备及工具硬件:ARM嵌入式开发平台、用于ARM920T的JTAG仿真器、PC机Pentium100以上。

软件:PC机操作系统Win2000或WinXP、ARM ADS1.2集成开发环境、仿真器驱动程序、超级终端通讯程序五、实验原理及说明1.直流电机1)直流电动机的PWM电路原理晶体管的导通时间也被称为导通角а,若改变调制晶体管的开与关的时间,也就是说通过改变导通角а的大小,如图6-1所示,来改变加在负载上的平均电压的大小,以实现对电动机的变速控制,称为脉宽调制(PWM)变速控制。

在PWM变速控制中,系统采用直流电源,放大器的频率是固定,变速控制通过调节脉宽来实现。

构成PWM的功率转换电路或者采用"H"桥式驱动,或者采用"T"式驱动。

由于"T"式电路要求双电源供电,而且功率晶体管承受的反向电压为电源电压的两倍。

因此只适用于小功率低电压的电动机系统。

而"H"桥式驱动电路只需一个电源,功率晶体管的耐压相对要求也低些,所以应用得较广泛,尤其用在耐高压的电动机系统中。

图6-1 脉宽调制(PWM)变速原理2)直流电动机的PWM等效电路如图7-2-a所示:是一个直流电动机的PWM控制电路的等效电路。

在这个等效电路中,传送到负载(电动机)上的功率值决定于开关频率、导通角度及负载电感的大小。

开关频率的大小主要和所用功率器件的种类有关,对于双极结型晶体管(GTR),一般为lkHz至5kHz,小功率时(100W,5A以下)可以取高些,这决定于晶体管的特性。

对于绝缘栅双极晶体管(IGBT),一般为5kHz至l2kHz;对于场效应晶体管(MOSFET),频率可高达2OkHz。

另外,开关频率还和电动机电感有关,电感小的应该取得高些。

图6-2 a) 等效电路b) PWM电路中电流和电压波讨论当接通电源时,电动机两端加上电压U P,电动机储能,电流增加,当电源中断时,电枢电感所储的能量通过续流二极管VD继续流动,而储藏的能量呈下降的趋势。

除功率值以外,电枢电流的脉动量也与电动机的转速无关,仅与开关周期、正向导通时间及电机的电磁时间常数有关。

3)直流电动机PWM电路举例图6-3为直流电动机PWM电路的一个例子。

它属于"H"桥式双极模式PWM电路。

图6-3 直流电动机PWM电路举例电路主要由四部分组成,即三角波形成电路、脉宽调制电路、信号延迟及信号分配电路和功率电路。

电路中各点波形如图6-4所示。

其中信号延迟电路是为了防止"共态直通"而设置的。

一般延迟时间调整在(10~30)ps之内,根据晶体管特性而定。

其原理简单叙述如下:功率电路主要由四个功率晶体管和四个续流二极管组成。

四个功率晶体管分为两组,V1与V4、V2与V3分别为一组,同一组的晶体管同时导通,同时关断。

基极的驱动信号U b1 = U b2,U b3=U b4。

其工作过程为:·在t1’—t2 期间,U b1> 0与U b4 > 0,V1与V4导通,V2与V3截止,电枢电流沿回路l流通。

·在t2— T+ t1’期间,U b1< 0与U b4 < 0,V1与V4截止,U b2 > 0与U b 3> 0但此时由于电枢电感储藏着能量,将维持电流在原来的方向上流动,此时电流沿回路2流通;经过跨接于V2与V3上的续流二极管VD4、VD5。

受二极管正向压降的限制,V2与V3不能导通。

·T+ t1’之后,重复前面的过程。

·反向运转时,具有相似的过程。

图6-4 PWM电路中各点波形4)开发平台中直流电机驱动的实现开发板中的直流电机的驱动部分如图7-3所示;由于S3C2410X芯片自带PWM定时器,所以控制部分省去了三角波产生电路、脉冲调制电路和PWM信号延迟及信号分配电路,取而代之的是S3C2410X芯片的定时器0、1组成的双极性PWM发生器。

PWM发生器用到的寄存器主要有以下几个:(1)TCFG0表6-1 TCFG0寄存器参考:Dead zone length=0;prescaler value=2。

(2)TCFG1表6-2 TCFG1寄存器时钟输入频率=PCLK/(prescaler value+1)/(divider value)。

prescaler value有TCFG0决定;divider value由TCFG1决定。

参考:无DMA模式,divider value=2。

本系统中PCLK=50.7MHz (3)TCON表7-3 TCON寄存器参考:dead zone operation enable;Inverter off(4)TCNTB0& TCMPB0表7-4 TCNTB0& TCMPB0TCNTB0决定了脉冲的频率,TCMPB0决定了正脉冲的宽度。

当TCMPB0=TCNTB0/2时,正负脉冲宽度相同;当TCMPB0由0变到TCNTB0时,负脉冲宽度不断增加。

参考:脉冲频率为1Hz。

(5)TCNTO0表7-5 TCNTO02.步进电机1)步进电机概述步进电机是一种能够将电脉冲信号转换成角位移或线位移的机电元件,它实际上是一种单相或多相同步电动机。

单相步进电动机有单路电脉冲驱动,输出功率一般很小,其用途为微小功率驱动。

多相步进电动机有多相方波脉冲驱动,用途很广。

使用多相步进电动机时,单路电脉冲信号可先通过脉冲分配器转换为多相脉冲信号,在经功率放大后分别送入步进电动机各相绕组。

每输入一个脉冲到脉冲分配器,电动机各相的通电状态就发生变化,转子会转过一定的角度(称为步距角)。

正常情况下,步进电机转过的总角度和输入的脉冲数成正比;连续输入一定频率的脉冲时,电动机的转速与输入脉冲的频率保持严格的对应关系,不受电压波动和负载变化的影响。

由于步进电动机能直接接收数字量的输入,所以特别适合于微机控制。

2)步进电机的种类目前常用的步进电机有三类: 1、反应式步进电动机(VR )。

它的结构简单,生产成本低,步距角可以做的相当小,但动态性能相对较差。

2、 永磁式步进电动机(PM )。

它的出力大,动态性能好;但步距角一般比较大。

3、混合步进电动机(HB )。

它综合了反应式和永磁式两者的优点,步距角小,出力大,动态性能好,是性能较好的一类步进电动机。

3)步进电机的工作原理现以反应式三相步进电机为例说明其工作原理。

定子铁心上有六个形状相同的大齿,相邻两个大齿之间的夹角为60度。

每个大齿上都套有一个线圈,径向相对的两个线圈串联起来成为一相绕组。

各个大齿的内表面上又有若干个均匀分布的小齿。

转子是一个圆柱形铁心,外表面上圆周方向均匀的布满了小齿。

转子小齿的齿距是和定子相同的。

设计时应使转子齿数能被二整除。

但某一相绕组通电,而转子可自由旋转时,该相两个大齿下的各个小齿将吸引相近的转子小齿,使电动机转动到转子小齿与该相定子小齿对齐的位置,而其它两相的各个大齿下的小齿必定和转子的小齿分别错开正负1/3的齿距,形成“齿错位”,从而形成电磁引力使电动机连续的转动下去。

和反应式步进电动机不同,永磁式步进电动机的绕组电流要求正,反向流动,故驱动电路一般要做成双极性驱动。

混合式步进电动机的绕组电流也要求正,反向流动,故驱动电路通常也要做成双极性。

4)开发板中步进电机控制的实现本开发板中使用的步进电机为四相步进电机。

转子小齿数为64。

系统中采用四路I/O 进行并行控制,ARM 控制器直接发出多相脉冲信号,在通过功率放大后,进入步进电机的各相绕组。

这样就不再需要脉冲分配器。

脉冲分配器的功能可以由纯软件的方法实现。

图6-5 四相步进电机在开发板中的接法四相步距电机的控制方法有四相单四拍,四相单、双八拍和四相双四拍三种控制方式。

步距角的计算公式为:θb =kmCZ360其中:m为相数,控制方法是四相单四拍和四相双四拍时C为1,控制方法是四相单、双八拍时C为2,Z k为转子小齿数。

本系统中采用的是四相单、双八拍控制方法,所以步距角为360°/512。

但步进电机经过一个1/8的减速器引出,实际的步距角应为360°/512/8。

开发平台中使用EXI/O的高四位控制四相步进电机的四个相。

按照四相单、双八拍控制方法,电机正转时的控制顺序为A→AB→B→BC→C→CD→D→DA。

EXI/O的高四位的值参见表7-6。

表7-6 电机正转时,EXI/O的高四位的值反转时,只要将控制信号按相反的顺序给出即可。

可以通过宏SETEXIOBITMASK(bit,mask)(EXIO.h)来设置扩展I/O口,其中mask参数为0xf0。

六、实验步骤1.新建工程,将“Exp4电机转动控制实验”中的文件添加到工程。

2.编写直流电机初始化数(MotorCtrl.c)3.控制直流电机4.控制步进电机图6-8 控制步进电机七、思考题1.简述PWM的基本原理,思考其基本参数的变化对电机转动的影响。

2.步进电机的基本工作原理是什么?简述软件实现的脉冲分配器的方法。

3.思考四相步进电机的各相先后导通的所有可能,确定步距角的变化,自己动手编出程序,在试验平台上验证。

4.PWM与系统模拟电压是如何对应转化的?。

相关文档
最新文档